2010年四川省成都市中考数学试题(word版)
- 格式:doc
- 大小:1.27 MB
- 文档页数:14
2021年成都市高中阶段教育学校统一招生考试数学(满分150分,考试时间120分钟)A卷(共100分)第Ⅰ卷(选择题共30分)一、选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求)1.﹣7的倒数是()A.﹣B.C.﹣7 D.72.如图所示的几何体是由6个大小相同的小立方块搭成,它的俯视图是()A.B.C.D.3.2021年5月15日7时18分,天问一号探测器成功着陆距离地球逾3亿千米的神秘火星,在火星上首次留下中国人的印迹,这是我国航天事业发展的又一具有里程碑意义的进展.将数据3亿用科学记数法表示为()A.3×105B.3×106C.3×107D.3×1084.在平面直角坐标系xOy中,点M(﹣4,2)关于x轴对称的点的坐标是()A.(﹣4,2)B.(4,2)C.(﹣4,﹣2)D.(4,﹣2)5.下列计算正确的是()A.3mn﹣2mn=1 B.(m2n3)2=m4n6C.(﹣m)3•m=m4D.(m+n)2=m2+n2 6.如图,四边形ABCD是菱形,点E,F分别在BC,DC边上,添加以下条件不能判定△ABE≌△ADF的是()A.BE=DF B.∠BAE=∠DAFC.AE=AD D.∠AEB=∠AFD7.菲尔兹奖是数学领域的一项国际大奖,常被视为数学界的诺贝尔奖,每四年颁发一次,最近一届获奖者获奖时的年龄(单位:岁)分别为:30,40,34,36,则这组数据的中位数是()A.34 B.35 C.36 D.408.分式方程+=1的解为()A.x=2 B.x=﹣2 C.x=1 D.x=﹣19.《九章算术》卷八方程第十题原文为:“今有甲、乙二人持钱不知其数.甲得乙半而钱五十,乙得甲太半而亦钱五十.问:甲、乙持钱各几何?”题目大意是:甲、乙两人各带了若干钱.如果甲得到乙所有钱的一半,那么甲共有钱50;如果乙得到甲所有钱的,那么乙也共有钱50.问:甲、乙两人各带了多少钱?设甲、乙两人持钱的数量分别为x,y,则可列方程组为()A.B.C.D.10.如图,正六边形ABCDEF的边长为6,以顶点A为圆心,AB的长为半径画圆,则图中阴影部分的面积为()A.4π B.6π C.8π D.12π第Ⅱ卷(非选择题共70分)二、填空题(本大题共4个小题,每小题4分,共16分)11.因式分解:x2﹣4=.12.如图,数字代表所在正方形的面积,则A所代表的正方形的面积为.13.在平面直角坐标系xOy中,若抛物线y=x2+2x+k与x轴只有一个交点,则k=.14.如图,在Rt△ABC中,∠C=90°,AC=BC,按以下步骤作图:①以点A为圆心,以任意长为半径作弧,分别交AC,AB于点M,N;②分别以M,N为圆心,以大于MN的长为半径作弧,两弧在∠BAC内交于点O;③作射线AO,交BC于点D.若点D到AB的距离为1,则BC的长为.三、解答题(本大题共6个小题,共54分,解答过程写在答题卡上)15.(12分)(1)计算:+(1+π)0﹣2cos45°+|1﹣|.(2)解不等式组:.16.(6分)先化简,再求值:(1+)÷,其中a=﹣3.17.(8分)为有效推进儿童青少年近视防控工作,教育部办公厅等十五部门联合制定《儿童青少年近视防控光明行动工作方案(2021﹣2025年)》,共提出八项主要任务,其中第三项任务为强化户外活动和体育锻炼.我市各校积极落实方案精神,某学校决定开设以下四种球类的户外体育选修课程:篮球、足球、排球、乒乓球.为了解学生需求,该校随机对本校部分学生进行了“你选择哪种球类课程”的调查(要求必须选择且只能选择其中一门课程),并根据调查结果绘制成不完整的统计图表.根据图表信息,解答下列问题:(1)分别求出表中m ,n 的值;(2)求扇形统计图中“足球”对应的扇形圆心角的度数;(3)该校共有2000名学生,请你估计其中选择“乒乓球”课程的学生人数.18.(8分)越来越多太阳能路灯的使用,既点亮了城市的风景,也是我市积极落实节能环保的举措.某校学生开展综合实践活动,测量太阳能路灯电池板离地面的高度.如图,已知测倾器的高度为1.6米,在测点A 处安置测倾器,测得点M 的仰角∠MBC =33°,在与点A 相距3.5米的测点D 处安置测倾器,测得点M 的仰角∠MEC =45°(点A ,D 与N 在一条直线上),求电池板离地面的高度MN 的长.(结果精确到1米;参考数据sin33°≈0.54,cos33°≈0.84,tan33°≈0.65)19.(10分)如图,在平面直角坐标系xOy 中,一次函数y =x+的图象与反比例函数y =(x >0)的图象相交于点A (a ,3),与x 轴相交于点B .(1)求反比例函数的表达式;(2)过点A 的直线交反比例函数的图象于另一点C ,交x 轴正半轴于点D ,当△ABD 是以BD 为底的等腰三角形时,求直线AD 的函数表达式及点C 的坐标.20.(10分)如图,AB 为⊙O 的直径,C 为⊙O 上一点,连接AC ,BC ,D 为AB 延长线上一点,连接CD ,且∠BCD =∠A .(1)求证:CD 是⊙O 的切线;(2)若⊙O 的半径为,△ABC 的面积为2,求CD 的长;(3)在(2)的条件下,E 为⊙O 上一点,连接CE 交线段OA 于点F ,若=,求BF 的长. B 卷(共50分)课程人数 篮球 m 足球 21 排球 30 乒乓球 n一、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)21.在正比例函数y=kx中,y的值随着x值的增大而增大,则点P(3,k)在第象限.22.若m,n是一元二次方程x2+2x﹣1=0的两个实数根,则m2+4m+2n的值是.23.如图,在平面直角坐标系xOy中,直线y=x+与⊙O相交于A,B两点,且点A在x轴上,则弦AB的长为.24.如图,在矩形ABCD中,AB=4,AD=8,点E,F分别在边AD,BC上,且AE=3,按以下步骤操作:第一步,沿直线EF翻折,点A的对应点A′恰好落在对角线AC上,点B的对应点为B′,则线段BF的长为;第二步,分别在EF,A′B′上取点M,N,沿直线MN继续翻折,使点F与点E重合,则线段MN的长为.25.我们对一个三角形的顶点和边都赋给一个特征值,并定义:从任意顶点出发,沿顺时针或逆时针方向依次将顶点和边的特征值相乘,再把三个乘积相加,所得之和称为此三角形的顺序旋转和或逆序旋转和.如图1,ar+cq+bp是该三角形的顺序旋转和,ap+bq+cr是该三角形的逆序旋转和.已知某三角形的特征值如图2,若从1,2,3中任取一个数作为x,从1,2,3,4中任取一个数作为y,则对任意正整数z,此三角形的顺序旋转和与逆序旋转和的差都小于4的概率是.二、解答题(本大题共3个小题,共30分,答过程写在答题卡上)26.