2011年高考数学江西文(word版含答案)
- 格式:doc
- 大小:839.00 KB
- 文档页数:9
2011年普通高等学校招生全国统一考试(江西卷)理科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,全卷满分150分,考试时间120分钟。
考生注意:1.答题前,考生务必将自己的准考证号、姓名填写在答题卡上,考生要认真核对答题卡上所粘贴的条形码中准考证号、姓名、考试科目与考生本人准考证号、姓名、考试科目是否一致。
2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
第Ⅱ卷用0.5毫米的黑色墨水签字笔在答题卡上作答,在试题卷上作答无效。
3.考试结束后,务必将试题卷和答题卡一并上交。
参考公式:样本数据(,),(,),(,)n n x y x y x y 1122L 的线性相关系数()()niix x y y r --=∑ 锥体体积公式 V S h 1=3其中 ,n nx x x y y y x y n n1212++++==L L 其中S 为底面积,h 为高第Ⅰ卷一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.若iz i 1+2=,则复数z =A . i -2-B . i -2+C . i 2-D . i 2+2.若集合{},{}x A x x B x x-2=-1≤2+1≤3=≤0,则A B ⋂= A . {}x x -1≤<0 B . {}x x 0<≤1C . {}x x 0≤≤2D .{}x x 0≤≤13.若()f x =,则()f x 的定义域为A .(,)1-02B .(,]1-02C .(,)1-+∞2D .(,)0+∞4.若()ln f x x x x 2=-2-4,则'()f x >0的解集为A .(,)0+∞B .-+10⋃2∞(,)(,)C .(,)2+∞D .(,)-105.已知数列{n a }的前n 项和n S 满足:n m n m S S S ++=,且1a =1.那么10a =A .1B .9C .10D .556.变量X 与Y 相对应的一组数据为(10,1),(11.3,2),(11.8,3),(12.5,4),(13,5);变量U 与V 相对应的一组数据为(10,5),(11.3,4),(11.8,3),(12.5,2),(13,1),1r 表示变量Y 与X 之间的线性相关系数,2r 表示变量V 与U 之间的线性相关系数,则 A .210r r <<B .210r r <<C .210r r <<D .21r r =7.观察下列各式:55=3125,65=15625,75=78125,…,则20115的末四位数字为 A .3125B .5625C .0625D .81258.已知1a ,2a ,3a 是三个相互平行的平面.平面1a ,2a 之间的距离为1d ,平面2a ,3a 之间的距离为2d .直线l 与1a ,2a ,3a 分别相交于1p ,2p ,3p ,那么“12PP =23P P ”是“12d d =”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件9.若曲线1C :2220x y x +-=与曲线2C :()0y y mx m --=有四个不同的交点,则实数m 的取值范围是A .()B .(0)∪(0C .[D .(-∞,+∞)10.如右图,一个直径为l 的小圆沿着直径为2的大圆内壁的逆时针方向滚动,M 和N 是小圆的一条固定直径的两个端点.那么,当小 圆这样滚过大圆内壁的一周,点M ,N 在大圆内所绘出的图形大 致是第Ⅱ卷注意事项:第II 卷须用黑色墨水签字笔在答题卡上书写作答。
柑橘对土壤的适应范围较广,紫色土、红黄壤、沙滩和海涂,pH值4.5~8均可生长,以pH值5.5~6.5为最适宜。
柑橘根系生长要求较高的含氧量,以土壤质地疏松,结构良好,有机质含量2%~3%,排水良好的土壤最适宜。
我国柑橘分布在北纬16°~37°之间,海拔最高达2600米(四川巴塘),南起海南省的三亚市,北至陕、甘、豫,东起台湾省,西到西藏的雅鲁藏布江河谷。
但我国柑橘的经济栽培区主要集中在北纬20°~33°之间,海拔700~1000米以下。
全国生产柑橘包括台湾省在内有19个省(市、自治区)。
其中主产柑橘的有浙江、福建、湖南、四川、广西、湖北、广东、江西、重庆和台湾等10个省(市、区),其次是上海、贵州、云南、江苏等省(市),陕西、河南、海南、安徽和甘肃等省也有种植。
全国种植柑橘的县(市、区)有985个。
橘皮中含有的维生素C远高于果肉,维生素C为抗坏血酸,在体内起着抗氧化的作用,能降低胆固醇,预防血管破裂或渗血;维生素C、维生素P配合,可以增
橘皮中所含挥发油的药用功能:能增强心脏的收缩力,但大剂量则有抑制作用;能扩张冠状动脉,可增加冠状动脉血流量的作用;能降低毛细血管通透性,具有维生素P的作用;能扩张支气管,具有平喘作用;有刺激性,能促使消化液分泌与排除肠内积气。
中国柑橘应加大品种结构调整,发展市场需求的名、特、优柑橘,由过去的数量型向质量型转变,提高果品质量和果品的商品性。
江西省2011年高等职业学校统一高考数学真题第Ⅰ卷(选择题 共70分)一、是非选择题:本大题共10小题,每小题3分,共30分.对每小题的命题做出判断,对的选A ,错的选B.1、5lg 3lg 2lg =+ . (A B )2、若b a λ=,则b a// . (A B )3、若集合}1{≥=x x A ,则ØA . (AB )4、若数列}{n b 为等比数列且公比为q ,则0≠q . (A B )5、过三点可以且只可以做一个平面 . (A B )6、函数xy 1=在定义域上是偶函数 . (A B ) 7、不等式012>++x x 的解集为R . (A B ) 8、若θ为第一象限的角,则02sin >θ . (A B ) 9、二项式4)1(+x 的展开式有4项 . (A B )10、椭圆191622=+y x 的离心率为54. (A B ) 二、单项选择题:本大题共8小题,每小题5分,共40分。
11、定义域为},0{R x x x ∈≠的函数是( ). A. xy 1=B. x y lg =C. 3x y =D. x y 2= 12、若事件A 和B 是互斥事件,且3.0)(=A P ,1.0)(=B P ,则=+)(B A P ( ). A. 0.03 B. 0.1 C. 0.3 D. 0.4 13、下列不等式中恒成立的是( ).A. a a 34>B. a a 34≥C. 43->-a aD. 2234a a > 14、等差数列}{n a ,1631=+a a ,则=2a ( ).A. 4B. 6C. 8D. 1615、如图,在正方体1111D C B A ABCD -中,异面直线BD 与11C A 所成的角为( ).A. o0 B. o45 C. o60 D. o9016、已知53sin =θ,则θ2cos 的值为( ). A. 257 B. 257- C. 257± D. 251817、设向量)1,1(-=a,)3,2(=b ,则=⋅b a ( ).A. 1B. -1C. )2,3(-D. )3,2(- 18、经过点)0,1(,且与直线0=+y x 垂直的直线方程是( ). A. 01=+-y x B. 01=-+y x C. 01=++y x D. 01=--y x第Ⅱ卷(非选择题 共80分)三、填空题:本大题共6小题,每小题5分,共30分.19、计算=+213258_________________________ . 20、=32sinπ____________________ . 21、数列}{n a 的通项公式为22n a nn -=,则=2a ____________________ . 22、已知函数34)(2+-=x x x f ,则)(x f 的单调递减区间是__________________ .23、)4,2(-=a ,)3,2(-=b ,)0,1(-=c,则=-+c b a _________________ .24、抛物线y x 42=的焦点是_____________________ .四、解答题:本大题共6小题,25~28小题每小题8分,29~30小题每小题9分,共50分.解答应写出过程或步骤.25、某种零件100个,其中有次品3个,现在从中取出2个进行检测,求其中恰有1个次品的概率 .班级:_____________________姓名:_____________________座位号:_________________***************************密*********************封*********************线****************************26、已知三个正数成等差数列,首项为3,它们的积为60,求这三个正数 .27、已知二次函数))(1()(a x x x f --=的对称轴为3=x ,求函数)(x f 的最小值 .28、已知函数x x x f 24cos cos )(-=,试求)(x f 的最小值 .29、已知圆C 的方程为02422=+-+y x y x .(1)求圆C 的半径;(2)若直线l 经过原点,且与圆C 相切,求直线l 的方程 .30、如图,已知正方体1111D C B A ABCD -的边长为2. (1)证明:D A BD 11⊥; (2)求点1A 到BC 的距离 .。
2011年普通高考学校招生全国统一考试(江西卷)数学(文史类)一. 选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 已知{}{}{}1,2,3,4,5,6,7,8,1,3,5,7,2,4,5,U A B ===则()U A B ⋃=ð A. ()()1,2,1,1a b ==-{}6,8 B.{}5,7 C.{}4,6,7 D.{}1,3,5,6,8 2. 若向量()()1,2,1,1a b ==-,则2a b =与a b -的夹角等于A. 4π-B.C.D.34π3. 若定义在R 上的偶函数()f x 和奇函数()g x 满足()()xf xg x e +=,则()g x =A. ()2121212(1,0)0,t a n C m C F FF N F S m a ∈-⋃+∞∆=xx e e -- B.1()2xxe e-+C.1()2xxee -- D.1()2xxe e--4. 将两个顶点在抛物线22(0)y p x p =>上,另一个顶点是此抛物线焦点的正三角形个数记为n ,则A. 0n =B. 1n =C.2n =D.3n ≥5. 有一个容量为200的样本,其频率分布直方图如图所示,根据样本的频率分布直方图估计,样本数据落在区间)10,12⎡⎣内的频数为 A.18 B.36 C.54 D.726. 已知函数()i n c o s ,f x x x x R -∈,若()1f x ≥,则x 的取值范围为 A.|22,3x k x k k Z ππππ⎧⎫+≤≤+∈⎨⎬⎩⎭B.|,3x k x k k Z ππππ⎧⎫+≤≤+∈⎨⎬⎩⎭C.5|22,66x k x k k Z ππππ⎧⎫+≤≤+∈⎨⎬⎩⎭D.5|,66x k x k k Z ππππ⎧⎫+≤≤+∈⎨⎬⎩⎭7.设球的体积为V ,它的内接正方体的体积为V,下列说法中最合适的是A. V 比V 大约多一半B. V 比V 大约多两倍半C. V 比V 大约多一倍D. V 比V大约多一杯半8. 直线2100x y +-=与不等式组0024320x y x y x y ≥⎧⎪≥⎪⎨-≥-⎪⎪+≤⎩表示的平面区域的公共点有A.0个B.1个C.2个D.无数个9. 《九章算术》“竹九节”问题:现有一根9节的竹子,自上而下各节的容积成等差数列,上面4节的容积共3升,下面3节的容积共4升,则第五节的容积为 A.1升 B.6766升 C.4744升 D.3733升10.若实数a ,b 满足0,0a b ≥≥,且0ab =,则称a 与b 互补,记(,),ab a b ϕ--那么(,)0a b ϕ=是a 与b 互补的 A.必要不充分条件 B.充分不必要的条件C.充要条件D.既不充分也不必要条件二.填空题:本大题共5小题,每小题5分,共25分,请将答案填在答题卡对应题号的位置上,一题两空的题,其答案按先后次序填写,答错位置,书写不清,模棱两可均不得分。
绝密★启用前2011年普通高等学校招生全国统一考试(江西卷)理科数学试题解析本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分。
第I 卷1至2页。
第Ⅱ卷3 至4页,满分150分,考试时间120分钟. 考试结束后, 考试注意:1.答题前,考生在答题卡上务必将自己的准考证号、姓名填写在答题卡上.考试要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考试本人的准考证号、姓名是否一致.2.第I 卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,.第II 卷用0.5毫米的黑色墨水签字笔在答题卡上书写作答.若在试题卷上作答,答案无效.3.考试结束后,监考员将试题卷、答题卡一并交回。
