数学知识点秋湘教版数学九上3.4《相似三角形的判定》(第2课时)word教案-总结
- 格式:doc
- 大小:117.04 KB
- 文档页数:7
湘教版数学九年级上册3.4《相似三角形的判定》(第2课时)教学设计一. 教材分析《相似三角形的判定》是湘教版数学九年级上册3.4的内容,这部分内容是在学生已经掌握了相似三角形的概念和性质的基础上进行学习的。
本节课的主要内容是引导学生探究并掌握相似三角形的判定方法,并通过大量的例题和练习题,使学生熟练掌握并应用这些方法。
教材中提供了丰富的教学资源,包括例题、练习题、探究题等,有助于提高学生的学习兴趣和积极性。
二. 学情分析九年级的学生已经具备了一定的数学基础,对相似三角形的概念和性质有一定的了解。
但是,对于相似三角形的判定方法,他们可能还比较陌生。
因此,在教学过程中,教师需要引导学生通过观察、思考、探究等活动,发现并总结相似三角形的判定方法。
同时,学生可能对一些复杂的问题感到困惑,需要教师给予适当的指导。
三. 教学目标1.知识与技能:使学生掌握相似三角形的判定方法,并能灵活运用。
2.过程与方法:通过观察、思考、探究等活动,培养学生的逻辑思维能力和解决问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养他们勇于探究、积极思考的良好学习习惯。
四. 教学重难点1.重点:相似三角形的判定方法。
2.难点:如何引导学生发现并总结相似三角形的判定方法。
五. 教学方法1.引导发现法:教师通过提出问题,引导学生观察、思考、探究,发现并总结相似三角形的判定方法。
2.例题教学法:教师通过讲解典型例题,使学生掌握相似三角形的判定方法。
3.练习法:教师布置适量的练习题,让学生在实践中巩固所学知识。
六. 教学准备1.教材:湘教版数学九年级上册。
2.教学多媒体设备:用于展示教材内容、例题和练习题。
3.练习题:用于巩固所学知识。
七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾相似三角形的概念和性质,为新课的学习做好铺垫。
2.呈现(10分钟)教师展示教材中的例题,引导学生观察、思考,发现相似三角形的判定方法。
湘教版九年级数学上册第3章图形的相似3.4相似三角形的判定与性质教学设计一. 教材分析湘教版九年级数学上册第3章图形的相似3.4相似三角形的判定与性质,主要介绍了相似三角形的判定方法和性质。
本节课的内容是学生在学习了相似概念、相似多边形的基础上进行的,是进一步培养学生空间想象能力、逻辑思维能力和解决实际问题能力的重要内容。
二. 学情分析九年级的学生已经掌握了相似的概念和性质,同时具备了一定的空间想象能力和逻辑思维能力。
但学生在学习过程中,对相似三角形的判定与性质的理解和运用还有一定的困难,需要通过本节课的学习,进一步巩固和提高。
三. 教学目标1.理解相似三角形的判定方法。
2.掌握相似三角形的性质。
3.能够运用相似三角形的判定与性质解决实际问题。
4.培养学生的空间想象能力、逻辑思维能力和解决实际问题的能力。
四. 教学重难点1.教学重点:相似三角形的判定方法和性质。
2.教学难点:相似三角形的判定方法的灵活运用。
五. 教学方法1.情境教学法:通过生活实例,引发学生的兴趣,激发学生的思考。
2.小组合作学习法:培养学生团队合作精神,提高学生解决问题的能力。
3.启发式教学法:引导学生主动探究,发现知识,提高学生的逻辑思维能力。
六. 教学准备1.教学课件:制作课件,展示相似三角形的判定与性质的相关知识。
2.教学素材:准备一些生活实例,用于引发学生的思考。
3.学具:准备一些三角形模型,方便学生直观地理解相似三角形的性质。
七. 教学过程1.导入(5分钟)通过展示一些生活中的实例,如相似的建筑物、图片等,引发学生的兴趣,引入相似三角形的概念。
2.呈现(10分钟)利用课件呈现相似三角形的判定方法和性质,引导学生直观地理解知识。
同时,教师进行讲解,阐述相似三角形的判定与性质的重要性。
3.操练(10分钟)学生分组进行讨论,通过给出的实例,运用相似三角形的判定与性质进行解答。
教师巡回指导,解答学生的疑问。
4.巩固(10分钟)学生独立完成教材中的练习题,检验自己对相似三角形的判定与性质的理解。
湘教版数学九年级上册3.4.1《相似三角的判定》(第2课时)说课稿一. 教材分析湘教版数学九年级上册3.4.1《相似三角形的判定》(第2课时)是在学生已经掌握了相似三角形的概念和性质的基础上进行的一节课。
本节课的主要内容是引导学生探究相似三角形的判定方法,并通过大量的例题和练习让学生熟练掌握这些方法。
在教材的安排上,首先是通过回顾相似三角形的性质,让学生复习和巩固已学过的知识。
然后,引导学生通过观察和分析,发现和总结相似三角形的判定方法。
接着,通过一系列的例题和练习,让学生运用判定方法解决问题,进一步理解和掌握相似三角形的判定。
最后,通过总结和反思,让学生回顾和巩固所学的内容。
二. 学情分析九年级的学生已经具备了一定的数学基础,对相似三角形的概念和性质有一定的了解。
但是,学生在学习过程中可能对相似三角形的判定方法理解不够深入,运用不够熟练。
因此,在教学过程中,我将以学生为主导,引导学生主动探索和发现相似三角形的判定方法,并通过大量的练习让学生熟练掌握和运用。
三. 说教学目标1.知识与技能目标:让学生掌握相似三角形的判定方法,并能运用判定方法解决问题。
2.过程与方法目标:通过观察、分析和推理,培养学生的逻辑思维能力和解决问题的能力。
3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的团队合作意识和自主学习能力。
