第八讲 模拟信号的数字化(第6节和1-3章复习)
- 格式:ppt
- 大小:1.26 MB
- 文档页数:59
第6 章模拟信号的数字化本章教学要求:1、掌握低通型抽样定理、PCM 基本工作原理。
掌握均匀量化原理、非均匀量化原理(A 律13折线)和编码理论。
2、理解时分复用和多路数字电话系统原理。
3、了解PCM 抗噪声性能、DM 和DPCM 系统原理。
§6.1 引言一、什么是模拟信号数字化?就是把模拟信号变换为数字信号的过程,即模数转化。
这是本章欲解决的中心问题。
二、为什么要进行模数转换?由于数字通信的诸多优点,数字通信系统日臻完善。
致使许多模拟信源的信号也想搭乘数字通信的快车;先将模拟信号转化为数字信号,借数字通信方式(基带或频带传输系统)得到高效可靠的传输,然后再变回模拟信号。
三、怎样进行数字化?就目前通信中使用最多的模数转换方法—脉冲编码调制(PCM)为典型,它包含三大步骤:1.抽样(§2 和§3);2.量化(§4);3.编码(§5)1.抽样:每隔一个相等的时间间隙,采集连续信号的一个样值。
2.量化:将量值连续分布的样值,归并到有限个取值范围内。
3.编码:用二进制数字代码,表达这有限个值域(量化区)。
2、解调3、抽样定理从频谱图清楚地看到,能用低通滤波器完整地分割出一个F(ω)的关键条件是ωs≥2ωm,或f s≥2f m。
这里2f m 是基带信号最大频率,2f m 叫做奈奎斯特抽样频率。
抽样定理告诉我们,只要抽样频率不小于2f m,从理想抽样序列就可无失真地恢复原信号。
二、带通抽样带通信号的带宽B=f H-f L,且B<<f H,抽样频率f s 应满足f s=2B(1+K/N)=2f H/N 式中,K=f H/B-N,N 为不超过f H/B 的最大整数。
由于0≤K<1,所以f s在2B~4B 之间。
当f H >> B 即N >>1 时f S =2B。
当f S > 2B(1+R/N) 时可能出现频谱混叠现象(这一点是与基带信号不同的)例:f H= 5MHz,f L = 4MHz,f S =2MHz 或3MHz 时,求M S(f)§6.3 脉冲幅度调制(PAM)理想抽样采用的单位冲击序列,实际中是不存在的,实际抽样时采用的是具有一定脉宽和有限高度的窄脉冲序列来近似。
1. 模拟信号的数字化1.1 模拟信号转换为数字信号(ADC ,A/D转换)把模拟的电信号变为数字的电信号,称为模拟信号数字化。
通常采用PCM(脉冲编码调制)技术来实现。
PCM是将模拟信号的抽样量化值变换成代码,这个过程通常也称A/D转换(或ADC)。
整个A/D转换过程包括:取样、量化和编码。
(1)、取样与取样定理取样又叫抽样,是对模拟电信号按一定的时间间隔进行周期性扫描,把时间连续和幅度连续的电信号,变为时间离散和幅度连续的信号。
取样也称时间量化。
对模拟信号取样的时间间隔T s称为取样周期,而T s的倒数即为取样频率f s,f s=1/T s。
取样频率的含义是每秒钟对模拟信号取样的次数,单位是赫兹(H Z)。
f s的选取要由取样定理限定。
取样定理可以表述为:一个频带限制在0~f H之间的低通模拟信号,必须以f s≥2f H的频率对其取样,才能不失真地从取样值恢复出原始信号。
f s也称为奈奎斯特频率。
下面讨论当f s取不同值时带来的后果。
①当f s<2f H(f H为模拟信号的最高频率)时,抽样后的信号频谱发生重叠,会产生折叠噪声。
②当f s=2f H时,虽不发生频谱重叠,但对接收滤波器要求严格。
③当f s>2f H时,既不发生频谱重叠,又留有一定的防卫带,便于接收端滤波器制作。
通过上面的讨论可知,通常应取f s≥2f H。
但是,f s也不能取太高,否则,随着f s的提高,信号总的数据率将成正比例地提高,这样就会增大对数据处理、传输带宽、存储器容量的要求。
此外还应指出的是,为确保不产生频谱重叠,在进行A/D转换前,模拟信号要先经过低通滤波器处理,滤掉任何高于f H的频率分量。
在数字音频技术中,视不同的应用,通常使用32kH Z(用于数字卫星广播)、44.1kH Z (用于CD)和48kH Z(用于演播室)。
在一些特殊应用中,也可以使用上述频率的1/2或1/4作为取样频率。
以上我们讨论的f s是针对低通信号而言的。
模拟信号的数字化一、 实验原理与目的模拟信号的数字化包括:抽样,量化和编码。
本文主要是对模拟信号从采样到量化再到编码的整个过程做一个比较全面的matlab仿真,同时也对不同的采样频率所采取的信号进行了比较。
模拟信号首先被抽样,通常抽样是按照等时间间隔进行的,虽然在理论上并不是必须如此的。
模拟信号抽样后,成为了抽样信号,它在时间上离散的,但是其取值仍是连续的,所以是离散的模拟信号。
第二步是量化,量化的结果使抽样信号变成量化信号,其取值是离散的。
故量化信号已经是数字信号了,它可以看成多进制的数字脉冲信号。
第三步是编码,最基本的和最常用的编码方法是脉冲编码调制(PCM ),它将量化后的信号变成二进制码。
由于编码方法直接和系统的传输效率有关,为了提高传输效率,常常将这种PCM 信号进一步作压缩编码,再在通信系统中传输。
二、 抽样抽样:在等时间间隔T 上,对它抽取样值,在理论上抽样可以看作是用周期单位冲激脉冲和模拟信号相乘,在实际上是用周期性窄脉冲代替冲激脉冲与模拟信号相乘。
对一个带宽有限的连续模拟信号进行抽样时,若抽样速率足够大,则这些抽样值就能够完全代替原模拟线号,并且能够由这些抽样值准确地恢复出原模拟信号。
因此,不一定要传输模拟信号本身,可以只传输这些离散的抽样值,接受端就能恢复原模拟信号。
描述这一抽样速率条件的定律就是著名的抽样定律,抽样定律为模拟信号的数字化奠定了理论基础。
抽样定律指出采样频率是:2sH ff对于本文中的信号定义为()(sin)s t A t 其中2ft 。
三、 量化模拟信号抽样后变成在时间上离散的信号,但是仍然是模拟信号,这个抽样信号必须经过量化后成为数字信号。
本文主要采用的是均匀量化,设模拟信号的取值范围是在a 和b 之间,量化电平时M,则在均匀量化时的量化间隔为b a M且量化区间的端点为i a i m若量化输出电平是i q取为量化间隔的中点,则:12i i im m q显然,量化输出电平和量化前信号的抽样值一般不同,即量化输出电平有误差。