第七章季节性时间序列模型
- 格式:ppt
- 大小:757.50 KB
- 文档页数:53
第七章季节性时间序列分析方法由于季节性时间序列在经济生活中大量存在,故将季节时间序列从非平稳序列中抽出来,单独作为一章加以研究,具有较强的现实意义。
本章共分四节:简单随机时间序列模型、乘积季节模型、季节型时间序列模型的建立、季节调整方法X-11程序。
本章的学习重点是季节模型的一般形式和建模。
§1 简单随机时序模型在许多实际问题中,经济时间序列的变化包含很多明显的周期性规律。
比如:建筑施工在冬季的月份当中将减少,旅游人数将在夏季达到高峰,等等,这种规律是由于季节性(seasonality)变化或周期性变化所引起的。
对于这各时间数列我们可以说,变量同它上一年同一月(季度,周等)的值的关系可能比它同前一月的值的相关更密切。
一、季节性时间序列1.含义:在一个序列中,若经过S个时间间隔后呈现出相似性,我们说该序列具有以S为周期的周期性特性。
具有周期特性的序列就称为季节性时间序列,这里S为周期长度。
注:①在经济领域中,季节性的数据几乎无处不在,在许多场合,我们往往可以从直观的背景及物理变化规律得知季节性的周期,如季度数据(周期为4)、月度数据(周期为12)、周数据(周期为7);②有的时间序列也可能包含长度不同的若干种周期,如客运量数据(S=12,S=7)2.处理办法:(1)建立组合模型;(1)将原序列分解成S个子序列(Buys-Ballot 1847)对于这样每一个子序列都可以给它拟合ARIMA模型,同时认为各个序列之间是相互独立的。
但是这种做法不可取,原因有二:(1)S 个子序列事实上并不相互独立,硬性划分这样的子序列不能反映序列{}t x 的总体特征;(2)子序列的划分要求原序列的样本足够大。
启发意义:如果把每一时刻的观察值与上年同期相应的观察值相减,是否能将原序列的周期性变化消除?(或实现平稳化),在经济上,就是考查与前期相比的净增值,用数学语言来描述就是定义季节差分算子。
定义:季节差分可以表示为S t t t S t S t X X X B X W --=-=∇=)1(。
季节性时间序列分析方法在经济领域中得到的观测数据一般都具有较强的随时间变化的趋势,如果是季度或月度数据又有明显的季节变化规律。
因此研究经济时间序列必须考虑其趋势性和季节性的特点,既要考虑趋势变动,又要考虑季节变动,建立季节模型。
第一节 简单的时间序列模型一、 季节时间序列序列是季度数据或月度数据(周,日)表现为周期的波动。
二、随机季节模型例1 假定t x 是一个时间序列,通过一次季节差分后得到的平稳序列,且遵从一阶自回归季节模型,即有 t s s t t t x B x x w )1(-=-=-1tt s t w w 或 1(1)s t t B w 将t w =t s x )B (-1代入则有1(1)(1)s s t t B B x SARIMA(1,1,0)更一般的情况,随机序列模型的表达式为11(1)(1)(1)s s S t t B B x B SARIMA(1,1,1)第二节 乘积模型值得注意的是t a 不一定是白噪声序列。
因为我们仅仅消除了不同周期相同周期点之间具有的相关部分,相同周期而不同周期点之间的也有一定的相关性。
所以,在此情况下,模型有一定的拟合不足,如果假设t 是),(q p ARMA 模型,则1(1)(1)s s t t B B x 式可以改为1()(1)(1)()s s t t B B B x B如果序列}{t x 遵从的模型为()()()()s d D s s t t B U B x B V B (3.26) 其中ks k s s s B BB B U ΓΓΓ----= 2211)(ms m s s s B B B B V H H H ----= 2211)(p p B B B φφΦ---= 11)(q q B B B θθΘ---= 11)(d d B )1(-=∇D s D s B )1(-=∇则称(3.26)为乘积季节模型,记为),,(),,(q d p m D k ARIMA ⨯。
季节性时间序列模型季节性时间序列模型通常包括四个主要组成部分:趋势、周期、季节和残差。
趋势表示数据的长期增长或下降趋势,可以是线性或非线性的。
周期表示数据中的循环模式,例如月度或年度循环。
季节表示数据在特定季节中的重复模式,例如每年夏季销售增长。
残差表示无法通过趋势、周期和季节解释的部分,即剩余误差。
为了建立季节性时间序列模型,首先需要对数据进行季节性分解,以提取趋势、周期和季节成分。
常用的方法包括移动平均法和指数平滑法。