四. 说教学重难点1.教学重点:相似三角形的判定方法。
2.教学难点:理解和运用相似三角形的判定方法。
五. 说教学方法与手段在本节课的教学中,我将采用问题驱动法和案例教学法相结合的教学方法。
首先,通过提出问题和引导学生观察和分析,激发学生的思考,引导学生主动探索和发现相似三角形的判定方法。
然后,通过分析具体的案例,让学生理解和掌握判定方法的应用。
此外,我还将运用多媒体教学手段,如PPT和数学软件,展示和演示相似三角形的判定过程,帮助学生更好地理解和掌握知识。
六. 说教学过程1.导入:通过回顾相似三角形的性质,引导学生复习和巩固已学过的知识。
湘教版数学九年级上册3.4《相似三角形的判定与性质》教学设计2一. 教材分析湘教版数学九年级上册3.4《相似三角形的判定与性质》是九年级数学的重要内容,主要让学生掌握相似三角形的判定方法和性质。
本节内容是在学生已经掌握了三角形的基本概念、三角形的分类、三角形的内角和定理等知识的基础上进行学习的,为后续学习相似多边形、三角函数等知识打下基础。
二. 学情分析九年级的学生已经具备了一定的逻辑思维能力和空间想象能力,对于三角形的基本概念和性质有一定的了解。
但是,对于相似三角形的判定和性质的理解还需要加强,特别是对于一些具体的判定方法和性质的证明过程,需要通过实例进行讲解和练习。
三. 教学目标1.让学生掌握相似三角形的定义和性质。
2.让学生学会运用相似三角形的性质解决实际问题。
3.培养学生的空间想象能力和逻辑思维能力。
四. 教学重难点1.相似三角形的定义和判定方法。
2.相似三角形的性质及其应用。
五. 教学方法1.采用问题驱动法,引导学生自主探究相似三角形的定义和性质。
2.运用实例讲解法,让学生通过具体例子理解相似三角形的判定和性质。
3.采用小组合作学习法,让学生在小组内讨论和分享学习心得。
六. 教学准备1.准备相关的教学PPT和教学素材。
2.准备一些实际的例子,用于讲解和练习相似三角形的判定和性质。
3.准备一些练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)通过展示一些实际的例子,让学生观察和思考:这些图形有什么共同的特点?从而引导学生发现相似三角形的定义。
2.呈现(10分钟)讲解相似三角形的定义,并通过PPT展示相关的图片和例子,让学生理解和掌握相似三角形的定义。
3.操练(10分钟)让学生通过实际的例子,运用相似三角形的定义进行判定,并在小组内进行讨论和分享。
教师巡回指导,解答学生的问题。
4.巩固(10分钟)讲解相似三角形的性质,并通过PPT展示相关的图片和例子,让学生理解和掌握相似三角形的性质。
第2课时 相似三角形的判定定理 11.理解并掌握相似三角形的判定定理1.(重点,难点)2.运用相似三角形的判定定理1解决简单数学问题.(重点,难点)一、情境导入观察下列几组图形,探究其中规律.试着判断这几组图形是否相似,并探究其中规律.二、合作探究探究点一:相似三角形的判定定理1如图所示,在△ABC 中,∠AED=∠B ,则下列等式成立的是( )A.DE BC =AD DBB.AE BC =AD BDC.DE CB =AE ABD.AD AB =AE AC解析:由相似三角形的判定定理1可得△ADE ∽△ACB ,即可得DE CB =AEAB,故选C.方法总结:在解此题时一定要明确对应关系,由于△ADE ∽△ACB ,所以AE对应AB ,AD 对应AC ,ED 对应BC .探究点二:相似三角形的判定定理1的应用【类型一】利用相似三角形的判定定理1求值如图所示,已知AB ⊥BD ,ED ⊥BD ,AC ⊥CE ,点B ,D ,C 分别为垂足,点C 是线段BD 的中点,若ED =1,BD=4,则AB =W.解析:由题设可证△ABC ∽△CDE ,∴AB CD =BCDE ,又∵ED =1,BD =4,C 为BD 的中点,∴AB =CD ·BC DE =2×21=4.故填4.方法总结:根据三角形内角和可判定∠ACB =∠CED ,再结合相似三角形判定定理1得出△ABC 与△CDE 的相似关系,从而求解.【类型二】利用相似三角形的判定定理1证明相似如图,在△ABC 中,AB =AC ,BD=CD ,CE ⊥AB 于E .求证:△ABD ∽△CBE .解析:已知∠B 是公共角,判定两三角形相似,再找一组角相等即可,由题易证AD ⊥BC ,有∠ADB =∠CEB =90°,即可得证.证明:在△ABC 中,AB =AC ,BD =CD ,∴AD ⊥BC ,∵CE ⊥AB ,∴∠ADB =∠CEB =90°,又∠B =∠B ,∴△ABD ∽△CBE .方法总结:解此类题型时首先要根据题设寻求两三角形相似的条件,再证明两三角形相似,并根据相似获得题目要求的数量关系.三、板书设计相似三角形判定定理1⎩⎪⎨⎪⎧内容:两角分别相等的两个三角形相似内容拓展:所有的等边三角形都相似,所有的等腰直角三角形都相似,有一组锐角相等的两个直角三角形相似教学过程中,注重引导学生自主探究并且验证相关定理,在实际学习的过程中反复验证定理的准确性,进而加深学生对定理的理解和记忆,巩固基础知识.为进一步学习打下坚实基础.。
3.4相似三角形的判定与性质(二)〔教学目标〕1. 掌握判定两个三角形相似的方法:如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似。
2. 培养学生的观察﹑发现﹑比较﹑归纳能力,感受两个三角形相似的判定方法与全等三角形判定方法(SAS )的区别与联系,体验事物间特殊与一般的关系。
