线性代数 第三章向量
- 格式:pdf
- 大小:109.24 KB
- 文档页数:4
第三章 几何空间一、 向量的运算1. 向量的数量积(1) 在仿射坐标系123{;,,}O e e e 中给定两个向量123(,,)x x x α=,123(y ,,)y y β=,则112323(,,)y x x x A y y αβ⎛⎫ ⎪⋅= ⎪ ⎪⎝⎭,其中111213212223313233e e e e e e A e e e e e e e e e e e e ⋅⋅⋅⎛⎫ ⎪=⋅⋅⋅ ⎪ ⎪⋅⋅⋅⎝⎭. (2) 在直角坐标系{;,,}O i j k 中给定两个向量123(,,)x x x α=,123(y ,,)y y β=,则131233213(,,)i i i y x x x I y x y y αβ=⎛⎫ ⎪⋅== ⎪ ⎪⎝⎭∑ ∙ =0αβαβ⊥⇔⋅2. 向量的向量积在直角坐标系{;,,}O i j k 中给定两个向量123(,,)x x x α=,123(y ,,)y y β=,则123123i jk x x x y y y αβ⨯=. ∙ //=0αβαβ⇔⨯3. 向量的混合积在直角坐标系{;,,}O i j k 中给定两个向量123(,,)x x x α=,123(y ,,)y y β=,123(,,)z z z γ=则123123123(,,)x x x y y y z z z αβγ=. ∙ (,,)0αβγαβγ⇔=,,共面例:(1)设=αβγδ⨯⨯, =αγβδ⨯⨯,证明αδ-,βγ-共线.(2)设0αββγγα⨯+⨯+⨯=,证明αβγ,,共面.(3)证明()()βγααγβγ⋅-⋅⊥.证明:(1)因为()()αδβγ-⨯-=αβαγδβδγ⨯-⨯-⨯+⨯=αβγδαγ⨯-⨯-⨯+0βδ⨯=,所以αδ-,βγ-共线.(2)因为()αβγ=,,()αβγ⨯⋅=()βγγ-⨯⋅()γαγ-⨯⋅=()βγγ-,,()γαγ-,,0=,所以αβγ,,共面.(3) 因为(()βγα⋅())αγβγ-⋅⋅=()βγ⋅()αγ⋅()αγ-⋅()βγ⋅0=,所以()βγα⋅()αγβ-⋅γ⊥.二、 位置关系的判断1. 两个向量的共线;三个向量的共面.2. 两条直线异面,共面(相交、平行、重合)3. 两个平面相交、平行、重合4. 直线与平面相交、平行、直线在平面上.三、距离和垂线(在右手直角坐标系中讨论)1. 点到直线的距离,垂线方程垂线方程:设直线过已知点0000,,)P x y z (方向向量为0()X Y Z υ=,,,求过111(,,)P x y z 点直线的垂线方程。
第三章向量组的线性相关性与矩阵的秩何建军§3 • 1 概念与性质3.1.1向量的概念和运算1、n维向量:n个数构成的一个有序数组(a i,a2,…,a n),称为一个n维向量,记为〉=佝,a2 ,…,a n ),并称为n维行向量,a i称为〉的第i个分量,〉的转置T T(a1,a2, a n)称为n维向量。
2、相等:若a =@182,…,a n),p =(D,b2,…,b n),当且仅当a i =b i(i =1,2,…,n)时,:,:。
3、加法:」-a b!,a2 b2^ ,a n b n4、数乘:k ka1,ka2,…,ka n ,(k 为常数)5、內积:匕0 】=aQ +a?b2 + …+a“b n3.1.2向量组的线性相关性1、线性组合:给定向量组A : 对于任何一组实数匕出,…,k m,向量k V1 k^ 2肚m称为向量组A的一个线性组合,匕*?,…,k m称为这个线性组合的组合系数2、线性表示:给定向量组A : 〉1「2,i「m和向量:,如果存在一组数n n « n'1, '2, ,‘ m ,使得■- = ‘1〉1 ‘2〉2 •…-'rn'm则向量-能有向量组A线性表示,向量-是向量组A的线性组合。
3、线性相关:给定向量组A : ‘1厂2,厂m,如果存在一组不全为零的数k1 , k2 , , k m,使得kr 1 k2〉2 k m〉m=o则称向量组A是线性相关的。