参考公式:样本数据(11,y x ),(22,y x ),...,(n n y x ,)的线性相关系数∑∑∑===----=ni in i ini iiy y x x y y x x r 12121)()())(( 其中nx x x x n+++= (21)ny y y y n +++= (21)锥体的体积公式13V Sh =其中S 为底面积,h 为高第Ⅰ卷(1)选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1) 若iiz 21+=,则复数-z = ( )A.i --2B. i +-2C. i -2D.i +2答案:C 解析: i i i i i i i z -=--=+=+=21222122 (2) 若集合}02|{},3121|{≤-=≤+≤-=xx x B x x A ,则B A ⋂= ( ) A.}01|{<≤-x x B.}10|{≤<x x C.}20|{≤≤x x D.}10|{≤≤x x答案:B 解析:{}{}{}10/,20/,11/≤<=⋂≤<=≤≤-=x x B A x x B x x A (3) 若)12(21log1)(+=x x f ,则)(x f 的定义域为 ( )A. (21-,0) B. (21-,0] C. (21-,∞+) D. (0,∞+) 答案: A 解析:()⎪⎭⎫ ⎝⎛-∈∴<+<∴>+0,211120,012log 21x x x(4) 若xx x x f ln 42)(2--=,则0)('>x f 的解集为 ( )A. (0,∞+)B. (-1,0)⋃(2,∞+)C. (2,∞+)D. (-1,0)答案:C 解析:()()()2,012,0,02,0422'2>∴>+-∴>>-->--=x x x x xx x x x x f (5) 已知数列}{n a 的前n 项和n S 满足:m n m n S S S +=+,且11=a ,那么=10a ( ) A. 1 B. 9 C. 10 D. 55答案:A 解析:11,41,31,2104314321321212==∴=+==∴=+==∴=+=a a S S S a S S S a S a a S(6) 变量X 与Y 相对应的一组数据为(10,1),(11.3,2),(11.8,3),(12.5,4),(13,5);变量U 与V 相对应的一组数据为(10,5),(11.3,4),(11.8,3),(12.5,2),(13,1).1r 表示变量Y 与X 之间的线性相关系数,2r 表示变量V 与U 之间的线性相关系数,则 ( )A.012<<r rB. 120r r <<C.120r r <<D. 12rr = 答案:C 解析: ()()()()∑∑∑===----=ni in i ini iiy y x x y y x x r 12121第一组变量正相关,第二组变量负相关。
2011年普通高等学校招生全国统一考试(江西卷)理科数学一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.若12i z i+=,则复数z -=( )A. 2i --B. 2i -+C. 2i -D. 2i + 2.若集合{}1213A x x =-≤+≤,20,x B xx-⎧⎫=≤⎨⎬⎩⎭则A B⋂=( )A.{}10x x -≤<B.{}01x x <≤C. {}02x x ≤≤D. {}01x x ≤≤ 3.若()f x =()f x 的定义域为( )A. 1,02⎛⎫- ⎪⎝⎭B. 1,02⎛⎤- ⎥⎝⎦C. 1,2⎛⎫-+∞ ⎪⎝⎭ D. ()0,+∞4.若()224ln f x x x x =--则()'f x >0的解集为( ) A .()0,+∞ B. ()()1,02,-⋃+∞ C. ()2,+∞ D. ()1,0-5.已知数列 {n a }的前n 项和n s 满足:n s +m s =n m s +,且1a =1,那么10a =( ) A.1 B.9 C.10 D.556.变量X 与Y 相对应的一组数据为(10,1),(11.3,2),(11.8,3),(12.5,4),(13,5),变量U 与V 相对应的一组数据为(10,5),(11.3,4),(12.5,2),(13,1),1r 表示变量Y 与X 之间的线性相关系数,2r 表示变量V 和U 的线性相关系数,则( )A. 2r < 1r <0B. 0<2r < 1rC. 2r <0<1rD. 2r =1r7、观察下列各式:55=3125, 56=15625, 57=78125,···,则52011 的末四位数字为( ) A 、3125 B 、5625 C 、0625 D 、8125 8、已知123,,ααα是三个相互平行的平面,平面12,αα之间的距离为1d ,平面23,a α之前的距离为2d ,直线l 与123,,ααα分别相交于123,,P P P .那么“1223P P P P =”是“12d d =”的( )A 、充分不需要条件B 、必要不充分条件C 、充分必要条件D 、既不充分也不必要条件9. 若曲线221:20C x y x +-=与曲线2:()0C y y m x m --=有四个不同的交点,则实数m 的取值范围是 ( )A. (—33,33) B. (—33,0)∪(0,33)B. C. [—33,33] D.( -∞, -33)∪(33,+∞)10.如图,一个直径为1的小圆沿着直径为2的大圆内壁的逆时针方向滚动,M 和N 是小圆的一条固定直径的两个端点。
2011年普通高等学校招生全国统一考试(江西卷)理科数学参考公式:样本数据(,),(,),(,)n n x y x y x y 1122L 的线性相关系数()()nii xx y y r --=∑ 锥体体积公式 V S h1=3其中 ,nnx x x y y y x y nn1212++++==L L 其中S 为底面积,h 为高第Ⅰ卷一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.若i z i1+2=,则复数z =A . i -2-B . i -2+C . i 2-D . i 2+2.若集合{},{}x A x x B x x-2=-1≤2+1≤3=≤0,则A B ⋂=A . {}x x -1≤<0B . {}x x 0<≤1C . {}x x 0≤≤2D .{}x x 0≤≤13.若()f x =,则()f x 的定义域为A .(,)1-02B .(,]1-02C .(,)1-+∞2D .(,)0+∞4.若()ln f x x x x 2=-2-4,则'()f x >0的解集为A .(,)0+∞B .-+10⋃2∞(,)(,)C .(,)2+∞D .(,)-105.已知数列{n a }的前n 项和n S 满足:n m n m S S S ++=,且1a =1.那么10a =A .1B .9C .10D .556.变量X 与Y 相对应的一组数据为(10,1),(11.3,2),(11.8,3),(12.5,4),(13,5);变量U 与V 相对应的一组数据为(10,5),(11.3,4),(11.8,3),(12.5,2),(13,1),1r 表示变量Y 与X 之间的线性相关系数,2r 表示变量V 与U 之间的线性相关系数,则A .210r r <<B .210r r <<C .210r r <<D .21r r =7.观察下列各式:55=3125,65=15625,75=78125,…,则20115的末四位数字为 A .3125B .5625C .0625D .81258.已知1a ,2a ,3a 是三个相互平行的平面.平面1a ,2a 之间的距离为1d ,平面2a ,3a 之间的距离为2d .直线l 与1a ,2a ,3a 分别相交于1p ,2p ,3p ,那么“12P P =23P P ”是“12d d =”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件9.若曲线1C :2220x y x +-=与曲线2C :()0y y m x m --=有四个不同的交点,则实数m 的取值范围是A .(3-,3) B .(3-,0)∪(0,3)C .[3-,3] D .(-∞,3-)∪(3,+∞)10.如右图,一个直径为l 的小圆沿着直径为2的大圆内壁的逆时针方向滚动,M 和N 是小圆的一条固定直径的两个端点.那么,当小 圆这样滚过大圆内壁的一周,点M ,N 在大圆内所绘出的图形大 致是第Ⅱ卷注意事项:第II 卷须用黑色墨水签字笔在答题卡上书写作答。
2011年普通高等学校夏季招生全国统一考试数学(江西卷)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分,考试时间120分钟. 参考公式(理科):样本数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )的线性相关系数()()()()niii nni ii i x x y y r x x y y 2=12=1=1--=--∑∑∑其中,n nx x x y y y x y n n1212++++==L L锥体体积公式 V Sh 1=3,其中S 为底面积,h 为高参考公式(文科):样本数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )的回归方程ˆya bx =+ 其中()()()121niii nii x x y y b x x ==--=-∑∑,a y bx =-1212,n nx x x y y y x y n n++⋅⋅⋅+++⋅⋅⋅+==锥体体积公式 13V Sh =,其中S 为底面积,h 为高第Ⅰ卷一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若1+2iiz =,则复数z = ( ) A .-2-iB .-2+iC .2-iD .2+i2.若集合{},{}x A x x B x x-2=-1≤2+1≤3=≤0,则A ∩B =( ) A .{x |-1≤x <0} B .{x |0<x ≤1} C .{x |0≤x ≤2}D .{x |0≤x ≤1}3.若()log ()f x x 121=2+1,则f (x )的定义域为 …( )A .(,)1-02 B .(,]1-02C .(,)1-+∞2D .(0,+∞)4.若f (x )=x 2-2x -4ln x ,则f ′(x )>0的解集为 …( ) A .(0,+∞) B .(-1,0)∪(2,+∞) C .(2,+∞) D .(-1,0)5.已知数列{a n }的前n 项和S n 满足:S n +S m =S n +m ,且a 1=1.那么a 10=( ) A .1 B .9 C .10 D .556.变量X 与Y 相对应的一组数据为(10,1),(11.3,2),(11.8,3),(12.5,4),(13,5);变量U与V相对应的一组数据为(10,5),(11.3,4),(11.8,3),(12.5,2),(13,1).r1表示变量Y与X之间的线性相关系数,r2表示变量V与U之间的线性相关系数,则() A.r2<r1<0 B.0<r2<r1C.r2<0<r1D.r2=r17.观察下列各式:55=3 125,56=15 625,57=78 125,…,则52 011的末四位数字为() A.3125 B.5625 C.0625 D.81258.已知α1,α2,α3是三个相互平行的平面,平面α1,α2之间的距离为d1,平面α2,α3之间的距离为d2.直线l与α1,α2,α3分别相交于P1,P2,P3.那么“P1P2=P2P3”是“d1=d2”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件9.若曲线C1:x2+y2-2x=0与曲线C2:y(y-mx-m)=0有四个不同的交点,则实数m的取值范围是()A.(33-,33) B.(33-,0)∪(0,33)C.[33-,33] D.(-∞,33-)∪(33,+∞)10.如图,一个直径为1的小圆沿着直径为2的大圆内壁的逆时针方向滚动,M和N 是小圆的一条固定直径的两个端点.那么,当小圆这样滚过大圆内壁的一周,点M,N在大圆内所绘出的图形大致是()第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分.11.已知|a|=|b|=2,(a+2b)·(a-b)=-2,则a与b的夹角为________.12.小波通过做游戏的方式来确定周末活动,他随机地往单位圆内投掷一点,若此点到圆心的距离大于12,则周末去看电影;若此点到圆心的距离小于14,则去打篮球;否则,在家看书.则小波周末不在家看书的概率为________.13.下图是某算法的程序框图,则程序运行后输出的结果是________.14.