3. 让学生经历从实验探究到归纳证明的过程,发展学生的合情推理能力。
〔教学重点与难点〕重点:两个三角形相似的判定方法3及其应用 难点:探究两个三角形相似判定方法3的过程 相似三角形的判定方法有那些?方法1:定义方法2:平行于三角形一边的直线与其他两边相交。
三个角对应相等三边对应成比例复习方法3:两角对应相等。
判定定理 3 如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似. 如右图:在△ABC 和 △A ’B ’C ’中:∠A= ∠A ’△ABC ∽△A ’B ’C ’这个定理可以简单说成:两边对应成比例且夹角相等的两个三角形相似. 如图有一点E 在边AC 上,那么点E 应该在什么位置才能使△ADE 与△ABC 相似呢?说一说:两条直角边对应成比例的两个直角三角形相似吗?为什么?相似,因为符合相似三角形判定定理 3的条件. 例1 已知在△ABC 与△DEF 中,∠C=∠F=70°, AC= 3.5cm ,BC=2.5cm ,DF=2.1cm ,EF=1.5cm.求证:△DEF ∽△ABC .动脑筋:如图3-21,在△ABC 与△DEF 中,∠B =∠E =40°,AB =4.2cm ,AC =3cm ,DE =2.1cm ,DF =1.5cm. △ABC 与△DEF 有两边对应成比例吗?有一个角对应相等吗?这两个三角形相似吗?在两个三角形中,有两边对应成比例,如不是这两边的夹角相等,则这两个三角形不相似.错误!不能通过编辑域代码创建对象。
湘教版数学九年级上册《3.4.2相似三角形的性质》教学设计一. 教材分析湘教版数学九年级上册《3.4.2相似三角形的性质》是学生在学习了相似三角形的定义和性质之后的内容。
本节内容主要介绍了相似三角形的性质,包括对应边成比例,对应角相等。
这些性质是解决实际问题的重要工具,也是进一步学习立体几何的基础。
二. 学情分析九年级的学生已经掌握了相似三角形的定义和性质,具备了进一步学习相似三角形性质的基础。
但是,对于这些性质的理解和应用还需要进一步的加强。
此外,学生对于实际问题的解决能力还有待提高。
三. 教学目标1.理解相似三角形的性质,包括对应边成比例,对应角相等。
2.能够运用相似三角形的性质解决实际问题。
3.培养学生的逻辑思维能力和解决问题的能力。
四. 教学重难点1.相似三角形的性质的理解和应用。
2.解决实际问题能力的培养。
五. 教学方法采用问题驱动法,通过引导学生提出问题,解决问题的方式,让学生主动探索相似三角形的性质。
同时,运用案例分析法,通过具体的例子,让学生理解相似三角形的性质在实际问题中的应用。
六. 教学准备1.教材和教案。
2.相关的实际问题案例。
3.教学多媒体设备。
七. 教学过程1.导入(5分钟)通过提问方式引导学生回顾相似三角形的定义和性质,为新课的学习做好铺垫。
2.呈现(15分钟)教师通过多媒体展示相似三角形的性质,让学生直观地感受相似三角形的性质。
3.操练(15分钟)学生分组讨论,通过实际的例子,探索相似三角形的性质。
教师巡回指导,解答学生的疑问。
4.巩固(10分钟)教师提出一些有关相似三角形性质的问题,让学生回答,以巩固所学知识。
5.拓展(10分钟)教师提出一些实际问题,让学生运用相似三角形的性质解决。
通过案例分析,让学生理解相似三角形的性质在实际问题中的应用。
6.小结(5分钟)教师引导学生总结本节课所学的相似三角形的性质,以及如何在实际问题中应用。
7.家庭作业(5分钟)教师布置一些有关相似三角形性质的练习题,让学生课后巩固所学知识。
湘教版数学九年级上册《3.4.1相似三角形的判定》教学设计一. 教材分析湘教版数学九年级上册《3.4.1相似三角形的判定》是本册教材中的重要内容,主要让学生掌握相似三角形的判定方法。
本节课的内容是在学生已经掌握了三角形的基本性质和判定方法的基础上进行授课的。
教材通过例题和练习题的形式,帮助学生理解和掌握相似三角形的判定方法,并能够运用到实际问题中。
二. 学情分析九年级的学生已经具备了一定的数学基础,对三角形的基本性质和判定方法有一定的了解。
但是,学生对相似三角形的判定方法的理解和运用还需要加强。
因此,在教学过程中,需要通过例题和练习题的讲解和训练,帮助学生理解和掌握相似三角形的判定方法。
三. 教学目标1.让学生掌握相似三角形的判定方法。
2.培养学生运用相似三角形的判定方法解决实际问题的能力。
3.培养学生合作学习的意识和能力。
四. 教学重难点1.教学重点:相似三角形的判定方法。
2.教学难点:相似三角形的判定方法的运用。
五. 教学方法1.情境教学法:通过生活实例引入相似三角形的判定,激发学生的学习兴趣。
2.例题教学法:通过典型例题的讲解,让学生理解和掌握相似三角形的判定方法。
3.练习法:通过练习题的训练,巩固学生对相似三角形判定方法的理解。
4.小组合作学习:让学生在小组内讨论和分享学习心得,培养学生的合作能力。
六. 教学准备1.教学PPT:制作教学PPT,展示相似三角形的判定方法和例题。
2.练习题:准备一些练习题,用于巩固学生的学习效果。
3.教学黑板:准备教学黑板,用于板书和展示解题过程。
七. 教学过程1.导入(5分钟)利用生活实例,如相似的图形、图片等,引导学生思考什么是相似三角形,引出相似三角形的判定方法。
2.呈现(10分钟)通过PPT展示相似三角形的判定方法,引导学生观察和思考,让学生理解和掌握判定方法。
3.操练(10分钟)让学生独立完成一些类似的例题,教师进行讲解和指导,帮助学生巩固对相似三角形判定方法的理解。