(8分)为改善城市人居环境,《成都市生活垃圾管理条例》(以下简称《条例》)于2021年3月1日起正式施行.某区域原来每天需要处理生活垃圾920吨,刚好被12个A型和10个B型预处置点位进行初筛、压缩等处理.已知一个A型点位比一个B型点位每天多处理7吨生活垃圾.(1)求每个B型点位每天处理生活垃圾的吨数;(2)由于《条例》的施行,垃圾分类要求提高,在每个点位每天将少处理8吨生活垃圾,同时由于市民环保意识增强,该区域每天需要处理的生活垃圾比原来少10吨.若该区域计划增设A 型、B型点位共5个,试问至少需要增设几个A型点位才能当日处理完所有生活垃圾?27.(10分)在Rt△ABC中,∠ACB=90°,AB=5,BC=3,将△ABC绕点B顺时针旋转得到△A′BC′,其中点A,C的对应点分别为点A′,C′.(1)如图1,当点A′落在AC的延长线上时,求AA′的长;(2)如图2,当点C′落在AB的延长线上时,连接CC′,交A′B于点M,求BM的长;(3)如图3,连接AA′,CC′,直线CC′交AA′于点D,点E为AC的中点,连接DE.在旋转过程中,DE是否存在最小值?若存在,求出DE的最小值;若不存在,请说明理由.28.(12分)如图,在平面直角坐标系xOy中,抛物线y=a(x﹣h)2+k与x轴相交于O,A两点,顶点P的坐标为(2,﹣1).点B为抛物线上一动点,连接AP,AB,过点B的直线与抛物线交于另一点C.(1)求抛物线的函数表达式;(2)若点B的横坐标与纵坐标相等,∠ABC=∠OAP,且点C位于x轴上方,求点C的坐标;(3)若点B的横坐标为t,∠ABC=90°,请用含t的代数式表示点C的横坐标,并求出当t<0时,点C的横坐标的取值范围.答案与解析A卷(共100分)第Ⅰ卷(选择题共30分)一、选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求)1.﹣7的倒数是()A.﹣B.C.﹣7 D.7【知识考点】倒数.【思路分析】根据倒数:乘积是1的两数互为倒数,即可得出答案.【解题过程】解:∵﹣7×(﹣)=1,∴﹣7的倒数是:﹣.故选:A.【总结归纳】此题主要考查了倒数,正确掌握倒数的定义是解题关键.2.如图所示的几何体是由6个大小相同的小立方块搭成,它的俯视图是()A.B.C.D.【知识考点】简单组合体的三视图.【思路分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【解题过程】解:从上面看,底层的最右边是一个小正方形,上层是四个小正方形,右齐.故选:C.【总结归纳】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.3.2021年5月15日7时18分,天问一号探测器成功着陆距离地球逾3亿千米的神秘火星,在火星上首次留下中国人的印迹,这是我国航天事业发展的又一具有里程碑意义的进展.将数据3亿用科学记数法表示为()A.3×105B.3×106C.3×107D.3×108【知识考点】科学记数法—表示较大的数.【思路分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,且n比原来的整数位数少1,据此判断即可.【解题过程】解:3亿=300000000=3×108.故选:D.【总结归纳】此题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.4.在平面直角坐标系xOy中,点M(﹣4,2)关于x轴对称的点的坐标是()。
成都市中考数学试题(含答案)(含成都市初三毕业会考)数 学注意事项:1. 全卷分A 卷和B 卷.A 卷满分100分.B 卷满分50分;考试时间120分钟.2. 五城区及高新区的考生使用答题卡作答.郊区(市)县的考生使用机读卡加答题卷作答。
3. 在作答前.考生务必将自己的姓名、准考证号涂写在答题卡(机读卡加答题卷)上。
考试结束.监考人员将试卷和答题卡(机读卡加答题卷) 一并收回。
4.选择题部分必须使用2B 铅笔填涂;非选择题部分必须使用0.5毫米黑色墨水签字笔书写.字体工整、笔迹清楚。
5.请按照题号在答题卡(机读卡加答题卷)上各题目对应的答题区域内作答.超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
6.保持答题卡面(机读卡加答题卷)清洁.不得折叠、污染、破损等。
A 卷(共100分) 第Ⅰ卷(选择题.共30分)一、选择题:(每小题3分.共3 0分)每小题均有四个选项.其中只有一项符合题目要求。
1. 4的平方根是(A)±16 (B)16 (C )±2 (D)2 2.如图所示的几何体的俯视图是3. 在函数12y x =-x 的取值范围是 (A)12x ≤(B) 12x < (C) 12x ≥ (D) 12x > 4. 近年来.随着交通网络的不断完善.我市近郊游持续升温。
据统计.在今年“五一”期间.某风景区接待游览的人数约为20.3万人.这一数据用科学记数法表示为(A)420.310⨯人 (B) 52.0310⨯人 (C) 42.0310⨯人 (D) 32.0310⨯人 5.下列计算正确的是 (A )2x x x += (B)2x x x ⋅= (C)235()x x =(D)32x x x ÷=6.已知关于x 的一元二次方程20(0)mx nx k m ++=≠有两个实数根.则下列关于判别式24n mk -的判断正确的是(A) 240n mk -< (B)240n mk -=BC D E ABCDE30(C)240n mk -> (D)240n mk -≥ 7.如图.若AB 是⊙0的直径.CD 是⊙O 的弦.∠ABD=58°. 则∠BCD=(A)116° (B)32° (C)58° (D)64°8.已知实数m 、昆在数轴上的对应点的位置如图所示.则下列判断正确的是 (A)0m > (B)0n < (C)0mn < (D)0m n ->9. 为了解某小区“全民健身”活动的开展情况.某志愿者对居住在该小区的50名成年人一周的体育锻炼时间进行了统计.并绘制成如图所示的条形统计图.根据图中提供的信息.这50人一周的体育锻炼时间的众数和中位数分别是(A)6小时、6小时 (B) 6小时、4小时 (C) 4小时、4小时 (D)4小时、6小时10. 已知⊙O 的面积为9π2cm .若点0到直线l 的距离为πcm .则直线l 与⊙O 的位置关系是(A)相交 (B)相切 (C)相离 (D)无法确定第Ⅱ卷《非选择题.共7()分)二、填空题:(每小题4分.共l 6分)11. 分解因式:.221x x ++=________________。
成都市近年中考数学试题分析及教学建议第一部分:试卷概况总体评价:A卷紧扣双基、B卷突出衔接基本描述:近年成都市中考数学试题,遵循《数学新课程标准》及《中考说明》中相关评价,在全面考查课程标准规定的数学核心内容的基础上,更加注重基础知识、基本技能、基本思想方法及基本活动经验的考查,继续突出学生的数学能力的考查.试题紧扣双基,贴近生活,题目起点低,难度分布有序,区分度恰当。
