电容式触摸按键PCB布线
- 格式:pdf
- 大小:157.44 KB
- 文档页数:2
电容按键PCB layout规则一、 布局1、芯片的位置在PCB 板空间允许的情况下,应尽量将触摸芯片放置在触摸板的中间,使IC的每个感应通道的引脚到感应盘的距离差异最小。
2、稳压电路的放置稳压电路和滤波电路放在触摸板上,在VDD与VSS间并接退耦电容104,靠近IC 放置。
3、通道匹配电阻的放置Sensor通道增加300Ω-2K匹配电阻Rs,Rs靠近IC管脚放置。
4、Cs和Rmod靠近IC放置。
5、复位电路靠近IC放置。
6、按键感应盘(电容传感器)形状、大小和间隙根据手指触摸的习惯,按键盘一般选择圆形和方形。
以圆形为例,按键盘的大小建议在5mm-15mm之间。
按键间隙保持在3mm以上,滑条和滚轮可以缩小到0.5mm。
二、 走线1、遵循数模混合电路设计原则芯片内部集成了精密电容测量的模拟电路,因此进行PCB 设计时应该把它看成一个独立的模拟电路对待。
遵循通常的数模混合电路设计的基本原则。
2、双面板走线如果直接使用PCB板上的铜箔作触摸感应盘,应使用双面PCB板。
触摸芯片和感应盘到IC引脚的连线放在底层(BOTTOM),感应盘放在顶层(TOP)。
3、单面板走线如果采用单面PCB板,并用弹簧或其它导电物体做感应盘,感应盘到IC引脚的连线不走或少走跳线。
4、sensor走线感应盘到IC 的连线应尽量细,双面板采用8-15mil 的线宽,单面板板线宽15-20mil,sensor走线避开大电流和高频信号线,感应盘到触摸芯片的连线周围0.5mm不要走其他信号线。
各sensor走线间距保持在20mil以上,以免交互干扰。
sensor走线长度尽量短,最长不超过30cm。
5、电源走线触摸芯片最好用一根独立的走线从板子的供电点取电,不要和其他的电路(如LED回路)共用电源回路。
触摸IC的供电从滤波电路输入,保持VDD与VSS并行,输入路径短而粗(40mil左右)。
6、采用星形接地触摸芯片的地线不要和其他电路共用,应该单独连到板子电源输入的接地点,也就是通常说的采用“星形接地”。
电容按键布线规则一、布局:1.触摸通道与触控芯片、其它元件布局在不同的层。
2.触摸通道电阻尽量靠近芯片。
3.芯片大小滤波电容靠近芯片放置。
4.预留测试接口,以方便调试。
二、走线:1. 尽量把触摸通道走线放在底层,触摸通道在顶层。
2. 触摸通道、触摸通道走线与铺地之间的间距至少30mil。
3. 不要把触摸通道走线布置在触摸通道下面。
4. 触摸通道走线间距应当至少是触摸通道走线宽度的两倍。
5.时钟、数据或周期信号走线都不应该与触摸通道走线相邻平行布设。
这些信号线应当尽可能地与触摸通道走线垂直,或者布设在PCB的其他区域。
如果时钟、数据或任何周期信号走线确实需要与触摸的信号走线平行布设,它们应当被布设在不同的层并且不能重叠,而且应当尽可能地缩短信号线平行部分的长度。
6.电源走线,触摸芯片最好用一根独立的走线从板子的供电点取电,不要和其他的电路(如LED回路)共用电源回路。
触摸IC的供电从滤波电路输入,保持VDD与VSS并行,输入路径短而粗(40mil左右)。
7.采用星形接地,触摸芯片的地线不要和其他电路共用,应该单独连到板子电源输入的接地点,也就是通常说的采用“星形接地”。
8.单面板走线,如果采用单面PCB板,并用弹簧或其它导电物体做感应通道,感应通道到触控IC引脚的连线不走或少走跳线。
9.Sensor走线长度:或,这样可以减少来自射频的干扰。
10.Sensor通道电阻:500Ω~2K,起衰减共振作用。
三、铺地:1.空白的地方可以网格铺地(线宽6mil、网格大小为30mil)。
2.触摸通道正对背面稍大些面积不要铺地,如果需要在比较潮湿的环境工作时,触摸通道所在层不要铺地。
3.为降低串扰,应当尽可能地增大两个触摸通道之间的间距以及触摸通道与触摸通道走线之间的距离。
在可能的情况下,在两个触摸通道之间铺地、触摸通道走线之间加入铺地。
4.铺地被用来填充PCB的空白区域,铺地能够帮助触摸模块屏蔽外部噪声源,还能够稳定触摸线路的固有电容。
电容触摸式按键设计规范及注意事项技术研发中心查达新所有电容式触摸传感系统的核心部分都是一组与电场相互作用的导体。
在皮肤下面,人体组织中充满了传导电解质(一种有损电介质)。
正是手指的这种导电特性,使得电容式触摸式按键应用于电路中,替代传统的机械式按键操作。