3.4相似三角形的判定与性质3.4.1相似三角形的判定第1课时相似三角形的判定(1)教学目标【知识与技能】经历三角形相似的判定定理“平行于三角形的一边的直线与其它两边相交,截得的三角形与原三角形相似”和“两角分别相等的两个三角形相似”的探索及证明过程.【过程与方法】让学生经历观察、实验、猜想、证明的过程,培养学生提出问题、分析问题、解决问题的能力.【情感态度】通过学生积极参与,激发学生学习数学的兴趣,体验数学的探索与创造的快乐.【教学重点】三角形相似的判定定理及应用.【教学难点】三角形相似的判定定理及应用.教学过程一、情景导入,初步认知现有一块三角形玻璃ABC, 不小心打碎了,只剩下∠A和∠B比较完整.如果用这两个角去配制一块完全一样的玻璃,能成功吗?【教学说明】选择以旧孕新为切入点,创设问题情境,引入新课.二、思考探究,获取新知1.在△ABC中,D为AB上任意一点,过点D作BC的平行线DE,交AC于点E.(1)△ADE与△ABC的三个角分别相等吗?(2)分别度量△ADE与△ABC的边长,它们的边长是否对应成比例?(3)△ADE与△ABC之间有什么关系?平行移动DE的位置,你的结论还成立吗?【归纳结论】平行于三角形的一边的直线与其他两边相交,截得的三角形与原三角形相似.2.如图,D、E分别是△ABC的AB与AC边的中点,求证:△ADE与△ABC相似.证明:∵D、E分别是△ABC的AB与AC边的中点,∴DE∥BC,∴△ADE∽△ABC.3.任意画△ABC与△A′B′C′,使∠A′=∠A,∠B′=∠B.(1)∠C′=∠C吗?(2)分别度量这两个三角形的边长,它们是否对应成比例?(3)把你的结果与同学交流,你们的结论相同吗?由此你有什么发现?【教学说明】此时,教师鼓励学生大胆猜想,得出命题.如果学生还能从不同角度研究,或许还有新的方法进行证明,要大胆鼓励.【归纳结论】两角分别相等的两个三角形相似.4.如图,在△ABC中,∠C=90°,DE⊥AB于E,DF⊥BC于F.求证:△DEH∽△BCA.证明:∵DE⊥AB,DF⊥BC,∴∠D+∠DHE=∠B+∠BHF=90°,而∠BHF=∠DHE,∴∠D=∠B,又∵∠HED=∠C=90°,∴△DEH∽△BCA.三、运用新知,深化理解1.见教材P78例2、P80例4.2.判断题:(1)有一个锐角对应相等的两个直角三角形相似.()(2)所有的直角三角形都相似. ()(3)有一个角相等的两个等腰三角形相似.()(4)顶角相等的两个等腰三角形相似.()【答案】 (1)√;(2)×;(3)×;(4) √3.如图:点G在平行四边形ABCD的边DC的延长线上,AG交BC、BD于点E、F,则△AGD ∽_____∽____.解析:关键是找“角相等”,除已知条件中已明确给出的以外,还应结合具体的图形,利用公共角、对顶角及由平行线产生的一系列相等的角.本例除公共角∠G外,由BC∥AD可得∠1=∠2,所以△AGD∽△EGC.再∠1=∠4(对顶角),由AB∥DG可得∠3=∠G,所以△EGC ∽△EAB.【答案】△EGC△EAB4.已知:在△ABC和△DEF中,∠A=40°,∠B=80°,∠E=80°,∠F=60°.求证:△ABC∽△DEF .证明:∵在△ABC中,∠A=40°,∠B=80°,∴∠C=180°-∠A -∠B=180°-40°-80°=60°,∵在△DEF中,∠E=80°,∠F=60°,∴∠B=∠E,∠C=∠F,∴△ABC∽△DEF.(两角对应相等,两三角形相似)5.已知△ABC中,AB=AC,∠A=36°,BD是角平分线,求证:△ABC∽△BCD.分析:证明相似三角形应先找相等的角,显然∠C是公共角,而另一组相等的角则可以通过计算来求得.借助于计算也是一种常用的方法.证明:∵∠A=36°,△ABC是等腰三角形,∴∠ABC=∠C=72°,又BD平分∠ABC,则∠DBC=36°,在△ABC和△BCD中,∠C为公共角,∠A=∠DBC=36°,∴△ABC∽△BCD.6.已知:如图,在Rt△ABC中,CD是斜边AB上的高.求证:△ACD∽△ABC∽△CBD.证明: ∵∠A=∠A,∠ADC=∠ACB=90°,∴△ACD∽△ABC,(两角对应相等,两三角形相似)同理△CBD ∽△ABC,∴△ABC∽△CBD∽△ACD.【教学说明】学生在独立思考的基础上,小组讨论交流,让学生随时展示自己的想法.从而得到提高.四、师生互动、课堂小结先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师作以补充.课后作业布置作业:教材“习题3.4”中第2 题.教学反思通过这节课的教学,绝大多数学生能运用本节课所学的知识进行相关的计算和证明;少数学生在探究两个三角形相似的定理时,不会用学过的知识进行证明.。
湘教版数学九年级上册《3.4.2相似三角形的性质》说课稿一. 教材分析湘教版数学九年级上册《3.4.2相似三角形的性质》这一节主要介绍了相似三角形的性质。
在学习了相似三角形的定义和性质之后,学生能够更好地理解相似三角形的判定和应用。
本节内容是整个相似三角形知识体系的重要组成部分,也是后续学习相似多边形和其他数学知识的基础。
二. 学情分析九年级的学生已经掌握了相似三角形的定义和性质,具备了一定的逻辑思维能力和空间想象力。
但在实际应用中,学生可能对相似三角形的性质运用不够熟练,需要通过大量的练习来提高。
此外,学生可能对证明过程的书写和逻辑性有一定的困难,需要老师在教学中进行引导和培养。
三. 说教学目标1.知识与技能:学生能够掌握相似三角形的性质,并能运用性质解决实际问题。
