物理竞赛热学专题40题刷题练习(带答案详解)
- 格式:docx
- 大小:2.12 MB
- 文档页数:52
热学训练题(二)班级_______学号_________姓名__________得分____________第一部分选择题(75分)1、5℃的冷水和60℃的热水混合,得到50℃的温水。
若不计热损失,可以判断( )(A)混合前热水的热量不一定比冷水的热量多;(B)混合前热水的热量一定比冷水的热量多;(C)热水质量不一定比冷水质量大;(D)(D)热水质量一定比冷水质量小。
2、 在用混合法测定固体或液体比热的实验中,即使操作完全正确,但热损失仍然存在。
考虑到热量的损失,那么测出的比热数值大小与其真实值相比较,应当( )(E)一定大于真实值; (B)一定小于真实值;(C)只要经过多次测量取平均值,就一定完全等于真实值;(D)如果被测物质是放热物质,则测量值一定小于真实值;若是吸热物质,则测量值一定大于真实值。
3、把两只质量为m 、初温度为100℃的铜球和铁球,分别投入两杯质量也为m 、初温度为0℃的水中。
不考虑热损失,则它们分别达到热平衡后,可能出现的情况是(已知铜的比热小于铁的比热)( )(A)两杯水的混合温度可能相等; (B)放铜球的混合温度较高;(C)放铁球的混合温度较高; (D)两球放出的热量相等、温度变化相同。
4、甲乙两种液体可以相互混和,它们的密度之比为ρ甲:ρ乙=5:4;混合前的体积之比为V 甲:V 乙=2:3;比热之比为c 甲:c 乙=1:2。
假设它们的初温度不等,混和后的共同温度为t ,不计混和过程中的热损失,则它们达到热平衡后各自相对于它们原来的初温度的温度变化量之比Δt 甲:Δt 乙为( )(A)2:5; (B)5:12; (C)16:15; (D)15:165、某学生用两个相同的热源分别对质量为m 1,比热为c 1的甲物质和质量为m 2、比热为c 2的乙物质加热,并根据实验测得的数据分别画出甲、乙两物质的温度随加热时间变化的图线,如图10所示。
根据图线情况,作出如下推断,其中正确的是( )(A)若m 1=m 2,则c 1<c 2; (B)若m 1<m 2,则c 1>c 2;(C)若c 1=c 2,则m 1<m 2; (D)若c 1>c 2,则m 1<m 2。
一、初中物理热学问题求解方法1.当水烧开时,我们会看到水蒸气将壶盖项起,从能量转化的角度看,这与四冲程汽油机的_________冲程的能量转化相同,若某单缸四冲程汽油机飞轮的转速为1200r/min,则此汽油机每秒钟对外做功____________次。
【答案】做功 10【解析】【详解】[1]水蒸气将壶盖项起,从能量转化的角度看,这是水蒸气内能转化为壶盖的机械能,四冲程汽油机的做功冲程也是把内能转化为机械能。
[2]由题意可知,飞轮的转速为1200r1200r20r/s==1min60s即每秒钟飞轮转数是20r,飞轮转两转,汽油机经历一个工作循环,对外做功1次,那么此汽油机每秒钟对外做功次数是10次。
2.如图甲所示,是“探究物质的熔化规律”的实验装置。
实验时先将固体物质和温度计分别放入试管内,再放入大烧杯的水中,观察固体的熔化过程。
(1)固体熔化图象如图丙所示,物质在熔化过程中,温度_____,此时温度如图乙所示,读数方法正确的是_____(填“A”“B”或“C”),该物质是_____(填“晶体”或“非晶体”)。
(2)实验时若温度计的玻璃泡碰到试管底部,则测得试管内物质的温度值偏_____。
【答案】保持不变 B 晶体高【解析】【详解】(1)[1][2][3]由图乙知,A 俯视,读数会偏大,C 仰视,读数会偏小,B 读数方式正确;由于该物质在熔化过程中,温度保持不变,所以是晶体;(2)[4]实验时若温度计的玻璃泡碰到试管底部,温度计的示数会受烧杯底部的影响,则测得试管内物质的温度值偏高。
3.某小组的同学做“比较不同物质的吸热能力”的实验,他们使用了如图所示的装置.(1)在设计实验方案时,需要确定以下控制的变量,你认为其中多余的是____________.A.采用完全相同的加热方式 B.酒精灯里所加酒精量相同C.取相同质量的水和另一种液体 D.盛放水和另一种液体的容器相同(2)加热到一定时刻,水开始沸腾,此时的温度如图丙所示,则水的沸点是____________℃,这表明实验时的大气压强____________(选填“大于”、“小于”或“等于”)一个标准大气压.(3)实验中,____________表示液体吸收热量的多少,加热水至沸腾时继续加热,水的温度不变,水的内能___________(选填“增大”、“减小”或“不变”)。
一、初中物理热学问题求解方法1.如图所示,是最新一款无人驾驶四轮小汽车原型图。
汽车自动驾驶时使用雷达传感器,以及激光测距器来了解周围的交通状况。
该款车质量312g 10.k ⨯,每个轮胎与地面接触面积为222.510m -⨯,当小车以20m/s 的速度在一段平直的公路上匀速行驶了8km 时,消耗的汽油为1.5L 。
假设燃油完全燃烧,汽油机的效率为30%,那么,求:(1)该汽车静止在水平地面上时对地面的压强;(2)在这段运动过程中,该汽车发动机做的有用功是多少?(3)在这段运动过程中,该汽车的输出功率为多少?发动机提供的牵引力多大? (已知:汽油的密度为330.810kg /m ⨯,汽油的热值为74.510J /kg ⨯) 【答案】(1)51.210Pa ⨯;(2)71.6210J ⨯;(3) 4.05×104W ;2025N 【解析】 【详解】(1)该汽车静止在水平地面上时对地面的压力341.210kg 10N/kg 1.210N F G mg ===⨯⨯=⨯受力面积2224 2.510m 0.1m S -=⨯⨯=根据压强公式的对地面的压强4521.210N 1.210Pa 0.1mS p F ⨯==⨯= 对地面的压强是51.210Pa ⨯。
(2)消耗汽油的体积3331.5L 1.5dm 1.510m V -===⨯由mVρ=可得,消耗汽油的质量 33330.810kg/m 1.510m 1.2kg m V ρ-'==⨯⨯⨯=汽油完全燃烧放出的热量771.2kg 4.510J/kg 5.410J Q m q ='=⨯⨯=⨯放由100%WQ η=⨯放得7730% 5.410J 1.6210J W Q η==⨯⨯=⨯放该汽车发动机做的有用功1.62×107J 。
(3)由sv t=可得,汽车运动的时间 8000m =400s 20m/ss t v == 在这段运动过程中,该汽车的输出功率741.6210J 4.0510W 400sW P t ⨯===⨯由W Fs =可得71.6210J 2025N 8000mW F s ⨯'===该汽车的输出功率2025N 。
高中物理竞赛——热学题选1.一个老式的电保险丝,由连接在两个端纽之间的一根细而均匀的导线构成。
导线按斯特藩定律从其表面散热。
斯特藩定律指出:辐射功率P 跟辐射体表面积S 以及一个与温度有关的函数成正比,即(),44外辐T T S P -∞试说明为什么用保险丝时并不需要准确的长度。
2.有两根长度均为50cm 的金属丝A 和B 牢固地焊在一起,另两端固定在牢固的支架上(如图21-3)。
其线胀系数分别为αA =1.1×10-5/℃,αB =1.9×10-5/℃,倔强系数分别为K A =2×106N/m ,K B =1×106N/m ;金属丝A 受到450N 的拉力时就会被拉断,金属丝B 受到520N 的拉力时才断,假定支架的间距不随温度改变。