移动平均法通过计算一系列连续时间段内的平均值来平滑数据,并提取趋势和周期成分。
指数平滑法则通过加权计算最近一段时间内的数据,赋予更高的权重,以反映近期数据的影响力,进而提取趋势成分。
一旦趋势、周期和季节成分被提取,可以使用这些成分来预测未来的值。
最常用的方法是加法模型和乘法模型。
加法模型中,趋势、周期和季节成分相加得到预测值。
乘法模型中,趋势、周期和季节成分相乘得到预测值。
具体选择哪种模型取决于数据的性质。
季节性时间序列模型还可以通过调整模型参数和增加复杂度来提高预测性能。
常用的技术包括自回归(AR)模型、移动平均(MA)模型和自回归移动平均(ARMA)模型。
这些模型通过考虑多个时间点的数据来提高预测的准确性。
季节性时间序列模型在实际应用中具有广泛的价值。
例如,在销售领域,可以使用季节性时间序列模型预测未来几个月的销售量,以制定合理的库存管理策略。
在经济学中,可以使用该模型预测未来几个季度的经济增长率,以指导政府的宏观调控政策。
然而,季节性时间序列模型也面临一些挑战和限制。
首先,它依赖于数据中的季节性模式,如果季节性模式发生变化,则模型的准确性可能会下降。
其次,模型的复杂度和参数调整可能会带来计算上的困难。
此外,模型所能提供的准确度也取决于数据的质量和可用性。
总的来说,季节性时间序列模型是一种强大的工具,可以用于分析和预测数据中的季节性变化。
通过合理的调整和选择模型参数,可以提高预测的准确性。
2.8 季节时间序列模型在某些时间序列中,存在明显的周期性变化。
这种周期是由于季节性变化(包括季度、月度、周度等变化)或其他一些固有因素引起的。
这类序列称为季节性序列。
比如一个地区的气温值序列(每隔一小时取一个观测值)中除了含有以天为周期的变化,还含有以年为周期的变化。
在经济领域中,季节性序列更是随处可见。
如季度时间序列、月度时间序列、周度时间序列等。
处理季节性时间序列只用以上介绍的方法是不够的。
描述这类序列的模型之一是季节时间序列模型(seasonal ARIMA model),用SARIMA表示。
较早文献也称其为乘积季节模型(multiplicative seasonal model)。
设季节性序列(月度、季度、周度等序列都包括其中)的变化周期为s,即时间间隔为s的观测值有相似之处。
首先用季节差分的方法消除周期性变化。
季节差分算子定义为,s = 1- Ls若季节性时间序列用y t表示,则一次季节差分表示为s y t = (1- L s) y t = y t- y t - s对于非平稳季节性时间序列,有时需要进行D次季节差分之后才能转换为平稳的序列。
在此基础上可以建立关于周期为s的P阶自回归Q阶移动平均季节时间序列模型(注意P、Q 等于2时,滞后算子应为(L s)2 = L2s。
P (L s) s D y t = Q(L s) u t(2.60)对于上述模型,相当于假定u t是平稳的、非自相关的。
当u t非平稳且存在ARMA成分时,则可以把u t描述为p (L)du t = q (L) v t(2.61)其中v t为白噪声过程,p, q分别表示非季节自回归、移动平均算子的最大阶数,d表示u t的一阶(非季节)差分次数。
由上式得u t = p-1(L)-d q (L) v t(2.62)把(2.62) 式代入(2.60) 式,于是得到季节时间序列模型的一般表达式。
p(L) P(L s) (d s D y t) = q(L) Q(L s) v t(2.63)其中下标P, Q, p, q分别表示季节与非季节自回归、移动平均算子的最大滞后阶数,d, D分别表示非季节和季节性差分次数。
2.8 季节时间序列模型在某些时间序列中,存在明显的周期性变化。
这种周期是由于季节性变化(包括季度、月度、周度等变化)或其他一些固有因素引起的。
这类序列称为季节性序列。
比如一个地区的气温值序列(每隔一小时取一个观测值)中除了含有以天为周期的变化,还含有以年为周期的变化。
在经济领域中,季节性序列更是随处可见。
如季度时间序列、月度时间序列、周度时间序列等。
处理季节性时间序列只用以上介绍的方法是不够的。
描述这类序列的模型之一是季节时间序列模型(seasonal ARIMA model),用SARIMA表示。
较早文献也称其为乘积季节模型(multiplicative seasonal model)。
设季节性序列(月度、季度、周度等序列都包括其中)的变化周期为s,即时间间隔为s的观测值有相似之处。
首先用季节差分的方法消除周期性变化。