若椭圆22221x ya b+=的焦点在x轴上,过点(1,12)作圆x2+y2=1的切线,切点分别为A,B,直线AB恰好经过椭圆的右焦点和上顶点,则椭圆方程是________.三、选做题:请考生在下列两题中任选一题作答.若两题都做,则按所做的第一题评阅计分.本题共5分.15.(1)(坐标系与参数方程选做题)若曲线的极坐标方程为ρ=2sinθ+4cosθ,以极点为原点,极轴为x轴正半轴建立直角坐标系,则该曲线的直角坐标方程为______________.(2)(不等式选做题)对于实数x,y,若|x-1|≤1,|y-2|≤1,则|x-2y+1|的最大值为________.四、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤. 16.某饮料公司招聘了一名员工,现对其进行一项测试,以便确定工资级别.公司准备了两种不同的饮料共8杯,其颜色完全相同,并且其中4杯为A 饮料,另外4杯为B 饮料,公司要求此员工一一品尝后,从8杯饮料中选出4杯A 饮料.若4杯都选对,则月工资定为3 500元;若4杯选对3杯,则月工资定为2 800元;否则月工资定为2 100元.令X 表示此人选对A 饮料的杯数.假设此人对A 和B 两种饮料没有鉴别能力.(1)求X 的分布列;(2)求此员工月工资的期望.17.在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,已知sin cos sinC C C +=1-2. (1)求sin C 的值;(2)若a 2+b 2=4(a +b )-8,求边c 的值.18.已知两个等比数列{a n },{b n },满足a 1=a (a >0),b 1-a 1=1,b 2-a 2=2,b 3-a 3=3.(1)若a =1,求数列{a n }的通项公式; (2)若数列{a n }唯一,求a 的值.19.设()f x x x ax 3211=-++232. (1)若f (x )在(,2+∞3)上存在单调递增区间,求a 的取值范围; (2)当0<a <2时,f (x )在[1,4]上的最小值为16-3,求f (x )在该区间上的最大值. 20.P (x 0,y 0)(x 0≠±a )是()2222:10,0x y E a b a b-=>>上一点,M ,N 分别是双曲线E 的左、右顶点,直线PM ,PN 的斜率之积为15.(1)求双曲线的离心率;(2)过双曲线E 的右焦点且斜率为1的直线交双曲线于A ,B 两点,O 为坐标原点,C 为双曲线上一点,满足OC OA OB λ=+,求λ的值.21.(1)如图,对于任一给定的四面体A 1A 2A 3A 4,找出依次排列的四个相互平行的平面α1,α2,α3,α4,使得A i ∈αi (i =1,2,3,4),且其中每相邻两个平面间的距离都相等;(2)给定依次排列的四个相互平行的平面α1,α2,α3,α4,其中每相邻两个平面间的距离都为1,若一个正四面体A 1A 2A 3A 4的四个顶点满足:A i ∈αi (i =1,2,3,4),求该正四面体A 1A 2A 3A 4的体积.参考答案1.D 2.B 3.A 4.C 5.A 6.C 7.D 8.C 9.B 10.A11.答案:π312.答案:131613.答案:1014.答案:22=154x y + 15.(1)答案:x 2+y 2-4x -2y =0(2)答案:516.解:(1)X 的所有可能取值为:0,1,2,3,4,14-4445C C ()(0,1,2,3,4)C i P X i i ===, 即X 01234P170 1670 3670 1670 170(2)令Y 表示新录用员工的月工资,则Y 的所有可能取值为2 100,2 800,3 500,1(3500)(4)708(2800)(3)3553(2100)(2)70116533500280021002280.707070P Y P X P Y P X P Y P X EY ==========≤==⨯+⨯+⨯=则所以新录用员工月工资的期望为2 280元. 17.解:(1)由已知得sin sin 1cos ,2CC C +=- 即2sin(2cos 1)2sin 222C C C +=, 由1sin 02cos 12sin ,sin cos 222222C C C C C ≠+=-=得即,两边平方得3sin 4C =.(2)由1ππsin cos 0222422C C C -=><<得,即π37π,sin cos 244C C C <<==-则由,得. 由a 2+b 2=4(a +b )-8,得(a -2)2+(b -2)2=0,则a =2,b =2.由余弦定理得2222cos 827,7 1.c a b ab C c =+-=+=+所以.18.解:(1)设{a n }的公比为q ,则b 1=1+a =2,b 2=2+aq =2+q ,b 3=3+aq 2=3+q 2. 由b 1,b 2,b 3成等比数列,得(2+q )2=2(3+q 2), 即212420,22,22q q q q -+==+=-解得.所以{a n }的通项公式为11(22)(22).n n n n a a --=+=-或.(2)设{a n }的公比为q ,则由(2+aq )2=(1+a )(3+aq 2),得aq 2-4aq +3a -1=0(*). 由a >0得Δ=4a 2+4a >0,故方程(*)有两个不同的实根. 由{a n }唯一,知方程(*)必有一根为0,代入(*)得1.3a =19.解:(1)由2211()2()224f x x x a x a '=-++=--++,当222[,),()()2;339x f x f a ''∈+∞=+时的最大值为;令2120,99a a +>>-得, 所以,当12,()(,)93a f x >-+∞时在上存在单调递增区间.(2)令12118118()0,,.22a af x x x -+++'===得两根.所以f (x )在(-∞,x 1),(x 2,+∞)上单调递减,在(x 1,x 2)上单调递增. 当0<a <2时,有x 1<1<x 2<4,所以f (x )在[1,4]上的最大值为f (x 2).又27(4)(1)60,(4)(1)2f f a f f -=-+<<即, 所以f (x )在[1,4]上的最小值为4016(4)833f a =-=-, 得a =1,x 2=2,从而f (x )在[1,4]上的最大值为10(2).3f =. 20.解:(1)点P (x 0,y 0)(x 0≠±a )在双曲线22221x y a b -=上,有2200221x y a b-=,由题意又有00001,5y y x a x a ⋅=-+可得222222305,6,5c a b c a b b e a ==+===则. (2)联立2222255,410350,x y b x cx b y x c ⎧-=-+=⎨=-⎩得设A (x 1,y 1),B (x 2,y 2),则122125,2354c x x b x x ⎧+=⎪⎪⎨⎪=⎪⎩① 设31211312(,),,x x x OC x y OC OA OB y y y λλλ=+⎧==+⎨=+⎩ 即又C 为双曲线上一点,即2223355,x y b -=,有(λx 1+x 2)2-5(λy 1+y 2)2=5b 2,化简得22222211221212(5)(5)2(5)5x y x y x x y y b λλ-+-+-=.②又A (x 1,y 1),B (x 2,y 2)在双曲线上,所以222222112255,55x y b x y b -=-=. 由①式又有x 1x 2-5y 1y 2=x 1x 2-5(x 1-c )(x 2-c )=-4x 1x 2+5c (x 1+x 2)-5c 2=10b 2, 得λ2+4λ=0,解出λ=0,或λ=-4. 21.解:(1)如图所示,取A 1A 4的三等分点P 2,P 3,A 1A 3的中点M ,A 2A 4的中点N ,过三点A 2,P 2,M 作平面α2,过三点A 3,P 3,N 作平面α3,因为A 2P 2∥NP 3,A 3P 3∥MP 2,所以平面α2∥平面α3,再过点A 1,A 4分别作平面α1,α4与平面α2平行,那么四个平面α1,α2,α3,α4依次相互平行,由线段A 1A 4被平行平面α1,α2,α3,α4截得的线段相等知,其中每相邻两个平面间的距离相等,故α1,α2,α3,α4为所求平面.(2)解法一:当(1)中的四面体为正四面体,若所得的四个平行平面,每相邻两平面之间的距离为1,则正四面体A 1A 2A 3A 4就是满足题意的正四面体.设正四面体的棱长为a ,以△A 2A 3A 4的中心O 为坐标原点,以直线A 4O 为y 轴,直线OA 1为z 轴建立如(1)中图的右手直角坐标系,则12346333(0,0,),(,,0),(,,0),(0,,0)326263a a A a A a A a A a --则. 令P 2,P 3为A 1A 4的三等分点,N 为A 2A 4的中点,有33342363(0,,),(,,0)9941253633,(,,),(,,0)43694413(,,0)44a P a a N a a P N a a NA a a A N a a ---=--==- 所以.设平面A 3P 3N 的法向量n =(x ,y ,z ),有330953460,0330P N x y z NA x y ⎧⎧⋅=-+=⎪⎪⎨⎨⋅=+=⎪⎪⎩⎩即n n 所以(1,3,6).=--n 因为α1,α2,α3,α4相邻平面之间的距离为1,所以点A 4到平面A 3P 3N 的距离为223|()1(3)0(6)|4411(3)(6)a a -⨯+⨯-+⨯-=+-+-,解得10a =.由此可得,边长为10的正四面体A 1A 2A 3A 4满足条件. 所以所求正四面体的体积23113625 5.3343123V Sh a a a ==⨯⨯==. 解法二:如图,现将此正四面体A 1A 2A 3A 4置于一个正方体ABCD —A 1B 1C 1D 1中(或者说,在正四面体的四个面外侧各镶嵌一个直角正三棱锥,得到一个正方体),E 1,F 1分别是A 1B 1,C 1D 1的中点,EE 1D 1D 和BB 1F 1F 是两个平行平面,若其距离为1,则四面体A 1A 2A 3A 4即为满足条件的正四面体.如图是正方体的上底面,现设正方体的棱长为a ,若A 1M =MN =1,则有1122111111,252a A E D E A D A E a ==+=.据A 1D 1×A 1E 1=A 1M ×D 1E 1,得5a =, 于是正四面体的棱长210,d a ==,其体积33311554.633V a a a =-⨯==.(即等于一个棱长为a 的正方体割去四个直角正三棱锥后的体积)。
准考证号__________________姓名__________(在此试卷上答题无效)绝密★启用前2011年普通高等学校招生全国统一考试(江西卷)文科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分. 第I 卷1至2页,第Ⅱ卷3至4页,满分150分,考试时间120分钟.考生注意:1.答题前,考生务必将自己的准考证号、姓名填写在答题卡上,考生要认真核对答题卡粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致. 2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.第Ⅱ卷用0.5毫米的黑色墨水签字笔在答题卡上书写作答,在试题卷上作答,答案无效. 3.考试结束,监考员将试题卷、答题卡一并收回.参考公式:样本数据1122(,),(,),...,(,)n n x y x y x y 的回归方程:y a bx =+其中()()()121niii nii x x y y b x x ==--=-∑∑,a y bx =- 锥体体积公式1212,n n x x x y y y x y n n++⋅⋅⋅+++⋅⋅⋅+== 13V Sh =其中S 为底面积,h 为高 第I 卷一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.若()2,,x i i y i x y R -=+∈,则复数x yi +=( ) A.2i -+ B.2i + C.12i - D.12i + 答案:B解析: ()iyi x x y iy i xi i y i i x +=+∴==∴+=-+=-22,12,222.若全集{1,2,3,4,5,6},{2,3},{1,4}U M N ===,则集合{5,6}等于( ) A.M N ⋃ B.M N ⋂ C.()()U U C M C N ⋃ D.()()U U C M C N ⋂答案:D 解析:{}4,3,2,1=⋃N M ,Φ=⋂N M ,()(){}6,5,4,3,2,1=⋃N C M C U U ,()(){}6,5=⋂N C M C U U3.若121()log (21)f x x =+,则()f x 的定义域为( )A.1(,0)2- B.1(,)2-+∞ C.1(,0)(0,)2-⋃+∞ D.1(,2)2- 答案:C 解析:()()+∞⋃⎪⎭⎫⎝⎛-∈∴≠+>+∴≠+,00,21112,012,012log 21x x x x4.