关于电容触摸式按键设计,有下列要求:1.PCB触摸焊盘①.感应按键面积,即焊盘接触面积应不小于手指面积的2/3,可大致设计为5*6mm、6*7mm;且按键间的距离不小于5mm,如下图:②.连接触摸按键的走线,若是双面板尽可能走按键的背面,走在正面的画需保证离其他按键2mm以上间距;③.感应按键与覆铜的距离不小于2mm,减少地线的影响;2.感应按键面壳或外壳①.面壳材料只要不含有金属都可以,如:塑胶,玻璃,亚克力等。
若面壳喷漆,需保证油漆中不含金属,否则会对按键产生较大影响,可用万用表电阻档测量油漆表面导电程度,正常不含金属油漆的面壳电阻值应为兆欧级别或无穷大。
通常面壳厚度设置在0~10mm之间。
不同的材料对应着不同的典型厚度,例如亚克力材料一般设置在2mm~4mm之间,普通玻璃材料一般设置在3mm~6mm之间。
②.可以用3M胶把按键焊盘与面壳感应端黏连、固定,或者通过弹簧片方式焊接在PCB焊盘的过孔上与面壳感应端相连;如下图:③.触摸按键PCB与触摸面板通过双面胶粘接,双面胶的厚度取0.1~0.15mm 比较合适,推荐采用3M468MP,其厚度0.13mm。
要求PCB与面板之间没有空气,因为空气的介电系数为1,与面板的介电系数差异较大。
空气会对触摸按键的灵敏度影响很大。
所以双面胶与面板,双面胶与PCB粘接,都是触摸按键生产装配中的关键工序,必须保证质量。
PCB与双面板粘接,PCB带双面胶与面板装配时都要用定位夹具完成装配,装配完成后,要人工或用夹具压紧。
为了保证PCB板与面板之间没有空气,需要在双面板上开孔和排气槽,并且与PCB上开孔配合。
设计夹紧夹具时,重点压触摸按键的部位,确保感应部位没有空气。
电容式触摸按键布线分享1):电容式触摸按键特点及应用与传统的机械按键相比,电容式触摸感应按键不仅美观时尚而且寿命长,功耗小,成本低,体积小,持久耐用。
它颠覆了传统意义上的机械按键控制,只要轻轻触碰,他就可以实现对按键的开关控制,量化调节甚至方向控制,现在电容式触摸感应按键已经广泛用于手机,DVD,电视,洗衣机等一系列消费类电子产品中!2):电容式触摸按工作基本原理所谓感应式触摸按键,并不是要多大的力量去按,相反,力量大和小的效果是一样的,因为外层一般是一块硬邦邦的塑料壳。
具体就电容式而言,是利用人手接触改变电容大小来实现的,通俗点,你手触摸到哪个位置,那里的电容就会发生变化,检测电路就会检测到,并将由于电容改变而带来的模拟信号的改变转化为数字信号的变化,进行处理!3): 电容式触摸按电容构成及判断PCB材料构成基本电容,PCB上大面积的焊盘(触摸按键)与附近的地构成的分布电容,由于人体电容的存在,当手指按上按键后,改变了分布电容的容量(原来的电容并上了人体电容),通过对PAD构成的分布电容充放电或构成振荡电路,再检测充放电的时间,或者振荡频率,脉冲宽度等方式可以检测电容容量的变化,继而可判断按键是否被按下。
电容式触摸按键布板要求1): PCB板的电容构成因素:PCB板中电容构成因素如右图:其中代表PCB板最终生成电容代表空气中的介质常数代表两板电介质常数代表两极板面面积代表两板距离2): PCB板的布局电容式感应触摸按键实际只是PCB上的一小块覆铜焊盘,当没有手指触摸时,焊盘和低型号产生约5—10PF的电容值,我们称之为“基准电容”故为了PCB设计尽量达到这值,PCB需要进行更好设计!如下图:虽然触摸按键最终的效果可能与其他一些因素还有很多直接或间接的关系,但做为PCB的绘制人员,我们因该尽量保证我们所绘制的PCB效果达到最佳(及控制好触摸按键的中的基准电容值)PCB布板至关重要,因为PCB构成的电容容量极小,而且必须要尽量控制等效电容,不能过大,因为人体电容也是极小的(数pF),不同的人之间差异也比较大,而触摸按键的灵敏度就在于手指接触按键前后PAD电容量的差异,而且这么小的电容充放电极易受到干扰,所以布线的关键两点就是:1、控制电容量2、避免干扰影响电容容量的因素是极板的面积和极板间的介质材料,在实际应用中人体是不太可能直接接触PCB的,所以PCB与按键接触面必须有覆盖层,在触摸按键应中影响容量的因素有:1、 PAD的面积与铺地间的距离以及铺地的面积2、 PAD上的覆盖层的厚度和材质(介质)3、 PCB的厚度和材质对应的策略如下:1、 PAD的面积应尽量接近手指接触按键的有效面积。
触摸IC LAYOUT 注意事项
一、 在设计PCB时候最简单的方式就是感应线路周围都不铺地线,同时
要保证感应连线不要同其他线靠太近。
缺点:抗干扰稍差,EMC测试效果差一些!