季节差分算子定义为,∆s = 1- L s若季节性时间序列用y t表示,则一次季节差分表示为∆s y t = (1- L s) y t = y t- y t - s对于非平稳季节性时间序列,有时需要进行D次季节差分之后才能转换为平稳的序列。
在此基础上可以建立关于周期为s的P阶自回归Q阶移动平均季节时间序列模型(注意P、Q 等于2时,滞后算子应为(L s)2 = L2s。
A P (L s) ∆s D y t =B Q(L s) u t(2.60)对于上述模型,相当于假定u t是平稳的、非自相关的。
当u t非平稳且存在ARMA成分时,则可以把u t描述为Φp (L)∆d u t = Θq (L) v t(2.61)其中v t为白噪声过程,p, q分别表示非季节自回归、移动平均算子的最大阶数,d表示u t的一阶(非季节)差分次数。
由上式得u t = Φp-1(L)∆-dΘq (L) v t(2.62)把(2.62) 式代入(2.60) 式,于是得到季节时间序列模型的一般表达式。
Φp(L) A P(L s) (∆d∆s D y t) = Θq(L) B Q(L s) v t(2.63)其中下标P, Q, p, q分别表示季节与非季节自回归、移动平均算子的最大滞后阶数,d, D分别表示非季节和季节性差分次数。
(时间管理)第七章季节性时间序列分析方法第七章季节性时间序列分析方法由于季节性时间序列于经济生活中大量存于,故将季节时间序列从非平稳序列中抽出来,单独作为壹章加以研究,具有较强的现实意义。
本章共分四节:简单随机时间序列模型、乘积季节模型、季节型时间序列模型的建立、季节调整方法X-11程序。
本章的学习重点是季节模型的壹般形式和建模。
§1简单随机时序模型于许多实际问题中,经济时间序列的变化包含很多明显的周期性规律。
比如:建筑施工于冬季的月份当中将减少,旅游人数将于夏季达到高峰,等等,这种规律是由于季节性(seasonality)变化或周期性变化所引起的。
对于这各时间数列我们能够说,变量同它上壹年同壹月(季度,周等)的值的关系可能比它同前壹月的值的关联更密切。
一、季节性时间序列1.含义:于壹个序列中,若经过S个时间间隔后呈现出相似性,我们说该序列具有以S为周期的周期性特性。
具有周期特性的序列就称为季节性时间序列,这里S为周期长度。
注:①于经济领域中,季节性的数据几乎无处不于,于许多场合,我们往往能够从直观的背景及物理变化规律得知季节性的周期,如季度数据(周期为4)、月度数据(周期为12)、周数据(周期为7);②有的时间序列也可能包含长度不同的若干种周期,如客运量数据(S=12,S=7)2.处理办法:(1)建立组合模型;(1)将原序列分解成S个子序列(Buys-Ballot1847)对于这样每壹个子序列均能够给它拟合ARIMA模型,同时认为各个序列之间是相互独立的。
可是这种做法不可取,原因有二:(1)S个子序列事实上且不相互独立,硬性划分这样的子序列不能反映序列的总体特征;(2)子序列的划分要求原序列的样本足够大。
启发意义:如果把每壹时刻的观察值和上年同期相应的观察值相减,是否能将原序列的周期性变化消除?(或实现平稳化),于经济上,就是考查和前期相比的净增值,用数学语言来描述就是定义季节差分算子。
季节性时间序列分析方法Revised at 2 pm on December 25, 2020.第七章季节性时间序列分析方法由于季节性时间序列在经济生活中大量存在,故将季节时间序列从非平稳序列中抽出来,单独作为一章加以研究,具有较强的现实意义。
本章共分四节:简单随机时间序列模型、乘积季节模型、季节型时间序列模型的建立、季节调整方法X-11程序。
本章的学习重点是季节模型的一般形式和建模。
§1 简单随机时序模型在许多实际问题中,经济时间序列的变化包含很多明显的周期性规律。
比如:建筑施工在冬季的月份当中将减少,旅游人数将在夏季达到高峰,等等,这种规律是由于季节性(seasonality)变化或周期性变化所引起的。
对于这各时间数列我们可以说,变量同它上一年同一月(季度,周等)的值的关系可能比它同前一月的值的相关更密切。
一、季节性时间序列1.含义:在一个序列中,若经过S个时间间隔后呈现出相似性,我们说该序列具有以S为周期的周期性特性。
具有周期特性的序列就称为季节性时间序列,这里S为周期长度。
注:①在经济领域中,季节性的数据几乎无处不在,在许多场合,我们往往可以从直观的背景及物理变化规律得知季节性的周期,如季度数据(周期为4)、月度数据(周期为12)、周数据(周期为7);②有的时间序列也可能包含长度不同的若干种周期,如客运量数据(S=12,S=7)2.处理办法:(1)建立组合模型;(1) 将原序列分解成S 个子序列(Buys-Ballot 1847)对于这样每一个子序列都可以给它拟合ARIMA 模型,同时认为各个序列之间是相互独立的。