曲线x y e =在点A (0,1)处的切线斜率为( ) A.1 B.2 C.e D.1e答案:A 解析: 1,0,0'===e x e y x5.设{n a }为等差数列,公差d = -2,n S 为其前n 项和.若1011S S =,则1a =( ) A.18 B.20 C.22 D.24答案:B 解析:20,100,1111111110=∴+==∴=a d a a a S S6.观察下列各式:则234749,7343,72401===,…,则20117的末两位数字为( )A.01B.43C.07D.49答案:B 解析: ()()()()()()343***2011,200922011168075,24014,3433,492,7=∴=-=====f f f f f x f x7.为了普及环保知识,增强环保意识,某大学随即抽取30名学生参加环保知识测试,得分(十分制)如图所示,假设得分值的中位数为e m ,众数为o m ,平均值为x ,则( )A.e o m m x ==B.e o m m x =<C.e o m m x <<D.o e m m x <<答案:D 计算可以得知,中位数为5.5,众数为5所以选D8.为了解儿子身高与其父亲身高的关系,随机抽取5对父子的身高数据如下: 父亲身高x (cm ) 174 176 176 176 178 儿子身高y (cm ) 175 175176177177则y 对x 的线性回归方程为A.y = x-1B.y = x+1C.y = 88+12x D.y = 176 C 线性回归方程bx a y +=,()()()∑∑==---=ni ini iix x yyx x b 121,x b y a -=9.将长方体截去一个四棱锥,得到的几何体如右图所示,则该几何体的左视图为( )答案:D 左视图即是从正左方看,找特殊位置的可视点,连起来就可以得到答案。
第 1 页 共 10 页绝密★启用前2011年普通高等学校招生全国统一考试(江西卷)文科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分. 第I 卷1至2页,第Ⅱ卷3至4页,满分150分,考试时间120分钟.考生注意:1.答题前,考生务必将自己的准考证号、姓名填写在答题卡上,考生要认真核对答题卡粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致. 2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.第Ⅱ卷用0.5毫米的黑色墨水签字笔在答题卡上书写作答,在试题卷上作答,答案无效. 3.考试结束,监考员将试题卷、答题卡一并收回.参考公式:样本数据1122(,),(,),...,(,)n n x y x y x y 的回归方程:y a bx =+其中()()()121niii ni i x x y y b x x ==--=-∑∑,a y bx =- 锥体体积公式1212,n n x x x y y y x y n n++⋅⋅⋅+++⋅⋅⋅+== 13V Sh = 其中S 为底面积,h 为高 第I 卷一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.若()2,,x i i y i x y R -=+∈,则复数x yi +=( ) A.2i -+ B.2i + C.12i - D.12i + 答案:B解析: ()iyi x x y iy i xi i y i i x +=+∴==∴+=-+=-22,12,222.若全集{1,2,3,4,5,6},{2,3},{1,4}U M N ===,则集合{5,6}等于( ) A.M N ⋃ B.M N ⋂ C.()()U U C M C N ⋃ D.()()U U C M C N ⋂第 2 页 共 10 页答案:D 解析:{}4,3,2,1=⋃N M ,Φ=⋂N M ,()(){}6,5,4,3,2,1=⋃N C M C U U ,()(){}6,5=⋂N C M C U U3.若121()log (21)f x x =+,则()f x 的定义域为( )A.1(,0)2-B.1(,)2-+∞ C.1(,0)(0,)2-⋃+∞ D.1(,2)2-答案:C 解析:()()+∞⋃⎪⎭⎫⎝⎛-∈∴≠+>+∴≠+,00,21112,012,012log 21x x x x4.曲线xy e =在点A (0,1)处的切线斜率为( ) A.1 B.2 C.e D.1e答案:A 解析: 1,0,0'===e x e y x5.设{n a }为等差数列,公差d = -2,n S 为其前n 项和.若1011S S =,则1a =( ) A.18 B.20 C.22 D.24答案:B 解析:20,100,1111111110=∴+==∴=a d a a a S S6.观察下列各式:则234749,7343,72401===,…,则20117的末两位数字为( )A.01B.43C.07D.49答案:B 解析:()()()()()()343***2011,200922011168075,24014,3433,492,7=∴=-=====f f f f f x f x7.为了普及环保知识,增强环保意识,某大学随即抽取30名学生参加环保知识测试,得分(十分制)如图所示,假设得分值的中位数为e m ,众数为o m ,平均值为x ,则( ) A.e o m m x== B.e o m m x =<C.e o m m x <<D.o e m m x <<答案:D 计算可以得知,中位数为5.5,众数为5所以选D8.为了解儿子身高与其父亲身高的关系,随机抽取5对父子的身高数据如下:父亲身高x(cm)174 176 176 176 178儿子身高y(cm)175 175 176 177 177则y对x的线性回归方程为A.y = x-1B.y = x+1C.y = 88+ 12x D.y = 176C 线性回归方程bxay+=,()()()∑∑==---=niiniiixxyyxxb121,xbya-=9.将长方体截去一个四棱锥,得到的几何体如右图所示,则该几何体的左视图为()答案:D 左视图即是从正左方看,找特殊位置的可视点,连起来就可以得到答案。
2011年普通高等学校招生考试(江西卷)第Ⅰ卷一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.若12iz i+=,则复数z -=A. 2i --B. 2i -+C. 2i -D. 2i + 2.若集合{}1213A x x =-≤+≤,20,x B xx -⎧⎫=≤⎨⎬⎩⎭则A B ⋂= A.{}10x x -≤< B..{}01x x <≤ C. {}02x x ≤≤ D. {}01x x ≤≤ 3.若()f x =,则()f x 的定义域为A. 1,02⎛⎫- ⎪⎝⎭B. 1,02⎛⎤- ⎥⎝⎦C. 1,2⎛⎫-+∞ ⎪⎝⎭D. ()0,+∞ 4.若()224ln f x x x x =--则()f x >0的解集为 A .()0,+∞ B. ()()1,02,-⋃+∞ C. ()2,+∞ D. ()1,0-5.已知数列 ∣n a ∣的前n 项和n s 满足:n s +m s =n m s +,且1a =1,那么10a =( )A.1B.9C.10D.556.变量X 与Y 相对应的一组数据为(10,1),(11.3,2),(11.8,3),(12.5,4),(13,5),变量U 与V 相对应的一组数据为(10,5),(11.3,4),(11.8,3),(12.5,2),(13,1),1r 表示变量Y 与X 之间的线性相关系数,2r 表示变量V 与U 之间的线性相关系数 ( )A. 2r < 1r <0B. 0<2r < 1rC. 2r <0<1rD. 2r =1r 7、观察下列各式:55=3125, 56=15625, 57=78125,···,则52011 的末四位数字为( _A 、3125B 、5625C 、0625D 、8125 8、已知123,,ααα是三个相互平行的平面,平面12,αα之间的距离为1d ,平面23,a α之前的距离为2d ,直线l 与123,,ααα分别相交于123,,P P P .那么“123,,PP P ”是“12d d =”的( ) A 、充分不需要条件 B 、必要不充分条件 C 、充分必要条件 D 、既不充分也不必要条件9. 若曲线1C :x 2+y 2—2x=0与曲线C 2:y(y+mx-m)=0有四个不同的交点,则实数m 的取值范围是 ( )A. (—33,33)B. (—33,0)∪(0,33)C. [—33,33]D.( -∞, -33)∪(33,+∞)10.如图,一个直径为1的小圆沿着直径为2的大圆内壁的逆时针方向滚动,M 和N 是小圆的一条固定直径的两个端点。
绝密★启用前2011年普通高等学校招生全国统一考试(江西卷)理科数学本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分。
第I 卷1至2页。
第Ⅱ卷3 至4页,满分150分,考试时间120分钟. 考试结束后, 考试注意:1.答题前,考生在答题卡上务必将自己的准考证号、姓名填写在答题卡上.考试要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考试本人的准考证号、姓名是否一致.2.第I 卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,.第II 卷用0.5毫米的黑色墨水签字笔在答题卡上书写作答.若在试题卷上作答,答案无效.3.考试结束后,监考员将试题卷、答题卡一并交回。
参考公式:样本数据(11,y x ),(22,y x ),...,(n n y x ,)的线性相关系数∑∑∑===----=ni in i ini iiy y x x y y x x r 12121)()())(( 其中nx x x x n+++= (21)ny y y y n +++= (21)锥体的体积公式13V Sh =其中S 为底面积,h 为高第Ⅰ卷一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1) 若iiz 21+=,则复数-z = ( )A.i --2B. i +-2C. i -2D.i +2 答案:C 解析: i i i i i i i z -=--=+=+=21222122 (2) 若集合}02|{},3121|{≤-=≤+≤-=xx x B x x A ,则B A ⋂= ( )A.}01|{<≤-x xB.}10|{≤<x xC.}20|{≤≤x xD.}10|{≤≤x x 答案:B 解析:{}{}{}10/,20/,11/≤<=⋂≤<=≤≤-=x x B A x x B x x A (3) 若)12(21log1)(+=x x f ,则)(x f 的定义域为 ( )A. (21-,0)B. (21-,0]C. (21-,∞+) D. (0,∞+)答案: A 解析:()⎪⎭⎫ ⎝⎛-∈∴<+<∴>+0,211120,012log 21x x x(4) 若x x x x f ln 42)(2--=,则0)('>x f 的解集为 ( )A. (0,∞+)B. (-1,0)⋃(2,∞+)C. (2,∞+)D. (-1,0)答案:C 解析:()()()2,012,0,02,0422'2>∴>+-∴>>-->--=x x x x xx x x x x f (5) 已知数列}{n a 的前n 项和n S 满足:m n m n S S S +=+,且11=a ,那么=10a ( )A. 1B. 9C. 10D. 55答案:A 解析:11,41,31,2104314321321212==∴=+==∴=+==∴=+=a a S S S a S S S a S a a S(6) 变量X 与Y 相对应的一组数据为(10,1),(11.3,2),(11.8,3),(12.5,4),(13,5);变量U 与V 相对应的一组数据为(10,5),(11.3,4),(11.8,3),(12.5,2),(13,1).1r 表示变量Y 与X 之间的线性相关系数,2r 表示变量V 与U 之间的线性相关系数,则 ( )A.012<<r rB. 120r r <<C.120r r <<D. 12r r =答案:C 解析: ()()()()∑∑∑===----=ni in i ini iiy y x x y y x x r 12121第一组变量正相关,第二组变量负相关。
2011 年普通高等学校招生全国统一考试数学试题
(江西卷)文(解
2011 年普通高等学校招生全国统一考试(江西卷)
文科数学第Ⅰ卷一.选择题:本大题共10 小题,每小题5 分,共50 分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.若,则复数
A.B.C.D.