问:温度由+30°C 下降至-20°C 时,会出现什么情况?(A 、B 丝都不断呢,还是A 断或者B 断呢,还是两丝都断呢?)不计金属丝的重量,在温度为30°C 时它们被拉直但张力为零。
3.长江大桥的钢梁是一端固定,另一端自由的。
这是为什么?如果在-10℃时把两端都固定起来,当温度升高到40℃时,钢梁所承担的胁强(压强)是多少?(钢的线胀系数为12×10-6/℃,弹性模量为2.0×105N/mm 2,g=10m/s 2)4.厚度均为a=0.2毫米的钢片和青铜片,在T 1=293开时,将它们的端点焊接起来,成为等长的平面双金属片,若钢和青铜的线膨胀系数分别为10-5/度和2×10-5/度,当把它们的温度升高到T 2=293开时,它们将弯成圆弧形,试求这圆弧的半径,在加热时忽略厚度的变化。
5.在负载功率P 1=1kW ,室温t 0=20℃时,电网中保险丝的温度达到t 1=120℃,保险丝的材料的电阻温u C 图21-13度系数α=4×10-3K-1,保险丝的熔断温度t2=320℃,其所释放的热量与温度差成正比地增加,请估计电路中保险丝熔断时负载的功率。
全国中学生物理竞赛真题汇编--- 热学1. ( 19Y4)四、( 20 分)如图预19-4 所示,三个绝热的、容积相同的球状容器A、B、C,用带有阀门 K1、K2的绝热细管连通,相邻两球球心的高度差h 1.00 m .初始时,阀门是关闭的,A 中装有 1mol 的氦( He) ,B 中装有 1mol 的氪( Kr ) ,C 中装有 lmol 的氙( Xe),三者的温度和压强都相同.气体均可视为理想气体.现打开阀门 K 、K ,三种气体相互混合,1 2最终每一种气体在整个容器中均匀分布,三个容器中气体的温度相同.求气体温度的改变量.已知三种气体的摩尔质量分别为4.003 10 3 kg mol 1He3kg mol 1Kr 83.8 103 kg mol 1Xe 131.3 10在体积不变时,这三种气体任何一种每摩尔温度升高1K,所吸收的热量均为3R/ 2,R为普适气体常量.2.( 20Y3)( 20 分)在野外施工中,需要使质量m= 4.20 kg 的铝合金构件升温;除了保温瓶中尚存有温度t = 90.0 oC的 1.200kg 的热水外,无其他热源。
试提出一个操作方案,能利用这些热水使构件从温度t 0= 10.0 oC升温到66.0 oC 以上 ( 含 66.0 oC),并通过计算验证你的方案.已知铝合金的比热容 c=0.880 × 103 J· (k g·o C)-1,水的比热容 c=4.20 × 103J·(kg ·o C)-1,不计向周围环境散失的热量.3.( 22Y6)(25 分 ) 如图所示。
两根位于同一水平面内的平行的直长金属导轨,处于恒定磁场中。
磁场方向与导轨所在平面垂直.一质量为m的均匀导体细杆,放在导轨上,并与导轨垂直,可沿导轨无摩擦地滑动,细杆与导轨的电阻均可忽略不计.导轨的左端与一根阻值为尺 0 的电阻丝相连,电阻丝置于一绝热容器中,电阻丝的热容量不计.容器与一水平放置的开口细管相通,细管内有一截面为 S 的小液柱 ( 质量不计 ) ,液柱将 l mol 气体 ( 可视为理想气体 ) 封闭在容器中.已知温度升高1K时,该气体的内能的增加量为5R/2(R 为普适气体常量 ) ,大气压强为po,现令细杆沿导轨方向以初速V0向右运动,试求达到平衡时细管中液柱的位移.4.( 16F1)20 分)一汽缸的初始体积为V0,其中盛有2 mol的空气和少量的水(水的体积可以忽略)。
一、初中物理热学问题求解方法1.某小型汽油发电机外形如图所示,其实质是利用一个汽油机带动一个发电机来发电.该发种电机铭牌部分数据如下表所示,根据表中的数据求: 发动机(汽油机) 发电机型号 XGQF5.0型号XGQF5.0额定功率8.3kW 额定输出功率5kW 噪声73db 额定输出电压220V 连续运行时间8h 额定频率 50Hz强制水冷四冲程自动电压保护(1)在允许的连续运行时间内,发电机以额定功率输出,能够提供的电能是多少度? (2)已知汽油的热值是q =4.6×l07J/kg ,密度是0.71×103kg/m 3,设该汽油机的效率为35%,则该汽油发电机油箱的容积至少需要多大? (3)汽油发电机将内能转化为电能的效率是多少? 【答案】(1)40(2)20.9L (3)21.1% 【解析】 【分析】(1)已知发电机的额定功率和连续工作时间,根据公式WP t=的变式,可求发电机能够提供的电能;(2)已知汽油的热值和效率,根据公式100%100%P t W Q Vqηρ=⨯=⨯机有用放可求消耗的汽油体积;(3)先计算出1小时产生的电能,已知产生的电能和机械能,二者之比就是汽油发电机将内能转化为电能的效率。
【详解】(1)发电机能够提供的电能5kW8h40kW h40W P t==⨯=⋅=电电度故能够提供的电能是40度。
(2)根据WPt=,mVρ=,Q mq=放得,汽油机的效率100%100%P tWQ Vqηρ=⨯=⨯机有用放则油箱的最小容积:333378.310W83600s0.0209m20.9L0.7110kg/m35% 4.610J/kgP tVqρη⨯⨯⨯====⨯⨯⨯⨯机故油箱的最小容积为20.9L。
(3)汽油发电机将内能转化为电能的效率-33337100%100%5000W83600s100%20.910m0.7110kg/m 4.610J/kg21.1%WQP tVqηρ=⨯=⨯⨯⨯=⨯⨯⨯⨯⨯⨯=电放电则汽油发电机将内能转化为电能的效率为21.1%。
高中物理热学专题分类题型一、【分子动理论内能】典型题1.(多选)下列有关热现象和内能的说法中正确的是()A.把物体缓慢举高,其机械能增加,内能不变B.盛有气体的容器做加速运动时,容器中气体的内能必定会随之增大C.电流通过电阻后电阻发热,它的内能增加是通过“做功”方式实现的D.分子间引力和斥力相等时,分子势能最大解析:选AC.把物体缓慢举高,外力做功,其机械能增加,由于温度不变,物体内能不变,选项A正确;物体的内能与物体做什么性质的运动没有直接关系,选项B错误;电流通过电阻后电阻发热,是通过电流“做功”的方式改变电阻内能的,选项C正确;根据分子间作用力的特点,当分子间距离等于r0时,引力和斥力相等,不管分子间距离从r0增大还是减小,分子间作用力都做负功,分子势能都增大,故分子间距离等于r0时分子势能最小,选项D错误.2.(多选)下列关于布朗运动的说法中正确的是()A.布朗运动是微观粒子的运动,其运动规律遵循牛顿第二定律B.布朗运动是组成固体微粒的分子无规则运动的反映C.布朗运动是液体分子与固体分子的共同运动D.布朗运动是永不停息的,反映了系统的能量是守恒的解析:选AD.布朗运动是悬浮的固体小颗粒不停地做无规则的宏观的机械运动,故符合牛顿第二定律,它反映了液体分子永不停息地做无规则运动,A正确,B、C错误;微粒运动过程中,速度的大小与方向不断发生改变,与接触的微粒进行能量交换,D正确.3.(多选)下列说法正确的是()A.气体扩散现象表明了气体分子的无规则运动B.气体温度升高,分子的平均动能一定增大C.布朗运动的实质就是分子的热运动D.当分子间作用力表现为斥力时,分子势能随分子间距离的减小而减小解析:选AB.扩散现象是分子运动的结果,一切物质的分子都在不停地做无规则运动,故A正确;分子的平均动能只与温度有关,温度越高,分子的平均动能越大,故B正确;布朗运动是悬浮在液体中微粒的运动,它是液体分子无规则热运动的反映,选项C错误;当分子间作用力表现为斥力时,分子势能随分子间距离的减小而增大,选项D错误.4.