但是这种做法不可取,原因有二:(1)S 个子序列事实上并不相互独立,硬性划分这样的子序列不能反映序列{}t x 的总体特征;(2)子序列的划分要求原序列的样本足够大。
启发意义:如果把每一时刻的观察值与上年同期相应的观察值相减,是否能将原序列的周期性变化消除(或实现平稳化),在经济上,就是考查与前期相比的净增值,用数学语言来描述就是定义季节差分算子。
非平稳和季节时间序列模型分析方法非平稳时间序列是指在时间序列数据中,均值、方差、自相关函数等统计性质随时间变化的数据。
这种时间序列模型常常由于其自身的特性而较难进行分析和预测。
不过,季节时间序列是非平稳时间序列的一种特殊类型,其特点是在数据中存在明显的季节性变化。
对于这种时间序列,可以采用不同的分析方法进行预测和建模。
一、非平稳时间序列分析方法:1.差分法:差分法是通过对序列数据进行相邻时间点的差分,使得序列转变为平稳时间序列。
差分法有一阶差分、二阶差分等。
通过差分法可以使得序列的单位根等统计性质得到稳定。
2.滑动平均法:滑动平均法基于序列的平均值,将序列转化为平稳时间序列。
该方法通过计算序列的滑动平均值来消除序列的变化趋势。
3.指数平滑法:指数平滑法是一种通过加权平均的方法来消除序列的变化趋势。
指数平滑法可以根据实际情况选择不同的权重系数来进行计算。
4.回归分析:对于非平稳时间序列,通过引入自变量,建立回归模型来描述序列的变化。
回归分析可以通过多个变量的关系来解释序列的变动。
二、季节时间序列分析方法:1.季节分解法:季节分解法是将季节时间序列分解为长期趋势、季节性和随机成分的组合。
这种方法可以将季节性的变动独立出来,从而更好地进行建模和预测。
2.季节移动平均法:季节移动平均法通过计算时间序列在相邻季节的平均值,消除序列的季节性变动。
这种方法可以降低季节时间序列的变化趋势。
3.季节差分法:季节差分法是将季节时间序列转化为其相邻时间点的差分。
通过差分法可以去除序列的季节性变化,使得序列更为平稳。
4.季节ARIMA模型:季节ARIMA模型是一种结合了季节差分和ARIMA 模型的方法。
该方法可以同时考虑序列的季节性变化和非平稳性,通过建立ARIMA模型来进行预测和分析。
以上所述是常用的非平稳和季节时间序列模型分析方法。
根据实际情况,我们可以选择合适的方法来分析和预测时间序列数据,以提高分析的准确性。
季节模型原理季节模型是一种用来描述和预测时间序列数据中季节性变化的模型。
它的原理是基于季节性的周期性变化,通过分析历史数据中的季节性变化规律来预测未来的趋势。
季节模型在许多领域都有广泛的应用,比如气象预测、经济预测、销售预测等。
季节性是自然界和社会经济活动中普遍存在的一种周期性变化现象。
这种周期性变化通常是由自然因素、人类活动或其他因素引起的。
比如,在气象学中,每年的四季交替变化就是一种季节性变化;在经济学中,各行各业的销售额也会随着季节的变化而有所波动。
季节模型的目的就是通过对这种周期性变化的分析,来预测未来的趋势。
季节模型的原理可以用数学公式来表示,但在本文中我们将避免使用数学公式。
简单来说,季节模型可以分为两个部分:趋势分量和季节分量。
趋势分量描述了数据的长期趋势,比如是否有增长或下降的趋势。
季节分量描述了数据在不同季节中的周期性变化,比如每年的四季或每周的星期几。
为了建立季节模型,我们首先需要收集一段时间内的历史数据。
这段时间可以是几个月、一年甚至更长的时间。
然后,我们需要对这些数据进行分析,找出其中的季节性变化规律。
这可以通过统计方法、数据可视化或其他分析工具来实现。
一旦我们找到了季节性变化规律,我们就可以使用这些规律来预测未来的趋势。
具体来说,我们可以根据历史数据中季节性变化的幅度和周期,来预测未来相同时间段内的数据。
比如,如果我们发现某个月份的销售额每年都有增长的趋势,我们就可以预测未来该月份的销售额也会增长。
然而,季节模型并不是万能的。
它只适用于具有明显季节性变化的数据,对于没有明显季节性变化的数据,季节模型的效果可能不理想。
此外,季节模型也无法考虑其他因素对数据的影响,比如竞争对手的活动、政策变化等。
因此,在使用季节模型进行预测时,我们还需要结合其他因素进行综合分析。
总结一下,季节模型是一种用来描述和预测时间序列数据中季节性变化的模型。
它通过分析历史数据中的季节性变化规律,来预测未来的趋势。