【命题立意】本题考查复数的乘法运算及复数相等的充要条件.
【思路分析】先计算,再运用复数相等的充要条件求出.
【解析】由题设得故,即2+i.故选B.
【方法技巧】两个复数相等的充要条件是两个复数的实部相等,虚部相等.
2.若全集,则集合等于
A.B.
C.D.
【命题立意】本题考查集合的运算及运算性质.
【思路分析】观察到集合是集合M 与集合N 的补集,由德摩根公式可得. 【解析】∵,∴.故选D.
【方法技巧】德摩根公式:,灵活应用上述公式可简化集合运算过程.
3.若,则的定义域为
A.B.
C.D.
【命题立意】本题考查对数函数的概念及函数的定义域.
【思路分析】确定函数定义域的依据是使解析式有意义.先考虑对数的真数。
2011年普通高等学校招生全国统一考试(江西卷)理科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,全卷满分150分,考试时间120分钟。
分钟。
考生注意:1.答题前,考生务必将自己的准考证号、姓名填写在答题卡上,考生要认真核对答题卡上所粘贴的条形码中准考证号、姓名、考试科目与考生本人准考证号、姓名、考试科目是否一致。
一致。
2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
第Ⅱ卷用0.5毫米的黑色墨水签字笔在答题卡上作答,在试题卷上作答无效。
上作答,在试题卷上作答无效。
3.考试结束后,务必将试题卷和答题卡一并上交。
.考试结束后,务必将试题卷和答题卡一并上交。
参考公式:样本数据(,),(,),(,)n n x y x y x y 1122L 的线性相关系数的线性相关系数()()()()nii i nni i i i xx y y r x x y y 2=12=1=1--=--ååå锥体体积公式锥体体积公式 V S h 1=3其中其中 ,n n x x x y y y x y nn1212++++==L L 其中S 为底面积,h 为高为高第Ⅰ卷一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.若i z i1+2=,则复数z =A . i -2-B . i -2+C . i 2-D . i 2+2.若集合{},{}x A x x B x x-2=-1£2+1£3=£0,则A B Ç=A . {}x x -1£<0B . {}x x 0<£1C . {}x x 0££2D .{}x x 0££13.若()log ()f x x 121=2+1,则()f x 的定义域为的定义域为A .(,)1-02B .(,]1-02C .(,)1-+¥2D .(,)0+¥4.若()ln f x x x x 2=-2-4,则'()f x >0的解集为的解集为A .(,)0+¥B .-+10È2¥(,)(,) C .(,)2+¥ D .(,)-105.已知数列{n a }的前n 项和n S 满足:n m n m S S S ++=,且1a =1.那么10a = A .1 B .9 C .10 D .55 6.变量X 与Y 相对应的一组数据为(10,1),(11.3,2),(11.8,3),(12.5,4),(13,5);变量U 与V 相对应的一组数据为(10,5),(11.3,4),(11.8,3),(12.5,2),(13,1),1r 表示变量Y 与X 之间的线性相关系数,2r 表示变量V 与U 之间的线性相关系数,则之间的线性相关系数,则 A .210r r <<B .210r r <<C .210r r <<D .21r r =7.观察下列各式:55=3125,65=15625,75=78125,…,则20115的末四位数字为的末四位数字为A .3125 B .5625 C .0625 D .8125 8.已知1a ,2a ,3a 是三个相互平行的平面.平面1a ,2a 之间的距离为1d ,平面2a ,3a 之间的距离为2d .直线l 与1a ,2a ,3a 分别相交于1p ,2p ,3p ,那么“12P P =23P P ”是“12d d =”的A .充分不必要条件.充分不必要条件B .必要不充分条件.必要不充分条件C .充分必要条件.充分必要条件D .既不充分也不必要条件.既不充分也不必要条件9.若曲线1C :2220x y x +-=与曲线2C :()0y y mx m --=有四个不同的交点,则实数m 的取值范围是取值范围是A .(33-,33) B .(33-,0)∪(0,33)C .[33-,33] D .(-¥,33-)∪(33,+¥)10.如右图,一个直径为l 的小圆沿着直径为2的大圆内壁的逆时针方的大圆内壁的逆时针方向滚动,M 和N 是小圆的一条固定直径的两个端点.那么,当小是小圆的一条固定直径的两个端点.那么,当小 圆这样滚过大圆内壁的一周,点M ,N 在大圆内所绘出的图形大在大圆内所绘出的图形大 致是致是第Ⅱ卷注意事项:第II 卷须用黑色墨水签字笔在答题卡上书写作答。
2011年江西省高考数学试卷(理科)一、选择题(共10小题,每小题5分,满分50分)1.(5分)若z=,则复数=()A.﹣2﹣i B.﹣2+i C.2﹣i D.2+i2.(5分)若集合A={x|﹣1≤2x+1≤3},,则A∩B=()A.{x|﹣1≤x<0}B.{x|0<x≤1}C.{x|0≤x≤2}D.{x|0≤x≤1}3.(5分)若f(x)=,则f(x)的定义域为()A.(,0)B.(,0]C.(,+∞)D.(0,+∞)4.(5分)若f(x)=x2﹣2x﹣4lnx,则f′(x)>0的解集为()A.(0,+∞)B.(﹣1,0)∪(2,+∞) C.(2,+∞)D.(﹣1,0)5.(5分)已知数列{a n}的前n项和S n满足:S n+S m=S n+m,且a1=1,那么a10=()A.1 B.9 C.10 D.556.(5分)变量X与Y相对应的一组数据为(10,1),(11.3,2),(11.8,3),(12.5,4),(13,5),变量U与V相对应的一组数据为(10,5),(11.3,4),(11.8,3),(12.5,2),(13,1).r1表示变量Y与X之间的线性相关系数,r2表示变量V与U之间的线性相关系数,则()A.r2<r1<0 B.0<r2<r1C.r2<0<r1D.r2=r17.(5分)观察下列各式:55=3125,56=15625,57=78125,…,则52011的末四位数字为()A.3125 B.5625 C.0625 D.81258.(5分)已知α1,α2,α3是三个相互平行的平面,平面α1,α2之间的距离为d1,平面α2,α3之前的距离为d2,直线l与α1,α2,α3分别相交于P1,P2,P3.那么“P1P2=P2P3”是“d1=d2”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件D.既不充分也不必要条件9.(5分)若曲线C1:x2+y2﹣2x=0与曲线C2:y(y﹣mx﹣m)=0有四个不同的交点,则实数m的取值范围是()A.(﹣,)B.(﹣,0)∪(0,)C.[﹣,]D.(﹣∞,﹣)∪(,+∞)10.(5分)如图,一个直径为1的小圆沿着直径为2的大圆内壁的逆时针方向滚动,M和N是小圆的一条固定直径的两个端点.那么,当小圆这样滚过大圆内壁的一周,点M,N在大圆内所绘出的图形大致是()A.B.C.D.二、填空题(共5小题,每小题5分,满分25分)11.(5分)已知==2,•=﹣2,则与的夹角为.12.(5分)小波通过做游戏的方式来确定周末活动,他随机地往单位圆内投掷一点,若此点到圆心的距离大于,则周末去看电影;若此点到圆心的距离小于,则去打篮球;否则,在家看书.则小波周末不在家看书的概率为.13.(5分)如图是某算法的程序框图,则程序运行后输出的结果是.14.(5分)若椭圆的焦点在x轴上,过点(1,)做圆x2+y2=1的切线,切点分别为A,B,直线AB恰好经过椭圆的右焦点和上顶点,则椭圆的方程是.15.(5分)(1)(坐标系与参数方程选做题)若曲线的极坐标方程为p=2sinθ+4cosθ,以极点为原点,极轴为x轴正半轴建立直角坐标系,则该曲线的直角坐标方程为.(2)(不等式选做题)对于实数x,y,若|x﹣1|≤1,|y﹣2|≤1,则|x﹣2y+1|的最大值为.三、解答题(共6小题,满分75分)16.(12分)某饮料公司招聘了一名员工,现对其进行一项测试,以便确定工资级别.公司准备了两种不同的饮料共8杯,其颜色完全相同,并且其中4杯为A 饮料,另外4杯为B饮料,公司要求此员工一一品尝后,从8杯饮料中选出4杯A饮料.若4杯都选对,则月工资定位3500元;若4杯选对3杯,则月工资定为2800元,否则月工资定为2100元,今X表示此人选对A饮料的杯数,假设此人对A和B两种饮料没有鉴别能力.(1)求X的分布列;(2)求此员工月工资的期望.17.(12分)在△ABC中,角A,B,C的对边分别是a,b,c,已知sinC+cosC=1﹣sin(1)求sinC的值(2)若a2+b2=4(a+b)﹣8,求边c的值.18.(12分)已知两个等比数列{a n},{b n},满足a1=a(a>0),b1﹣a1=1,b2﹣a2=2,b3﹣a3=3.(1)若a=1,求数列{a n}的通项公式;(2)若数列{a n}唯一,求a的值.19.(12分)设f(x)=﹣x3+x2+2ax(1)若f(x)在(,+∞)上存在单调递增区间,求a的取值范围.(2)当0<a<2时,f(x)在[1,4]的最小值为﹣,求f(x)在该区间上的最大值.20.(13分)P(x0,y0)(x0≠±a)是双曲线E:上一点,M,N分别是双曲线E的左右顶点,直线PM,PN的斜率之积为.(1)求双曲线的离心率;(2)过双曲线E的右焦点且斜率为1的直线交双曲线于A,B两点,O为坐标原点,C为双曲线上一点,满足,求λ的值.21.(14分)(1)如图,对于任一给定的四面体A1A2A3A4,找出依次排列的四个相互平行的α1,α2,α3,α4,使得A i∈αi(i=1,2,3,4),且其中每相邻两个平面间的距离都相等;(2)给定依次排列的四个相互平行的平面α1,α2,α3,α4,其中每相邻两个平面间的距离都为1,若一个正四面体A1A2A3A4的四个顶点满足:A i∈αi(i=1,2,3,4),求该正四面体A1A2A3A4的体积.2011年江西省高考数学试卷(理科)参考答案与试题解析一、选择题(共10小题,每小题5分,满分50分)1.(5分)(2011•江西)若z=,则复数=()A.﹣2﹣i B.﹣2+i C.2﹣i D.2+i【分析】直接对复数的分母、分子同乘i,然后化简,求出复数z的共轭复数.【解答】解:==2﹣i所以=2+i故选D2.(5分)(2011•江西)若集合A={x|﹣1≤2x+1≤3},,则A∩B=()A.