(多选)我国已开展空气中PM2.5浓度的监测工作.PM2.5是指空气中直径等于或小于2.5 μm 的悬浮颗粒物,其飘浮在空中做无规则运动,很难自然沉降到地面,吸入后对人体形成危害.矿物燃料燃烧的排放物是形成PM2.5的主要原因.下列关于PM2.5的说法中正确的是()A.PM2.5的尺寸与空气中氧分子的尺寸的数量级相当B.PM2.5在空气中的运动属于分子热运动C.PM2.5的运动轨迹是由大量空气分子对PM2.5无规则碰撞的不平衡和气流运动决定的D.倡导低碳生活,减少煤和石油等燃料的使用,能有效减小PM2.5在空气中的浓度解析:选CD.“PM2.5”是指直径小于或等于2.5 μm的颗粒物,大于氧分子尺寸的数量级,A错误;PM2.5在空气中的运动是固体颗粒的运动,不是分子的运动,B错误;PM2.5的运动轨迹是由大量空气分子碰撞的不平衡和气流运动共同决定的,C正确;减少矿物燃料燃烧的排放,能有效减小PM2.5在空气中的浓度,D正确.5.(多选)运用分子动理论的相关知识,判断下列说法正确的是()A.气体分子单位时间内与单位面积器壁碰撞的次数仅与单位体积内的分子数有关B.某气体的摩尔体积为V,每个分子的体积为V0,则阿伏加德罗常数可表示为N A=VV0 C.阳光从缝隙射入教室,从阳光中看到的尘埃运动不是布朗运动D.生产半导体器件时需要在纯净的半导体材料中掺入其他元素,这可以在高温条件下利用分子的扩散来完成解析:选CD.气体分子单位时间内与单位面积器壁碰撞的次数,与单位体积内的分子数有关,还与分子平均速率有关,选项A错;由于分子的无规则运动,气体的体积可以占据很大的空间,故不能用摩尔体积除以分子体积得到阿伏加德罗常数,选项B错;布朗运动的微粒非常小,肉眼是看不到的,阳光从缝隙射入教室,从阳光中看到的尘埃运动是机械运动,不是布朗运动,选项C对;扩散可以在固体中进行,生产半导体器件时需要在纯净的半导体材料中掺入其他元素,这可以在高温条件下利用分子的扩散来完成,选项D对.6.(多选)某气体的摩尔质量为M mol,摩尔体积为V mol,密度为ρ,每个分子的质量和体积分别为m和V0,则阿伏加德罗常数N A可表示为()A.N A=M molm B.N A=ρV molmC .N A =V mol V 0D .N A =M mol ρV 0解析:选AB .阿伏加德罗常数N A =M mol m =ρV mol m =V mol V,其中V 为每个气体分子所占有的体积,而V 0是气体分子的体积,故C 错误;D 中ρV 0不是气体分子的质量,因而也是错误的.故选A 、B .7.很多轿车为了改善夜间行驶时的照明问题,在车灯的设计上选择了氙气灯,因为氙气灯灯光的亮度是普通灯灯光亮度的3倍,但是耗电量仅是普通灯的一半,氙气灯使用寿命则是普通灯的5倍,很多车主会选择含有氙气灯的汽车.若氙气充入灯头后的容积V =1.6 L ,氙气密度ρ=6.0 kg/m 3,氙气摩尔质量M =0.131 kg/mol ,阿伏加德罗常数N A =6×1023 mol -1 .试估算:(结果均保留一位有效数字)(1)灯头中氙气分子的总个数N ;(2)灯头中氙气分子间的平均距离.解析:(1)设氙气的物质的量为n ,则n =ρV M, 氙气分子的总个数N =ρV MN A ≈4×1022个. (2)每个分子所占的空间为V 0=V N设分子间平均距离为a ,则有V 0=a 3,则a = 3V N≈3×10-9 m. 答案:(1)4×1022个 (2)3×10-9 m8.(多选)用显微镜观察水中的花粉,追踪某一个花粉颗粒,每隔10 s 记下它的位置,得到了a 、b 、c 、d 、e 、f 、g 等点,再用直线依次连接这些点,如图所示.则下列说法中正确的是( )A .花粉颗粒的运动就是热运动B .这些点连接的折线就是这一花粉颗粒运动的轨迹C .在这六段时间内花粉颗粒运动的平均速度大小不等D .从花粉颗粒处于a 点开始计时,经过36 s ,花粉颗粒可能不在de 连线上解析:选CD .热运动是分子的运动,而不是固体颗粒的运动,故A 项错误;既然无规则,微粒在每个10 s内也是做无规则运动,并不是沿连线运动,故B错误;在这六段时间内的位移大小并不相同,故平均速度大小不等,故C正确;由运动的无规则性知,D正确.9.如图所示,甲分子固定在坐标原点O,乙分子位于x轴上,甲分子对乙分子的作用力与两分子间距离的关系如图中曲线所示.F>0为斥力,F<0为引力.A、B、C、D为x 轴上四个特定的位置.现把乙分子从A处由静止释放,下列A、B、C、D四个图分别表示乙分子的速度、加速度、势能、动能与两分子间距离的关系,其中大致正确的是()解析:选B.乙分子从A处释放受甲分子引力作用,一直到C点都是加速运动,而后受斥力作用而减速,所以乙到C点时速度最大而不是零.A项错误;加速度与力成正比,方向相同,故B项正确;从C图中可知,在A点静止释放乙分子时,分子势能为负值,动能为零,乙分子总能量为负值,在以后的运动过程中动能不可能小于零,则分子势能不可能大于零,所以C图中不可能出现横轴上方的那部分,故C项错误;乙分子动能不可能为负值,故D项错误.10.(多选)下列说法正确的是()A.只要知道水的摩尔质量和水分子的质量,就可以计算出阿伏加德罗常数B.悬浮微粒越大,在某一瞬间撞击它的液体分子数就越多,布朗运动越明显C.在使两个分子间的距离由很远(r>10-9m)减小到很难再靠近的过程中,分子间作用力先减小后增大;分子势能不断增大D.温度升高,分子热运动的平均动能一定增大,但并非所有分子的速率都增大解析:选AD.悬浮微粒越大,在某一瞬间撞击它的液体分子数越多,受力越趋于平衡,布朗运动越不明显,选项B 错误;在使两个分子间的距离由很远(r >10-9 m)减小到很难再靠近的过程中,分子间作用力先增大后减小再增大,分子势能先减小后增大,选项C 错误.11.(多选)下列说法正确的是( )A .分析布朗运动会发现,悬浮的颗粒越小,温度越高,布朗运动越剧烈B .一定质量的气体,温度升高时,分子间的平均距离增大C .分子间的距离r 存在某一值r 0,当r 大于r 0时,分子间引力大于斥力,当r 小于r 0时,分子间斥力大于引力D .已知铜的摩尔质量为M (kg/mol),铜的密度为ρ(kg/m 3),阿伏加德罗常数为N A (mol -1),体积为V (m 3)的铜所含的原子数为N =ρVN A M解析:选ACD .悬浮的颗粒越小,液体分子撞击的不平衡越明显,温度越高,液体分子撞击固体颗粒的作用越强,故A 正确;一定质量的气体,温度升高时,体积不一定增大,分子间的平均距离不一定增大,故B 错误;分子间的距离r 存在某一值r 0,当r 大于r 0时,分子间斥力小于引力,整体表现为引力;当r 小于r 0时,分子间斥力大于引力,整体表现为斥力,故C 正确;体积为V (m 3)的铜所含的原子数N =ρV M N A,故选项D 正确. 12.(多选)一般情况下,分子间同时存在分子引力和分子斥力.若在外力作用下两分子的间距达到不能再靠近时,固定甲分子不动,乙分子可自由移动,则去掉外力后,当乙分子运动到很远时,速度为v ,则在乙分子的运动过程中(乙分子的质量为m )( )A .乙分子的动能变化量为12m v 2 B .分子力对乙分子做的功为12m v 2 C .分子引力比分子斥力多做的功为12m v 2 D .分子斥力比分子引力多做的功为12m v 2 解析:选ABD .