%BF%A0和-同位素水文学-第4讲-采样方法-2011版本
- 格式:pdf
- 大小:1.81 MB
- 文档页数:72
大气降水、地表水、土壤水、地下水等同位素采样规程大气降水、地表水、土壤水、地下水等同位素采样规程为了研究陆地生态系统水、碳、氮循环,急需建立中国生态系统研究网络环境同位素数据库,为此水分分中心特制定具体采样操作规程。
一、大气降水采样规程1,安装雨量集水器在【长期观测采样地】场地内安装雨量集水器,注意不能用易污染容器。
2,采样地一般选在【长期观测采样地】场地内,与雨量观测相邻。
3,采样时间一般情况每月采集一次:将当月所有收集雨水充分混合,采集水样。
特殊情况按水分分中心要求适当增加采样次数。
4,采集水样根据水样收集瓶中水样的量选用其中25ml、50ml 和100ml之一,然后在采样瓶的瓶外壁、瓶盖记录水样的编号,时间,统一编号为地名(用简称)+P+年、月份。
打开采样瓶的外盖和内盖;然后把收集瓶中的水样摇晃均匀,使瓶内水样上下充分混合,打开收集瓶的瓶塞,倒出少量水样充分冲洗采样瓶内壁和瓶盖至少3次;把收集瓶中的水样倒入采样瓶中近溢出,盖上采样瓶内盖和外盖,并且使采样瓶中不留气泡。
5,放好降水收集箱塞上水样收集瓶带有漏斗的塞子放入降水收集箱中。
6,保存及运送水样常温保存,避免高温或低温情况(防止结冰)。
运送水样按照水分分中心要求,一般要求,按季度向水分中心运送水样,如有变化另行通知。
做好包装防止挤压,保护好容器。
运送过程中,避免高温或低温情况(防止结冰)等。
二、地表水采样规程1,采样地选择对本生态站水环境的有影响,原则上在同一流域,江河、湖泊、水库等天然水作为采样地。
2,记录在记录本上记录本次采样的日期及时间,当时的水情情势,当时的天气条件以及其它补充的信息。
3,采样时间一般情况每月采集一次。
特殊情况下水量明显变化时或按水分分中心要求适当增加采样次数。
4,采集水样地表水采样瓶使用100ml的容器,在采样瓶的外壁及瓶盖记录水样的编号,统一为地名(可用简称)+R+年、月份。
同时记录下采样日期,详细时间。
打开采样瓶内盖和外盖,首先用所要采的地表水把采样瓶内壁和瓶盖充分冲洗至少3次,然后直接用采样瓶采取地表水样,水样必须装满水样瓶,盖上内盖和外盖,使采样瓶内不留气泡。
第四章同位素水文地球化学环境同位素水文地球化学是一门具有良好的前景、发展迅速的新兴学科,也是水文地球化学的一个重要分支。
目前,地下水资源可持续利用中的重要问题是地下水补给的更新能力及地下水污染程度的评价。
用环境同位素技术研究地下水补给和可更新性,追踪地下水的污染是当前国内外较为新颖的方法之一。
目前世界上许多国家已将同位素方法列为地下水资源调查中的常规方法。
近年来,国内外环境同位素的研究从理论到实践都有较快的发展。
除了应用氢氧稳定同位素确定地下水的起源与形成条件,应用氚、14C测定地下水年龄,追踪地下水运动,确定含水层参数等常规方法外;在应用3H-3He、CFCs示踪干旱、半干旱地区浅层地下水的补给,应用14C、36Cl确定深层地下水的年龄,追溯地下水的入渗史,应用34S研究地下水中硫酸盐的来源,分析地下水的迁移过程,应用11B/10B研究卤水成因等方面都有重要进展。
4.1 同位素基本理论4.1.1 地下水中的同位素及分类我们知道,原子是由原子核与其周围的电子组成的,通常用A Z X N来表示某一原子。
这里,X为原子符号,Z为原子核中的质子数目,N为原子核中的中子数目,A为原子核的质量数,它等于原子核中的质子数与中子数之和,即:A=Z+N( 4-1-1 )为简便起见,也常用A X表示某一原子。
元素是原子核中质子数相同的一类原子的总称。
同一元素由于其原子核中中子数不同可存在几种原子质量不同的原子,其中每一种原子称为一种核素,如C原子有12C、13C、14C等核素,氧原子有16O、17O、18O等核素。
某元素的不同几种核素称为该元素的同位素(蔡炳新等,2002),或者说同位素指的是在门捷列耶夫周期表中占有同一位置,其原子核中的质子数相同而中子数不同的某一元素的不同原子。
同位素可分为稳定同位素和放射性同位素两类,稳定同位素是指迄今为止尚未发现有放射性衰变(即自发地放出粒子或射线)的同位素;反之,则称为放射性同位素。
