泡沫分离技术与应用
- 格式:doc
- 大小:164.50 KB
- 文档页数:10
泡沫分离技术及其在蛋白分离中的应用03级硕士高强食品学院摘要:本文主要介绍了泡沫分离技术的原理、研究方法、影响因素及其应用状况,并对存在的问题和前景作了叙述。
关键词:泡沫分离吸附水溶液泡沫分离是20世纪初发现的一种新的分离技术,它是基于表面吸附的原理而对表面活性物质进行的分离。
泡沫分离的过程是在泡沫分离柱的底部通入某种气体或使用某种装置产生泡沫,收集泡沫就得到了某种产物的浓缩液。
下面本文将就泡沫分离技术及其在蛋白质分离中的应用作一个简单介绍。
1 泡沫分离方法的优点:(1)它特别适合于对低浓度的产品进行分离,如低浓度的酶溶液,用常规的方法进行沉淀是行不通的,如果使用泡沫法对产品先进行浓缩,就可以用沉淀法进行提取。
(2)分辨率高。
(3)富集率高。
(4)运行成本低,由于此过程不使用无机盐或有机溶剂,仅仅是有一些动力消耗,它的运行成本一般要比其它方法低。
(5)操作简便。
2 泡沫分离法的分离器形式泡沫分离法实验用的泡沫分离器材料主要有玻璃和有机玻璃,形式多为柱状分离塔。
气体分布形式有压力溶气式和气体分散式。
气体分散式分离塔底部装有气体分布器;塔顶有泡沫排出口;连续式分离器还有进料口、塔底排液口。
分离塔的直径一般为3~8cm,塔高80~120cm。
一般高径比大于10,以减少轴向返混并提供足够的气液接触时间。
离子浮选、矿物浮选用的是选矿机。
3 泡沫分离的研究方法对泡沫分离的研究主要有两种途径:3.1 分离条件实验主要研究对泡沫分离的影响因素,诸如:表面活性剂类型,浓度,pH,离子强度,气速,如果是连续分离方式还有进料浓度等。
3.2 分离器设计实验研究分离器的形式对分离的影响,要考虑进料口位置,鼓泡区高度,泡沫区高度,气体分布器孔径等。
对于蛋白质等生物大分子,它主要根据2个机理进行分离:(1)表面吸附机理,很多蛋白质分子具有较强的表面活性,它可以在泡沫的气液界面吸附。
(2)泡沫水分外排机理,即泡沫层中的泡沫上升过程中水分和蛋白质都会从泡沫中流出,但蛋白质的流出速度比水的流出速度要慢,这使得蛋白质在泡沫中富集,同时小泡沫之间的合并也促使水分流出,这也有利于蛋白质的富集。
泡沫浮选分离技术一、摘要泡沫浮选分离法是在一定的条件下,向试液鼓入空气或氮气使之产生气泡,将溶液中存在的欲分离富集的微量组分(离子、分子、胶体或固体颗粒)吸着或吸附在其上面并随着气泡浮到液面,从而与母液分离,收集后即达到分离和富集的目的。
泡沫浮选分离法是在矿物分离中一种常用的方法,在分析化学的分离富集物质中取得显著的成绩。
随着分析技术的提高,及跟其它测试手段的使用。
泡沫浮选技术必将在稀溶液的分离,有价物质的回收方面有更加广泛的使用。
二、基本概念泡沫分离技术是近十几年发展起来的新型分离技术之一,在化工、生化、医药、污水处理等领域得到了广泛的应用。
泡沫分离是根据吸附的原理,向含表面活性物质的液体中鼓泡,使液体的表面活性物质聚集在气液界面(气泡的表面)上,在液体主体上方形成泡沫层,将泡沫层和液相主体分开,就可以达到浓缩表面活性物质(在泡沫层)和净化液相主体的目的。
目前一般只能分离溶液中ppm 量级的物质。
高纯金属中微杂质的分离亦有采用此法的。
被浓缩的物质可以是表面活性物质,也可以是能与表面活性物质相络合的物质,但它们必须具备和某一类型的表面活性物质能够络合或鳌合的能力。
人们通常把凡是利用气体在溶液中鼓泡,以达到分离目的的这类方法总称为泡沫吸附分离技术,简称泡沫分离技术。
按分离对象是溶液还是含有固体例子的悬浮液、胶体溶液,泡沫分离可以分成泡沫分馏和泡沫浮选两种分离方法。
泡沫浮选分离就是利用某种物质(如离子、分子、胶体、固体颗粒、悬浮微粒),表面活性的不同,可被吸附或粘附在从溶液中升起的泡沫表面上,从而与母液分离的技术。