问题基础、灵活、巧妙、新颖.既着眼于熟悉的题型和在此基础上的演变,又着眼于情景创新,有利于考查考生真实的数学水平,充分发挥中考数学试题的测评、选拔和导向功能.进一步引导教学回到“回归基础、回归教材、回归通性通法,关注后续学习”的正确轨道上来.试卷结构:试题为A、B卷,总分150分.考试时间120分钟.全卷共28个题,A卷20个题,共100分;B卷8个题,共50分.A卷10个选择题,每小题3分,共30分;4个填空题,每小题4分,共16分;6个解答题,共54分.B卷5个填空题,每小题4分,共20分;3个解答题,共30分.考点分析:整个初中知识可以分为三大板块:数与代数,空间与几何,统计与概率。
其中考试所占比重最多的是数与代数,50%左右。
其次是空间与几何约为38%,统计与概率是最少也是最简单的一个板块,约为12%。
具体分值情况参看下表第二部分:试题分析一、试题特色:1.基础知识与技能考查上降低起点,突出核心内容考查每年在A卷选择题、填空题必考的内容有实数的运算、代数式的化简求值、解不等式组、解方程或方程组等;在每年的解答题中,统计与概率实际应用、解直角三角形、求函数解析式、平面图形的简单论证和计算等是考查的重点。
整个A卷体现了“考查基础”的命题指导思想.试卷的起点题以及每种题型的起点题都属基础知识,.2.基本思想方法及基本活动经验考查贯穿全卷《标准修订稿》强调数学教学过程中的两个新任务:感悟数学思想及积累数学活动经验.数学基本思想方法是数学学习的灵魂。
2023年四川省成都市中考数学试卷试卷考试总分:143 分 考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、 选择题 (本题共计 8 小题 ,每题 4 分 ,共计32分 )1. 在,,,中,最大的数是 A.B.C.D.2. 年新设了雄安新区,周边经济受到刺激综合实力大幅跃升,其中某地区生产总值预计可增长到亿元,其中亿用科学记数法表示为( )A.B.C.D.3. 下列各运算中,计算正确的是 ( )A.B.C.D.4. 一把直尺与一块直角三角板按如图方式摆放,若,则( )−30233()−32332017305.5305.5305.5×1043.055×1023.055×10103.055×10112a +3b =5ab2⋅3=6a 2a 3a 66÷2=3a 2a 3a −1=()a 23a 5∠1=47∘∠2=A.B.C.D.5. 在▱中, ,则( )A.B.C.D.6. 一个口袋中装有个乒乓球,其中个球涂成黄色,个球涂成绿色,个球涂成红色.做如下游戏.第一步,从中任意摸出一个乒乓球,记下颜色后放回.第二步:再放入一个黄色的乒乓球.从中任意摸出一个乒乓球,记下颜色.下列说法正确的是( )A.放入球前后摸出绿色球的概率相同B.放入球后摸出黄色球的概率为C.放入球前摸到红色球的概率与放入球后摸到黄色球的概率相同D.放入球后摸出红色球的概率减小了7. 某项工作甲单独做天完成,乙单独做天完成,若甲先干天,然后,甲、乙合作完成此项工作,若设甲一共做了天,由此可列出方程,下面所列方程正确的是A.B.C.D.8. 二次函数的图象如图所示,下列结论正确的是( )40∘43∘45∘47∘ABCD ∠C =60∘∠A =60∘90∘120∘150∘12354A A A 14A A A 583x ()x+(x−3)=11518(x−3)+x =11518x+(x+3)=11518(x+3)+x =11518y =a +bx+c(a ≠0)x 2A.B.C.D.有两个不相等的实数根二、 填空题 (本题共计 10 小题 ,共计55分 )9. (4分) 因式分解: ________.10. (4分) 已知反比例函数,当时,的值是________.11. (4分) 如图所示的网格是正方形网格,图形的各个顶点均为格点,则________.12. (4分) 在平面直角坐标系中,点关于轴的对称点的坐标是________.13. (4分) 如图,在中,,.按以下步骤作图:①以点为圆心,小于的长为半径画弧,分别交,于点,;②分别以点,为圆心,大于的长为半径画弧,两弧相交于点;③作射线交边于点.则的度数为________.14. (7分) 若,则_______.15. (7分) 如图是由大小相同的小正方体组成的简单几何体的从左面看和从上面看,那么组成这个几何体的小正方体的个数最少为________个.abc >02a +b <03a +c <0a +bx+c −3=0x 2a(a −b)−b(b −a)=y =kx k−3x =4y ∠1+∠2=P(4,2)x △ABC ∠C =90∘∠CAB =50∘A AC AB AC E F E F EF 12G AG BC D ∠ADC a +b =5ab +=1a 1b16. (7分) 已知的直径,是的弦,,垂足为,且,则的长为________.17. (7分) 若关于的方程的两个根恰好是的两条边的长,的一个内角度数为 内切圆半径为________.18. (7分) 长和宽分别是,的长方形的周长为,面积为,则的值为________.三、 解答题 (本题共计 8 小题 ,每题 7 分 ,共计56分 )19. 计算:.20. 为全面落实党的教育方针,培养全面发展的合格学生.某校为了让学生在体育锻炼中享受乐趣、增强体质、健全人格、锤炼意志,落实市教育局制定的《青岛市促进中小学生全面发展“十个一”项目行动计划》.开展了以下体育活动:代号活动类型球类游泳跳绳武术其他为了解学生的选择情况,现从该校随机抽取了部分学生进行问卷调查(参与问卷调查的每名学生只能选择其中一项活动),并根据调查得到的数据绘制了如图所示的两幅不完整的统计图.请根据统计图提供的信息回答下列问题.此次共调查了________名学生;将条形统计图补充完整;“武术”所在扇形的圆心角为________.若该校共有名学生,请估计该校选择类活动的学生共有多少人?(写出计算过程) 21. 为解决楼房之间的挡光问题,某地区规定:两幢楼房间的距离至少为米,中午时不能挡光.⊙O CD =10cm AB ⊙O AB ⊥CD M AB =8cm AC x −12x+−4k +40=0x 2k 2△ABC △ABC ,120∘△ABC a b 106b +a a 2b 2(−1+2cos −|−|)201130∘3–√A B C D E(1)(2)(3)∘(4)3600A 4012如图,某旧楼的一楼窗台高米,要在此楼正南方米处再建一幢新楼.已知该地区冬天中午时阳光从正南方照射,并且光线与水平线的夹角最小为,在不违反规定的情况下,请问新建楼房最高多少米?22. 如图:在中,弦,相交于的中点,连接并延长至点,使,连接,.求证:;当,求的值. 23. 