二、 为了增加抗干扰和EMC测试效果,可以在PCB上空余的地方铺地线,为了
得到最理想的效果需要遵守一些规则,请参考以下例图:
1、感应盘周围如果铺地线,建议间距保证1mm以上;
2、触摸感应线尽量从背面走线,即触摸感应盘的另一层面;
×√
1.触摸面 背面
2.触摸面 背面
此资料仅供内部工程使用!联系人:尹先生13724303918 QQ:291636569
4、触摸感应线尽量就近取短,保持总体长度一致,不绕圈;
5、两片触摸芯片应用时,两片触摸按键感应线路中间需加地线隔离,以防串扰;
6、触摸感应线不宜交叉走线,CS电容尽量靠近芯片且不宜放在触摸盘背面;
7、感应线应尽量细,与周围地线尽量保持一定间距:
a.如图说明,感应盘引线(从感应盘经过电阻到IC的这段连线)与地线或者周围其他线路尽量保持大于1mm的间距,至少也要大于0.6mm 。
b.两条感应线并行走时,应尽量拉大他们的间距,减少相互耦合电容。
此资料仅供内部工程使用!联系人:尹先生13724303918 QQ:291636569。
电容式触摸感应按键技术原理及应用电容式触摸感应按键技术原理及应用2010-05-26 12:45:02| 分类:维修| 标签:|字号大中小订阅市场上的消费电子产品已经开始逐步采用触摸感应按键,以取代传统的机械式按键。
针对此趋势,Silicon Labs公司推出了内置微控制器(MCU)功能的电容式触摸感应按键(Capacitive Touch Sense)方案。
电容式触摸感应按键开关,内部是一个以电容器为基础的开关。
以传导性物体(例如手指)触摸电容器可改变电容,此改变会被內置于微控制器内的电路所侦测。
电容式触摸感应按键的基本原理◆Silicon Labs 现提供一种可侦测因触摸而改变的电容的方法电容式触摸感应按键的基本原理就是一个不断地充电和放电的张弛振荡器。
如果不触摸开关,张弛振荡器有一个固定的充电放电周期,频率是可以测量的。
如果我们用手指或者触摸笔接触开关,就会增加电容器的介电常数,充电放电周期就变长,频率就会相应减少。
所以,我们测量周期的变化,就可以侦测触摸动作。
具体测量的方式有二种:(一)可以测量频率,计算固定时间内张弛振荡器的周期数。
如果在固定时间内测到的周期数较原先校准的为少,则此开关便被视作为被按压。
(二)也可以测量周期,即在固定次数的张弛周期间计算系统时钟周期的总数。
如果开关被按压,则张弛振荡器的频率会减少,则在相同次数周期会测量到更多的系统时钟周期。
Silicon Labs推出的C8051F9xx微控制器(MCU)系列,可通过使用芯片上比较器和定时器实现触摸感应按键功能,连接最多23个感应按键。
而且无须外部器件,通过PCB走线/开关作为电容部分,由内部触摸感应按键电路进行测量以得知电容值的变化。
◆以Silicon Labs的MCU实现触摸感应按键利用Silicon Labs其它MCU系列,仅需搭配无源器件,即可实现电容式触摸感应按键方案。
与C8051F93x-F92x方案相比,唯一所需的外部器件是(3+N)电阻器,其中N是开关的数目,以及3个提供反馈的额外端口接点。
电容式触摸面板PCB Layout 指南本文旨在为S-Touch T M 电容触摸感应设计所采用的各种PcB(印刷电路板)的结构和布局提供设计布局指导,包括触摸键,滑动条和旋转条。
鉴于在多种应用中,两层PCB 板被广泛采用,本文以两层PCB 板为例,介绍PCB 板的设计布局PCB 设计与布局在结构为两层的PCB 中,S-Touch 触摸控制器和其他部件被布设在PCB 的底层,传感器电极被布设在PCB 的顶层。
每个传感器通道所需的调谐匹配电容器可以直接布设在该传感器电极的底层。
需要指出的是,S-Touch 触摸控制器布设在底层,应该保证其对应的顶层没有布任何传感器电极。
顶层和底层的空白区域可填充网状接地铜箔,铜箔距离感应电极需在3mm 以上PCB 设计规则第1层(顶层)•传感器电极位于PCB 的顶层(PCB 的上端与覆层板固定在一起),感应电极一般布置为一个焊盘,所有感应电极面积尽量保持一致大小,有效面积不得小于25mm ²,但也不能超过15mm ²×15mm ²,若超过这一尺寸,不但会降低灵敏度,而且会增加对噪声的易感性。
感应电极大小应根据覆层板(外壳)的材料和厚度来适当布置,对应关系为(仅供参考):空白区域可填充网状接地铜箔(迹线宽度为6密耳,网格尺寸为30密耳)。
•顶层可用来布设普通信号迹线(不包括传感器信号迹线)。
应当尽可能多地把传感器信号迹线布设在底层。
传感器信号迹线宽度请选用0.15mm~0.2mm ,建议不要超过0.2mm 。
•感应电极与接地铜箔的距离至少应为2mm ,我公司建议在3mm 以上感应电极面积亚克力普通玻璃ABS 6mm ×6mm 1.0mm 2.0mm 1.0mm 7mm ×7mm 2.0mm 3.0mm 2.0mm 8mm ×8mm 3.5mm 4.0mm 3.5mm 10mm ×10mm 4.5mm 6.0mm 4.5mm 12mm ×12mm 6.0mm 8.0mm 6.0mm 15mm ×15mm8.0mm12mm8.0mm第2层(底层)•传S-Touch控制器和其他无源部件应该设计布局在底层。
电容与PCB布线
1、对于超高频电路,每个电源引脚配接一个1000pf的滤波电容。
对电源引脚冗余量较大的电路也可按输出引脚的个数计算配接电容
的个数,每5个输出配接一个1000pf的滤波电容。
2、高频电容应尽可能靠近IC电路的电源引脚处。
3、每5只高频滤波电容至少配接一只一个0.1uf滤波电容。
4、每5只10uf至少配接两只47uf低频的滤波电容。