泡沫浮选分离技术用于分离不溶解的物质,它的优点是使用的分离装置简单并易于放大,可连续和间歇操作并能实现自动化和连续化操作。
三.原理表面活性剂在水溶液中有富集(吸附)在气/液界、泡沫浮选的简单原面(溶液中气饱表面)的倾向,它在气泡表面是定向排列的,分子带电的极性端朝向气-液界面的水的一边,这时表面活性剂将与一种或一类的离子由于物理的(如静电引力)或化学的(如络合作用)原因相互作用而联结在一起,被气泡带至液面,从而达到分离的目的。
泡沫分离技术的应用及研究进展摘要:泡沫分离技术是近些年得到重视的分离技术之一,介绍了泡沫分离技术的应用,介绍了此技术可分离细胞,可分离富集蛋白质体系,泡沫分离_Fenton氧化工艺处理表面活性剂废水,泡沫分离_Fenton 氧化处理炼油废水,两级泡沫分离废水中大豆蛋白的工艺,聚氨酯泡沫塑料分离富集石墨炉原子吸收光谱法测定痕量金,硅片线锯砂浆中硅粉与碳化硅粉的泡沫浮选分离回收,超滤与泡沫分离内耦合应用于表面活性物质浓缩分离的实验研究,重点研究了此技术分离皂苷的有效成分。
关键词:泡沫分离;富集蛋白质;泡沫浮选法;两级泡沫分离;聚氨酯泡沫塑料分离;超滤与泡沫分离0 前言泡沫分离技术可用于分离各种物质——小到离子而至粗大的矿石颗粒。
泡沫浮选法精选矿石已有60年以上的历史。
虽然1937年Langmuir 等已发现离子也有可能应用浮选来提取,可是直到1959年才由Sebba提出泡沫浮选也可能应用于分析技术中。
但实际应用于分析分离还只是近十年左右才实现的。
到目前为止已对Ag、As、Au、Be、Bi、Cd、Ce、Co、Cr、Cu、F、Fe、Hg、In、Mn、Mo、Ni、Pb、Pd、Pm、Ra、Re、Sb、Th、U、V、W等元素以及一些有机物的泡沫分离作了广泛的研究。
1 泡沫分离技术的简介泡沫分离技术是通过向溶液中鼓泡并形成泡沫层,将泡沫层与液相主体分离,由于表面活性物质聚集在泡沫层内,就可以达到浓缩表面活性物质或净化液相主体的目的被浓缩的物质可以是表面活性物质,也可以是能与表面活性物质相结合的任何物质吸附作用使气泡表面的溶质浓缩,清除在液体表面上形成的泡沫,即可除去被浓缩的物质。
泡沫分离是吸附性气泡分离技术中的一种,由于气泡能够以极少量的液体提供极大的表面积,因此如果某种溶质能够选择性地吸附在气液界面,该溶质在泡沫中的浓度将大于其在主体液相中的浓度。
这种技术最初用于矿物浮选、污水处理等领域。
近年来,基于其在生物医药和食品工业领域的巨大应用潜力,泡沫分离技术在生物分离特别是分离稀溶液中蛋白质的过程中受到了越来越多的关注,因此泡沫分离技术是近些年得到重视的分离技术之一。
现代分离方法与技术--泡沫分离学院:化学与环境保护工程学院班级:化工1201班姓名:刘卢科学号:201231204071泡沫分离技术引言泡沫分离技术是一种新兴的分离与净化技术,广泛应用于工业领域中。
通常把凡是利用气体在溶液中鼓泡,以达到分离或浓缩的方法总称为泡沫分离技术。
作为分离对象的某溶质,可以是表面活性物质和洗涤剂,也可以是能与表面活性物质相结合的任何溶质,例如矿石颗粒、沉淀颗粒、阴离子、阳离子、染料、蛋白质、酶、病毒、细菌或某些有机物质。
在间歇塔式设备内部鼓泡时,该溶质可被选择性地吸附在自下而上的气泡表面,并在溶液主体上方形成泡沫层,将排出的泡沫消泡,可获得泡沫液(溶质的富集回收);在连续操作时,液体从塔底排出,可以直接排放,也可以作为精制后的产品液。
一、发展历程及原理泡沫分离技术是近十几年发展起来的新型分离技术之一。
泡沫分离是根据吸附的原理,向含表面活性物质的液体中鼓泡,使液体内的表面活性物质聚集在气液界面(气泡的表面)上,在液体主体上方形成泡沫层,将泡沫层和液相主体分开,就可以达到浓缩表面活性物质(在泡沫层)和净化液相主体的目的。
被浓缩的物质可以是表面活性物质,也可以是能与表面活性物质相络合的物质,但它们必须具备和某一类型的表面活性物质能够络合或鳌合的能力。