水文地球化学电子教案第一章:水文地球化学概述1.1 水文地球化学的定义1.2 水文地球化学的研究对象和内容1.3 水文地球化学的发展简史1.4 水文地球化学的重要性第二章:水文地球化学基本概念2.1 地球化学的基本概念2.2 水的性质和分类2.3 地下水的形成和运动2.4 水文地球化学循环第三章:水文地球化学元素与同位素3.1 元素的性质和分布3.2 常见元素的水文地球化学行为3.3 同位素的水文地球化学应用3.4 元素和同位素在水文地球化学研究中的应用第四章:水文地球化学分析方法4.1 水文地球化学样品的采集与处理4.2 水文地球化学分析技术4.3 数据处理与质量控制4.4 水文地球化学分析方法的进展与挑战第五章:水文地球化学应用实例5.1 地下水污染的水文地球化学研究5.2 地下水资源评价与管理5.3 环境水文地球化学问题5.4 水文地球化学在工程中的应用第六章:水文地球化学循环与地球化学过程6.1 水文地球化学循环的基本原理6.2 岩石圈-大气圈-水圈-生物圈之间的水文地球化学循环6.3 地球化学过程在水文地球化学研究中的应用6.4 典型水文地球化学循环案例分析第七章:水文地球化学野外调查与采样技术7.1 野外调查的基本方法7.2 地下水采样技术7.3 岩石和土壤样品的采集7.4 数据处理与质量保证第八章:水文地球化学实验室分析技术8.1 常用实验室分析方法概述8.2 岩石和矿物分析8.3 水质分析8.4 同位素分析技术第九章:水文地球化学模型与应用9.1 水文地球化学模型的类型与构建9.2 地下水流动模型9.3 污染物迁移与转化模型9.4 水文地球化学模型在环境管理中的应用第十章:水文地球化学在我国的应用案例研究10.1 我国水文地球化学研究概况10.2 典型地区水文地球化学特征分析10.3 地下水资源评价与保护案例10.4 环境水文地球化学问题研究与治理案例第十一章:水文地球化学与环境健康11.1 水文地球化学与水质关系11.2 地下水中有害元素的来源与迁移规律11.3 水文地球化学指标在环境健康评估中的应用11.4 环境健康案例分析第十二章:水文地球化学在农业领域的应用12.1 农业水文地球化学背景12.2 土壤-植物系统中元素迁移与富集12.3 农业水文地球化学调查与评价方法12.4 农业水文地球化学应用案例第十三章:水文地球化学在能源领域的应用13.1 能源水文地球化学概述13.2 地下水资源在能源开发中的作用13.3 能源开发活动对水文地球化学的影响13.4 能源水文地球化学案例分析第十四章:水文地球化学在灾害防治中的应用14.1 地质灾害的水文地球化学因素14.2 水质预测与灾害预警14.3 水文地球化学在地质灾害防治中的应用14.4 灾害防治案例分析第十五章:水文地球化学研究的前沿与挑战15.1 水文地球化学研究的新技术与发展趋势15.2 跨学科研究在水文地球化学中的应用15.3 水文地球化学在全球变化研究中的作用15.4 未来水文地球化学研究的挑战与机遇重点和难点解析本教案全面覆盖了水文地球化学的基本概念、研究方法、应用领域及前沿挑战。
同位素(名词解释、填空)1.同位素地球化学:研究地壳和地球中核素的形成丰度及其在地质作用中分馏和衰变规律,并利用这些规律解决有关地质地球化学问题的学科。
2.核素:具有一定数目质子和一定数目中子的一种原子。
3.同量异位数:质子数不同而质量数相同的一组核素。
4.稳定同位素:目前技术条件下无可测放射性的元素。
5.放射性同位素:能自发的放出粒子并衰变为另一种核素的同位素。
6.重稳定同位素:质子数大于20的稳定同位素。
7.亲稳定同位素:质子数小于20的稳定同位素。
8.同位素效应:由同位素质量引起的物理和化学性质的差异。
9.同位素分馏:在同一系统中某些元素的同位素以不同的比值分配到两种物质或相态中的现象。
10.同位素热力学分馏:系统稳定时,导致轻重同位素在各化合物或物相中的分配差异。
11.同位素动力学分馏:不同的元素组成的分子具有不同的质量,由此而引起扩散速度、化学反应速度上的差异,由这种差异所产生的分馏效应称为同位素动力学分馏。
12.纬度效应:温度效应,随纬度升高,大气降水中的δD,δ18O 降低。