当甲、乙两分子间距离最小时,两者都处于静止状态,当乙分子运动到分子力的作用范围之外时,乙分子不再受力,此时速度为v ,故在此过程中乙分子的动能变化量为12m v 2,选项A 正确;在此过程中,分子斥力始终做正功,分子引力始终做负功,即W 合=W 斥-W 引,由动能定理得W 合=W 斥-W 引=12m v 2,故分子斥力比分子引力多做的功为12m v 2,分子力做正功,选项B 、D 正确,C 错误.13.(2020·江西联考)下列说法正确的是()A.只要知道气体的摩尔体积和阿伏加德罗常数,就可以算出气体分子的体积B.一定温度时,悬浮在液体中的固体微粒越小,布朗运动就越明显C.密封在体积不变的容器中的气体,温度升高,气体分子对器壁单位面积上碰撞的平均作用力增大D.用打气筒的活塞压缩气体很费力,说明分子间有斥力解析:选BC.只要知道气体的摩尔体积和阿伏加德罗常数,可以算出气体分子所占空间的大小,不能算出气体分子的体积,故A错误;颗粒越小、温度越高,布朗运动越明显,故B正确;容积一定,当温度升高时,气体分子运动越剧烈,在单位时间内对单位面积的容器壁的撞击次数越多,故C正确;用打气筒打气时,里面的气体因体积变小,压强变大,所以再压缩时就费力,与分子之间的斥力无关,故D错误.14.已知地球大气层的厚度h远小于地球半径R,空气平均摩尔质量为M,阿伏加德罗常数为N A,地面大气压强为p0,重力加速度大小为g.由此可估算得,地球大气层空气分子总数为________________,空气分子之间的平均距离为____________.解析:可认为地球大气对地球表面的压力是由其重力引起的,即mg=p0S=p0×4πR2,故大气层的空气总质量m=4πp0R2g,空气分子总数N=mM N A=4πp0N A R2Mg.由于h≪R,则大气层的总体积V=4πR2h,每个分子所占空间设为一个棱长为a的正方体,则有Na3=V,可得分子间的平均距离a=3Mghp0N A.答案:4πp0N A R2Mg3Mghp0N A二、【固体、液体和气体的性质】典型题1.下列说法正确的是()A.温度标志着物体内大量分子热运动的剧烈程度B.内能是物体中所有分子热运动所具有的动能的总和C.气体压强仅与气体分子的平均动能有关D.气体膨胀对外做功且温度降低,分子的平均动能可能不变解析:选A.温度是分子平均动能的量度(标志),A对.内能是物体内所有分子的分子动能和分子势能的总和,B错.气体压强不仅与分子的平均动能有关,还与分子的密集程度有关,C错.温度降低,则分子的平均动能变小,D错.2.如图所示,把玻璃管的裂口放在火焰上烧熔,它的尖端就变钝了.产生这一现象的原因是()A.玻璃是非晶体,熔化再凝固后变成晶体B.玻璃是晶体,熔化再凝固后变成非晶体C.熔化的玻璃表面分子间表现为引力使其表面绷紧D.熔化的玻璃表面分子间表现为斥力使其表面扩张解析:选C.玻璃是非晶体,熔化再凝固后仍然是非晶体,故A、B错误;玻璃裂口尖端放在火焰上烧熔后尖端变钝,是表面张力的作用,因为表面张力具有减小表面积的作用即使液体表面绷紧,故C正确,D错误.3.(多选)下列说法正确的是()A.竖直玻璃管里的水银面不是平面,而是“上凸”的,这是表面张力所致B.物理性质表现为各向同性的固体一定是非晶体C.压缩气体需要用力,这是气体分子间有斥力的表现D.汽缸里一定质量的理想气体发生等压膨胀时,单位时间碰撞器壁单位面积的气体分子数一定减少解析:选AD.竖直玻璃管里的水银面不是平面,而是“上凸”的,这是表面张力所致,选项A正确;物理性质表现为各向同性的固体可能是多晶体,不一定是非晶体,选项B错误;气体之间分子距离很大,分子力近似为零,用力才能压缩气体是由于气体内部与容器外之间的压强差造成的,并非由于分子之间的斥力造成,选项C错误;汽缸里一定质量的理=C可知,压强不变而体积增大,则气想气体发生等压膨胀时,根据理想气体状态方程pVT体的温度一定升高,温度是分子平均动能的标志,温度升高则分子的平均动能增大,分子对器壁的平均撞击力增大,则单位时间碰撞器壁单位面积的气体分子数一定减少,选项D正确.4.(多选)下列说法正确的是()A .理想气体由状态1变化到状态2时,一定满足p 1V 1T 1=p 2V 2T 2B .随着分子间距离增加,分子间的引力和斥力都减小,分子间距小于r 0(分子力为零时分子间的距离)时,距离越小,分子势能越大C .悬浮在液体中的固体微粒做布朗运动,充分说明了固体微粒内部分子运动的无规则性D .如果液体不浸润某种固体,则在液体与固体接触的附着层内,分子分布比液体内部稀疏,分子间的作用力表现为引力解析:选BD .理想气体状态方程成立的条件为气体质量不变,A 错误;由分子力变化特点知,r <r 0,分子力表现为斥力,距离减小,分子力做负功,分子势能增大,B 正确;悬浮在液体中的固体微粒的布朗运动间接反映了液体分子运动的无规则性,C 错误;液体不浸润某种固体,如水银对玻璃,当水银与玻璃接触时,附着层中的水银分子受玻璃分子的吸引比内部水银分子弱,附着层中的水银分子比水银内部稀疏,附着层中的分子间的作用力表现为引力,使跟玻璃接触的水银表面有缩小的趋势,因而形成不浸润现象,D 正确.5.(多选)对下列几种固体物质的认识,正确的有( )A .食盐熔化过程中,温度保持不变,说明食盐是晶体B .烧热的针尖接触涂有蜂蜡薄层的云母片背面,熔化的蜂蜡呈椭圆形,说明蜂蜡是晶体C .天然石英表现为各向异性,是由于该物质的微粒在空间的排列不规则D .石墨和金刚石的物理性质不同,是由于组成它们的物质微粒排列结构不同解析:选AD .晶体在熔化过程中温度保持不变,食盐具有这样的特点,则说明食盐是晶体,选项A 正确;蜂蜡的导热特点是各向同性的,烧热的针尖使蜂蜡熔化后呈椭圆形,说明云母片的导热特点是各向异性的,故云母片是晶体,选项B 错误;天然石英表现为各向异性,则该物质微粒在空间的排列是规则的,选项C 错误;石墨与金刚石皆由碳原子组成,但它们的物质微粒排列结构是不同的,选项D 正确.6. (多选)固体甲和固体乙在一定压强下的熔化曲线如图所示,横轴表示时间t ,纵轴表示温度T .下列判断正确的有( )A.固体甲一定是晶体,固体乙一定是非晶体B.固体甲不一定有确定的几何外形,固体乙一定没有确定的几何外形C.在热传导方面固体甲一定表现出各向异性,固体乙一定表现出各向同性D.固体甲和固体乙的化学成分有可能相同解析:选ABD.晶体具有固定的熔点,非晶体则没有固定的熔点,所以固体甲一定是晶体,固体乙一定是非晶体,故A正确;固体甲若是多晶体,则不一定有确定的几何外形,固体乙是非晶体,一定没有确定的几何外形,故B正确;在热传导方面固体甲若是多晶体,则不一定表现出各向异性,固体乙一定表现出各向同性,故C错误;固体甲一定是晶体,固体乙一定是非晶体,但是固体甲和固体乙的化学成分有可能相同,故D正确.7.(多选)下列说法中正确的是()A.在较暗的房间里,看到透过窗户的“阳光柱”里粉尘的运动不是布朗运动B.气体分子速率呈现出“中间多,两头少”的分布规律C.随着分子间距离增大,分子间作用力减小,分子势能也减小D.一定量的理想气体发生绝热膨胀时,其内能不变解析:选AB.布朗运动是悬浮在液体或气体中固体小颗粒的无规则运动,在较暗的房间里可以观察到射入屋内的阳光中有悬浮在空气里的小颗粒在飞舞,是由于气体的流动造成的,这不是布朗运动,故A正确;麦克斯韦提出了气体分子速率分布的规律,即“中间多,两头少”,故B正确;分子力的变化比较特殊,随着分子间距离的增大,分子间作用力不一定减小,当分子表现为引力时,分子力做负功,分子势能增大,故C错误;一定量理想气体发生绝热膨胀时,不吸收热量,同时对外做功,其内能减小,故D错误.8.