人们通常把凡是利用气体在溶液中鼓泡,以达到分离或浓缩目的的这类方法总称为泡沫吸附分离技术,简称泡沫分离技术。
泡沫分离技术的研究开发工作已开展了近一个世纪,为统一泡沫分离的概念,1967 年Karger,Grieves[2]等人共同推荐并向IUPAC 提出一项建议,早在1915年就开始应用于矿物浮选,但是对离子、分子、胶体及沉淀的泡沫吸附分离是在20世纪50年代末才引起人们的兴趣与重视,并逐渐作为一种单元操作加以研究,首先是从溶液中回收金属离子的课题开始,前期研究了泡沫分离金属离子的可行性,然后建立了金属离子与表面活性剂离子之间相互作用的扩散-双电层理论。
泡沫分离技术的应用和展望郑耀洋[摘要]泡沫分离法以其能耗低、投资小尤其适用于浓度较低情况下的分离等优点在生物工程的产物分离中有相对于别的技术独特的优势。
论文介绍了泡沫分离技术及特点综述了双水相体系在各方面的应用,展望了泡沫分离技术的应用前景[关键词]泡沫分离泡沫浮选纯化废水处理泡沫分离技术是一种基于溶液中溶质(或颗粒)间表面活性的差异进行分离的一种方法。
与传统的固液分离技术(离心和膜过滤)相比,泡沫分离具有操作简单、耗能低、尤其适用于较低浓度情况下分离等优点,受到人们的重视。
泡沫分离在20世纪初就已广泛应用于矿冶工业,称之为泡沫浮选,而当时分离的对象主要是含金属的颗粒。
但针对离子、分子、胶体及沉淀的泡沫分离则是近三十年来发展起来的技术。
目前泡沫分离被广泛应用于环境保护、生物工程、冶金工业及医药卫生等领域。
]1[1 泡沫分离技术泡沫分离技术是利用表面活性剂在气一液界面的性质来进行溶质分离的。
表面活性剂的分子结构由亲水基和亲油基(或疏水基)两部分组成, 当它们溶人水中后即在水溶液表面聚集, 亲水基留在水中,亲油基伸向气相, 如果溶液中含有气泡则表面活性剂就会吸附在气泡表面上, 并随之上浮, 这样就使表面活性剂聚集在水面上, 将气泡与水分离, 即实现了脱除水中的表面活性剂。
如要除去非表面活性组分, 可通过加人适当的表面活性剂, 以把这类组分吸附到气泡表面上。
吸附作用可以通过形成整合、静电吸引或分子间力等来产生作为分离对象的某溶质, 可以是表面活性物质和洗涤剂, 也可以是能与表面活性物质相结合的任何溶质, 例如矿石颗粒、沉淀颗粒、阴离子、阳离子、染料、蛋白质、酶、病毒、细菌或某些有机物质。
在间歇塔式设备内部鼓泡时, 该溶质可被选择性地吸附在自下而上的气泡表面, 并在溶液主体上方形成泡沫层, 将排出的泡沫消泡, 可获得泡沫液(溶质的富集回收) ;在连续操作时, 液体从塔底排出, 可以直接排放, 也可以作为精制后的产品液。
泡沫分离技术论文开题报告泡沫分离技术开题报告摘要:泡沫分离技术是一种广泛应用于化工、环保、生物医药等领域的分离技术。
本文旨在探讨泡沫分离技术的原理、应用及其在环境保护和资源回收中的潜力。
通过对相关文献的综述分析和实验研究,我们将深入探讨泡沫分离技术的优势和局限性,并提出进一步研究的方向。
引言:泡沫分离技术作为一种高效、环保的分离方法,已经在许多领域得到广泛应用。
其原理是利用气泡与固体颗粒或液体相互作用的特性,实现物质的分离和回收。
泡沫分离技术具有操作简单、节能高效、设备成本低等优点,被广泛应用于废水处理、矿产资源回收、生物制药等领域。
一、泡沫分离技术的原理泡沫分离技术的原理基于气泡与物质之间的相互作用。
当气泡在液体中产生并上升时,它们会与固体颗粒或液体相互作用,从而实现物质的分离。
这种相互作用包括接触、附着、脱附等过程。
泡沫分离技术可通过调整气泡的大小、浓度和表面性质等参数,实现对不同物质的选择性分离。
二、泡沫分离技术的应用1. 废水处理:泡沫分离技术在废水处理中具有广泛应用前景。
通过调整气泡的大小和浓度,可以有效地去除水中的悬浮颗粒、油脂和有机物等污染物。