如图,直线与反比例函数的图象交于点,已知点,,点是反比例函数的图象上的一个动点,过点作轴的垂线,交直线于点.(1)求反比例函数的解析式;(2),求的面积;(3)在点运动的过程中,是否存在点,使=?若存在,请求出点的坐标;若不存在,请说明理由. 24. 学校准备购进一批节能灯,已知只型节能灯和只型节能灯共需元;只型节能灯和只型节能灯共需元.求一只型节能灯和一只型节能灯的售价各是多少元?学校准备购进这两种型号的节能灯共只,并且型节能灯的数量不多于型节能灯数量的倍,请设计出最省钱的购买方案,并说明理由. 25. 如图,在平面直角坐标系中,直线交轴于点,交轴于点,经过点的1401230∘⊙O AB CD AB E AD F DF =AD BC BF (1)△CBE ∼△AFB (2)=BE FB 58CB AD AB y =(x >0)k x A A(3,4)B(0,−2)C y =(x >0)k xC x ABD =BD AD 12△ABC C C BC AC C 1A 3B 263A 2B 29(1)A B (2)50A B 3y =x−3432x A y B A =−+bx+c1交直线于另一点,且点到轴的距离为.求抛物线的解析式;点是直线上方的抛物线上一动点(不与点、重合),过点作于点,过点作轴交于点,设的周长为,点的横坐标为,求与的函数关系式,并直接写出自变量的取值范围;在()的条件下,当最大时,连接,将沿直线方向平移,点、、的对应点分别为、、,当的顶点在抛物线上时,求点的横坐标,并判断此时点是否在直线上.26. 如图,在中,=,=,=,动点从点出发,在边上以每秒个单位的速度向点运动,连结,作点关于直线的对称点,设点运动时间为.(1)若是以为底的等腰三角形,求的值;(2)若为直角三角形,求的值;(3)当时,求所有满足条件的的取值范围(所有数据请保留准确值,参考数据:=).y =−+bx+c 14x 2AB D D y 8(1)(2)P AD A D P PE ⊥AD E P PF//y AD F △PEF L P m L m m (3)2L PD △PED PE P E F Q M N △QMN M M N PF △ABC ∠A 90∘∠ABC 30∘AC 3D A AB 1B CD A CD E D t(s)△BDE BE t △BDE t ≤S △BCE 92t tan15∘2−3–√参考答案与试题解析2023年四川省成都市中考数学试卷试卷一、 选择题 (本题共计 8 小题 ,每题 4 分 ,共计32分 )1.【答案】D【考点】有理数大小比较【解析】此题暂无解析【解答】解:.故选.2.【答案】C【考点】科学记数法--表示较大的数【解析】用科学记数法表示较大的数时,一般形式为,其中,为整数,据此判断即可.【解答】亿=.3.【答案】C【考点】3>>0>−323D a ×10n 1≤|a |<10n 305.5 3.055×1010整式的混合运算【解析】直接利用积的乘方法则以及合并同类项、同底数幂的乘法运算法则进而得出答案.【解答】解:、无法计算,故此选项错误;、,故此选项错误;、,故此选项正确;、,故此选项错误.故选.4.【答案】B【考点】中位数【解析】此题暂无解析【解答】解:如图,过三角板的直角顶点作直尺两边的平行线,∵直尺的两边互相平行,∴,∴,∴,故选.5.【答案】A【考点】平行四边形的性质【解析】根据平行四边形的基本性质可知,平行四边形的邻角互补,,是邻角,,是领角可求解.【解答】A 2a +3b B 2⋅3=6a 2a 3a 5C ÷=3a 6a 3a −1D (=a 2)3a 6C ∠3=∠1=47∘∠4=−∠3=90∘43∘∠2=∠4=43∘B ∠A ∠B ∠B ∠C解:四边形是平行四边形,,是邻角,和是邻角,.故选.6.【答案】D【考点】概率公式【解析】根据概率公式求出各事件的概率即可解答.【解答】解:,放入球前,摸到绿色球的概率为,放入球后,摸到绿色球的概率为,概率不相同,故错误;,放入球后,摸到黄色球的概率为,故错误;,放入球前,摸到红色球的概率为,放入球后,摸到红色球的概率为,概率不相同,故错误;,放入球前,摸到红色球的概率为,放入球后,摸到红色球的概率为,因为,所以放入球后,摸到红色球的概率减小了,故正确.故选.7.【答案】A【考点】由实际问题抽象出一元一次方程【解析】由题设得甲一天完成工作的,乙一天完成工作的,甲先干了天,共做了天,则乙干了天,列方程的解.【解答】解:由题设得甲一天完成工作的,乙一天完成工作的,由题设甲先干了天,共做了天,则乙干了天,∵ABCD ∴∠A ∠B ∠B ∠C ∴∠A =∠C A A A 512A 513A B A 313B C A 13A 413C D A 13A 413>13413A D D 15183x x−315183x x−3+(x−3)=111所以.故选.8.【答案】C【考点】二次函数图象与系数的关系抛物线与x 轴的交点【解析】根据抛物线开口方向得,由抛物线对称轴为直线,得到,由抛物线与轴的交点位置得到,进而解答即可.【解答】解:∵抛物线开口向下,∴,由抛物线对称轴为直线,得到,由抛物线与轴交于正半轴知,,,故错误;,抛物线对称轴为直线,∴,,故错误;,当时,,故正确;,由图可知,抛物线与直线有一个交点,∴有一个实数根,故错误.故选.二、 填空题 (本题共计 10 小题 ,共计55分 )9.【答案】【考点】因式分解-提公因式法【解析】原式变形后,提取公因式即可.【解答】x+(x−3)=11518A a <0x =−b 2a b >0y c >0a <0x =−=1>0b 2a b >0yc >0A abc <0A B x =−=1b 2a −b =2a 2a +b =0B C x =−1a −b +c =a +2a +c =3a +c <0C D y =a +bx+c x 2y =3a +bx+c −3=0x 2D C (a +b)(a −b)解:原式.故答案为:.10.【答案】【考点】反比例函数的性质【解析】此题暂无解析【解答】解:∵是反比例函数,∴且,∴,∴,∴时,.故答案为:.11.【答案】【考点】全等三角形的性质【解析】直接利用网格得出对应角=,进而得出答案.【解答】解:如图所示,由题意可得:,则.=a(a −b)+b(a −b)=(a +b)(a −b)(a +b)(a −b)12y =kx k−3k −3=−1k ≠0k =2y =2x x =4y =121245∘∠1∠3∠1=∠3∠1+∠2=∠2+∠3=45∘故答案为:.12.【答案】【考点】关于x 轴、y 轴对称的点的坐标【解析】直接利用关于轴对称,则横坐标相同,纵坐标互为相反数进而得出答案.【解答】解:根据关于轴对称的点,横坐标相同,纵坐标互为相反数可得:点关于轴的对称点的坐标是:.故答案为:.13.【答案】【考点】作图—基本作图角平分线的性质【解析】此题暂无解析【解答】解:根据作图方法可得,是的角平分线,∵,∴,∵,∴.