(多选)下列说法正确的是()A.气体的内能是分子热运动的平均动能与分子间势能之和B.气体的温度变化时,气体分子的平均动能一定改变C.晶体有固定的熔点且物理性质各向异性D.在完全失重的环境中,空中的水滴是个标准的球体解析:选BD.由热力学知识知:气体的内能是所有分子热运动的动能与分子间势能之和,A错误;气体的温度变化时,气体分子的平均动能变化,B正确;晶体分为单晶体和多晶体,单晶体具有各向异性,多晶体是各向同性的,C错误;完全失重情况下,液体各方向的力都一样,由于表面张力所以会成为一个标准的球形,D正确.9.如图所示,一开口向下导热均匀的直玻璃管,通过细绳悬挂在天花板上,玻璃管下端浸没在固定水银槽中,管内外水银面高度差为h,下列情况中能使细绳拉力增大的是()A.大气压强增加B.环境温度升高C.向水银槽内注入水银D.略微增加细绳长度,使玻璃管位置相对水银槽下移解析:选A.根据题意,设玻璃管内的封闭气体的压强为p,玻璃管质量为m,对玻璃管受力分析,由平衡条件可得:F+pS=mg+p0S.解得:F=(p0-p)S+mg=ρghS+mg,即绳的拉力等于玻璃管的重力和管中高出液面部分水银的重力.选项A中,大气压强增加时,水银柱上移,h增大,所以拉力F增加,A正确;选项B中,环境温度升高,封闭气体压强增加,水银柱高度h减小,故拉力F减小,B错误;选项C中,向水银槽内注入水银,封闭气体的压强增大,平衡时水银柱高度h减小,故拉力减小,C错误;选项D中,略微增加细绳长度,使玻璃管位置相对水银槽下移,封闭气体的体积减小、压强增大,平衡时水银柱高度h减小,故细绳拉力F减小,故D错误.10.(多选)下列说法正确的是()A.悬浮在液体中的微粒越小,在液体分子的撞击下越容易保持平衡B.荷叶上的小水珠呈球形是由于液体表面张力的作用C.物体内所有分子的热运动动能之和叫做物体的内能D.一定质量的理想气体先经等容降温,再经等温压缩,压强可以回到初始的数值解析:选BD.做布朗运动的微粒越小,在液体分子的撞击下越不容易保持平衡,故A 错误;荷叶上的小水珠呈球形是由于液体表面张力的作用,故B正确;物体内所有分子的热运动动能之和与分子势能的总和叫做物体的内能,故C错误;根据理想气体的状态方程pVT =C可知,一定质量的理想气体先经等容降温,压强减小;再经等温压缩,压强又增大,所以压强可以回到初始的数值,故D正确.11.(多选)下列说法正确的是()A.毛细现象是液体的表面张力作用的结果B.晶体在熔化时要吸热,说明晶体在熔化过程中分子动能增加C.由同种元素构成的固体,可能会由于原子的排列方式不同而成为不同的晶体D.液晶像液体一样具有流动性,而其光学性质和非晶体相似,具有各向同性解析:选AC.毛细现象是液体的表面张力作用的结果,A正确;晶体在熔化时要吸热,温度不变,分子平均动能不变,则晶体在熔化过程中分子势能增加,B错误;由同种元素构成的固体,可能会由于原子的排列方式不同而成为不同的晶体,如金刚石和石墨,C正确;液晶像液体一样具有流动性,而其光学性质和某些晶体相似,具有各向异性,D错误.12.(多选)下列说法正确的是()A.液面上方的蒸汽达到饱和时就不会有液体分子从液面飞出B.萘的熔点为80 ℃,质量相等的80 ℃的液态萘和80 ℃的固态萘具有不同的分子势能C.车轮在潮湿的地面上滚过后,车辙中会渗出水,属于毛细现象D.液体表面层的分子势能比液体内部的分子势能大解析:选BCD.液面上方的蒸汽达到饱和时,液体分子从液面飞出,同时有蒸汽分子进入液体中,从宏观上看,液体不再蒸发,故选项A错误;80 ℃时,液态萘凝固成固态萘的过程中放出热量,温度不变,则分子的平均动能不变,萘放出热量的过程中内能减小,所以一定是分子势能减小,故选项B正确;由毛细现象的定义可知,选项C正确;液体表面层的分子间距离比液体内部的分子间距离大,故液体表面层分子之间的作用力表现为引力,分子间距变大时,克服分子间引力做功,分子势能增大.所以液体表面层的分子比液体内部的分子有更大的分子势能,故选项D正确.13.(多选)下列说法正确的是()A.不同温度下,理想气体分子平均动能可能相同B.在分子间距离增大的过程中,分子间的作用力可能增加也可能减小C.自然发生的热传递过程是向着分子热运动无序性增大的方向进行的D.气体的温度升高时,分子的热运动变得剧烈,分子的平均动能增大,撞击器壁时对器壁的作用力增大,从而气体的压强一定增大解析:选BC.不同温度下,理想气体分子平均动能不相同,故A错误;分子间距离小于r0时,在分子间距离增大的过程中,分子间的作用力减小,分子间距离大于r0时,在分子间距离增大的过程中,分子间的作用力先增大后减小,故B正确;根据热力学第二定。
Y25-4.如图所示,放置在升降机地板上的盛有水的容器中,插有两根相对容器的位置是固定的玻璃管a和b,管的上端都是封闭的,下端都是开口的.管内被水各封有一定质量的气体.平衡时,a管内的水面比管外低,b管内的水面比管外高.现令升降机从静止开始加速下降,已知在此过程中管内气体仍被封闭在管内,且经历的过程可视为绝热过程,则在此过程中A.a中气体内能将增加,b中气体内能将减少B.a中气体内能将减少,b中气体内能将增加C.a 、b中气体内能都将增加D.a 、b中气体内能都将减少Y25-5.图示为由粗细均匀的细玻璃管弯曲成的“双U形管”, a 、b 、c 、d为其四段竖直的部分,其中a 、d上端是开口的,处在大气中.管中的水银把一段气体柱密封在b、c 内,达到平衡时,管内水银面的位置如图所示.现缓慢地降低气柱中气体的温度,若c中的水银面上升了一小段高度△h ,则A.b中的水银面也上升△hB.b中的水银面也上升,但上升的高度小于△hC.气柱中气体压强的减少量等于高为△h的水银柱所产生的压强D.气柱中气体压强的减少量等于高为2△h的水银柱所产生的压强Y26-15.(20分)图中M1和M2是绝热气缸中的两个活塞,用轻质刚性细杆连结,活塞与气缸壁的接触是光滑的、不漏气的,M1是导热的,M2是绝热的,且M2的横截面积是M1的2倍.M1把一定质量的气体封闭在气缸的L1部分,M1和M2把一定质量的气体封闭在气缸的L 2部分,M 2的右侧为大气,大气的压强P 0是恒定的. K 是加热L 2中气体用的电热丝.初始时,两个活塞和气体都处在平衡状态,分别以V 10和V 20表示L 1和L 2中气体的体积.现通过K 对气体缓慢加热一段时间后停止加热,让气体重新达到平衡态,这时,活塞未被气缸壁挡住.加热后与加热前比, L 1和L 2中气体的压强是增大了、减小了还是未变?要求进行定量论证.F26-四、(20分)火箭通过高速喷射燃气产生推力。
一、初中物理热学问题求解方法1.为检测某汽车发动机的工作性能,现使汽车在平直公路上从静止开始做直线运动,保持发动机输出功率恒定为6×104W,汽车行驶过程中所受阻力大小不变,其v-t图像如图所示,在第10s末开始匀速行驶,经测试,消耗5.8kg的汽油可以使汽车匀速行驶53.36km,汽油完全燃烧放出的热量40%用来驱动汽车行驶,(汽油的热值为4.6×107J/kg),在检测过程中。
(1)前10s发动机做多少功?(2)汽车受到的阻力多大?(3)汽车匀速行驶的速度多大?【答案】(1) 6×105J;(2) 2000N;(3) 30m/s。
【解析】【详解】(1)前10s发动机做的功W=Pt=6×104W× 10s=6×105J;(2)5.8kg的汽油完全燃烧放出的热量Q=mq=5.8kg×4.6×107J/kg=2.668×108J,牵引力做的功W1=Qη=2.668×108J×40%=1.0672×108J,牵引力F=8131.067210J53.3610mWs⨯=⨯=2000N,汽车在该平直的公路上匀速行驶时,汽车受到的阻力与牵引力是一对平衡力,大小相等,阻力f=F=2000N;(3)汽车的功率P=W Fst t==Fv,汽车匀速行驶的速度v=4610W2000NPF⨯==30m/s。