与传统的沉降和过滤方法相比,泡沫分离技术具有更高的处理效率和更小的占地面积。
2. 矿产资源回收:泡沫分离技术在矿产资源回收中发挥着重要作用。
通过将气泡注入含有目标矿物的悬浮液中,可以实现矿物与杂质的分离。
泡沫分离技术在金、铜、铅等矿石的提取和精矿的脱泥中具有广泛应用前景。
3. 生物制药:泡沫分离技术在生物制药领域中也有广泛的应用。
通过调整气泡的性质和浓度,可以实现生物颗粒(如细胞、酵母等)与培养基的分离。
泡沫分离技术在生物药物的提取和纯化过程中具有重要意义。
三、泡沫分离技术的优势和局限性1. 优势:(1)操作简单:泡沫分离技术不需要复杂的设备和高超的技术,易于操作和控制。
(2)节能高效:泡沫分离技术利用气泡与物质的相互作用实现分离,相较于传统的过滤和沉降方法,能耗更低且处理效率更高。
浅析泡沫分离技术的应用及其发展趋势摘要:泡沫分离技术作为一种新兴的分离与净化技术,广泛应用于工业领域中。
本文依据近年来有关泡沫分离的报道,综述了泡沫分离技术的研究进展,介绍了分离过程中操作参数,溶液体系性质,分离设备等因素对分离效果的影响,并介绍了泡沫分离在固体粒子、溶液中的离子分子、废水处理以及生物产品的分离过程中的应用,指出了泡沫分离技术目前存在的问题及发展方向。
关键词:泡沫分离技术;原理;设备;影响因素;应用Abstract: The foam fractionation and purification technique, which are widely used in industry. Based on recent reports of foam separation, the purpose of this paper was to review the foam fractionation, introduced the effects of the operating parameters, the nature of solution system and the equipment, and also introduced the application of foam separation. To discuss the current problem and development trend of foam fractionation.Key words: foam fractionation; theory; equipment; the factors of effect; applications第一章引言泡沫分离技术是近几十年发展比较快的新兴分离技术,广泛应用于工业领域中。
泡沫分离是膜分离技术的一种,它是以泡沫作为分离介质,以组分之间的表面活性差异作为分离依据,利用在溶液中的鼓泡来达到浓集物质目的的一种新型分离技术【1】。
作为分离对象的某溶质,可以是表面活性物质和洗涤剂,也可以是不具有表面活性的物质,但它们必须具备和某一类型的表面活性物质能够络合或螯合的能力,当在塔式设备内部鼓泡时,该溶质可被选择性的吸附在自下而上的气泡表面,并在溶液主体上方形成泡沫层,将排出的泡沫消泡,可获得泡沫液(溶质的富集回收),在连续操作时,液体从塔底排出,可以直接排放,也可以作为精制后的产品液【2、3】。
泡沫分离技术的研究开发工作已开展了近一个世纪,为统一泡沫分离的概念,1967年Karger、Grieves等人共同推荐并向IUPAC提出一项建议,把泡沫分离技术方法按照图1分类【4、5】图一非泡沫分离过程需要鼓泡,但不一定形成泡沫层,吸附分离过程在液相主体中完成。
这种分离方法又分为鼓泡分离法与萃取浮选法【6】。
鼓泡分离法。
是从分离器底部鼓入气体,形成的气泡将液相中的表面活性物质或微量的有机物质夹带至分离器顶部,从而完成分离、富集的一种方法【6】。
萃取浮选法【5】。