4、线性无关:向量组A :r,〉2,…,〉m,不线性相关,称向量组A线性无关,即不存在不全为零的数k1,k2, , k m使得1• k2「2•■ k m m=0成立,即只有当k1二Q二=k m=0时,才有k^ 1 k2「2 ' k^' m=0成立。
(如果存在一组数k-k2,,k m 使得k V 1 k^ ■k m「m=0,则必有k1= k2 = = k m=0,称向量组A 线性无关)注:含有零向量的向量组一定线性相关。
线性代数[第三章n维向量]⼭东⼤学期末考试知识点复习第3章 n维向量⼀、n维向量的概念1.n维向量的定义由n个数a1,a2,…,a n所组成的⼀个有序数组α=(a1,a2,…,a n)称为⼀个n维向量,其中第i个数ai称为向量α的第i个分量(i=1,2,…,n).向量常⽤希腊字母α,β,γ,…来表⽰,其分量常⽤⼩写拉丁字母a,b,c,…来表⽰.2.零向量所有分量都是零的向量称为零向量.3.负向量向量α中的每个分量都变号后得到的向量,称为α的负向量,记为-α.4.向量相等两个向量相等的充要条件是它们的对应分量相等.⼆、向量的线性运算1.向量的加法设α=(a1,a2,…,a n),β=(b1,b2,…,b n),定义α+β为这两个向量的对应元素相加所得到的向量,即α+β=(a1+b1,a2+b2,…,a n+b n),并称其为向量的加法.2.数与向量的乘法设α=(a1,a2,…,a n),k∈R,则kα=(ka1,ka2,…,ka n)3.向量的减法设α=(a1,a2,…,a n),β=(b1,b2,…,b n),则α-β=(a1-b1,a2-b2,…,a n-b n).4.向量的线性运算向量的加法以及数与向量的乘法称为向量的线性运算.向量的线性运算满⾜以下⼋条运算规律:(1)α+β=β+α;(2)(α+β)+γ=α+(β+γ);(3)α+θ=α;(4)α+(-α)=θ;(5)1.α=α;(6)(kl)α=k(lα);(7)k(α+β)=kα+kβ;(8)(k+l)α=kα+lα三、向量的线性组合1.向量的线性组合的定义设β,α1,α2,…,αn是⼀组m维向量,如果存在数k1,k2,…,k n使得关系式β=k1α1+k2α2+…+k nαn成⽴,则称卢是向量组α1,α2,…,αn的线性组合,或称β可由向量组α1,α2,…,αn线性表⽰.2.⼏个常⽤结论(1)零向量可由任意同维向量组线性表⽰;(2)向量组中的任⼀向量可由该向量组线性表⽰;(3)任⼀n维向量α=(a1,a2,…,a n)都可由n维单位向量组ε1,ε2,…,ε线性表⽰,且α=a1ε1+a2ε2+…+a nεn.n四、向量组的等价1.定义设有两个向量组α1,α2,…,αm,(1)β1,β2,…,βn.(2)若向量组(1)中每个向量可以由向量组(2)线性表⽰,则称向量组(1)可由向量组(2)线性表⽰.若向量组(1)与向量组(2)可互相线性表⽰,则称两向量组等价,记作{α1,α2,…,αm}≌{β1,β2,…,βn}.2.向量组的等价性质向量组的等价满⾜反⾝性、对称性、传递性.五、向量组线性相关与线性⽆关1.定义设α1,α2,…,αn为n个m维向量,如果存在⼀组不全为零的数k1,k2,…,k n,使得k1α1+k2α2+…+k nαn=θ成⽴,则称向量组α1,α2,…,αn线性相关;否则,称向量组α1,α2,…,αn线性⽆关.线性⽆关的⼏种等价定义:(1)对任意⼀组不全为零的数k1,k2,…,k n,都有k1α1+k2α2+…+k nαn≠θ(2)k1α1+k2α2+…+k nαn=θ当且仅当k1,k2,…,k n全为零.2.⼏个常⽤结论(1)由⼀个向量α构成的向量组线性相关的充要条件是α=θ.(2)由两个向量构成的向量组线性相关的充要条件是其对应分量成⽐例.(3)含有零向量的任⼀向量组线性相关.(4)若⼀个向量组中有⼀个部分向量组线性相关,则该向量组线性相关;反之,若⼀个向量组线性⽆关,则它的任⼀部分组都线性⽆关.