13.大陆效应:海岸线效应,从海岸线到大陆内部,大气降水的δD,δ18O降低。
14.高度效应:岁地形增高,大气降水δD,δ18O降低。
15.季节效应:夏季,大气降水δD,δ18O比冬季高。
16.岩浆水:与高温岩浆处于热力学平衡的水,其中来自地幔,与铁、镁超基性平衡的水称为原生水。
17.半衰期:母核衰变为其原子核数一半,所经历的时间。
18.原生铅:指地球物质形成之前,在宇宙原子核合成过程中,与其他元素同时形成的铅。
19.原始铅:地球形成最初时期的铅。
20.初始铅:(普通铅、正常铅)U/Pb、Th/Pb比值低的矿物和岩石中任何形式的铅。
21.异常铅:一种放射性成因铅含量升高的铅。
22.矿石铅:一般是指硫化物矿中所含的铅。
23.岩石铅:火成岩和其他岩石中所含的铅。
24.BABI:目前公认玄武质无球粒陨石的(87Sr/86Sr)。
水分析第四版知识点总结一、水样采集1.1 水样采集的基本原则水样采集是水分析的第一步,对于水样的采集需要严格遵守一定的原则:(1)代表性:采集的水样必须能够代表被检测水体的整体情况,因此在采集时需要根据实际情况选择合适的采样点。
(2)准确性:采集的水样需要保持原样,避免被外界物质污染,以保证后续的分析结果的准确性。
(3)标识清晰:采样瓶需要清晰标注采样地点、采样日期、采样人员等信息,以便后续的分析过程中对照使用。
1.2 水样采集的具体方法水样的采集可以根据不同的需要选择不同的方法,一般情况下有以下几种常见的水样采集方法:(1)表层水样采集:通过直接用采水瓶或者其他容器在水体表面收集水样。
(2)潜水采样:通过潜水装置在水体内部采集水样,通常用于较深的水域。
(3)自动采样:通过安装自动采样器来定时、定点地采集水样。
1.3 水样采集的注意事项在进行水样采集时需要注意以下几个方面的事项:(1)采样容器的选择:采集水样需要使用干净、无表面处理的瓶子或容器,避免造成外部污染。
(2)现场分析要求:有些水样在采集后需要在现场进行分析,因此需要根据具体情况选择合适的采样瓶和保存方法。
(3)采样后处理:在采样完成后需要立即进行标识、保存和运输,避免造成水样的质量损坏。
二、水质分析方法和仪器2.1 水质分析的基本方法水质分析的基本方法包括物理分析、化学分析、生物分析等多种方法,根据需求可以选择合适的方法进行水质分析。
(1)物理分析:物理分析包括颜色、浑浊度、气味等物理性质的检测,通常使用目视法或者一些物理仪器进行分析。
(2)化学分析:化学分析通常包括水中各种化学物质的含量分析,包括有机物、无机物、重金属等的分析,通常需要使用化学试剂和仪器进行分析。
(3)生物分析:生物分析主要是针对水体中的微生物和水生动植物的分析,包括浮游生物的种类和数量等信息。
2.2 水质分析的仪器设备进行水质分析时需要使用一些专门的仪器设备来进行检测和分析,常见的仪器设备包括pH计、离子色谱仪、气相色谱仪、液相色谱仪、质谱仪、荧光分析仪、原子吸收分析仪、光谱仪等。
绪论一、水文学的研究对象及主要内容(一)研究对象1、水文学—-研究地球上水的性质、分布、循环、运动变化规律及其与地理环境、人类社会之间相互关系的科学。
2、水体——以一定形式存在于自然界中水的总称。
水的形态包括大汽水、河流水、湖泊水、海洋水、湖泊水、沼泽水、冰川水、地下水、土壤水、生物水等。
(二)水文学研究的主要内容及本课程的内容结构1、主要内容(1)水分循环及水量平衡(水文学的核心内容)(2)水的数量、质量及分布(3)各种水体的性质(物理性质、化学性质)(4)各种水体的类型结构及运动规律(5)水在地理环境中的作用(与生态系统、地理环境、人类活动之间的关系)(6)水资源开发利用及人类活动的水文效应2、本课程的内容结构二、水文学的发展简介水文学经历了从萌芽到成熟、从经验到理论、从定性到定量的历史发展过程。