又称作溶剂消去法、溶剂浮选法,是将一层与水溶液不相混溶的有机溶剂置于溶液顶部,利用鼓泡把水溶液中的表面活性物质带到此层,从而完成分离任务。
泡沫分离技术主要分为【7】:矿物浮选:主要用于矿石粒子和脉石粒子的分离。
利用表而活性物质在矿石粒子表面上的吸附。
就可用泡沫使矿石粒子上升,脉石粒子下沉,从而得以分离,达到富集矿石的目的。
粗粒和细粒浮选:常用于共生矿中单质的分离,处理对象为胶体、高分子物质和矿物液。
离子浮选:待分离组份在体积溶液中或在气液界面与表面活性剂形成沉淀物,此沉淀物捕集在气液界面上,富集于泡沫相。
如果待分离组份先由非表面活性物沉淀,然后富集于泡沫相,那么称此过程为沉淀浮选。
第一类沉淀浮选需要表面活性剂.第二类沉淀浮选不需要表面活性剂,沉淀物本身具有表面活性。
如果待分离组份被吸附在胶体颗粒表面,然后颗粒由表面活性剂捕集,起泡上升,富集于泡沫相。
称此过程为胶体浮选。
20世纪早期泡沫分离技术已经应用于矿物浮选和处理废水中的表面活性剂,20世纪70年代以后此种技术得到了广泛的使用。
目前,在工业中成功应用的实例很多,还有一些应用尚处在实验室研究阶段。
在食品工业及生化领域中,泡沫分离技术已被用于蛋白质、多糖及生物活性物质等的分离提取及浓缩过程【8】。
第二章工作原理及设备装置1、原理泡沫分离技术是利用表面活性剂在气-液界面的性质来进行溶质分离的。
表面活性剂的分子结构由亲水基和亲油基(或疏水基)两部分组成【7】,当它们溶入水中后即在水溶液表面聚集,亲水基留在水中,亲油基伸向气相,借助鼓泡使溶液中的表面活性物质聚集在气/液界面,随气泡上浮至溶液主体上方,形成泡沫层,将泡沫和液相主体分开,从而达到浓缩表面活性物质(在泡沫层),净化液相主体的目的。
从液相主体中浓缩分离的既可以是表面活性物质,也可以是能与表面活性物质相互亲和的任何溶质,比如金属阳离子、蛋白质、酶、染料等等。
另外,一些固体粒子(沉淀微粒或矿石小颗粒),也可以被表面活性物质吸附,从溶液中分离出来【3】。
如要除去非表面活性组分,可通过加入适当的表面活性剂,以把这类组分吸附到气泡表面上,吸附作用可以通过形成整合、静电吸引或分子问力等来产生【9】。
分子吸附的机理主要是所加入的表面活性剂(或捕集剂)与要除去的非表面活性组分间的范德华力和氢键力。
离子吸附的机理主要是静电力的作用或离子交换的结果。
阳离子吸附:颗粒物中无机或有机组分都可能选择性地或非选择性地吸附,这些离子被吸附的能力与很多因索有关。
如将被吸附的阳离子的电荷看成点电荷,则价数越大者受吸附力越大,若各阳离子价态相同,则受吸附力与离子的结晶半径和水和半径有关。
按库仑定律,离子的结晶半径越大相应水和半径越小,受吸附力越大。
阴离子吸附:要脱除一价阴离子的非表面活性物,可加入阴离子表面活性剂,阴离子就与表面活性剂中的阴离子相交换;要脱除阳离子非表面活性组分时.可加入阳离子表面活性剂,如矿物浮选需加脂肪胺等阳离子表面活性剂。
螫合作用是需脱除的金属离子能够与表面活性剂形成具有表面活性的络合离子,这种表面活性剂叫表面活性螯合剂。
泡沫分离必须具备两个基本条件。
首先。
所需分离的溶质应该是表面活性物质,或者是可以和某些活性物质相络合的物质,它们都可以吸附在气-液界面上;其次,富集质在分离过程中借助气泡与液相主体分离,并在塔顶富集。
因此,它的传质过程在鼓泡区中是在液相主体和气泡表面之间进行,在泡沫区中是在气泡表面和间隙液之间进行。
所以,表面化学和泡沫本身的结构与特征是泡沫分离的基础【2】。
该技术具有3个特点:(1)设备比较简单、能耗低、投资少,而且操作和维修都方便;(2)在常温或低温下操作【10】,斟此适用于热敏性和化学性质不稳定的成分的分离;(3)适用于低温度组分的浓缩和同收。
2、设备装置泡沫分离所使用设备通常称为泡沫塔(Foam Column)。