故答案为:.14.【答案】45∘(4,−2)x x P(4,2)x (4,−2)(4,−2)65∘AG ∠CAB ∠CAB =50∘∠CAD =∠CAB =1225∘∠C =90∘∠ADC =−=90∘25∘65∘65∘5分式的化简求值【解析】先通分,再加减,最后整体代入,即可解答.【解答】解:,.故答案为:.15.【答案】【考点】由三视图判断几何体【解析】由左视图易得这个几何体共有层,由俯视图可得第一层正方体的个数,由左视图可得第二层正方体的可能的最少个数,相加即可.【解答】解:从上面看可以看出组成这个几何体的底面小正方体有个,从左面看可知第二层最少有个,故组成这个几何体的小正方体的个数最少为:(个).故答案为:.16.【答案】或【考点】垂径定理【解析】先根据垂径定理得,由直径,得,由勾股定理得的长,利用勾股定理可得.∵a +b =5ab ∴+===51a 1b a +b ab 5ab ab 552414+1=5525–√45–√CM =DM =CD =×8=41212AB =10cm OA =OC =5cm OM AC解:∵,∴.∵,∴,∴.当如图所示时,,∴.当如图所示时,,∴.故答案为:或.17.【答案】【考点】三角形的内切圆与内心解直角三角形等腰三角形的判定与性质根的判别式勾股定理【解析】根据题意可得方程的判别式△≥,然后根据非负数的性质可求出的值,进而可求得方程的根并判定△是等腰三角形,如图CD ⊥AB CM =DM =CD =×8=41212AB =10OA =OC =5OM ===3O −C C 2M 2−−−−−−−−−−√−5242−−−−−−√1AM =AO +OM =8AC ===4A +C M 2M 2−−−−−−−−−−−√+8242−−−−−−√5–√2AM =AO −OM =2AC ===2A +C M 2M 2−−−−−−−−−−−√+2242−−−−−−√5–√25–√45–√6−93–√0k ABC,设△的内切圆圆心为○,与、切于点、,连接、,根据等腰三角形的性质可可求得及的度数,设,则解直角△可用含的代数式表示,进而可关于的方程,解方程即可求出答案.【解答】解:∵关于的方程有两个实数根,∴,即,整理得:,∵ ∴ ,此时方程为,解得方程的两根为:,即是等腰三角形.∵的一个内角度数为,∴设,则,如图,设的内切圆圆心为,与,相切于点,,连接,,则点在上,∴,,∵,,∴,,,∴,设,则,∴,∵,∴,解得:.故答案为:.18.【答案】ABC AB BC E D AD OE AD ∠B OD =OE =r AEO r AO r x −12x+−4k +40=0x 2k 2Δ≥0−4×1×(−4k +40)≥0(−12)2k 2≤0(k −2)2≥0(k −2)2k =2−12x+36=0x 2==6x 1x 2△ABC △ABC 120∘AB =AC =6∠BAC =120∘△ABC O AB BC E D AD OE O AD AD ⊥BC OE ⊥AB AB =AC =6∠BAC =120∘∠B =∠C =30∘∠BAD =60∘∠AOE =30∘AD =AB =312OD =OE =r AE =r 12AO ==r −(r r 212)2−−−−−−−−−√3–√2AD =AO +OD =3r +r =323–√3r =6−93–√6−93–√30【考点】因式分解的应用因式分解-提公因式法【解析】直接利用矩形面积求法结合提取公因式法分解因式计算即可.【解答】解:∵长和宽分别是,的长方形的周长为,面积为,∴,故,则,故答案为:三、 解答题 (本题共计 8 小题 ,每题 7 分 ,共计56分 )19.【答案】解:原式.【考点】特殊角的三角函数值实数的运算【解析】此题暂无解析【解答】解:原式.20.【答案】组有(人),组有(人),补全条形统计图如下:a b 1062(a +b)=10,ab =6a +b =5b +a =ab(a +b)=30a 2b 230.=−1+2×−3–√23–√=−1=−1+2×−3–√23–√=−1300(2)B 300×25%=75D 300−60−75−45−30=90该校选择类活动的学生共有(人).答:若该校共有名学生,估计该校选择类活动的学生共有人.【考点】扇形统计图条形统计图用样本估计总体【解析】【解答】解:此次共调查了(名)学生.故答案为:.组有(人),组有(人),补全条形统计图如下: “武术”所在扇形的圆心角为.故答案为:. 该校选择类活动的学生共有(人).答:若该校共有名学生,估计该校选择类活动的学生共有人.21.【答案】新建楼房最高为米.108(4)A 3600×=720603003600A 720(1)=3004515%300(2)B 300×25%=75D 300−60−75−45−30=90(3)×=90300360∘108∘108(4)A 3600×=720603003600A 7203+403–√3【考点】解直角三角形的应用平行投影【解析】在不违反规定的情况下,需使阳光能照到旧楼的一楼;据此构造,其中有米,,解三角形可得的高度,再由可计算出新建楼房的最高高度.【解答】解:过点作于.∵米,∴米,∵阳光入射角为,∴,在中.∴,∴米,∵米,∴米.22.【答案】证明:∵弧对的圆周角是和,∴.∵,,∴是的中位线,∴,∴,∴.解:∵,∴.∵,∴.【考点】圆周角定理相似三角形的判定三角形中位线定理Rt △DCE CE =30∠DCE =30∘DE DB =BE+ED C CE ⊥BD E AB =40CE =4030∘∠DCE =30∘Rt △DCE tan ∠DCE =DE CE =DE 403–√3DE =40×=3–√3403–√3AC =BE =1DB =BE+ED =1+=403–√33+403–√3(1)BD ∠A ∠C ∠A =∠C AE =EB AD =DF ED △ABF ED//BF ∠CEB =∠ABF △CBE ∼△AFB (2)△CBE ∼△AFB ==BC AF BE FB 58AF =2AD =CB AD 54相似三角形的性质【解析】(1)根据圆周角定理求出,根据平行线的性质得出,根据相似三角形的判定推出即可;(2)根据相似三角形的性质得出比例式,代入求出即可.【解答】证明:∵弧对的圆周角是和,∴.∵,,∴是的中位线,∴,∴,∴.解:∵,∴.∵,∴.23.