我们可把这个结论简单地记为“部分相关,整体相关;整体⽆关,部分⽆关”.(5)⼀个线性⽆关的向量组中的每个向量按相同的位置随意增加⼀些分量所得到的⾼维向量组仍线性⽆关.逆否命题:⼀个线性相关的向量组中的每个向量按相同的序号划去⼀些分量所得的低维向量组仍线性相关.(6)n维向量组α1,α2,…,αn线性⽆关的充要条件是D=det(α1,α2,…,αn)≠0;n维向量组α1,α2,…,αn线性相关的充要条件是D=det(α1,α2,…,αn)=0.(7)向量组α1,α2,…,αs(s≥2)线性相关的充要条件是其中⾄少有⼀个向量是其余s-1个向量的线性组合.(8)若向量组α1,α2,…,αs线性⽆关,⽽α1,α2,…,αs,β线性相关,则向量β可由向量组α1,α2,…,αs线性表⽰,且表⽰法惟⼀.(9)若向量组α1,α2,…,αs可由向量组β1,β2,…,βt线性表⽰,且s>t,则向量组α1,α2,…,αs线性相关.逆否命题:若向量组α1,α2,…,αs线性⽆关,且可由向量组β1,β2,…,βt线性表⽰,则s≤t.(10)m个n维向量组(m>n)必线性相关.(11)两个等价的线性⽆关的向量组必含有相同个数的向量.六、向量组的极⼤线性⽆关组1.极⼤线性⽆关组的概念向量组α1,α2,…,αr,αr+1,…,αs的部分组α1,α2,…,αr是极⼤⽆关组(1)α1,α2,…,αr线性⽆关;(2)α1,α2,…,αr,αr+1,…,αs中每个向量可由α1,α2,…,αr 线性表⽰.(1)α1,α2,…,αr线性⽆关;(2)α1,α2,…,αr,αr+1,…,αs中任意r+1个向量线性相关.2.关于极⼤线性⽆关组的常⽤结论(1)含⾮零向量的任⼀向量组⼀定存在极⼤⽆关组.(2)线性⽆关向量组的极⼤⽆关组是其⾃⾝、.(3)任何向量组均与其极⼤⽆关组等价.(4)⼀个向量组的任意两个极⼤⽆关组都含有相同个数的向量.七、向量组的秩1.向量组的秩的定义向量组α1,α2,…,αs的任⼀极⼤⽆关组所含向量的个数称为这个向量组的秩,记为r(α1,α2,…,αs).2.关于向量组的秩的常⽤结论(1)对任何向量组α1,α2,…,αs均有0≤r(α1,α2,…,αs)≤s;(2)向量组α1,α2,…,αs线性⽆关?r(α1,α2,…,αs)=s;(3)向量组α1,α2,…,αs线性相关?r(α1,α2,…,αs)(4)若向量组α1,α2,…,αs可由向量组β1,β2,…,βt线性表⽰,则r(α1,α2,…,αs)≤r(β1,β2,…,βt).特别地,若两向量组等价,则它们的秩相同;反之不真.(5)若向量组的秩为r,则其任何含r个向量的线性⽆关的部分组都是其极⼤线性⽆关组.⼋、矩阵的⾏秩与列秩1.定义矩阵A的⾏(列)向量组的秩称为A的⾏(列)秩.2.矩阵秩的性质(1)对任何矩阵A,都有A的⾏秩=A的列秩=r(A);(2)r(AB)≤min{r(A),r(B)};(4)r(A+B)≤r(A)+r(B).九、极⼤⽆关组的求法1.矩阵的初等⾏(列)变换不改变其列(⾏)向量间的线性关系2.求向量组α1,α2,…,αs的⼀个极⼤⽆关组的⽅法(1)以α1,α2,…,αs为列向量作矩阵A;(2)对A施以初等⾏变换化成阶梯形矩阵B,设r(B)=r,且B中第j1,j2,…,j r列有⼀个r阶⼦式不等于零,则αj1,αj2,…,αjr 即为所求向量组的⼀个极⼤⽆关组.3.求向量组α1,α2,…,αs的极⼤⽆关组并将其余向量⽤该极⼤⽆关组表出的⽅法(1)以α1,α2,…,αs为列向量作矩阵A;(2)对A施以初等⾏变换化成阶梯形矩阵B;(3)再通过初等⾏变换化为⾏简化阶梯形矩阵C,设矩阵C的第j1,j2,…,j r列为单位向量,则αj1,αj2,…,αjr即为所求向量组的⼀个极⼤⽆关组,且C 中列向量间的线性关系即为A中相应列向量间的线性关系.⼗*、向量空间1.向量空间的定义设V是⾮空的n维向量的集合,若集合V对于加法及数乘两种运算封闭,则称V是向量空间.2.