5、每100cm2范围内,至少配接1只220uf或470uf低频滤波电容。
6、每个模块电源出口周围应至少配置2只220uf或470uf电容,如
空间允许,应适当增加电容的配置量。
7、脉冲与变压器隔离准则:脉冲网络和变压器须隔离,变压器只能
与去耦脉冲网络连接,且连接线最短。
8、在开关和闭合器的开闭过程中,为防止电弧干扰,可以接入简单
的RC网络、电感性网络,并在这些电路中加入一高阻、整流器或负
载电阻之类,如果还不行,就将输入和载出引线进行屏蔽。
此外,
还可以在这些电路中接入穿心电容。
9、退耦、滤波电容须按照高频等效电路图来分析其作用。
10、各功能单板电源引进处要采用合适的滤波电路,尽可能同时滤
除差模噪声和共模噪声,噪声泄放地与工作地特别是信号地要分开,可考虑使用保护地;集成电路的电源输入端要布置去耦电容,以提
高抗干扰能力。
介绍本应用指南旨在为,电容触摸感应设计所用的各种PCB(印刷电路板) (如FR4、柔性PCB 或ITO面板)的结构和布局提供设计布局指导。
在目前市场上可提供的PCB基材中,FR4是最常用的一种。
FR4是一种玻璃纤维增强型环氧树脂层压板,PCB可以是单层或多层。
在触摸模块的尺寸受限的情况下,使用单层PCB不是总能行得通的,通常使用两层或者多曾PCB。
我们将以最常用的两层PCB为例来介绍PCB布局指南。
PCB设计与布局在结构为两层的PCB中,触摸控制器和其他部件被布设在PCB的底层,传感器电极被布设在PCB的顶层。
图.1 基于两层板的电容式触摸模组的结构每个传感器通道所需的调谐匹配电容器可以直接布设在该传感器电极的底层。
需要指出的是,触摸控制器布设在底层,应该保证其对应的顶层没有布设有任何传感器电极。
顶层和底层的空白区域可填充网状接地铜箔。
图2.1两层PCB板的顶层图2.2两层PCB板的底层设计规则第1层(顶层)●传感器电极位于PCB的顶层(PCB的上端与覆层板固定在一起)。
为提高灵敏度,建议使用尺寸为10 x 10 毫米的感应电极。
可以使用更小尺寸的感应电极,但会降低灵敏度。
同时,建议感应电极的尺寸不超过15 x 15毫米。
如果感应电极超过这一尺寸,不但会降低灵敏度,而且会增加对噪声的易感性。
●空白区域可填充接地铜箔(迹线宽度为6 密耳,网格尺寸为30密耳)。
●顶层可用来布设普通信号迹线(不包括传感器信号迹线)。
应当尽可能多地把传感器信号迹线布设在底层。
●感应电极与接地铜箔的间距至少应为0.75毫米。
第2层(底层)●控制器和其它无源部件应该设计布局在底层。
●传感器信号迹线将被布设在底层。
不要把一个通道的传感器信号迹线布设在其他传感通道的感应电极的下面。
图.3 触摸极板下的传感器信号迹线走线方式●空白区域可填充接地铜箔(迹线宽度为6 密耳,网格尺寸为30密耳)。
●传感器信号迹线与接地铜箔的间距应当至少是传感器信号迹线宽度的两倍。
如何设计电容感应式触摸开关电容感应式触摸开关,需要稳定的单火线电源处理以及稳定可靠的触摸感应芯片,做到防误触发、防各种电磁干扰、负载干扰、环境干扰、甚至需要防水防尘功能等智能触摸开关功能要求。
1.电容式传感的基本原理电容传感技术为开发人员提供了一种与用户互动的全新方式,在设计一个电容感应式触摸开关时,需要考虑许多不同的因素。
从以往的使用经验来看,在各种不同的工作条件下,开关的灵敏性必须与多种情况相兼容。
本节我们要讨论在设计电容感应式触摸开关PCB触点图形时,各种不同的排板设计对开关灵敏度的影响,包括电容式传感技术如何使器件具有更高的可靠性以及管理电容式传感技术的控制器如何通过提供更多功能为客户带来增值服务和降低维护成本。
机械开关比较容易磨损,甚至磨坏产品外壳,导致缺口或裂口处侵入污染物。
电容式传感器就不会发生损坏产品外壳的情况,也不会出现缺口粘连物,更不会出现磨损。
因此,采用这种技术的开关器件是替代多种机械开关产品的理想选择。
如下图所示,电容式开关主要由两片相邻的电路极板构成,而根据物理原理,两片极板之间会产生电容。
如果手指等导体靠近这些极板,平行电容(parallelca PAC i-tance)就会与传感器相耦合。
将手指置于电容式传感器上时,电容量会升高;移开手指,电容量则会降低,通过测量电容量就可以判断手指的碰触。
电容式传感器由两片电路极板及相互之间的一定空间所构成。
这些电路极板可以是电路板的一部分,上面直接覆盖绝缘层,当然,也可以使极板顺应各种曲面的弧度。
构建电容式开关的要素包括:电容器、电容测量电路系统、从电容值转换成感应状态的局部智能装置。
典型的电容式传感器电容值介于10~30pF之间。
通常来说,手指经由Imm绝缘层接触到传感器所形成的耦合电容介于1~2pF的范围。
越厚的绝缘层所产生的耦合电容愈低。
若要传感手指的触碰,必须实现能够检测到1%以下电容变化的电容传感电路。
增量求和调制器是一种用于测量电容的高效、简单的电路,下图给出了典型的拓扑结构。
两种电容式触摸按键电路设计要点珠海格力电器股份有限公司广东珠海 519000摘要:TS08N/NE和CAP 1298是家用电器显示板常用的两款电容式触摸芯片。
前者引脚较多,电路设计复杂、成本高,但是软件开发工作量较小;而后者引脚较少,电路设计简单、成本低,但是需要进行一定的软件开发。
两种设计方案均存在一定的设计难度。
本文作者在大量工程实践的基础上面,提炼出了相关设计要点供大家参考。