【答案】∵反比例函数的图象经过点,∴===,∴反比例函数的解析式为:;作轴于点,交于点,则,∴,∵点的坐标为,∴=,=,∴点的横坐标为,∴点的坐标为,设直线的解析式为:=,则,解得,,∴直线的解析式为:=,则点的坐标为:,即=,∴的面积=;不存在,理由如下:设点的坐标为,∵=,∠A =∠C ∠CEB =∠ABF (1)BD ∠A ∠C ∠A =∠C AE =EB AD =DF ED △ABF ED//BF ∠CEB =∠ABF △CBE ∼△AFB (2)△CBE ∼△AFB ==BC AF BE FB 58AF =2AD =CB AD 54y =(x >0)k x A(3,4)k xy 3×412y =12x AE ⊥y E CD F BE//CD ==EF FA BD AD 12A (3,4)EF 1FA 2F 1C (1,12)AB y kx+b { 3k +b =4b =−2{ k =2b =−2AB y 2x−2D (1,0)CD 12△ABC =×12×1+×12×2121218C (m,)12mBC AC (+2123−m +(−412∴=,整理得,=,=,则此方程无解,∴点不存在.【考点】反比例函数综合题【解析】(1)利用待定系数法求出反比例函数解析式;(2)作轴于点,交于点,根据平行线分线段成比例定理求出点的横坐标为,得到点的坐标,利用待定系数法求出直线的解析式,得到点的坐标,根据三角形的面积公式计算,得到答案;(3)根据两点间的距离公式列出方程,利用一元二次方程的判别式解答.【解答】∵反比例函数的图象经过点,∴===,∴反比例函数的解析式为:;作轴于点,交于点,则,∴,∵点的坐标为,∴=,=,∴点的横坐标为,∴点的坐标为,设直线的解析式为:=,则,解得,,∴直线的解析式为:=,则点的坐标为:,即=,∴的面积=;+(+2m 212m )2(3−m +(−4)212m )26−21m+144m 20△−4×6×144<0212C AE ⊥y E CD F F 1C AB D y =(x >0)k x A(3,4)k xy 3×412y =12x AE ⊥y E CD F BE//CD ==EF FA BD AD 12A (3,4)EF 1FA 2F 1C (1,12)AB y kx+b { 3k +b =4b =−2{ k =2b =−2AB y 2x−2D (1,0)CD 12△ABC =×12×1+×12×2121218不存在,理由如下:设点的坐标为,∵=,∴=,整理得,=,=,则此方程无解,∴点不存在.24.【答案】解:设一只型节能灯的售价是元,一只型节能灯的售价是元,根据题意,得 解得 答:一只型节能灯的售价是元,一只型节能灯的售价是元. 设购进型节能灯只,总费用为元,根据题意,得:,,随的增大而减小,又,解得:,而为正整数,当时,,此时,故当购买型灯只,型灯只时,最省钱.【考点】二元一次方程组的应用——销售问题一次函数的应用【解析】设一只型节能灯的售价是元,一只型节能灯的售价是元,根据:“只型节能灯和只型节能灯共需元;只型节能灯和只型节能灯共需元”列方程组求解即可;首先根据“型节能灯的数量不多于型节能灯数量的倍”确定自变量的取值范围,然后得到有关总费用和型灯的只数之间的关系得到函数解析式,确定函数的最值即可.【解答】C (m,)12m BC AC +(+2m 212m )2(3−m +(−4)212m )26−21m+144m 20△−4×6×144<0212C (1)A x B y {x+3y =26,3x+2y =29,{x =5,y =7,A 5B 7(2)A m W W =5m+7(50−m)=−2m+350∵−2<0∴W m ∵m≤3(50−m)m≤37.5m ∴m=37=−2×37+350=276W 最小50−37=13A 37B 13(1)A x B y 1A 3B 263A 2B 29(2)A B 3A解:设一只型节能灯的售价是元,一只型节能灯的售价是元,根据题意,得 解得 答:一只型节能灯的售价是元,一只型节能灯的售价是元. 设购进型节能灯只,总费用为元,根据题意,得:,,随的增大而减小,又,解得:,而为正整数,当时,,此时,故当购买型灯只,型灯只时,最省钱.25.【答案】解:()由题意知.∵点到轴的距离为,∴点的横坐标为.∵点在上,∴∴.∵在抛物线上,∴解得 ∴抛物线解析式为.∵,∴.∴ .∴的周长为.∵轴,∴,,.∴.又∵ ,∴ .∴ .(1)A x B y {x+3y =26,3x+2y =29,{x =5,y =7,A 5B 7(2)A m W W =5m+7(50−m)=−2m+350∵−2<0∴W m ∵m≤3(50−m)m≤37.5m ∴m=37=−2×37+350=276W 最小50−37=13A 37B 131A(2,0),B(0,−)32D y 8D −8D y =x−3432y =×(−8)−=−.3432152D(−8,−)152A(2,0),D(−8,−)152 0=−×+2b +c,1422−=−×(−8−8b +c ,15214)2b =−,34c =,52y =−−x+14x 23452(2)A(2,0),B(0,−)32OA =2,OB =32AB =52△AOB 6PF//y ∠PFE =∠AOB P (m,−−m+)14m 23452F (m,m−)3432PF =−−m+−(m−)=−−m+414m 23452343214m 232PE ⊥AD ∠PEF =∠AOB =90∘△PEF ∽△ABO L PF∴.∴..∵ ,∴当时,最大.∴.设交轴于点.∴.∵ ,∴ .∴.∴.∴.∵,∴.∴.∴点与点重合,如图.∵,∴直线的解析式为.设点的坐标为,∵点在抛物线上,∴ ,解得(舍),.∵点的横坐标为,点的横坐标为,∴向右平移了个单位长度.∴点也向右平移了个单位长度得到点.∴点的横坐标为.∵直线上的点的横坐标都为–,=L △AOB 的周长PF AB L =−−m+35m 2185485(−8<x <2)(3)L =−+1535(m+3)2−<035m=−3L P (−3,),F (−3,−)52154PF x K PK =,KF =,PF =52154254OB//FK △OAB ∼△KAF =AB AF OB KF AF =254BF =AF −AB =154△PEF ∽△ABO =EF OB PF AB EF =154B E P (−3,),B(0,−)5232PB y =−x−4332M (n,−n−)4332M y =−−x+14x 23452−n−4332=−−n+14n 23452=−3n 1=n 2163E 0M 163△PED 163D 163N N −8+=−16383PF 3∴点不在直线上.【考点】二次函数综合题【解析】此题暂无解析【解答】解:()由题意知.∵点到轴的距离为,∴点的横坐标为.∵点在上,∴∴.∵在抛物线上,∴解得 ∴抛物线解析式为.∵,∴.∴ .∴的周长为.∵轴,∴,,.∴.又∵ ,∴ .∴ .∴ .∴.N PF 1A(2,0),B(0,−)32D y 8D −8D y =x−3432y =×(−8)−=−.3432152D(−8,−)152A(2,0),D(−8,−)1520=−×+2b+c,1422−=−×(−8−8b +c,15214)2 b =−,34c =,52y =−−x+14x 23452(2)A(2,0),B(0,−)32OA =2,OB =32AB =52△AOB 6PF//y ∠PFE =∠AOB P (m,−−m+)14m 23452F (m,m−)3432PF =−−m+−(m−)=−−m+414m 23452343214m 232PE ⊥AD ∠PEF =∠AOB =90∘△PEF ∽△ABO=L △AOB 的周长PF AB L =−−m+35m 2185485(−8<x <2)=−+153.