2.过程与方法:通过观察、操作、猜想、证明等方法,培养学生的逻辑思维能力和空间想象力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作意识和克服困难的意志。
四. 说教学重难点1.重点:相似三角形的性质及其应用。
2.难点:相似三角形的性质证明过程和实际应用。
五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法、小组合作法等,引导学生主动探究,培养学生的解决问题的能力。
2.教学手段:利用多媒体课件、模型、挂图等直观教具,帮助学生更好地理解和掌握相似三角形的性质。
六. 说教学过程1.导入:通过复习相似三角形的定义和性质,引导学生进入本节内容的学习。
2.探究:引导学生通过观察、操作、猜想、证明等方法,探索相似三角形的性质。
3.讲解:老师对相似三角形的性质进行详细讲解,并通过举例让学生更好地理解。
4.练习:学生进行相关的练习题,巩固对相似三角形性质的理解。
5.总结:老师对本节内容进行总结,强调相似三角形性质的重要性和应用。
6.作业:布置相关的作业,让学生进一步巩固所学知识。
七. 说板书设计板书设计要清晰、简洁,能够突出相似三角形的性质。
湘教版九年级上册教学设计3.4相似三角形的判定与性质一. 教材分析湘教版九年级上册的教学设计3.4主要讲述了相似三角形的判定与性质。
这一部分内容是初中数学的重要知识点,也是学生进一步学习高中数学的基础。
本节课的内容包括相似三角形的定义、判定方法和性质。
教材通过丰富的例题和练习题,帮助学生理解和掌握相似三角形的判定与性质,提高他们的数学思维能力和解决问题的能力。
二. 学情分析九年级的学生已经学习过三角形的性质和判定,对三角形的概念有一定的了解。
但是,他们对相似三角形的定义和判定方法可能还不够清晰,需要通过实例和练习来加深理解。
此外,学生可能对相似三角形的性质的推导和应用有一定的困难,需要教师的引导和启发。
三. 教学目标1.知识与技能:使学生理解和掌握相似三角形的定义、判定方法和性质,能够运用相似三角形的性质解决实际问题。
2.过程与方法:通过观察、操作、推理等数学活动,培养学生的空间想象能力和逻辑思维能力。
3.情感态度价值观:激发学生对数学的兴趣和好奇心,培养他们的合作意识和解决问题的能力。
四. 教学重难点1.重点:相似三角形的定义、判定方法和性质。
2.难点:相似三角形的性质的推导和应用。
五. 教学方法1.情境教学法:通过生活中的实际问题,引发学生对相似三角形的兴趣和好奇心。
2.引导发现法:教师引导学生观察、操作和推理,发现相似三角形的判定方法和性质。
3.合作学习法:学生分组讨论和合作,共同解决问题,培养他们的合作意识和解决问题的能力。
六. 教学准备1.教师准备:教材、教学PPT、实例和练习题。
2.学生准备:笔记本、尺子、圆规等学习工具。
七. 教学过程1.导入(5分钟)教师通过展示一些实际问题,如建筑设计中相似三角形的应用,引发学生对相似三角形的兴趣和好奇心。
引导学生思考:什么是相似三角形?为什么相似三角形在实际问题中如此重要?2.呈现(10分钟)教师通过PPT呈现相似三角形的定义、判定方法和性质。
《相似三角形的判定》教学设计◆教材分析本节课是湘教版数学九年级上册第三章图形相似的第四节第一课时,是前面学习了简单的几何图形,三角形全等,平行四边形之后对几何图形之间的关系及性质的进一步研究,本节课主要讲解相似三角形的判定方法,经历两个三角形相似的探索过程,进一步发展学生的探究、交流能力。
掌握相似三角形的判定方法。
能够运用三角形相似的条件解决简单的问题。
因此本节课重点是相似三角形的定义与三角形相似的判定定理。
所渗透的数学思想方法有:类比,转化,建模。
◆教学目标【知识与能力目标】1.经历两个三角形相似的探索过程,进一步发展学生的探究、交流能力;2.掌握“两角对应相等,两个三角形相似”的判定方法;3.能够运用三角形相似的条件解决简单的问题。
【过程与方法目标】通过对实际问题的研究,体会数学知识的现实意义。
渗透转化及分类的数学思想方法。
【情感态度价值观目标】通过巧妙的教学设计,激发学生的学习兴趣,让学生感受数学的美感。
在知识教学中体会数学知识的应用价值。
【教学重点】相似三角形的定义与三角形相似的预备定理。
【教学难点】三角形相似的预备定理的应用。
多媒体课件。
一、导入新课1、根据相似多边形的定义,你知道什么样的两个三角形相似吗? 满足(1)对应角相等 (2)对应边成比例 两个条件的两个三角形是相似三角形。
二、新课学习三角形相似的预备定理 平行于三角形一边的直线和其它两边相交,所构成的三角形与原三角形相似。
◆ 教学过程◆ 课前准备◆ 教学重难点DE∥BC△ADE∽△ABC已知在△ABC和△A′B′C′中.∠A=∠A′;∠ B=∠B′;∠ C=∠C′求证:△ABC∽△A′B′C′。
证明:在△ABC的边AB(或延长线)上截取AD=A′B′。
过点D作DE∥BC。
交AC于点E。