关键词:TS08N/NE CAP 1298电容式触摸芯片显示板Key points of design of two capacitive touch key circuitsHu Haoran Song ZhizhongGree Electric Appliances, Inc.of Zhuhai Zhuhai Guangdong 519000Abstract: TS08N/NE and CAP 1298 are two capacitive touch chips commonly used in display boards of household appliances. The former has more pins, complex circuit design and high cost, but less software development work; The latter has fewer pins, simple circuit design and low cost, but requires certain software development. The two design schemes have certain design difficulties. Based on a large number of engineering practices, the author has extracted the relevant design points for your reference.Keywords: TS08N/NE,CAP 1298,Capacitive Touch Chip, Display Board 1两种电容式触摸按键电路设计要点1 引言目前市场上供家用电器使用的触摸芯片种类繁多,如何对触摸芯片进行合理选型,需从多方面考虑,比如:触摸按键的通道数、触摸按键的灵敏度、触摸按键的可靠性、控制器成本等。
电容式触摸感应按键技术原理及应用2010-05-26 12:45:02| 分类:维修 | 标签: |字号大中小订阅市场上的消费电子产品已经开始逐步采用触摸感应按键,以取代传统的机械式按键。
针对此趋势,Silicon Labs公司推出了内置微控制器(MCU)功能的电容式触摸感应按键(Capacitive Touch Sense)方案。
电容式触摸感应按键开关,内部是一个以电容器为基础的开关。
以传导性物体(例如手指)触摸电容器可改变电容,此改变会被內置于微控制器内的电路所侦测。
电容式触摸感应按键的基本原理◆Silicon Labs 现提供一种可侦测因触摸而改变的电容的方法电容式触摸感应按键的基本原理就是一个不断地充电和放电的张弛振荡器。
如果不触摸开关,张弛振荡器有一个固定的充电放电周期,频率是可以测量的。
如果我们用手指或者触摸笔接触开关,就会增加电容器的介电常数,充电放电周期就变长,频率就会相应减少。
所以,我们测量周期的变化,就可以侦测触摸动作。
具体测量的方式有二种:(一)可以测量频率,计算固定时间内张弛振荡器的周期数。
如果在固定时间内测到的周期数较原先校准的为少,则此开关便被视作为被按压。
(二)也可以测量周期,即在固定次数的张弛周期间计算系统时钟周期的总数。
如果开关被按压,则张弛振荡器的频率会减少,则在相同次数周期会测量到更多的系统时钟周期。
Silicon Labs推出的C8051F9xx微控制器(MCU)系列,可通过使用芯片上比较器和定时器实现触摸感应按键功能,连接最多23个感应按键。
而且无须外部器件,通过PCB走线/开关作为电容部分,由内部触摸感应按键电路进行测量以得知电容值的变化。
◆以Silicon Labs的MCU实现触摸感应按键利用Silicon Labs其它MCU系列,仅需搭配无源器件,即可实现电容式触摸感应按键方案。
与C8051F93x-F92x方案相比,唯一所需的外部器件是(3+N)电阻器,其中N是开关的数目,以及3个提供反馈的额外端口接点。
电容式触摸按键解决方案一、方案简介在便携式媒体播放器和移动手持终端等大容量、高可视性产品的应用中,触摸按键已被广泛采用.由于其具有方便易用,时尚和低成本的优势,越来越多的电子产品开始从传统机械按键转向触摸式按键.触摸按键方案优点:1、没有任何机械部件,不会磨损,无限寿命,减少后期维护成本.2、其感测部分可以放置到任何绝缘层〔通常为玻璃或塑料材料〕的后面,很容易制成与周围环境相密封的键盘.以起到防潮防水的作用.3、面板图案随心所欲,按键大小、形状任意设计,字符、商标、透视窗等任意搭配,外型美观、时尚,不褪色、不变形、经久耐用.从根本上解决了各种金属面板以与各种机械面板无法达到的效果.其可靠性和美观设计随意性,可以直接取代现有普通面板〔金属键盘、薄膜键盘、导电胶键盘〕,而且给您的产品倍增活力!4、触摸按键板可提供UART、IIC、SPI等多种接口,满足各种产品接口需求.二、原理概述如图1所示在PCB上构建的电容器,电容式触摸感应按键实际上只是PCB上的一小块"覆铜焊盘〞,触摸按键与周围的"地信号〞构成一个感应电容,当手指靠近电容上方区域时,它会干扰电场,从而引起电容相应变化.根据这个电容量的变化,可以检测是否有人体接近或接触该触摸按键.接地板通常放置在按键板的下方,用于屏蔽其它电子产品产生的干扰.此类设计受PCB 上的寄生电容和温度以与湿度等环境因素的影响,检测系统需持续监控和跟踪此变化并作出基准值调整.基准电容值由特定结构的PCB产生,介质变化时,电容大小亦发生变化.图1 PCB上构建开放式电容器示意图三、方案实现该系列电容式触摸按键方案,充分利用触摸按键芯片内的比较器特性,结合外部一个电容传感器,构造一个简单的振荡器,针对传感器上电容的变化,频率对应发生变化,然后利用内部的计时器来测量出该变化,从而达到响应触摸功能的实现.该芯片内部本身集成了电容式触摸传感模块,可以做到一个I/O口对应一个按键,外围电路简洁、无需外部组件的情况下即可通过片上振荡器和电容式触摸感应IO实现触摸按键接口;1.8-3.6V宽电压工作X围,支持电池供电.