{x|﹣1≤x<0}B.{x|0<x≤1}C.{x|0≤x≤2}D.{x|0≤x≤1}【分析】根据已知条件我们分别计算出集合A,B,然后根据交集运算的定义易得到A∩B的值.【解答】解:∵A={x|﹣1≤2x+1≤3}={x|﹣1≤x≤1},={x|0<x≤2}故A∩B={x|0<x≤1},故选B3.(5分)(2011•江西)若f(x)=,则f(x)的定义域为()A.(,0)B.(,0]C.(,+∞)D.(0,+∞)【分析】求函数的定义域即求让函数解析式有意义的自变量x的取值范围,由此可以构造一个关于x的不等式,解不等式即可求出函数的解析式.【解答】解:要使函数的解析式有意义自变量x须满足:即0<2x+1<1解得故选A4.(5分)(2011•江西)若f(x)=x2﹣2x﹣4lnx,则f′(x)>0的解集为()A.(0,+∞)B.(﹣1,0)∪(2,+∞) C.(2,+∞)D.(﹣1,0)【分析】由题意,可先求出函数的定义域及函数的导数,再解出不等式f′(x)>0的解集与函数的定义域取交集,即可选出正确选项.【解答】解:由题,f(x)的定义域为(0,+∞),f′(x)=2x﹣2﹣,令2x﹣2﹣>0,整理得x2﹣x﹣2>0,解得x>2或x<﹣1,结合函数的定义域知,f′(x)>0的解集为(2,+∞).故选:C.5.(5分)(2011•江西)已知数列{a n}的前n项和S n满足:S n+S m=S n+m,且a1=1,那么a10=()A.1 B.9 C.10 D.55【分析】根据题意,用赋值法,令n=1,m=9可得:s1+s9=s10,即s10﹣s9=s1=a1=1,进而由数列的前n项和的性质,可得答案.【解答】解:根据题意,在s n+s m=s n+m中,令n=1,m=9可得:s1+s9=s10,即s10﹣s9=s1=a1=1,根据数列的性质,有a10=s10﹣s9,即a10=1,故选A.6.(5分)(2011•江西)变量X与Y相对应的一组数据为(10,1),(11.3,2),(11.8,3),(12.5,4),(13,5),变量U与V相对应的一组数据为(10,5),(11.3,4),(11.8,3),(12.5,2),(13,1).r1表示变量Y与X之间的线性相关系数,r2表示变量V与U之间的线性相关系数,则()A.r2<r1<0 B.0<r2<r1C.r2<0<r1D.r2=r1【分析】求两组数据的相关系数的大小和正负,可以详细的解出这两组数据的相关系数,现分别求出两组数据的两个变量的平均数,利用相关系数的个数代入求出结果,进行比较.【解答】解:∵变量X与Y相对应的一组数据为(10,1),(11.3,2),(11.8,3),(12.5,4),(13,5),=11.72∴这组数据的相关系数是r=,变量U与V相对应的一组数据为(10,5),(11.3,4),(11.8,3),(12.5,2),(13,1),∴这组数据的相关系数是﹣0.3755,∴第一组数据的相关系数大于零,第二组数据的相关系数小于零,故选C.7.(5分)(2011•江西)观察下列各式:55=3125,56=15625,57=78125,…,则52011的末四位数字为()A.3125 B.5625 C.0625 D.8125【分析】根据所给的以 5 为底的幂的形式,在写出后面的几项,观察出这些幂的形式是有一定的规律的每四个数字是一个周期,用2011除以4看出余数,得到结果.【解答】解:∵55=3125,56=15625,57=78125,58=390625,59=1953125,510=9765625,511=48828125…可以看出这些幂的最后4位是以4为周期变化的,∵2011÷4=502…3,∴52011的末四位数字与57的后四位数相同,是8125,故选D.8.(5分)(2011•江西)已知α1,α2,α3是三个相互平行的平面,平面α1,α2之间的距离为d1,平面α2,α3之前的距离为d2,直线l与α1,α2,α3分别相交于P1,P2,P3.那么“P1P2=P2P3”是“d1=d2”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【分析】由已知中α1,α2,α3是三个相互平行的平面,平面α1,α2之间的距离为d1,平面α2,α3之前的距离为d2,直线l与α1,α2,α3分别相交于P1,P2,P3,结合面面平行的性质,我们分别判断“P1P2=P2P3”⇒“d1=d2”及“d1=d2”⇒“P1P2=P2P3”的真假,结合充要条件的定义,即可得到答案.【解答】解:由已知中α1,α2,α3是三个相互平行的平面,且平面α1,α2之间的距离为d1,平面α2,α3之前的距离为d2,又由直线l与α1,α2,α3分别相交于P1,P2,P3.则“P1P2=P2P3”⇒“d1=d2”为真命题且“d1=d2”⇒“P1P2=P2P3”是真命题故“P1P2=P2P3”是“d1=d2”的充分必要条件故选C.9.(5分)(2011•江西)若曲线C1:x2+y2﹣2x=0与曲线C2:y(y﹣mx﹣m)=0有四个不同的交点,则实数m的取值范围是()A.(﹣,)B.(﹣,0)∪(0,)C.[﹣,]D.(﹣∞,﹣)∪(,+∞)【分析】由题意可知曲线C1:x2+y2﹣2x=0表示一个圆,曲线C2:y(y﹣mx﹣m)=0表示两条直线y=0和y﹣mx﹣m=0,把圆的方程化为标准方程后找出圆心与半径,由图象可知此圆与y=0有两交点,由两曲线要有4个交点可知,圆与y﹣mx ﹣m=0要有2个交点,根据直线y﹣mx﹣m=0过定点,先求出直线与圆相切时m的值,然后根据图象即可写出满足题意的m的范围.【解答】解:由题意可知曲线C1:x2+y2﹣2x=0表示一个圆,化为标准方程得:(x﹣1)2+y2=1,所以圆心坐标为(1,0),半径r=1;C2:y(y﹣mx﹣m)=0表示两条直线y=0和y﹣mx﹣m=0,由直线y﹣mx﹣m=0可知:此直线过定点(﹣1,0),在平面直角坐标系中画出图象如图所示:直线y=0和圆交于点(0,0)和(2,0),因此直线y﹣mx﹣m=0与圆相交即可满足条件.当直线y﹣mx﹣m=0与圆相切时,圆心到直线的距离d==r=1,化简得:m2=,解得m=±,而m=0时,直线方程为y=0,即为x轴,不合题意,则直线y﹣mx﹣m=0与圆相交时,m∈(﹣,0)∪(0,).故选B.10.(5分)(2011•江西)如图,一个直径为1的小圆沿着直径为2的大圆内壁的逆时针方向滚动,M和N是小圆的一条固定直径的两个端点.那么,当小圆这样滚过大圆内壁的一周,点M,N在大圆内所绘出的图形大致是()A.B.C.D.【分析】根据已知中直径为1的小圆沿着直径为2的大圆内壁的逆时针方向滚动,M和N是小圆的一条固定直径的两个端点.我们分析滚动过程中,M,N的位置与大圆及大圆圆心的重合次数,及点M,N运动的规律,并逐一对四个答案进行分析,即可得到答案.【解答】解:如图,由题意可知,小圆O1总与大圆O相内切,且小圆O1总经过大圆的圆心O.设某时刻两圆相切于点A,此时动点M所处位置为点M′,则大圆圆弧与小圆点M转过的圆弧相等.以切点A在如图上运动为例,记直线OM与此时小圆O1的交点为M1,记∠AOM=θ,则∠OM1O1=∠M1OO1=θ,故∠M1O1A=∠M1OO1+∠OM1O1=2θ.大圆圆弧的长为l1=θ×1=θ,小圆圆弧的长为l2=2θ×=θ,即l1=l2,∴小圆的两段圆弧与圆弧长相等,故点M1与点M′重合,即动点M在线段MO上运动,同理可知,此时点N在线段OB上运动.点A在其他象限类似可得,M、N的轨迹为相互垂直的线段.观察各选项,只有选项A符合.故选A.二、填空题(共5小题,每小题5分,满分25分)11.(5分)(2011•江西)已知==2,•=﹣2,则与的夹角为.【分析】利用向量的运算律将向量的等式展开,利用向量的平方等于向量模的平方,求出两个向量的数量积;利用向量的数量积公式求出两个向量的夹角余弦,求出夹角.【解答】解:设两个向量的夹角为θ∵∴∵∴∴∴故答案为12.(5分)(2011•江西)小波通过做游戏的方式来确定周末活动,他随机地往单位圆内投掷一点,若此点到圆心的距离大于,则周末去看电影;若此点到圆心的距离小于,则去打篮球;否则,在家看书.则小波周末不在家看书的概率为.【分析】根据题意,计算可得圆的面积为π,点到圆心的距离大于的面积为,此点到圆心的距离小于的面积为,由几何概型求概率即可.【解答】解:圆的面积为π,点到圆心的距离大于的面积为,此点到圆心的距离小于的面积为,由几何概型得小波周末不在家看书的概率为P=故答案为:13.(5分)(2011•江西)如图是某算法的程序框图,则程序运行后输出的结果是10.【分析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是利用循环计算并输出S值.模拟程序的运行过程,用表格对程序运行过程中各变量的值进行分析,不难得到最终的输出结果.【解答】解:程序在运行过程中各变量的值如下表示:S n是否继续循环循环前01第一圈02是第二圈33是第三圈54是第四圈105否此时S值为10.故答案为:10.14.(5分)(2011•江西)若椭圆的焦点在x轴上,过点(1,)做圆x2+y2=1的切线,切点分别为A,B,直线AB恰好经过椭圆的右焦点和上顶点,则椭圆的方程是.【分析】设出切点坐标,利用切点与原点的连线与切线垂直,列出方程得到AB 的方程,将右焦点坐标及上顶点坐标代入AB的方程,求出参数c,b;利用椭圆中三参数的关系求出a.,求出椭圆方程.【解答】解:设切点坐标为(m,n)则即∵m2+n2=1∴m即AB的直线方程为2x+y﹣2=0∵线AB恰好经过椭圆的右焦点和上顶点∴2c﹣2=0;b﹣2=0解得c=1,b=2所以a2=5故椭圆方程为故答案为15.(5分)(2011•江西)(1)(坐标系与参数方程选做题)若曲线的极坐标方程为p=2sinθ+4cosθ,以极点为原点,极轴为x轴正半轴建立直角坐标系,则该曲线的直角坐标方程为(x﹣2)2+(y﹣1)2=5.(2)(不等式选做题)对于实数x,y,若|x﹣1|≤1,|y﹣2|≤1,则|x﹣2y+1|的最大值为5.【分析】(1)把曲线的极坐标方程ρ=2sinθ+4c osθ两边同时乘以ρ,再把x=ρcosθ,y=ρsinθ 代入化简.(2)先由条件得到0≤x≤2,1≤y≤3,再根据|x﹣2y+1|≤|x|+2|y|+1,求得|x﹣2y+1|的最大值.【解答】解:(1)∵曲线的极坐标方程为ρ=2sinθ+4cosθ,∴ρ2=2ρ sinθ+4ρ cosθ,∴x2+y2=2y+4x,∴(x﹣2)2+(y﹣1)2=5.故答案为:(x﹣2)2+(y﹣1)2=5.(2)|x﹣1|≤1,|y﹣2|≤1,即0≤x≤2,1≤y≤3,则|x﹣2y+1|=|x﹣1﹣2y+4﹣2|≤|x﹣1|+2|y﹣2|+2≤1+2×1+2=5,∴|x﹣2y+1|的最大值为5,故答案为:5.