基本装置可南一个简单的气泡圆柱体表示(图2):输入的废水被抽人塔中,气体经南扩散器注入,形成许多小气泡,气泡在上升过程中吸附聚集溶质,到达液面时形成泡沫,并携带溶质及少量溶剂.气泡不断产生并且上升,最后被迫进入泡沫收集器,待泡沫收集器装满后,剩余的泡沫由排管流出,而经处理的基液或干净溶液由出水管排出。
图二泡沫分离装置在本文中,根据泡沫塔中泡沫相和液相的运动方式以及设备结构复杂程度的不同,将泡沫分离设备分为简单泡沫塔和复杂泡沫塔两类。
其中复杂泡沫塔分成了多级泡沫塔和带有内部构件的单级泡沫塔。
2.1、简单泡沫塔我们把液池(Liquid Pool)位于泡沫层下方,泡沫层连续并且没有回流装置的泡沫分离设备称为简单泡沫塔。
按照操作的连续性,简单泡沫塔可以在以下几种模式下运行:2.1.1、批式操作(Batch Operation)批式操作是一次性将待处理料液注入泡沫分离设备中,随后通入压缩气体鼓泡;当泡沫层达到所需高度后,立即切断供气,泡沫层在静止状态下进行排液(Foam Drainage);泡沫层持液率(Liquid Holdup)降低到所需水平后,再次通入压缩气体,新产生的泡沫层将排液完成的泡沫推出;如此反复,直至达到所需的收率。
批式操作允许泡沫在设备内长时间停留,排液可以充分进行,因此能够得到很低的持液率和很高的富集比。
但是,由于鼓泡和排液都是间歇进行,设备的有效运行时间缩短,降低了设备的利用率和处理能力【11、12】。
2.1.2、半批式操作(Semi-batch Operation)半批式操作常与批式操作混淆。
之所以称之为“半批式”是因为这种操作方式料液的加入是一次性的,而鼓泡是连续的。
排液是在泡沫向上运动过程中同时进行的,排液时间由鼓泡气速和设备尺寸决定;持续鼓泡直至达到所需的收率后排放残液,一次操作完成。
半批式泡沫分离,操作简单,设备利用率高,处理量大,是工业化生产中常用的操作方式。
但该方式中鼓泡气速对泡沫排液着直接的影响,因此对气速要求比较苛刻【13】。
2.1.3、连续操作(Continuous Operation)在鼓泡过程中通过泵设备将料液连续注入分离设备内,同时排放残液。
连续操作根据新鲜料液注入的位置不同又可以分为并流操作(Co-current Column)和逆流操作(Counter-current Column)。
前者是将新鲜料液直接加入到液池中而后者是将新鲜料液加入到泡沫层中。
连续操作具有和半批式操作相似的特征,但是当目标物质在气泡表面吸附较慢时,进料速度不可能很大,否则塔底排放的残液中目标物质含量过高,影响收率;而如果进料速度太低,则失去了连续操作的意义。
因此,连续操作多用于污水处理等领域,而很少用于回收发酵液中昂贵的医药中间体等产物。
2.1.4、半连续操作(Semi-continuous Operation)半连续操作处于半批式操作和连续操作之间:新鲜的料液不断补充到液池中,连续鼓泡,但是塔底没有残液排出。
半连续操作对工业化生产没有显著的意义,但是它可以弥补由鼓泡造成的液池液面降低,维持恒定的泡沫层高度和液池深度,减缓液池中原料液浓度的下降,在一定时间内提供稳定的操作条件,适合实验室中研究泡沫分离机理使用。
2.2、复杂泡沫分离设备简单泡沫塔的分离效果受到目标物质在气泡表面吸附能力和泡沫排液能力的限制。
而通过改变体系性质来改善目标物质的吸附能力需要考虑目标物质的承受能力,因此调节范围受限。
此外,许多操作条件对泡沫分离富集比和回收率的影响是相反的,优化起来相当困难。
为了解决这些问题,人们设计了各种具有复杂结构的泡沫分离设备【13】。
2.2.1、多级泡沫分离多级泡沫分离的根本特征是将收集到的泡沫液再次进行鼓泡。
其原理是通过提高主体液相中的吸附质浓度来增加其在气泡表面的吸附密度:按照Langmuir 吸附等温线,在主体液相浓度较低的情况下,吸附质的表面吸附密度随其在主体液相中的浓度增加而增加。