向量空间的⽣成3.向量空间的相等若{α1,α2,…,αm}≌{β1,β2,…,βn},则span(α1,α2,…,αm)=span(β1,β2,…,βn).4.向量空间的⼦空间设有向量空间V1,V2,若V1?V2,则称V1是V2的⼦空间.5.向量空间的基及其维数设V是向量空间,如果存在r个向量α1,α2,…,αr∈V,满⾜(1)α1,α2,…,αr线性⽆关;(2)V中任⼀向量都可由α1,α2,…,αr线性表⽰;则称α1,α2,…,αr为V的⼀个基,r称为V的维数.⼗⼀、重点难点(⼀)重点(1)向量的线性运算可以看做是特殊矩阵的线性运算,它是后⾯讨论向量的线性组合、线性相关性等概念的基础,必须熟练掌握.(2)向量的线性组合、线性相关、线性⽆关的概念、性质及三者之间的关系定理是本章的重点,要熟练掌握三个概念及有关结论,详见内容提要;要深刻理解概念、定理的本质,熟练掌握线性相关和线性⽆关的有关性质及判别法,并能灵活应⽤.(3)向量组的极⼤⽆关组是特别重要的概念,它在向量组线性相关性的证明中往往能起到重要的作⽤;此外,还应当掌握求向量组的极⼤⽆关组的⽅法.(4)理解并掌握向量组的秩的概念,理解矩阵的秩与其⾏(列)向量组的秩的关系,熟练掌握求向量组的秩的⽅法,并能通过秩这⼀重要⼯具来判断向量组的线性相关性.(⼆)难点(1)向量组的线性相关性的证明.常见的⽅法有:定义法、利⽤有关结论及定理、利⽤齐次线性⽅程组有⽆⾮零解、利⽤向量组的秩与向量组所含向量的个数关系等.(2)向量组的秩与线性⽅程组有关理论的证明.。
第三章 向量1、基本概念定义1:由n 个数构成的一个有序数组[]n a a ,,a 21 称为一个n 维向量,称这些数为它的分量。
分量依次是a 1,a 2,⋯ ,a n 的向量可表示成:=α[]n a a ,,a 21 ,称为行向量,或=T α[]T n a a ,,a 21 称为列向量。
请注意,作为向量它们并没有区别,但是作为矩阵,它们不一样(左边是1⨯n 矩阵,右边是n ⨯1矩阵)。
习惯上把它们分别(请注意与下面规定的矩阵的行向量和列向量概念的区别)。
一个m ⨯n 的矩阵的每一行是一个n 维向量,称为它的行向量;每一列是一个m 维向量,称为它的列向量,常常用矩阵的列向量组来写出矩阵,例如当矩阵A 的列向量组为m ααα,,21 时(它们都是表示为列的形式!)可记A =(m ααα,,21 )。
矩阵的许多概念也可对向量来规定,如元素全为0的向量称为零向量,通常也记作0。
两个向量和相等(记作=),是指它的维数相等,并且对应的分量都相等.2、向量的线形运算3、向量组的线形相关性定义2:向量组的线性组合:设m ααα,,21 是一组n 维量,m k k k 21,是一组数,则m m k k k ααα ++2211为m ααα,,21 的线性组合。
n 维向量组的线性组合也是n 维向量。
定义3:线形表出:如果n 维向量β能表示成m ααα,,21 的一个线性组合,即=βm m k k k ααα ++2211,则称β可以用量组m ααα,,21 线性表示。
判别β是否可以用m ααα,,21 线性表示? 表示方式是否唯一?就是问:向量方程βααα=++m m x x x 2211是否有解?解是否唯一?用分量写出这个向量方程,就是以()βααα m 21,为增广矩阵的线性方程组。
反之,判别“以()β A 为增广矩阵的线性方程组是否有解?解是否唯一?的问题又可转化为β是否可以用A 的列向量组线性表示? 表示方式是否唯一?”的问题。
n维向量部分
这部分逻辑性非常强,考生必须要相当熟悉教材中的重要定理。
从历年考试情况来看,线性相(无)关、线性表出、极大无关组、向量组的秩及等价、向量空间(数一)等内容是考试经常会涉及到的内容。
常出现在选择题中。
回顾: n维向量的运算
1.定义:设 ,,k为数域P中的数,定义
,称为向量与的和;
,称为向量与数k的数量乘积.