则有△ADE∽△ABC∵∠ADE=∠B ∠B=∠B′∴∠ADE=∠B′又∵∠A=∠A′ AD=A′B′∴△ADE≌△A′B′C′(ASA)∴△A′B′C′∽△ABC由上面的数学活动我们可以得到判定三角形相似的定理定理1:如果一个三角形的两个角分别与另一个三角形的两个角对应相等.那么这两个三角形相似.(可简单说成:两个角分别相等的两个三角形相似)1、△ABC和△A′B′C′中∠A=80°、∠B=40°、∠A=80°、∠C=60°.那么这两个三角形相似吗?2、等边三角形都相似吗?3、一个锐角对应相等的两个直角三角形相似吗?4、有一个内角对应相等的两个等腰三角形相似吗?5、各有一个内角为100°的两个等腰三角形相似吗?练一练:写出图中的相似三角形:△ADE ∽△ABC ∽△EFC4、例题讲解例1如图C 是线段BD 上的一点,AB ⊥BD ;ED ⊥BD ;AC ⊥EC 求证:△ABC∽△CDE证明:∵AB⊥BD、ED⊥BD ∴∠ABC=∠CDE=90° ∴∠1+∠A=90° ∵AC⊥EC ∴∠1+∠2=90° ∴∠A=∠2 ∴△ABC∽△CDE例2:如图所示:已知RtABC 和RtDEF 不相似(1)条件: DE ∥BC EF ∥AB(2)条件 ∠A=36° AB =ACBD 平分∠ABC(3)条件 ∠ACB=90° CD ⊥AB 于D△ABC ∽△BDC△ACB ∽△ADC ∽△CDB其中C、F为直角.能否将两个三角形分别分成两个三角形,使ABC所分成的两个三角形与DEF所分成的两个三角形分别对应相似?请设计出一种分割方案。
湘教版数学九年级上册3.4《相似三角形的判定与性质》教学设计1一. 教材分析《相似三角形的判定与性质》是湘教版数学九年级上册3.4节的内容,本节内容是在学生已经掌握了三角形的基本概念、三角形的分类、三角形的内角和定理等知识的基础上进行学习的。
本节内容主要让学生了解相似三角形的判定方法和性质,培养学生运用数学知识解决实际问题的能力。
二. 学情分析九年级的学生已经具备了一定的数学基础,能够理解和掌握三角形的分类、内角和定理等基本知识。
但是,对于相似三角形的判定与性质,学生可能初次接触,理解起来可能存在一定的困难。
因此,在教学过程中,教师需要通过具体例题、引导学生动手操作等方式,帮助学生理解和掌握相似三角形的判定与性质。
三. 教学目标1.让学生掌握相似三角形的判定方法。
2.让学生了解相似三角形的性质。
3.培养学生运用数学知识解决实际问题的能力。
四. 教学重难点1.教学重点:相似三角形的判定方法,相似三角形的性质。
2.教学难点:相似三角形的判定与性质在实际问题中的应用。
五. 教学方法1.采用问题驱动法,引导学生探究相似三角形的判定与性质。
2.利用多媒体辅助教学,展示相似三角形的判定与性质的应用。
3.学生进行小组讨论,培养学生的合作能力。
六. 教学准备1.多媒体教学设备。
2.相关教学课件。
3.练习题。
七. 教学过程1.导入(5分钟)教师通过一个实际问题引入相似三角形的概念,激发学生的学习兴趣。
例题:在ΔABC中,AB=AC,点D在BC上,且BD=DC。
求证:ΔABD∽ΔACD。
2.呈现(10分钟)教师引导学生观察上述例题,总结相似三角形的判定方法。
1.两角对应相等;2.两边对应成比例且夹角相等;3.三边对应成比例。
4.操练(10分钟)教师给出几个练习题,让学生运用判定方法进行解答。
1.判断ΔABC与ΔA’B’C’是否相似。
2.判断ΔABD与ΔACD是否相似。
3.巩固(10分钟)教师引导学生总结相似三角形的性质,并进行讲解。
6755③5o3课题:3.4.1相似三角形的判定(2)学 习目 标1、理解相似三角形的判定定理1,,并能够运用此判定方法进行证明和计算。
2、通过对数据关系的探索,培养学生善于观察、分析、归纳、总结的学习态度。
教学重点 掌握相似三角形的判定定理1及其应用 教学难点 相似三角形判定定理1的运用 课型新授课 时 1教学内容环节师生活动 1、相似三角形的判定方法有哪些?2、相似三角形的定义是什么?如何用几何语言表达?3、相似三角形的预备定理是什么?如何用几何语言表达?4、相似三角形的判定定理1是什么?如何用几何语言表达? 重温旧知教师提出问题,学生讨论后解答,为学习新知做好铺垫作用。
一、说一说:下面每组的两个三角形是否相似?为什么?小试牛刀学生个人自我研究,不讨论,举手回答,师生共同得出正确结论。
例1、如图,在△ABC 中,∠C=90°.从点D分别作边AB,BC的垂线,垂足分别为点E,F,DF与AB交于点H.求证:△DEH∽△BCA.例2、如图,在Rt△ABC 与Rt△DEF中,∠C=90°,∠F = 90°.若∠A =∠D,AB = 5,BC = 4, DE = 3,求EF的长.探究新知学生分组完成,然后展示,师生共同订正,教师及时给予评价。
学生独立完成,教师巡视检查,及时了解情况,然后根据情况进行订正讲解。
1、如图,点E为平行四边形ABCD的边BC延长线上一点,连接AE,交CD于点F.请指出图中有几对相似三角形,并说明理由.2、如图,AB⊥BD,ED⊥BD,点C是线段BD 的中点,且AC⊥CE. 已知ED= 1,BD= 4,求AB 的长.练习巩固教师下到学生中间看看学生实际的运用情况。
已知在△ABC中,点E是AB边的中点,点F在AC边上,若以A,E,F为顶点的三角形与△ABC相似,则需要增加的一个条件是???分组讨论学生分小组进行讨论,看哪个组想到的方法最多?一、小结1、本节课所学习的基本知识有哪些?2、学习本节课后,还有那些疑惑?二、作业布置完成教材P80练习1、2题小结作业教师指导学生总结本节课所学的基本内容和存在的疑惑点,建议学生积极发言,教师了解学生的掌握情况及存在问题。