答:(1)前10s发动机做功6×105J;(2)汽车受到的阻力是2000N;(3)汽车匀速行驶的速度30m/s。
2.小明探究水沸腾时的特点,实验装置如图所示。
(1)加热一定时间后,温度计的示数如图所示,此时水的温度为________℃;(2)当观察到如图中的_______图时,说明水已沸腾;b图中气泡上升的过程逐渐变小,发生的物态变化是_______;(3)水在沸腾过程中虽然温度不再升高,但酒精灯要持续加热,这说明液体在沸腾过程中要______;(4)如图所示中能正确表示实验过程中水温度变化的图象是______________。
第14讲热膨胀热效率14.1 学习提要14.1.1 温度及温度计1.温度温度是表示物体冷热程度的物理量。
它的国际单位是开尔文,简称开(K)。
2. 温度计温度计是测量温度的仪表。
常用的有水银温度计、煤油温度计和酒精温度计。
(1)原理:常用温度计是利用液体热长冷缩的性质制成的。
(2)温标:温度的测量标准。
摄氏温标的分度法:把一个标准大气压下冰、水混合物的温度规定为零度,记为0℃;一标准大气压下沸水的温度规定为100度,记作100℃;把0℃和100℃分成100等分,每一等分就是1摄氏度。
这种分度法还可以扩大到0℃以下和100℃以上。
热力学温标是国际单位制中所采用的的温标,也成为绝对温标,它的单位是开(K)。
热力学温标选择-273.15℃为零点,即0K。
热力学温标中每1度的大小与摄氏温标每1度的大小相同。
通常在计算结果不要求十分精确时,热力学温标和摄氏温度关系可以写成T = 273 + t0(3)正确使用温度计的方法:①不能超过温度计的测量范围;②温度计的玻璃泡要与被测物体充分接触;③不能将温度计从被测物体中拿出来读数;④读数时视线要与温度内液面相平。
(4)体温计的特点:①刻度范围为35~42℃;②最小分度值为0.1℃;③可以离开人体读数,读数后要将水银柱甩回到玻璃泡内。
14.1.2 热膨胀1.物体热膨胀的一般规律物体在温度升高时,其体积(或面积、长度)增加的现象叫做热膨胀。
大多数物质在温度升高时,体积(或面积、长度)增加。
在相同条件下,固体膨胀得最小,液体膨胀得较大,气体膨胀得最大。
2.反常膨胀规律少数物质在一定温度范围内(例如在0℃~4℃之间)温度升高时体积反而减小,这种现象叫做反常膨胀现象。
水、锑、铋、灰铸铁等都有反常膨胀的现象。
3.热膨胀在技术上的意义(1)固体在温度改变的时候,膨胀或收缩虽然很小,但当热膨胀受到阻碍时,产生的力却很大。
(2)利用不同材料在相同条件下的热膨胀不同制成双金属片,在自动控制上能够发挥很大的作用。
定额市鞍钢阳光实验学校物理竞赛热学例题解析理解橡皮球的膨胀现象设有一橡皮球,球内压力是均匀的,压力愈大,球的直径就愈大,其函数关系为00)1(P dd k P +-=, 其中:P 为球内压强,0P 为球外压强,k 是和球胆有关的张力系数,0d 为常数,d 为球的直径。
当C 00时,球内压强为atm 1.1,求的直径为20cm ,现加热使温度升高,球内压强升至atm 2.1,球的直径增至21cm ,球外大气压始终为1atm.试求:(1) 加热使温度升高了几度?(2) 升温前球胆的张力为多大?(3) 球从20cm 膨胀至21cm,球内气体做功多少?(4)气体对球胆做了多少功?解:(1)由于,222111T V P T V P =得到 加热使温度升高了.76.7127376.344K =- (2)因为011)1(P d d k P +-= 联立,解得 则.22.2201.1910.11.111201atm d d P P k =--=--=升温前球胆的张力正比于球胆所扩张的面积,即 (3)球从20cm 膨胀至21cm 时,球内气体所做的功为.7610)2021(101.191022.2410)2021(10)122.2(6)(4))((64222563352122031320J d d kd d d P k =⨯-⨯⨯⨯⨯⨯-⨯-⨯+=---+=-ππππ(4)气体对球所做的功为求解气体吸收的热量如图一所示,两个底面积均为S=1002cm 的圆筒,左筒内气体的质量为g m A 4=,体积L V A 4.22=,压强,1atm P A =温度.273K T A =右筒内有同种气体,质量g m B 44.7=,体积L V B 4.22=,温度K T B 273=。
左筒筒壁绝热,右筒靠大热库维持恒定的K 273的温度。
整个系统在真空中,放开左、右筒相连的活塞后,活塞移动了cm l 50=后达到平衡而静止。
试问:右筒的气体吸收了多少热量? (已知气体可被视为理想气体,其定体比热容),/(14.3K g J C V ⋅=设活塞与筒壁之间无摩擦)。
上海初中物理竞赛试题详解详析热学『例』质量相等的甲、乙两金属块,其材质不同。
将它们放入沸水中,一段时间后温度均达到100℃,然后将它们按不同的方式投入一杯冷水中,使冷水升温。
第一种方式:先从沸水中取出甲,将其投入冷水,当达到热平衡后将甲从杯中取出,测得水温升高20℃;然后将乙从沸水中取出投入这杯水中,再次达到热平衡,测得水温又升高了20℃。
第二种方式:先从沸水中取出乙投入冷水,当达到热平衡后将乙从杯中取出;然后将甲从沸水中取出,投入这杯水中,再次达到热平衡。
则在第二种方式下,这杯冷水温度的变化是()A.升高不足40℃B.升高超过40℃C.恰好升高了40℃D.条件不足,无法判断【解析】:解法一第一种方式:甲投入冷水后放热Q放=C甲m(100℃-20℃-t0)水吸收的热量为Q吸=C水m水20℃∵不考虑热传递过程热量的损失,Q放=Q吸∴C甲m(100℃-20℃-t0)=C水m水20℃则C甲m/ C水m水=20℃/(100℃-20℃-t0)………………①乙投入冷水后放热Q’放=C乙m(100℃-20℃-20℃-t0)同理:C乙m/ C水m水=20℃/(100℃-40℃-t0)………………②第二种方式:设乙投入冷水热平衡后,水温为t1,则有:C乙m(100℃-t1)=C水m水(t1-t0)∴C乙m/ C水m水=(t1-t0)/(100℃-t1)设C乙m/ C水m水=a,由②得:a=20/(60-t0)则有:100a-at1=t1-t0t1=(100a+t0)/(a+1) 代入a=20/(60-t0)化简得:t1=(2000+60t0-t02)/(80-t0)设甲投入冷水热平衡后的水温为t2,则有:C甲m(100℃-t2)=C水m水(t2-t1)∴C甲m/ C水m水=(t2-t1)/(100℃-t2)设C甲m/ C水m水=b,由①得:b=20/(80-t0)则有:100b-bt2=t2-t1t2=(100b+t1)/(b+1) 代入b=20/(80-t0)化简得:t2=(4000+60t0-t02)/(100-t0)第二种方式水上升的温度为:t2-t0=(4000+60t0-t02)/(100-t0) -t0=(4000+60t0-t02-100 t0+t02)/(100-t0)=(4000-40 t0)/(100-t0)=40℃解法二:设冷水的初温为t0。
物理竞赛热学部分习题能⼒训练A组1、夏天,在密闭的绝热的房间⾥,⼀直打开冰箱门让冰箱运转起来,房间内的温度将_______(填“升⾼”或“降低”或“不变”)。