超低功耗触摸按键待机电流消耗可低至1uA、最大工作电流0.8mA;MCU内部的数控振荡器<DCO>,可提供高达16MHz的频率,能在1uS时间内激活并实现稳定工作.MCU上电启动自动校准,生产、测试过程简单;可支持按钮、滑块、滚轮以与近距离传感器;适用于5mm以内的任何绝缘材料、如玻璃、陶瓷、塑料等;灵敏度可调节,具有很高的调节性;具有先进的防干扰措施,防止按键误动作,全自动补偿,不受环境温湿度影响.通讯接口多样性:提供IIC、SPI、UART等接口.图2 方案示意图四、触摸按键原理图图3 子机21键触摸按键方案原理图五、实物图片图4 无绳子机21键PCB六、电路板布局注意事项:1.将电路连接到触摸板由于电线会增加基准电容,因此应尽量缩短触摸板的连接线.由于弯曲可能影响整个电容变化,连接线应尽可能保持稳定的形状,这点同样非常重要.由于触摸板驱动电路本身具有高阻抗,因此应避免将高速或大电流驱动电线靠近触摸板电线.1.触摸板的形状和大小可使用标准实体填充的圆形或方形按键板. 可在按键板上钻孔以便提供背光,这不会影响电容性能. 按键板周围通常是接地区域. 可以使用网状和实体填充. 与接地区域的间隙通常为按键板尺寸的1/20. 如果使用10mm的按键板,则适合使用0.5mm的间隙〔请参见图5〕.图5 触摸板的大小和形状在滚动条应用中,按键板应紧密地封装在一起. 在此情况下,未使用的相邻按键板将通过器件接地.这将在活动按键板周围形成动态接地平面.通常,按键板尺寸越大,其敏感度就越高.该限制是当手指无法覆盖按键板区域时,增加按键板尺寸并不会产生更好的效果.按键板与接地平面之间的间隙也会影响其敏感度.在滚动条应用中,按键板不能太大,这一点很重要. 普通手指应能覆盖一个半大小的触摸板.2.PCB厚度与非活动表面接地由于电容器传感器板通常放置在其它电子器件的顶部,这有助于将地线排在PCB的下侧,使传感器能够屏蔽下方电子器件产生的辐射噪声.如果采用FR4材料,PCB的厚度对传感器影响不大. 若采用柔性PCB材料,如聚酰亚胺薄膜<Kapton>,那么材料越薄,下方的接地板就更靠近传感器按键的表面,且可能干扰其电容性能. 通过使用40%或更小的网状接地可以减小耦合区域,从而能够降低此影响.七、覆盖1.覆盖材料选择覆盖材料时须考虑两大因素:电容耦合性能〔介电常数〕静态击穿特性表1显示了一些常用材料的介电常数:材料的介电常数越高,手指与传感器板之间的电容耦合性能就越佳.除空气和某些木头外,上述材料非常适合用作覆盖材料.由于空气具有较低的电容耦合特征,因此应尽量不要在传感器板与覆盖材料之间留有空隙.空隙还可能聚集水分,当温度突然改变时这些水分可能凝聚到传感器表面. 请参阅8.3 Section了解有关粘合和填充复合材料的信息.表2显示通过覆盖一些常用材料,可避免出现12kV损坏的最小厚度:要增强ESD保护,可添加一层聚酰亚胺薄膜,这可以大幅提高覆盖层的击穿容限.2. 覆盖层厚度与敏感度对比覆盖层厚度通常与敏感度成反比,也成反向指数关系.诸多因素可能影响电容传感板的敏感度:按键板尺寸覆盖层材料与其厚度感应方法增益〔包括IIR滤波器增益和时钟速度〕3.粘合和其它填充复合材料在大多数应用中,传感器电极与覆盖层材料之间应密封耦合.设计人员可以在填充表中选择以机械方式还是粘合方式将覆盖层材料按压在PCB板上.选择粘合剂时须考虑两大因素:材料不得携带电荷并且不得影响电容性能〔因此,它应当为绝缘体〕.材料不会吸收水分.3M™ 467MP和468MP高性能丙烯酸双面胶带具有4.2mil 58磅涂有聚乙烯的牛皮卡纸,是此应用的理想选择.技术支持:胡立忠:0752-*******转816 :0752-*******:402290722八、通讯协议描述:3.通讯总线:a.工业标准NXP I2C 总线协议.b.本部件工作在SLA VE模式.c.可支持最大速率:400Kbps.d.本部件I2C地址〔7位〕0x6E.*MASTER读数据指时序:Start->发写命令〔0xDC〕->等待应答->写字节偏移地址<0x00>< 本方案直接从0X00开始读数据>->等待应答-> Stop->Start->发读命令<0xDD>->等待应答->读数据->非应答->Stop其它指令请参考标准I2C协议,不再详述.2.中断Pin置低:检测到按键,从0x00地址开始读4个字节按键数据.置高:无任何按键被检查到.3.I2C寄存器定义所有寄存器初始值:0x00Bit置1:对应按键按下.Bit置0:对应按键释放.DECT彩屏子机触摸按键图片数字无绳子机21键键值对应表:V oIP+DECT+MID方案触摸按键图片VoIP座机按键丝印板图座机按键键值对应表:。
触摸按键PCB设计要点细节整理触摸按键PCB设计要点a)元件布局。
触摸IC放置在Sensor Pad的中间位置。
理想的布局方式b)优先考虑触摸走线。
以K2按键为例。
PCB走线从IC第6脚出来经过电阻(电阻靠近IC 放置)连到触摸焊盘。
PCB走线全部在底层完成,过孔直接打在SensorPad上。
c)Sensor Pad布线要求。
走线尽量短和直。
走线线宽为7-10mil。
走线间距15-20mil以上间距;空间足够,触摸按键之间用地线隔开。
远离I2C,SPI通信线;没办法远离,要用地线隔开或者垂直走线。
也要远离其他元件和走线,没办法远离,要用地线隔开或者垂直走线。
不同T ouch模块相对应的键(例如:KEY1与KEY5)避免走线靠在一起;即使靠在一起,也要在两线之间加地线隔开。
d)触摸IC电源,RESET电路布线要点。
C3 104电容靠近触摸IC放置。