(一)水文现象定性描述阶段1、时期:远古——14世纪未2、标志(1)世界上最早的水文观测:中国和埃及(大禹冶水、随山刊木)(2)水经注吕氏春秋定性描述各大河流的源流、水情、水文循环的初步概念(3)特点水文观测定性描述经验积累(二)水文科学的形成阶段1、时期:15世纪初——19世纪未2、特点:(1)概念描述进入定量描述(2)水文理论的形成3、标志(1)1674年p.佩罗提出了水量平衡概念(2)1775年谢才提出了谢才公式(明渠畅流等流速公式)(3)1802年道尔顿提出蒸发公式(4)1856年达西定律形成(三)应用水文学阶段1、时期:20世纪-20世纪五十年代2、特点(1)水文观测理论体系进一步完善(2)应用水文学发展3、标志(1)工程水文学成为应用水文学的主要分支(2)产汇流理论计算公式(3)森林水文学、城市水文学的形成(四)现代水文学阶段1、时期:20世纪50年代以来2、特点:(1)水文技术科学的发展(2)分支科学不断诞生(3)研究方法趋向综合(4)水资源开发利用、管理、评价成为重点3、标志(1)雷达测雨(2)中子散射法测土壤含水量(3)放射性示踪测流(4)同位素测沙(5)卫星遥感及GIS的利用(6)水文模拟、随机分析、系统分析方法(7)水文研究自动化(8)水资源的评价、管理、优化利用三、水文学体系(一)按水体的分类(对象)(传统分类法)(二)系统水文学体系1、水文学的学科体系2、普通水文学:水文学基本理论、方法3、水文测验学4、区域水文学(1)流域水文学 (2)河口水文学(3)山地水文学(4)平原水文学 (5)坡地水文学(6)干旱区水文学(7)岩溶区水文学5、应用水文学(1)工程水文学(2)城市水文学 (3)森林水文学(4)农业水文学(5)土壤水文学6、新技术方法(1)随机水文学(2)模糊水文学(3)系统水文学(4)遥感水文学(5)同位素水文学四、水文学地理研究方向及其与其它学科的联系(一)水文学的地理研究方向1、水文学的三个研究方向(1)地理学方向(2)地球物理学方向(3)工程学方向2、水文学地理方向(地理水文学)(1)水文学与地理学共同隶属、分别分支(2)侧重水体运动变化的自然规律,总体演化趋势,与其它地理要素相互关系的综合研究;水体差异的区域性研究(3)特点:宏观性、区域性、综合性(二)水文学在地理学中的地位1、地理学的学科体系2、水文学是地理学自然地理的学科分支学科自然地理包括气候学、地貌学、水文学、土壤地理学、生物地理学等。
第一章水和废水第一节水样采集一、填空题1. 水系的背景断面须能反映水系未受污染时的背景值,原则上应设在水系源头处或未受污染的上游河段2. 湖(库)区若无明显功能区别,可用网格法均匀设置监测垂线。
3. 在采样(水)断面同一条垂线上,水深5-10m时,设2个采样点,即水下面0.5 m处和河底上0.5m处;若水深≤5m时,采样点在水面下0.5m处。
4. 沉积物采样点位通常为水质采样垂线的正下方,沉积物采样点应避开河床冲刷、沉积物沉积不稳定及水草茂盛、表层沉积物易受扰动之处。
5. 测溶解氧、生化需要量和有机污染物等项目时,采样时水样必须注满容器,上部不留空间,并有水封口。
6. 在建设项目竣工环境保护验收监测中,对生产稳定且污染物排放有规律的排放源,应以生产周期为采样周期,采样不得少于2个周期,每个采样周期内采样次数一般应为3-5次,但不得少于3次。
7. 污染源的分布和污染物在地下水中扩散形式是布设污染控制监测井的首要考虑因素。
8. 当工业废水和生活污水等污染物沿河渠排放或渗漏以带状污染扩散时,地下水污染控制监测点(井)采用网格布点法布设垂直于河渠的监测线。
9. 地下水监测井应设明显标牌,井(孔)口应高出地面0.5—1.0m,井(孔)口安装盖或保护帽,孔口地面应采取防渗措施,井周围应有防护栏。
10. 背景值监测井和区域性控制的孔隙承压水井每年枯水期采样一次,污染控制监测井逢单月采样一次,全年6次,作为生活饮用水集中供水的地下水监测井,每月采样一次。
11. 地下水采样前,除五日生化需氧量、有机物和细菌类监测项目外,应先用被采样水荡洗采样器和水样容器2-3次后再采集水样。
12. 采集地下水水样时,样品唯一性标中应包括样品类别、采样日期、监测井编号、样品序号和监测项目等信息。
13. 废水样品采集时,在某一时间段,在同一采样点按等时间间隔采等体积水样的混合水样,称为等时混合水样(或时间比例混合水样)。
此废水流量变化应小于20%14. 比例采样器是一种专用的自动水质采样器,采集的水样量随时间与流量成一定比例,使其在任一时段所采集的混合水样的污染物浓度反映该时段的平均浓度。