2、最近我国⼀些城市出现了环保汽车,该车型采⽤“清洁燃料”加“汽油”双燃料系统,使尾⽓中有害⽓体的成份降低了80%。
这种燃料是⽓态碳氢化合物,在微微加压的情况下即变为液体⽽储存于钢瓶中,加装到汽车供油系统。
当向发动机供“油”时,该燃料在钢瓶中逐渐汽化,然后进⼊⽓缸被点燃,从⽽产⽣动⼒。
3、在⽓温是20℃的房间⾥,⽤⽔银温度计测沸⽔的温度,当⽔银⾯经过“20”到“100”之间的某⼀刻度时,温度计的⽰数表⽰()A、房间⾥空⽓的温度B、沸⽔的温度C、温度计中⽔银的温度D、什么也不表⽰4、在沿海或⼤湖附近的⽓温变化⽐远离⽔域的地区缓慢。
这主要是因为()A、⽔在⼀般情况下⽐⼟壤温度⾼B、在⼀般情况下⽔⽐⼟壤温度低C、⽔⽐⼟壤更缓慢地变暖或变冷D、⽔⽐⼟壤更迅速地变暖或变冷5、两个相同的容器,内盛放相同体积、相同温度的热⽔,⼀个容器的表⾯是⽩⾊的,另⼀个表⾯是⿊⾊的,把它们放在同⼀个房间内,让它们⾃然冷却,则()A、⽩⾊容器⾥的⽔冷却得快B、⿊⾊容器⾥的⽔冷却得快C、两个容器⾥的⽔冷却得⼀样快D、以上情况都有可能6、我国发射的神州四号飞船返回舱的表⾯有⼀层叫做“烧蚀层”的物质,它可以在返回⼤⽓层时保护返回舱不因⾼温⽽烧毁。
烧蚀层能起这种作⽤,除了它的隔热性能外,还由于()A、它的硬度⼤,⾼温下不会损坏B、它的表⾯⾮常光滑,能减少舱体与空⽓的摩擦C、它在汽化时能吸收⼤量的热D、它能把热辐射到宇宙空间7、下列说法正确的是()A、质量相同的两种物质吸收热量时,⽐热⼤的温度变化⼀定⼩B、1焦⽿的热量可以使1克⽔温度升⾼4.2℃C、物体的机械能增加时,热能也会增加D、⼀根锯条的温度升⾼,热能增加时,我们⽆法判断其增加热能的⽅法8、家中烧⽔的⽔壶,壶盖上常有⼀个⼩孔。
高中物理竞赛试题汇编及答案试题一:力学基础题目描述:一个质量为 \( m \) 的物体,从静止开始,以加速度 \( a \) 做匀加速直线运动。
经过时间 \( t \) 后,求物体的位移 \( s \) 和最终速度 \( v \)。
答案:根据匀加速直线运动的基本公式,位移 \( s \) 可由以下公式计算:\[ s = \frac{1}{2} m a t^2 \]最终速度 \( v \) 可由以下公式计算:\[ v = a t \]试题二:电磁学题目描述:一个长为 \( L \) 的导线,以速度 \( v \) 在垂直于导线方向的匀强磁场 \( B \) 中移动。
求导线两端的感应电动势 \( E \)。
答案:根据法拉第电磁感应定律,感应电动势 \( E \) 可由以下公式计算:\[ E = B L v \]试题三:热力学题目描述:一个理想气体,其初始体积为 \( V_1 \),初始温度为 \( T_1 \)。
气体经历一个等压过程,最终体积变为 \( V_2 \)。
求最终温度\( T_2 \)。
答案:根据理想气体定律和等压过程的性质,最终温度 \( T_2 \) 可由以下公式计算:\[ T_2 = \frac{V_1}{V_2} T_1 \]试题四:光学题目描述:一束平行光通过一个焦距为 \( f \) 的凸透镜,求透镜另一侧的光斑直径 \( d \)。
答案:根据凸透镜的成像原理,光斑直径 \( d \) 可由以下公式计算:\[ d = 2f \]试题五:现代物理题目描述:一个电子在电场 \( E \) 中从静止开始加速。
求电子在 \( x \) 距离后的速度 \( v \)。
答案:根据动能定理,电子在 \( x \) 距离后的速度 \( v \) 可由以下公式计算:\[ \frac{1}{2} m v^2 = e E x \]\[ v = \sqrt{\frac{2 e E x}{m}} \]结束语:以上试题涵盖了高中物理竞赛中的力学、电磁学、热力学、光学和现代物理等基础知识点,通过这些题目的练习,可以加深学生对物理概念的理解和应用能力。
物理竞赛热学专题40题刷题练习(带答案详解)1.潜水艇的贮气筒与水箱相连,当贮气筒中的空气压入水箱后,水箱便排出水,使潜水艇浮起。
某潜水艇贮气简的容积是2m 3,其上的气压表显示内部贮有压强为2×107Pa 的压缩空气,在一次潜到海底作业后的上浮操作中利用简内的压缩空气将水箱中体积为10m 3水排出了潜水艇的水箱,此时气压表显示筒内剩余空气的压强是9.5×106pa ,设在排水过程中压缩空气的温度不变,试估算此潜水艇所在海底位置的深度。
设想让压强p 1=2×107Pa 、体积V 1=2m 3的压缩空气都变成压强p 2=9.5×106Pa 压缩气体,其体积为V 2,根据玻-马定律则有p 1V 1=p 2V 2排水过程中排出压强p 2=9.5×106Pa 的压缩空气的体积 221V V V '=-,设潜水艇所在处水的压强为p 3,则压强p 2=9.5×106Pa 、体积为2V '的压缩空气,变成压强为p 3的空气的体积V 3=10m 3。
根据玻马定律则有2233p V p V '=联立可解得p 3=2.1×106Pa设潜水艇所在海底位置的深度为h ,因p 3=p 0+ρ gh解得h =200m2.在我国北方的冬天,即便气温很低,一些较深的河 流、湖泊、池塘里的水一般也不会冻结到底,鱼类还可以在水面结冰的情况下安全过冬,试解释水不会冻结到底的原因?【详解】由于水的特殊内部结构,从4C ︒到0C ︒,体积随温度的降低而增大,达到0C ︒后开始结冰,冰的密度比水的密度小。
入秋冬季节,气温开始下降,河流、湖泊、池塘里的水上层的先变冷,密度变大而沉到水底,形成对流,到达4C ︒时气温如果再降低,上层水反而膨胀,密度变小,对流停止,“漂浮”在水面上,形成一个“盖子”,而下面的水主要靠热传导散失内能,但由于水是热的不良导体,这样散热是比较慢的。
表面水的温度先于下面的水降至0C ︒,开始结冰。
冰的密度比水小,所以一直浮在水面上而不下沉。
冰下面的水,从上到下温度为0C ︒到4C ︒,如果再降温,就会从上到下逐渐结冰。
由于通过热传导而向上散热比较慢,并且有地热由底下向上传导,因此冻结的速度是缓慢的。
只要气温不太低或低温时间不长,加之湖泊、池塘中的水较深,水是不会被冻透的,冰就不会一直结到水底。
3.横截面积为S 和2S 的两圆柱形容器按图示方式连接成一气缸,每个圆筒中各置有一活塞,两活塞间的距离为l ,用硬杆相连,形成“工”字形活塞,它把整个气缸分隔成三个气室,其中I 、Ⅲ室密闭摩尔数分别为ν和2ν的同种理想气体,两个气室内都有电加热器;Ⅱ室的缸壁上开有一小孔,与大气相通;1 mol 该种气体内能为CT (C 是气体摩尔热容量,T 是气体的绝对温度)。
当三个气室中气体的温度均为T 1时,“工"字形活塞在气缸中恰好在图所示的位置处于平衡状态,这时I 室内气柱长亦为l ,Ⅱ室内空气的摩尔数为032v 。
已知大气压不变,气缸壁和活塞都是绝热的,不计活塞与气缸之间的摩擦。
现通过电热器对I 、Ⅲ两室中的气体缓慢加热,直至I 室内气体的温度升为其初始状态温度的2倍时,活塞左移距离d ,已知理想气体常量为R 。
求:(1)Ⅲ室内气体初态气柱的长度;(2)Ⅲ室内气体末态的温度;(3)此过程中I 、Ⅲ室密闭气体吸收的总热量。
【详解】(1)设大气压强为p 0.初态:I 室内气体压强为p 1;III 室内气体压强为p 3,气柱的长度为l 3;末态:I 室内气体压强为p 1′;III 室内气体压强为p 3′;由初态到末态:活塞左移距离为d 。