外部供电电源要先经过C3 104电容再到触摸IC的VDD与GND 脚,要注意先后顺序。
RESET复位电路元件靠近IC放置。
图中C1,C2,R8,R9元件。
复位电路回路的VDD与GND要接在电源和地的104电容后端,即触摸IC的VDD与GND后端。
触摸IC的VDD脚除了接复位电路的电源外,不要从触摸IC的VDD脚引电源去驱动其他负载。
e)覆铜处理。
覆铜的目的是为了增强抗干扰能力。
Sensor Pad层覆铜:铺实心地,地到Sensor Pad的间距0.5-2.0mm; 空间足够时间距1.0-2.0mm。
Sensor Pad焊盘的正下方。
一般来说,当面板的厚度大于4mm 时,Sensor Pad焊盘的正下方不铺地。
Sensor Pad焊盘的正下方。
一般来说,当面板的厚度小于3mm 时,Sensor Pad焊盘的正下方铺网格地。
f)压克力厚度测试数据。
与Sensor Pad直径,电容值,Sensor Pad正下方是否铺网格地有关。
下图表格作用:可以根据面板的厚度来决定Sensor Pad直径做成多大,以及Sensor Pad正下方是否铺网格地。
电容触摸屏原理及工艺制程
一、电容触摸屏原理
电容触摸屏是基于触摸表面上形成的四线制电容变化的直接接触来控
制的触摸屏。
其核心实现原理是表面电容原理,它的核心部件是分布在屏
幕表面的电容网格,它将表面折射为一对可控制的电容。
当触摸屏检测到
用户的手指触摸时,它会改变两个可控的电容的比例,从而实现触摸按键
操作。
二、电容触摸屏的工艺制程
1.电容触摸屏工艺制程开始,从表面准备开始,其中包括清洁、磨平、涂抹開口等。
2.接下来将屏幕的表面和背面分别涂上鑄制在PCB上的导电压面,并
完成连接,以形成四线制电容网格。
3.然后,在导电面上涂上一层增强纤维,并由增强纤维框架包围,形
成可控制的电容网格。
4.接下来,将电容触摸屏封装,包括涂覆防火耐热涂料,安装触摸屏
和控制板,以及安装电容网格膜,形成可控的电容网格。
5.最后,安装接口线,和外部设备建立连接,并完成测试。
1.电源A.优先采用线性电源,因为开关电源有所产生的纹波对于触摸芯片来说影响比较大B.触摸IC的电源采用开关电源时,尽量控制纹波幅度和噪声。
在做电源变化时,如果纹波不好控制,可采用LDO经行转换C.触摸芯片的电源要与其他的电源分开,可采用星型接法,同时要进行滤波处理。
如果电源干扰的纹波比较大时可以采用如下的方式:2.感应按键A.材料根据应用场合可以选择PCB铜箔、金属片、平顶圆柱弹簧、导电棉、导电油墨、导电橡胶、导电玻璃的ITO层等但在安装时不管使用什么材料,按键感应盘必须紧密贴在面板上,中间不能有空气间隙。
B.形状:原则上可以做成任意形状,中间可留孔或镂空。
我们推荐做成边缘圆滑的形状,如圆形或六角形,可以避免尖端放电效应C.大小最小4mmX4mm,最大30mmX30mm,有的建议不要大于15mmX15mm,太大的话,外界的干扰相应的也会增加D.灵敏度一般的感应按键面积大小和灵敏度成正比。
一般来说,按键感应盘的直径要大于面板厚度的4倍,并且增大电极的尺寸,可以提高信噪比。
各个感应盘的形状、面积应该相同,以保证灵敏度一致。
灵敏度与外接CIN电容的大小成反比;与面板的厚度成反比;与按键感应盘的大小成正比。
CIN电容的选择:CIN电容可在0PF~50PF选择。
电容越小,灵敏度越高,但是抗干扰能力越差。
电容越大,灵敏度越低,但是抗干扰能力越强。
通常,我们推荐5PF~20PFE.按键的间距各个感应盘间的距离要尽可能的大一些(大于5mm),以减少它们形成的电场之间的相互干扰。
当用PCB铜箔做感应盘时,若感应盘间距离较近(5MM~10MM),感应盘周围必须用铺地隔离。
如图:各个按键距离比较远,周围空白的都用地线隔开了。
但注意地线要与按键保持一定的距离面板必须选用绝缘材料,可以是玻璃、聚苯乙烯、聚氯乙烯(pvc)、尼龙、树脂玻璃等。
在生产过程中,要保持面板的材质和厚度不变,面板的表面喷涂必须使用绝缘的油漆。
在电极不变的情况下,面板的厚度和材质决定灵敏度。
几种常见的触摸感应面板设计方法
在实际应用中,常用的感应盘有PCB板上的铜箔、弹簧、薄膜线路以及ITO玻璃灯,一般情况下,感应盘面积可以在3mm×3mm~30mm×30mm之间,每个感应盘的面积应尽量保持相同,以确保
灵敏度相同。
触摸感应灵敏度通过基准电容CSEL的电容值来调节。
在可调范围内,CSEL越大,灵敏度越高,CSEL越小,灵敏度越低。
以下是常见的触摸感应面板的设计方法,供参考
1,采用双面PCB,触摸感应IC放在PCB的BOTTOM层,通TOP层的铜箔做按键感应盘,如图所示:
PCB上的铜箔做按键感应盘的实例
2,采用单面PCB板或双面PCB板,用金属弹簧做感应盘,如图所示
用弹簧做按键感应盘的实例
3,在设计LCD显示器时,将按键图形动的态效果以及其它显示内容做整体的美学设,用ITO 透明导电金属做按键感应盘并用引脚引出。
如图所示:
用ITO做按键感应盘的触摸感应和显示一体的实例
4,在PVC和PET透明软胶片上丝印导电银浆或碳浆按键感应盘和引出线的电路,再用双面胶将整个软胶片电路贴于绝缘面板背面,此方法特别适合于弧面触摸感应面板,如图所示
用PVC或PET软胶片上的导电油墨做按键感应盘的实例
以上几种方法各有利弊,在实际应用中,用户可根据面板形状、大小、按键分布、面板结构、几何尺寸、性能指标、成本目标、生产效率等要求,选择最适合的方式进行设计。
宝华电容式触摸感应按键面板 PCB设计指南1.触摸感应面板PCB设计的基本原则1.1. 遵循通常的数模混合电路设计的基本原则。