∵ ,∴当时,最大.∴.设交轴于点.∴.∵ ,∴ .∴.∴.∴.∵,∴.∴.∴点与点重合,如图.∵,∴直线的解析式为.设点的坐标为,∵点在抛物线上,∴ ,解得(舍),.∵点的横坐标为,点的横坐标为,∴向右平移了个单位长度.∴点也向右平移了个单位长度得到点.∴点的横坐标为.∵直线上的点的横坐标都为–,∴点不在直线上.26.【答案】(3)L =−+1535(m+3)2−<035m=−3L P (−3,),F (−3,−)52154PF x K PK =,KF =,PF =52154254OB//FK △OAB ∼△KAF =AB AF OB KF AF =254BF =AF −AB =154△PEF ∽△ABO =EF OB PF AB EF =154B E P (−3,),B(0,−)5232PB y =−x−4332M (n,−n−)4332M y =−−x+14x 23452−n−4332=−−n+14n 23452=−3n 1=n 2163E 0M 163△PED 163D 163N N −8+=−16383PF 3N PF【答案】如图,连接,由题意得:=,∵=,=,∴==,∴,∵点、关于直线的对称,∴垂直平分,∴=,∵是以为底的等腰三角形,∴=,∴=,∴=;为直角三角形时,分两种情况:①当=时,如图,连接,∵垂直平分,∴==,∵=,∴==,∴==,∴;②当=时,如图,连接,∵垂直平分,∴==,∵==,∴,∴=,∵=,=,∴,∴=,∵,∴四边形是平行四边形,∴==,即=;综上所述,为直角三角形时,的值为秒或秒;中,由对称得:==,所以点在运动过程中,的长不变,所以面积的变化取决于以作底边时,对应高的大小变化,①当在的下方时,过作,交的延长线于,如图,当==时,此时,易得,∴=,∴==,∴==,∵=,=,=,∴,∴==,=,∴=,由图形可知:时,的越来越小,则面积越来越小,1AE AD t ∠CAB 90∘∠CBA 30∘BC 2AC 6AB ==3−6232−−−−−−√3–√A E CD CD AE AD DE △BDE BE DE BD AD BD t AD =33–√2△BDE ∠DEB 90∘2AE CD AE AD DE t ∠B 30∘BD 2DE 2t AB 3t 33–√t =3–√∠EDB 90∘3CE CD AE CE CA 3∠CAD ∠EDB 90∘AC//ED ∠CAG ∠GED AG EG ∠CGA ∠EGD △AGC ≅△EGD AC DE AC//ED CAED AD CE 3t 3△BDE t 3–√3△BCE AC CE 3D CE △BCE CE △BCE BC B BH ⊥CE CE H 4AC BH 3=AE ⋅BH =×3×3=S △BCE 121292△ACG ≅△HBG CG BG ∠ABC ∠BCG 30∘∠ACE −60∘30∘30∘AC CE AD DE DC DC △ACD ≅△ECD ∠ACD ∠DCE 15∘tan ∠ACD tan ==2−15∘t 33–√t 6−33–√0<t <6−33–√△BCE BH②当在的上方时,如图,==,且,此时,此时=,综上所述,当时,的取值范围是.【考点】三角形综合题【解析】(1)如图,先由勾股定理求得的长,根据点、关于直线的对称,得垂直平分,根据线段垂直平分线的性质得:=,所以==,由=,可得的值;(2)分两种情况:①当=时,如图,连接,根据==,可得的值;②当=时,如图,根据,得=,由,得四边形是平行四边形,所以==,即=;中,由对称得:==,所以点在运动过程中,的长不变,所以面积的变化取决于以作底边时,对应高的大小变化,①当在的下方时,②当在的上方时,分别计算当高为时对应的的值即可得结论.【解答】△BCE BC 3CE ED 3CE ⊥ED =CE ⋅DE =×3×3=S △BCE 121292t 3≤S △BCE 92t 6−3≤t ≤33–√1AB A E CD CD AE AD DE AD DE BD AB 33–√t ∠DEB 90∘2AE AB 3t 33–√t ∠EDB 90∘3△AGC ≅△EGD AC DE AC//ED CAED AD CE 3t 3(3)△BCE AC CE 3D CE △BCE CE △BCE BC △BCE BC 3t如图,连接,由题意得:=,∵=,=,∴==,∴,∵点、关于直线的对称,∴垂直平分,∴=,∵是以为底的等腰三角形,∴=,∴=,∴=;为直角三角形时,分两种情况:①当=时,如图,连接,∵垂直平分,∴==,∵=,∴==,∴==,∴;②当=时,如图,连接,∵垂直平分,∴==,∵==,∴,∴=,∵=,=,∴,∴=,∵,∴四边形是平行四边形,∴==,即=;综上所述,为直角三角形时,的值为秒或秒;中,由对称得:==,所以点在运动过程中,的长不变,所以面积的变化取决于以作底边时,对应高的大小变化,①当在的下方时,过作,交的延长线于,如图,当==时,此时,易得,∴=,∴==,∴==,∵=,=,=,∴,∴==,=,∴=,由图形可知:时,的越来越小,则面积越来越小,②当在的上方时,如图,==,且,1AE AD t ∠CAB 90∘∠CBA 30∘BC 2AC 6AB ==3−6232−−−−−−√3–√A E CD CD AE AD DE △BDE BE DE BD AD BD t AD =33–√2△BDE ∠DEB 90∘2AE CD AE AD DE t ∠B 30∘BD 2DE 2t AB 3t 33–√t =3–√∠EDB 90∘3CE CD AE CE CA 3∠CAD ∠EDB 90∘AC//ED ∠CAG ∠GED AG EG ∠CGA ∠EGD △AGC ≅△EGD AC DE AC//ED CAED AD CE 3t 3△BDE t 3–√3△BCE AC CE 3D CE △BCE CE △BCE BC B BH ⊥CE CE H 4AC BH 3=AE ⋅BH =×3×3=S △BCE 121292△ACG ≅△HBG CG BG ∠ABC ∠BCG 30∘∠ACE −60∘30∘30∘AC CE AD DE DC DC △ACD ≅△ECD ∠ACD ∠DCE 15∘tan ∠ACD tan ==2−15∘t 33–√t 6−33–√0<t <6−33–√△BCE BH △BCE BC 3CE ED 3CE ⊥ED CE ⋅DE =×3×3=BCE 119此时,此时=,综上所述,当时,的取值范围是.=CE ⋅DE =×3×3=S △BCE 121292t 3≤S △BCE 92t 6−3≤t ≤33–√。