首先用整体法,力学平衡p 3(2S )= p 1S + p 0(2S -S )然后对三部分气体分别分析:p 1lS =νRT 1p 0(222l l S S ⨯+⨯)0132v RT = p 3l 3(2S )=(2ν)RT 1联立上述各式得:132RT l v S S ⋅ =011v RT vRT S S lS lS⋅+⋅得: l 3=02v l v v + (2)方法同第(1)小题p 3′(2S )= p 1′S + p 0(2S -S )对I 室中气体p 1′(l -d )S =νRT 2=νR 2T 1对III 室中气体:p 3′(l 3+d )(2S )=(2ν)RT 3′T 3′=()()002()vl v v d l d v v ++-+0112v l d T v l -⎛⎫+ ⎪⎝⎭(3)大气对密闭气体系统做的功为:W =p 0(2S -S )(-d )=-p 0Sd =-01d v RT l系统密闭气体内能增加量为ΔU =νC (T 1′-T 1)+ (2ν)C (T 3′-T 3)且初态T 3= T 1,故ΔU =νC (2T 3′-T 1)将T 3′代去得 ΔU =[()()002()vl v v d l d v v ++-+0121v d v -⎛⎫+⋅ ⎪⎝⎭-1]νCT 1 密闭气体系统吸收的热量为Q =ΔU -W =[()()002()vl v v d l d v v ++-+0121v d v -⎛⎫+⋅ ⎪⎝⎭-1]νCT 1+ 01d v RT l 4.如图,导热性能良好的气缸A 和B 高度均为h (已除开活塞的厚度),横截面积不同,竖直浸没在温度为T 0的恒温槽内。
它们的底部由—细管连通(细管容积可忽略).两气缸内各有一个活塞,质量分别为m A =2m 和m B =m ,活塞与气缸之间无摩擦,两活塞的下方为理想气体,上方为真空。
当两活塞下方气体处于平衡状态时,两活塞底面相对于气缸底的高度均为ℎ2。
现保持恒温槽温度不变,在两活塞土上面同时各缓慢加上同样大小的压力,让压力从零缓慢增加,直至其大小等于2mg (g 为重力加速度)为止。
并一直保持两活塞上的压力不变;系统再次达到平衡后,缓慢升高恒温槽的温度,对气体加热,直至气缸B 中活塞底面恰好回到高度为ℎ2处.求(1)两个活塞的横截面积之比S A :S B ;(2)气缸内气体的最后的温度;(3)在加热气体的过程中.气体对活塞所做的总功。
【详解】(1)平衡时气缸A 、B 内气体的压强相等,故m A gS A =m B g S B ①由①式和题给条件得S A :S B =2:1②(2)两活塞上各放一质量为2m 的质点前,气体的压强p l 和体积V 1分别为p 1=2mgS A=mg S B ③ V 1=32S B h ④两活塞上各放一质量为2m 的质点后,B 中活塞所受到的气体压力小于它和质点所受重力之和,B 中活塞将一直下降至气缸底部为止,B 中气体全部进入气缸A.假设此时气缸A 中活塞并未上升到气缸顶部,气体的压强p 2为p 2=4mgS A =2mg S B ⑤设平衡时气体体积为V 2.由于初态末态都是平衡态,由理想气体状态方程有p 1V 1T 0=p 2V 2T 0⑥由③④⑤⑥式得V 2=34S B h =38S A h ⑦这时气体的体积小于气缸A 的体积,与活塞未上升到气缸顶部的假设一致.缓慢加热时,气体先等压膨胀,B 中活塞不动,A 中活塞上升;A 中活塞上升至顶部后,气体等容升压;压强升至3mg S B 时,B 中活塞开始上升,气体等压膨胀。
设当温度升至T 时,该活塞恰位于ℎ2处.此时气体的体积变为V 3=52S B h ⑧ 气体压强p 3=3mgS B ⑨设此时气缸内气体的温度为T ,由状态方程有p 2V 2T 0=p 3V 3T ⑩由⑤⑦⑧⑨⑩式得T =5T 0(11)(3)升高恒温槽的温度后,加热过程中,A 活塞上升量为h -38h =58h (12) 气体对活塞所做的总功为W =4mg ·58h +3mg ·12h =4mgh (13) 5.图示为圆柱形气缸,气缸壁绝热,气缸的右端有一小孔和大气相通,大气的压强为p 0。
用一热容量可忽略的导热隔板N 和一绝热活塞M 将气缸分为A 、B 、C 三室,隔板与气缸固连,活塞相对气缸可以无摩擦地移动但不漏气,气缸的左端A 室中有一电加热器Ω。
已知在A 、B 室中均盛有1摩尔同种理想气体,电加热器加热前,系统处于平衡状态,A 、B 两室中气体的温度均为T 0,A 、B 、C 三室的体积均为V 0。
现通过电加热器对A 室中气体缓慢加热,若提供的总热量为Q 0,试求B 室中气体末态体积和A 室中气体的末态温度。
设A 、B 两室中气体1摩尔的内能U=5/2RT 。
R 为普适恒量,T 为热力学温度。
【详解】在电加热器对A 室中气体加热的过程中,由于隔板N 是导热的,B 室中气体的温度要升高,活塞M将向右移动.当加热停止时,活塞M有可能刚移到气缸最右端,亦可能尚未移到气缸最右端. 当然亦可能活塞已移到气缸最右端但加热过程尚未停止.1. 设加热恰好能使活塞M移到气缸的最右端,则B室气体末态的体积V B=2V0(1)根据题意,活塞M向右移动过程中,B中气体压强不变,用T B表示B室中气体末态的温度,有V0 T0=V BT B(2)由(1)、(2)式得T B=2T0(3)由于隔板N是导热的,故A室中气体末态的温度T A=2T0(4)下面计算此过程中的热量Q m.在加热过程中,A室中气体经历的是等容过程,根据热力学第一定律,气体吸收的热量等于其内能的增加量,即Q A=52R(T A−T0)(5)由(4)、(5)两式得Q A=52RT0(6)B室中气体经历的是等压过程,在过程中B室气体对外做功为W B=p0(V B−V0)(7)由(1)、(7)式及理想气体状态方程得W B=RT0(8)内能改变为ΔU B=52R(T B−T0)(9)由(4)、(9)两式得ΔU B=52RT0(10)根据热力学第一定律和(8)、(10)两式,B室气体吸收的热量为Q B=ΔU B+W B=72RT0(11)由(6)、(11) 两式可知电加热器提供的热量为Q m=Q A+Q B=6RT0(12)若Q0=Q m,B室中气体末态体积为2V0,A室中气体的末态温度2T0.2.若Q0>Q m,则当加热器供应的热量达到Q m时,活塞刚好到达气缸最右端,但这时加热尚未停止,只是在以后的加热过程中气体的体积保持不变,故热量Q0−Q m是A、B 中气体在等容升温过程中吸收的热量.由于等容过程中气体不做功,根据热力学第一定律,若A室中气体末态的温度为T′A,有Q0−Q m=52R(T′A−2T0)+52R(T′A−2T0)(13)由(12)、(13)两式可求得T′A=Q05R +45T0(14)B中气体的末态的体积V′B=2V0(15)3. 若Q0<Q m,则隔板尚未移到气缸最右端,加热停止,故B室中气体末态的体积V″B小于2V0,即V″B<2V0.设A、B两室中气体末态的温度为T″A,根据热力学第一定律,注意到A室中气体经历的是等容过程,其吸收的热量Q A=52R(T″A−T0)(16)B室中气体经历的是等压过程,吸收热量Q B=52R(T″A−T0)+p0(V″B−V0)(17)利用理想气体状态方程,上式变为Q B=72R(T″A−T0)(18)由上可知Q0=Q A+Q B=6R(T″A−T0)(19)所以A室中气体的末态温度T″A=Q06R+T0(20)B室中气体的末态体积V″B=V0T0T″A=(Q06RT0+1)V0(21)6.如图所示,刚性绝热容器A和B水平放置,一根带有绝热阀门和多孔塞的绝热刚性细短管把容器A、B相互连通。