三、解答题(共6小题,满分75分)16.(12分)(2011•江西)某饮料公司招聘了一名员工,现对其进行一项测试,以便确定工资级别.公司准备了两种不同的饮料共8杯,其颜色完全相同,并且其中4杯为A饮料,另外4杯为B饮料,公司要求此员工一一品尝后,从8杯饮料中选出4杯A饮料.若4杯都选对,则月工资定位3500元;若4杯选对3杯,则月工资定为2800元,否则月工资定为2100元,今X表示此人选对A饮料的杯数,假设此人对A和B两种饮料没有鉴别能力.(1)求X的分布列;(2)求此员工月工资的期望.【分析】(1)X的所有可能取值为0,1,2,3,4,由古典概型分别求出概率,列出分布列即可.(2)由(1)可知此员工月工资Y的所有可能取值有3500、2800、2100,Y取每个值时对应(1)中的X取某些值的概率,列出Y的分布列,求期望即可.【解答】解:(1)X的所有可能取值为0,1,2,3,4,P(X=0)==P(X=1)==P(X=2)==P(X=3)==P(X=4)==(2)此员工月工资Y的所有可能取值有3500、2800、2100,P(Y=3500)=P(X=4)==P(Y=2800)=P(X=3)==P(Y=2100)=P(X=0)+P(X=1)+P(X=2)=EY==228017.(12分)(2011•江西)在△ABC中,角A,B,C的对边分别是a,b,c,已知sinC+cosC=1﹣sin(1)求sinC的值(2)若a2+b2=4(a+b)﹣8,求边c的值.【分析】(1)利用二倍角公式将已知等式化简;将得到的式子平方,利用三角函数的平方关系求出sinC.(2)利用求出的三角函数的值将角C的范围缩小,求出C的余弦;将已知等式配方求出边a,b;利用余弦定理求出c【解答】解:(1)∵∴∴∴∴∴∴∴(2)由得即∴∵a2+b2=4(a+b)﹣8∴(a﹣2)2+(b﹣2)2=0∴a=2,b=2由余弦定理得∴18.(12分)(2011•江西)已知两个等比数列{a n},{b n},满足a1=a(a>0),b1﹣a1=1,b2﹣a2=2,b3﹣a3=3.(1)若a=1,求数列{a n}的通项公式;(2)若数列{a n}唯一,求a的值.【分析】(1)设等比数列{a n}的公比为q,根据“b1﹣a1=1,b2﹣a2=2,b3﹣a3=3.且{b n}为等比数列,由等比中项,可解得公比,从而求得通项.(2)由(1)知(2+aq)2=(1+a)(3+aq2)整理得:aq2﹣4aq+3a﹣1=0,易知方程有一零根,从而求得结果.【解答】解:(1)设等比数列{a n}的公比为q,又∵b1﹣a1=1,b2﹣a2=2,b3﹣a3=3.且{b n}为等比数列,且b1=2,b2=2+q,b3=3+q2,∴(2+q)2=2(3+q2)∴q=2±∴(2)由(1)知(2+aq)2=(1+a)(3+aq2)整理得:aq2﹣4aq+3a﹣1=0∵a>0,∴△=4a2+4a>0∵数列{a n}唯一,∴方程必有一根为0,得a=.19.(12分)(2011•江西)设f(x)=﹣x3+x2+2ax(1)若f(x)在(,+∞)上存在单调递增区间,求a的取值范围.(2)当0<a<2时,f(x)在[1,4]的最小值为﹣,求f(x)在该区间上的最大值.【分析】(1)利用函数递增,导函数大于0恒成立,求出导函数的最大值,使最大值大于0.(2)求出导函数的根,判断出根左右两边的导函数的符号,求出端点值的大小,求出最小值,列出方程求出a,求出最大值.【解答】解:(1)f′(x)=﹣x2+x+2af(x)在存在单调递增区间∴f′(x)≥0在有解∵f′(x)=﹣x2+x+2a对称轴为∴递减∴f′(x)≤f′()=+2a,由0≤+2a,解得a≥﹣.检验a=﹣时,f(x)的增区间为(,),故不成立.故a>﹣.(2)当0<a<2时,△>0;f′(x)=0得到两个根为;(舍)∵∴时,f′(x)>0;时,f′(x)<0当x=1时,f(1)=2a+;当x=4时,f(4)=8a<f(1)当x=4时最小∴=解得a=1所以当x=时最大为20.(13分)(2011•江西)P(x0,y0)(x0≠±a)是双曲线E:上一点,M,N分别是双曲线E的左右顶点,直线PM,PN的斜率之积为.(1)求双曲线的离心率;(2)过双曲线E的右焦点且斜率为1的直线交双曲线于A,B两点,O为坐标原点,C为双曲线上一点,满足,求λ的值.【分析】(1)根据P(x0,y0)(x0≠±a)是双曲线E:上一点,代入双曲线的方程,M,N分别是双曲线E的左右顶点,直线PM,PN 的斜率之积为,求出直线PM,PN的斜率,然后整体代换,消去x0,y0,再由c2=a2+b2,即可求得双曲线的离心率;(2)根据过双曲线E的右焦点且斜率为1的直线,写出直线的方程,联立直线与双曲线的方程,消去y,得到关于x的一元二次方程,利用韦达定理,及A,B,C为双曲线上的点,注意整体代换,并代入,即可求得λ的值.【解答】解:(1)∵P(x0,y0)(x0≠±a)是双曲线E:上一点,∴,①由题意又有,②联立①、②可得a2=5b2,c2=a2+b2,则e=,(2)联立,得4x2﹣10cx+35b2=0,设A(x1,y1),B(x2,y2),则x1+x2=,x1•x2=,设=(x3,y3),,即又C为双曲线上一点,即x32﹣5y32=5b2,有(λx1+x2)2﹣5(λy1+y2)2=5b2,化简得:λ2(x12﹣5y12)+(x22﹣5y22)+2λ(x1x2﹣5y1y2)=5b2,又A(x1,y1),B(x2,y2)在双曲线上,所以x12﹣5y12=5b2,x22﹣5y22=5b2,而x1x2﹣5y1y2=x1x2﹣5(x1﹣c)(x2﹣c)=﹣4x1x2+5c(x1+x2)﹣5c2=﹣4+5c﹣5c2=﹣35b2=•6b2﹣35b2=10b2,得λ2+4λ=0,解得λ=0或﹣4.21.(14分)(2011•江西)(1)如图,对于任一给定的四面体A1A2A3A4,找出依次排列的四个相互平行的α1,α2,α3,α4,使得A i∈αi(i=1,2,3,4),且其中每相邻两个平面间的距离都相等;(2)给定依次排列的四个相互平行的平面α1,α2,α3,α4,其中每相邻两个平面间的距离都为1,若一个正四面体A1A2A3A4的四个顶点满足:A i∈αi(i=1,2,3,4),求该正四面体A1A2A3A4的体积.【分析】(1)先取A1A4的三等分点p2,p3,A1A3的中点M,A2A4,的中点N,过三点A2,P2,M,作平面α2,过三点p3,A3,N作平面α3,先得到两个平行平面,再过点A1,A4,分别作平面α1,α4,与平面α3平行即可.(2)直接利用(1)中的四个平面以及四面体,建立出以△A2A3A4的中心O为坐标原点,以直线A4O为y轴,直线OA1为Z轴的直角坐标系,求出各点对应坐标,求出平面A3P3N的法向量,利用α1,α2,α3,α4相邻平面之间的距离为1求出正四面体的棱长,进而代入体积公式求出体积即可.【解答】解:(1)如图所示,取A1A4的三等分点p2,p3,A1A3的中点M,A2A4,的中点N,过三点A2,P2,M,作平面α2,过三点A3,P3,N作平面α3,,A3P3∥MP2,所以平面α2∥α3,因为A2P2∥NP3再过点A1,A4,分别作平面α1,α4,与平面α3平行,那么四个平面α1,α2,α3,α4依次互相平行,由线段A1A4被平行平面α1,α2,α3,α4截得的线段相等知,其中每相邻两个平面间的距离相等,故α1,α2,α3,α4为所求平面.(2):当(1)中的四面体为正四面体,若所得的四个平行平面每相邻两平面之间的距离为1,则正四面体A1A2A3A4就是满足题意的正四面体.设正四面体的棱长为a,以△A2A3A4的中心O为坐标原点,以直线A4O为y轴,直线OA1为Z轴建立如图所示的右手直角坐标系,则A1(0,0,a),A2(﹣,a,0),A3(,a,0),A4(0,﹣a,0).令P2,P3为.A1A4的三等分点,N为A2A4的中点,有P3(0,a,a),N(﹣,﹣a,0),所以=(﹣,a,﹣a),=(a,a,0),=(﹣,a,0)设平面A3P3N的法向量=(x,y,z),有即,所以=(1,﹣,﹣).因为α1,α2,α3,α4相邻平面之间的距离为1,所以点A4到平面A3P3N 的距离=1,解得a=,由此可得,边长为的正四面体A1A2A3A4满足条件.所以所求四面体的体积V=Sh=××a=a3=.。
【选择题】 【1】.若(i)i 2i,,x y x y -=+∈R ,则复数i x y +=( ).(A )2i -+ (B )2i +(C )12i -(D )12i +【2】.若全集{1,2,3,4,5,6},{2,3},{1,4}U M N ===,则集合{5,6}等于( ).(A )M N (B )MN(C )()()UUM N 痧 (D )()()U UM N 痧【3】.若()()121log 21f x x =+,则()f x 的定义域为( ).(A )1,02⎛⎫-⎪⎝⎭(B )1,2⎛⎫-+∞ ⎪⎝⎭(C )()1,00,2⎛⎫-⋃+∞ ⎪⎝⎭(D )1,22⎛⎫-⎪⎝⎭【4】.曲线e x y =在点A (0,1)处的切线斜率为( ).(A )1(B )2(C )e(D )1e【5】.设{}n a 为等差数列,公差2d =-,n S 为其前n 项和.若1011S S =,则1a =( ).(A )18(B )20(C )22(D )24【6】.观察下列各式:则234749,7343,72401,===…,则20117的末两位数字为( ).(A )01(B )43(C )07(D )49【7】.为了普及环保知识,增强环保意识,某大学随机抽取30名学生参加环保知识测试,得分(十分制)如下图所示,假设得分值的中位数为e m ,众数为o m ,平均值为x ,则( ).(A )e o m m x == (B )e o m m x =< (C )e o m m x <<(D )oe m m x <<【8】.为了解儿子身高与其父亲身高的关系,随机抽取5对父子身高数据如下:则(A )1y x =- (B )1y x =+(C )1882y x =+(D )176y =【9】.将长方体截去一个四棱锥,得到的几何体如下图所示,则该几何体的左视图为( ).【10】.如下图,一个“凸轮”放置于直角坐标系X 轴上方,其“底端”落在原点O 处,一顶点及中心M 在Y 轴正半轴上,它的外围由以正三角形的顶点为圆心,以正三角形的边长为半径的三段等弧组成.今使“凸轮”沿X 轴正向滚动前进,在滚动过程中,“凸轮”每时每刻都有一个“最高点”,其中心也在不断移动位置,则在“凸轮”滚动一周的过程中,将其“最高点”和“中心点”所形成的图形按上、下放置,应大致为( ).