2.向量运算的基本性质
1) 2) 3)
4) 5) 6)
7) 8),9),,
10)若,则即,若,则或
1 向量组的秩、极大无关组的相关题型
知识点
极大线性无关组定义:设为中的一个向量组,它的一个部分组若满足
i) 线性无关
ii) 对任意的,可经线性表出
则称为向量组的一个极大线性无关组(简称极大无关组). 向量组的秩
定义:向量组的极大无关组所含向量个数称为这个向量组的秩.性质:
1)一个向量组线性无关的充要条件是它的秩与它所含向量个数相同.
一个向量组线性相关的充要条件是它的秩<它所含向量个数.2)等价向量组必有相同的秩.(注意:反之不然.)
3)若向量组可经向量组线性表出,则
秩秩.
例1 设向量组
(1)求此向量组的秩;
(2)求此向量组的一个极大无关组,并将其余向量用该极大无关组表示。
例2 选择题
若向量组的秩为 r,则()
(A)必定r<s
(B)向量组中任意小于 r个向量的部分组线性无关
(C)向量组中任意r个向量的部分组线性无关
(D)向量组中任意r+1个向量必定线性相关
设向量组和向量组为两个n维向量组,且秩()=秩()= t,则()
(A)秩(,)=t
(B)两个向量组等价
(C)当向量组可经向量组线性表出时,可经向量组线性表出
(D)当 r=t时,两个向量组等价
练习:
1.1 设向量组I:,而II:,,…, ,则
(A)秩(向量组I)=秩(向量组II)
(B)秩(向量组I)>秩(向量组II)
(C)秩(向量组I)<秩(向量组II)
(D)不能确定秩(向量组I)与秩(向量组II)的大小关系
2 向量组的线性相关性的判定或根据向量相关性求参数
知识点:1对向量组,设
若如果存在不全为零的数,使上式成立,则向量组线性相关。
若当且仅当上式才成立,则线性无关。
2 设向量组I:可由向量组II:线性表现,若 r>s , 则向量组I线性相关。
(注意它的逆否定理)
3 利用矩阵的秩或行列式
设有 s个n维列向量组,设A=(),
则当秩A=s时,线性无关;当秩A<s时,线性相关。
若 s=m,则当|A|不等于0时线性无关;否则线性相关
例3 设
(1)问t为何值时,向量组线性无关?线性无关?
(2) 当线性相关时,将表示为的线性组合。
例4 (2007) 设向量组线性无关,则下列向量组线性相关的是()
(A),,
(B),,
(C),,
(D),,
练习
2.1 n维列向量组线性无关的充分必要条件是()
(A)存在不全为零的数,使
(B)中任意两个向量都线性无关。
(C)中存在一个向量,它不能用其余向量线性表出。
(D)中任意一个向量都不能用其余向量线性表出
2.2 设向量组线性无关,则下列向量组线性无关的是()(A),,,,
(B),,,,
(C),,,,
(D),,,,
2.3(2010)设向量组I:可由向量组II:线性表现, 则下列命题正确的是()
(A)若向量组I线性无关,则r≤s;
(B)若向量组I线性相关,则r>s;
(C)若向量组II线性无关,则r≤s;
(D)若向量组II线性相关,则r<s
3 向量组的线性表示的命题的判断和讨论
知识点:一个向量是否能由一组向量线性表示,可以用以下方法:
(1)设=转为非齐次方程组的计算,讨论是否有解;
(2)若向量组线性无关,但是,线性相关,则是能由一组向量线性表示;
(3)若秩()=秩(,),,则是能由一组向量线性表示
例5设问是否能由向量线性表示?
练习
3.1 (2003数四)设有向量组I:和向量组II:问:当a 为何值
时,向量组I和向量组II等价?当a 为何值时,向量组I和向量组II不等价?。