3.4.1 相似三角的判定(2)教学目标1.使学生了解相似三角形的判定定理1.2.会用相似三角形的判定定理1判定两三角形相似.重点难点重点:会用相似三角形的判定定理1判定两三角形相似.难点:理解判定定理的推理过程.教学设计一.预习导学预习教材P79—P80的内容,完成下列问题.1.平行线分线段成比例定理: .2.相似三角形的判定定理之引理是: .二.探究新知(一)相似三角形的判定定理1的学习动脑筋任意画△ABC 和△A B C''',使∠A=∠A',∠B=∠B'.(1)∠C =∠C'吗?(2)分别度量这两个三角形的边长,它们是否对应成比例?(3)把你的结果与同学交流,你们的结论相同吗?由此你有什么发现?过程与方法:教师出示问题,学生阅读课本79页的证明后,讨论得出结论:相似三角形的判定定理1:两角分别相等的两个三角形相似.例1 如图,在△ABC 中,∠C=90°.从点D分别作边AB,BC的垂线,垂足分别为点E,F,DF与AB交于点H.求证:△DEH∽△BCA.例2 如图,在Rt△ABC 与Rt△DEF中,∠C=90°,∠F = 90°.若∠A =∠D,AB = 5,BC = 4,DE = 3,求EF的长.设计意图:通过两个例题的学习,巩固对三角形的判定定理1的理解与掌握,提高几何问题的分析能力.解决能力以及表达能力,从而有效提高课堂效率与质量.对应练习:1.如图,点E为平行四边形ABCD的边BC延长线上一点,连接AE,交CD于点F.请指出图中有几对相似三角形,并说明理由.2. 如图,AB⊥BD,ED⊥BD,点C是线段BD 的中点,且AC⊥CE. 已知ED= 1,BD= 4,求AB的长.三.知识梳理以”本节课我们学到了什么?”启发学生谈谈本节课的收获.1.本节课重点有掌握的知识是什么?2. 在学习的过程中你的困惑是什么?3.你对自己本节课的表现满意的地方在哪里?(说明:学生独立总结出本节知识点,小组内讨论交流,互相补充完善,教师及时给与指导,形成正确的知识归纳.)四.当堂检测1.在△ABC 与△DEF 中,∠A=390,∠B=610,∠E=390,∠F=800, 则△DEF ∽△ABC.2.证明:顶角相等的两个等腰三角形相似.已知:求证:3.如图所示,在锐角△ABC 中,AD ,BE 分别是边BC ,AC 上的高,求证:BC AC BE ADAB CD E五.教学反思在探究式教学中教师是学生学习的组织者.引导者.合作者.共同研究者,鼓励学生大胆探索,引导学生关注过程,及时肯定学生的表现,鼓励创新,哪怕是微小的进步或幼稚的想法都给予热情的赞扬.备课时思考得更多的是学生的突破,上课时教师只在关键处点拨,在不足时补充.。
第2课时 相似三角形的判定定理11.了解三角形相似的判定定理1的探索及证明过程.2.掌握并能应用该定理进行相关的计算或证明.(重难点)阅读教材P79~80,自学“动脑筋”“例3”“例4”,理解相似三角形的判定定理1.(一)知识探究两角分别________的两个三角形相似.(二)自学反馈1.如图所示,已知∠AD E =∠B,则△AED∽________.理由是________________.2.顶角对应相等的两个等腰三角形相似吗?为什么?活动1 小组讨论例1 如图,在△ABC 中,∠C =90°,DE ⊥AB 于E ,DF ⊥BC 于F.求证:△DEH∽△BCA.证明:∵DE⊥AB,DF ⊥BC ,∴∠D +∠DHE=∠B+∠BHF=90°.∵∠BHF =∠DHE,∴∠D =∠B.又∵∠HED=∠C=90°,∴△DEH ∽△BCA.关键是找“角相等”,除已知条件中已明确给出的以外,还应结合具体的图形,寻找公共角、对顶角及由平行线产生的一系列相等的角.例2 如图,在Rt △ABC 与Rt △DEF 中,∠C =90°,∠F =90°,若∠A=∠D,AB =5,BC =4,DE =3,求EF 的长.解:∵∠C=90°,∠F =90°,∠A =∠D,∴△ABC ∽△DEF.∴AB DE =BC EF. 又AB =5,BC =4,DE =3,∴EF =2.4.活动2 跟踪训练1.Rt △ABC 中,∠C =90°,∠A =52°,Rt △DEF 中,∠F =90°,∠D =38°,则这两个三角形的关系是( )A .不相似B .相似C .全等D .不能确定2.如图,AC⊥CD,垂足为点C,BD⊥CD,垂足为点D,AB与CD交于点O,若AC=1,BD=2,CD=4,则AB=( ) A.1 B.2C.3 D.53.如图,点D,E在BC上,且FD∥AB,FE∥AC.求证:△ABC∽△FDE.活动3 课堂小结1.如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.2.根据题目已知条件,如何寻找角相等来证明三角形相似.【预习导学】知识探究相等自学反馈1.△ACB 两角分别相等的两个三角形相似2.相似,理由略.【合作探究】活动2 跟踪训练1.B 2.D 3.证明:∵FD∥AB,FE∥AC,∴∠B=∠FDE,∠C=∠FED,∴△ABC∽△FDE.。
第2课时相似三角形的判定(2)
教学目标
【知识与技能】
经历三角形相似的判定定理“两边成比例且夹角相等的两个三角形相似”和“三边成比例的两个三角形相似”的探索及证明过程.
【过程与方法】
让学生经历观察、实验、猜想、证明的过程,培养学生提出问题、分析问题、解决问题的能力.
【情感态度】
在合作、交流、探讨的学习氛围中,体验学习的快乐,树立学习的信心.
【教学重点】
掌握判定定理,会运用判定定理判定两个三角形相似.
【教学难点】
会准确的运用两个三角形相似的条件来判定两个三角形是否相似.
教学过程
一、情景导入,初步认知
问题:(1)相似三角形的定义是什么?
三边成比例,三角分别相等的两个三角形相似.
(2) 判定两个三角形相似,你有哪些方法?
方法1:通过定义(不常用);
方法2:通过平行线(条件特殊,使用起来有局限性);
方法3:判定定理1,两角分别相等的两个三角形相似.
【教学说明】引导学生复习学过的知识,承前启后,激发学生学习新知的欲望.
二、思考探究,获取新知
下面我们来探究还可用哪些条件来判定两个三角形相似.
1.我们学习了三角形相似的判定定理1,类似于三角形全等的“SAS”判定方法,你能通过类比的方法猜想到三角形相似的其它判定方法吗?