【填空题】【11】.已知两个单位向量1e ,2e 的夹角为3π,若向量1122=-b e e ,2121234,=+⋅则b e e b b = . 【12】.若双曲线22116y x m-=的离心率e =2,则m = . 【13】.下图是某算法的程序框图,则程序运行后输出的结果是 ___【14】.已知角θ的顶点为坐标原点,始边为x 轴的正半轴,若()4,P y 是角θ终边上的一点,且sin θ=y =_ . 【15】.对于x ∈R ,不等式102x x +--≥8的解集为 .【解答题】【16】.某饮料公司对一名员工进行测试以便确定其考评级别.公司准备了两种不同的饮料共5杯,其颜色完全相同,并且其中3杯为A 饮料,另外2杯为B 饮料,公司要求此员工一一品尝后,从5杯饮料中选出3杯A 饮料.若该员工3杯都选对,则评为优秀;若3杯选对2杯,则评为良好;否则评为合格.假设此人对A 和B 两种饮料没有鉴别能力. (1)求此人被评为优秀的概率; (2)求此人被评为良好及以上的概率 【17】.在ABC V 中,角A,B,C 的对边是,,,a b c 已知3cos cos cos a A c B b C =+.(1)求cos A 的值;(2)若1a=,cos cos B C +=求边c 的值. 【18】.如图1,在ABC V 中,,2,2B AB BC π∠===P 为AB 边上一动点,PD BC ∥交AC 于点D ,现将V PDA 沿PD 翻折至V PDA ',使平面PDA '⊥平面PBCD . (1)当棱锥A'PBCD -的体积最大时,求PA 的长;(2)若点P 为AB 的中点,E 为A'C 的中点,求证:A'B DE ⊥.【19】.已知过抛物线()y px p 2=2>0的焦点,斜率为的直线交抛物线于(,)A x y 11,(,)()B x y x x 2212<两点,且AB =9.(1)求该抛物线的方程;(2)O 为坐标原点,C 为抛物线上一点,若OC OA OB λ=+u u u r u u r u u u r,求λ的值.【20】.设321().3f x x mx nx =++ (1)如果()()232g x f'x x x =--=-在处取得最小值-5,求()f x 的解析式;(2)如果10(m,n N ),()m n f x ++<∈的单调递减区间的长度是正整数,试求m 和n 的值.(注:区间(),a b 的长度为b a -)图1【21】.(1)已知两个等比数列}{na ,}{nb ,满足(),,,aa ab a b a b a 1112233=>0-=1-=2-=3,若数列}{na 唯一,求a 的值;(2)是否存在两个等比数列}{na ,}{nb ,使得,,.b a ba b a b a 11223344----成公差不.为0的等差数列?若存在,求}{na ,}{nb 的通项公式;若不存在,说明理由.【参考答案】 【1】.B 提示:由(i)i i 12i x x y -=+=+,得2,1x y ==.故选(B ).【2】.D提示:{5,6}()()()U U U M N M N ==痧 .故选(D ).【3】.C 提示:由()12log 210x +≠且()210x +> ,得 12x >-且0x ≠.故选(C ).【4】.A 提示:0(0)e |x x f ='==1.故选(A ).【5】.B 提示:由1011S S =知110a =,又2d =-,故111(111)(2)20a a =+-⨯-=.故选(B ).【6】.B 提示:234567=497=3437=24017=**07,7=**49,,,,,可知后两位数呈以4为周期的周期数列,而201150243=⨯+,故20117后两位数为43. 故选(B ).【7】.D提示:将图像中的数据看作是茎叶图,得众数o m <中位数e m <平均值x .故选(D ).【8】.C提示:线性回归方程都经过数据的平均数对(,)x y ,此处平均数为(176, 176),只有C 符合. 故选(C ).【9】.D提示:左视图中体对角线变为右侧面的对角线,并且方向与(D )选项相符. 故选(D ).【10】.A提示:当图像旋转一定角度时,由于x 轴与下段弧相切,根据切线的性质,可知最高点仍是旋转前的最高点(即圆心),故最高点是没有变化的;中心M 由图像可知是先增大再减少呈周期变化,故选(A ).【11】.6-提示:221212121212(2)(34)38252cos63π⋅=-⋅+=--⋅=--=-b b e e e e e e e e .【12】.48提示:222216416a b me a ++===,得48m =.【13】.27 提示:0,1;1,2;6,3;27,4s n s n s n s n ========程序终止.【14】.-8提示:由题意知,0y <,并且sin y r θ===8y =-. 【15】.[)0,+∞提示:采用零点分段法,分别讨论:10x <-解集为空集;当-10≤x ≤2时,解集为[]0,2;当2x >时,解集为()2,+∞.综上可知,原不等式的解集为[)0,+∞.【16】.解:将5杯饮料编号为:1,2,3,4,5,编号1,2,3表示A 饮料,编号4,5表示B 饮料,则从5杯饮料中选出3杯的所有可能情况为:(123),(124),(125),(134),(135),(145),(234),(235),(245),(345),可见共有10种.令D 表示此人被评为优秀的事件,E 表示此人被评为良好的事件,F 表示此人被评为良好及以上的事件.则(1)1()10P D =; (2)37(),()()()510P E P F P D P E ==+=. 【17】.解:(1)由余弦定理2222222c o s ,2c o s b a c a c B cab a b C=+-=+-,有c o s c o s c B b C a +=,代入已知条件得13cos ,cos 3a A a A ==即.(2)由1cos sin 33A A ==,得,则1cos cos()cos ,3B A C C C =-+=-+代入cos cos B C +=,得c o s 2s 3,s i n ()1C C C ϕ+=从而得,其中sin 2ϕϕϕπ==<<. 则,2C ϕπ+=于是sin 3C =由正弦定理得sin sin 2a C c A == 【18】.解:(1)令(02),,2,PA x x A'P PD x BP x =<<===-则 因为A'P PD ⊥,且平面'A PD ⊥平面PBCD ,故A'P ⊥平面PBCD . 所以3'111(2)(2)(4)366A PBCD V Sh x x x x x -==-+=-,令31()(4),6f x x x =-由21()(43)0,6f'x x =-=x 得当,()0,()x f'x f x ∈>时单调递增;当2),()0,()x f'x f x ∈<时单调递减,所以,当x =()f x 取得最大值,即当'A PBCD V -最大时,PA =(2)如图2,设F 为A'B 的中点,连接,PF FE ,则有EF ∥BC ,PD ∥BC ,且1,22EF BC PD BC 1==, 所以DE PF ∥,又A'P PB =, 所以PF A'B ⊥, 故.DE A'B ⊥【19】.解:(1)直线AB的方程是)2p y x =-,与22y p x =联立,从而有22450,x px p -+= 所以1254px x +=. 由抛物线定义得12||9,AB x x p =++=所以4p =,从而抛物线方程是28.y x =(2)由224,450p x px p =-+=可简化为2540,x x -+=从而121,4,x x ==12y y =-=从而(1,A B -.设33(,)(1,(41OC x y λλ==-+=+-,图2又2338,y x =即21)]8(41),λλ-=+即2(21)41λλ-=+.解得0, 2.λλ==或【20】.解:(1)由题得222()2(1)(3)(1)(3)(1)g x x m x n x m n m =+-+-=+-+---,已知()2g x x =-在处取得最小值-5,所以212,(3)(1)5,m n m -=⎧⎨---=-⎩即3,2m n ==. 即得所要求的解析式为321()32.3f x x x x =++ (2)因为2'()2,f x x mx n =++且()f x 的单调递减区间的长度为正整数,故'()0f x =一定有两个不同的根,从而2440,m n =->Δ即2m n >.不妨设为1221,,||x x x x -=则为正整数. 故m ≥2时才可能有符合条件的m ,n . 当2m =时,只有3n=符合要求;当3m =时,只有5n =符合要求;当m ≥4时,没有符合要求的n . 综上所述,只有2m =,3n =或3m =,5n =满足上述要求.【21】.解:(1)设{}n a 的公比为q ,则21231,2,3b a b aq b aq =+=+=+.由123,,b b b 成等比数列得22(2)(1)(3)aq a aq +=++,即24310aq aq a -+-=.由20440a a a >=+>得Δ,故方程有两个不同的实根.再由{}n a 唯一,知方程必有一根为0,将=0q 代入方程得1.3a = (2)假设存在两个等比数列{},{}n n ab ,使11223344,,,b a b a b a b a ----成公差不为0的等差数列,设{}n a 的公比为1,{}n q b 的公比为2q ,则2212b a b q aq-=-,22331211,b a b q a q -=-33441211b a b q a q -=-. 由11223344,,,b a b a b a b a ----成等差数列得22121111121122331211121112112()(),2()(),b q a q b a b q a q b q a q b q a q b q a q ⎧-=-+-⎪⎨-=-+-⎪⎩即22121122122111(1)(1)0,(1)(1)0,b q a q b q q a q q ⎧---=⎪⎨---=⎪⎩①2q ⨯-②得21121()(1)0a q q q --=.① ②由10a ≠得1211q q q ==或.(i )当12q q =时,由①,②得11121b a q q ===或,这时2211()()0b a b a ---=与公差不为0矛盾; (ii )当11q =时,由①,②得10b =或21q =,这时2211()()0b a b a ---=与公差不为0矛盾.综上所述,不存在两个等比数列{},{}n n a b ,使11223344,,,b a b a b a b a ----成公差不为0的等差数列.【End 】。