宝华电子的电容式触摸感应芯片,内部既成了精密电容测量的模拟电路,因此进行PCB设计时应该把它看成一个独立的模拟电路对待。
遵循通常的数模混合电路设计的基本原则。
1.2. 采用星形接地具体要求是触摸芯片的地线不要和其他电路公用,应该单独连到板子电源输入的接地点,也就是通常说的采用“星形接地”。
1.3. 电源上产生的噪声对触摸芯片的影响电源回路也应遵循同样地处理办法。
触摸芯片最好用一根独立的走线从板子的供电点取电,不要和其他的电路共用电源回路。
如果做不到完全独立,也应该保证供电的电源线先进入触摸芯片的电源然后再引到其它的电路的电源。
这样可以减小其他电路在电源上产生的噪声对触摸芯片的影响。
图1为以上说明的电源和地线连接方法示意图图1:电源和地线连接方法示意图2.通过EMC测试的设计建议触摸芯片需要在传感器通道上加交流脉冲信号来测量感应盘上的电容变化。
所以传感器通道会向外发射电磁波。
如果产品需要通过严格的FCC测试。
建议从以下方面减小触摸芯片对外的辐射。
2.1. 使用退藕电容触摸芯片的供电请加退藕电容,这可以减小触摸芯片对电源的干扰。
一般在芯片的VCC和GND端并接一个104的瓷片电容,就可以起到退藕和旁路的作用。
退藕电容应该尽量接近芯片放置。
2.2. 使用较低的工作电压:使用3.3V给触摸芯片供电,这样可以有效降低触摸芯片的交流脉冲的幅度。
2.3. 适当加大通道匹配电阻适当加大触摸芯片传感器通道上串接的匹配电阻阻值,这样可以降低交流脉冲边沿的陡峭程度,减小高次谐波。
匹配电阻加大后会降低感应的灵敏度,这可以通过加大感应度调节电容CSEL的值来进行调整。
2.4. 正确铺地无论使用单面PCB板和双面PCB板,PCB的空白处都应铺地,并用地将按键感应盘到IC 的输入引脚之间的连线包起来,可以吸收电磁波辐射,提升EMC指标,使用双面板,铺地方法有特别要求,参见第5条。
`电容式触摸按键
1. 电源
A.优先采用线性电源,因为开关电源有所产生的纹波对于触摸芯片来说影响比较大
B.触摸IC的电源采用开关电源时,尽量控制纹波幅度和噪声。
在做电源变化时,如果纹波不好控制,
可采用LDO经行转换
C.触摸芯片的电源要与其他的电源分开,可采用星型接法,同时要进行滤波处理。
如果电源干扰的纹波比较大时可以采用如下的方式:
2.感应按键
A. 材料
根据应用场合可以选择PCB铜箔、金属片、平顶圆柱弹簧、导电棉、导电油墨、导电橡胶、导电玻璃的ITO层等
但在安装时不管使用什么材料,按键感应盘必须紧密贴在面板上,中间不能有空气间隙。
B. 形状:
原则上可以做成任意形状,中间可留孔或镂空。
我们推荐做成边缘圆滑的形状,如圆形或六角形,可以避免尖端放电效应
C. 大小
最小4mmX4mm, 最大30mmX30mm,有的建议不要大于15mmX15mm,太大的话,外界的干扰相应的也会增加
D. 灵敏度
一般的感应按键面积大小和灵敏度成正比。
一般来说,按键感应盘的直径要大于面板厚度的4倍,并且增大电极的尺寸,可以提高信噪比。
各个感应盘的形状、面积应该相同,以保证灵敏度一致。
灵敏度与外接CIN电容的大小成反比;与面板的厚度成反比;与按键感应盘的大小成正比。
CIN电容的选择:
CIN电容可在0PF~50PF选择。
电容越小,灵敏度越高,但是抗干扰能力越差。
电容越大,灵敏度越低,但是抗干扰能力越强。
通常,我们推荐5PF~20PF
E. 按键的间距
各个感应盘间的距离要尽可能的大一些(大于5mm),以减少它们形成的电场之间的相互干扰。
当用PCB铜箔做感应盘时,若感应盘间距离较近(5MM~10MM),感应盘周围必须用铺地隔离。
如图:各个按键距离比较远,周围空白的都用地线隔开了。
但注意地线要与按键保持一定的距离
3.绝缘材料
面板必须选用绝缘材料,可以是玻璃、聚苯乙烯、聚氯乙烯(pvc)、尼龙、树脂玻璃等。
在生产过程中,要保持面板的材质和厚度不变,面板的表面喷涂必须使用绝缘的油漆。
在电极不变的情况下,面板的厚度和材质决定灵敏度。
比如,3.2mm厚的尼龙(Nylon)相当于2.8mm 厚的树脂玻璃(Plexiglas)。
通常,在厚度、面积相同的情况下,介电常数越大,灵敏度越高。
但在正常应用中,推荐使用介电常数适中的材质,比如树脂玻璃等。
介电常数过小,会导致灵敏度差;
介电常数过大,发生误动作的几率会变大。
面板厚度的选择:通常在0~3MM。
4.布局
A. CIN电容尽量靠近IC放置,各个通道的CIN电容必须用铺地隔离。
感应盘也要尽量靠近IC,这样
感应盘到IC的连线就会最短
B. 布局时应尽量保证触摸IC到感应盘的距离基本平衡
5.走线
A. 感应盘到触摸芯片的连线尽量短和细,如果PCB工艺允许尽量采用5MIL的线宽
B. 感应盘到触摸IC的连线不要跨越其他信号线。
尤其不能跨越强干扰、高频的信号线
C. 感应盘到触摸IC的连线周围0.5MM不要走其他信号线
D. 如果使用哪个PCB板上的铜箔图案做触摸感应盘,尽量使用双面PCB,触摸芯片和感应盘到IC
引脚的连线应放在感应盘铜箔的背面(BOTTOM)。
感应盘应紧贴触摸面板。
E. 触摸IC及其相关的外围电路要用45°网格铺地,网格中铜的面积不要超过总面积的40%。
连线周
围0.5MM不能铺地。
感应盘和铺地至少要有10MM的距离。
感应盘正对的背面不允许铺地,也
不允许有任何大面积的铜箔和其他信号线。
6.其他事项
PCB板的清洁:
残留的助焊剂和污物,在恶劣的温度和湿度环境下会严重影响芯片工作的稳定性。
带弹簧的感应盘安装时注意:
1:使用带弹簧的感应盘,将感应盘顶在面板上。
2:使用导电橡胶或导电棉,导电棉或导电橡胶顶端作为感应盘紧贴在面板上。
3:将感应盘用双面胶紧密粘在面板上。
没有用到的端口可以悬空。