2.任意画△ABC与△A′B′C′,使∠A′=∠A,AB AC
A B A C
=
''''
=k.
(1)分别度量∠B′和∠B,∠C′和∠C的大小,它们分别相等吗?
(2)分别度量BC和B′C′的长,它们的比等于k吗?
(3)改变∠A或k的大小,你的结论相同吗?由此你有什么发现?
【教学说明】引导学生画图,并鼓励证明命题归纳结论.
【归纳结论】两边成比例且夹角相等的两个三角形相似.
3.如图,在△ABC与△DEF中,已知∠C=∠
F,AC=3.5cm,BC=2.5cm,DF=2.1cm,EF=1.5cm.求证:△ABC∽△DEF.
证明:∵AC=3.5cm,BC=2.5cm,DF=2.1cm,
EF=1.5cm,
又∵∠C=∠F,
∴△ABC∽△DEF.
4.我们已经学习了三角形相似的2个判定定理,类似于三角形全等的“SSS”判定方法,你能通过类比的方法猜想三角形相似的其他判定方法吗?
5.你能证明你的结论吗?
已知:如图,在△A′B′C′和△ABC中,
求证:△A′B′C′∽△ABC.
【教学说明】引导学生证明.
【归纳结论】三边成比例的两个三角形相似.
6.如图,在Rt△ABC和Rt△A′B′C′中,∠C=∠C′=90°,AB AC A B A C ''''
=.
求证:△ABC∽△A′B′C′.
分析:已知两边成比例,只需证明三边成比例就可以证明两个三角形相似.可以利用勾股定理来证明.
【教学说明】用已学过的知识解题,并通过解题巩固对判定定理的理解.
三、运用新知,深化理解
1.见教材P82例6、P84例8.
2.如图,下列每个图形中,存不存在相似的三角形,如果存在,把它们用字母表示出来,并简要说明识别的根据.
解:(1)△ADE∽△ABC,两角相等;
(2)△ADE∽△ACB,两角相等;
(3)△CDE∽△CAB,两角相等;(4)△EAB∽△ECD,两边成比例且夹角相等;(5)△ABD∽△ACB,两边成比例且夹角相等;(6)△ABD∽△ACB,两边成比例且夹角相等.
3.在△ABC和△A′B′C′中,已知下列条件成立,判断这两个三角形是否相似,并说明理由.
(1)AB=5,AC=3,∠A=45°,
A′B′=10,A′C′=6,∠A′=45°;
(2)∠A=38°,∠C=97°,
∠A′=38°,∠B′=45°;
(3)AB=2 ,BC=2,AC=10,
A′B′=2, B′C′=1 ,A′C′=5.
解:(1)SAS,相似;
(2)AA,相似;
(3)SSS,相似.
4.如图,BC与DE相交于点O.问
(1)当∠B 满足什么条件时,△ABC∽△ADE?
(2)当AC∶AE 满足什么条件时,△ABC∽△ADE ?
(学生小组合作交流、讨论,教师巡视引导.)
解:(1)∵∠A=∠A ,
∴当∠B=∠D时,△ABC∽△ADE.
(2)∵∠A=∠A ,
∴当AC∶AE=AB∶AD时,
△ABC∽△ADE.
5.如图,在等腰直角三角形ABC中,顶点为C,∠
MCN=45°,试说明△BCM∽△ANC.
解:∵△ACB是等腰直角三角形,
∴∠A=∠B=45°.
又∵∠MCN=45°,
∠CNA=∠B+∠BCN=45°+∠BCN,
∠MCB=∠MCN+∠NCB=45°+∠BCN.
∴∠CNA=∠MCB,
在△BCM和△ANC中,
∠A=∠B
∠CNA=∠MCB,
∴△BCM∽△ANC.
6.如图,已知△ABC、△DEB均为等腰直角三角形,∠ACB=∠EDB=90°,点E在边AC上,CB、ED交于点F.
证明:△ABE∽△CBD.
证明:∵△ABC、△DEB均为等腰直角三角形,
∴∠DBE=∠CBA=45°,
∴∠DBE-∠CBE=∠CBA-∠CBE.
即∠ABE=∠CBD ,又
EB AB BD BC
==2, ∴△ABE ∽△CBD. 7.在平行四边形ABCD 中,M ,N 为对角线BD 上两点,连接AM 交BC 于
E ,连接EN 并延长交AD 于
F .
试说明△AMD ∽△EMB.
解:∵ABCD 是平行四边形,
∴AD ∥BC ,∠ADB=∠DBC ,
∠MAD=∠MEB ,
∴△MAD ∽△MEB .
8.如图,已知△ABD ∽△ACE ,求证:△ABC ∽△ADE.
分析:由于△ABD ∽△ACE ,则∠BAD=∠CAE ,因此∠BAC=∠DAE ,如果
再进一步证明ABAD=ACAE ,则问题得证.
证明:∵△ABD ∽△ACE ,
∴∠BAD=∠CAE .
又∵∠BAC=∠BAD+∠DAC ,
∠DAE=∠DAC+∠CAE ,
∴∠BAC=∠DAE .
∵△ABD ∽△ACE ,∴
AB AC AD AE
=.
在△ABC 和△ADE 中,
∵∠BAC=∠DAE,A
AB AC AD AE =, ∴△ABC ∽△ADE.
【教学说明】通过练习,使学生能够综合运用相似三角形的判
定定理解决问题.
四、师生互动、课堂小结
先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师作以补充.
课后作业
布置作业:教材“习题3.4”中第1、3、4 题.
教学反思
相似三角形的判定主要介绍了四种方法,从练习的结果来看,不是很理想,绝大部分学生对定理的应用不是很熟练,特别对于"两边对应成比例且夹角相等"不能灵活运用,夹角也不能准确找到.我想问题的主要原因在于学生对图形的认知不深,对定理的理解不透,一味死记结论.不能理解每个量所表示的含义.我想在下一阶段中应培养他们认识图形的能力,合情推理的能力,争取这方面有所提高.。