成都市二O 一三年中考阶段教育学校统一招生考试(含成都市初三毕业会考)(解析版)数 学注意事项:1. 全套试卷分为A 卷和B 卷,A 卷满分100分,B 卷满分50分;考试时间120分钟。
2. 在作答前,考生务必将自己的姓名,准考证号涂写在试卷和答题卡规定的地方。
考试结束,监考人员将试卷和答题卡一并收回。
3. 选择题部分必须使用2B 铅笔填涂;非选择题部分也必须使用0.5毫米黑色签字笔书写,字体工整,笔迹清楚。
4. 请按照题号在答题卡上各题目对应的答题区域内作答,超出答题区域书写的答案无效;在草稿纸,试卷上答题均无效。
5. 保持答题卡清洁,不得折叠、污染、破损等。
A 卷(共100分)第I 卷(选择题,共30分)一、选择题(本大题共10个小题,每小题3分,共30分.每小题均有四个选项.其中只有一项符合题目要求,答案涂在答题卡上) 1. 2的相反数是A. 2B. 2-C. 12D. 12-2. 如图所示的几何体的俯视图可能是3. 要使分式51x -有意义,则x 的取值范围是A. 1x ≠B. 1x >C. 1x <D. 1x ≠-4. 如图,在ABC ∆中,B C ∠=∠,5AB =,则AC 的长为A. 2B. 3C. 4 D . 55. 下列运算正确的是A. 1(3)13⨯-= B . 583-=- C. 326-= D. 0(2013)0-=6. 参加成都今年初三毕业会考的学生约有13万人,将13万用科学记数法表示应为A . 51.310⨯ B. 41310⨯ C. 50.1310⨯D. 60.1310⨯7. 如图,将矩形ABCD 沿对角线BD 折叠,使点C 与'C 重合.若2AB =,则'C D 的长度为A. 1 B . 2 C. 3 D. 48. 在平面直角坐标系中,下列函数的图像经过原点的是A.3y x =-+B. 5y x = C . 2y x = D. 227y x x =-+-9. 一元二次方程220x x +-=的根的情况是A . 有两个不相等的实数根 B. 有两个相等的实数根 C. 只有一个实数根 D. 没有实数根10. 如图,点,,A B C 在⊙O 上,50A ∠= ,则BOC ∠的度数为A. 40B. 50C. 80 D . 100第II 卷(非选择题,共70分)二、填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上) 11. 不等式213x ->的解集为 2x > .12. 今年4月20日雅安市芦山县发生了7.0级的大地震,全川人民众志成城,抗震救灾.某班组织“捐零花钱,献爱心”活动,全班50名学生的捐款情况如图所示,则本次捐款金额的众数是 10 元.13. 如图,30B ∠= ,若//AB CD ,CB 平分ACD ∠,则ACD ∠= 60 度. 14. 如图,某山坡的坡面200AB =米,坡角30BAC ∠= ,则该山坡的高BC 的长为 100 米.三、解答题(本大题共6个小题,共54分。
2019年成都中考数学试题全卷分A卷和B卷,A卷满分100分,B卷满分50分,考试时间120分钟A卷(共100分)第I卷(选择题,共30分)一.选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求)1.比-3大5的数是()A.-15B.-8C.2D.82.如图所示的几何体是由6个大小相同的小立方块搭成,它的左视图是()A. B. C. D.3.2019年4月10日,人类首张黑洞图片问世,该黑洞位于室女座一个巨椭圆星系M87的中心,距离地球5500万光年.将数据5500万用科学计数法表示为()A.5500×104B.55×106C.5.5×107D.5.5×1084.在平面直角坐标系中,将点(-2,3)向右平移4个单位长度后得到的点的坐标为()A.(2,3)B.(-6,3)C.(-2,7)D.(-2,-1)5.将等腰直角三角形纸片和矩形纸片按如图方式折叠放在一起,若∠1=30°,则∠2的度数为()A.10°B.15°C.20°D.30°6.下列计算正确的是( )A.b b ab 235=-B.242263b a b a =-)( C.1)1(22-=-a a D.2222a b b a =÷ 7.分式方程1215=+--xx x 的解为( ) A.1-=x B.1=x C.2=x D.2-=x8.某校开展了主题为“青春·梦想”的艺术作品征集互动,从九年级五个班收集到的作品数量(单位:件)分别为:42,50,45,46,50则这组数据的中位数是( ) A.42件 B.45件 C.46件 D.50件9.如图,正五边形ABCDE 内接于∠O ,P 为»DE 上的一点(点P 不与点D 重合),则∠CPD的度数为( )A.30°B.36°C.60°D.72°10.如图,二次函数c bx ax y ++=2的图象经过点A (1,0),B (5,0),下列说法正确的是( )A.0>cB.042<-ac b C.0<+-c b a D.图象的对称轴是直线3=x第II 卷(非选择题,共70分)二.填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上) 11.若1+m 与-2互为相反数,则m 的值为 .12.如图,在∠ABC 中,AB=AC ,点D ,E 都在边BC 上,∠BAD=∠CAE ,若BD=9,则CE 的长为 .13.已知一次函数1)3(+-=x k y 的图象经过第一、二、四象限,则k 的取值范围是 14.如图,□ABCD 的对角线AC 与BD 相交于点O ,按以下步骤作图:∠以点A 为圆心,以任意长为半径作弧,分别交AO ,AB 于点M ,N ;∠以点O 为圆心,以AM 长为半径作弧,交OC 于点M ';∠以点M '为圆心,以MN 长为半径作弧,在∠COB 内部交前面的弧于点N ';∠过点N '作射线N O '交BC 于点E ,若AB=8,则线段OE 的长为 .三.解答题.(本大题共6个小题,共54分,解答过程写在答题卡上)15.(本小题满分12分,每题6分)(1)计算:|31|1630cos 2)2(0-+-︒--π.(2)解不等式组:⎪⎩⎪⎨⎧+<--≤-②211425①54)2(3x x x x16.(本小题满分6分)先化简,再求值:62123412++-÷⎪⎭⎫ ⎝⎛+-x x x x ,其中12+=x . 17(本小题满分8分)随着科技的进步和网络资源的丰富,在线学习已成为更多人的自主学习选择.某校计划为学生提供以下四类在线学习方式:在线阅读、在线听课、在线答题和在线讨论.为了解学生需求,该校随机对本校部分学生进行了“你对哪类在线学习方式最感兴趣”的调查,并根据调查结果绘制成如下两幅不完整的统计图.根据图中信息,解答下列问题:(1)求本次调查的学生总人数,并补全条形统计图;(2)求扇形统计图中“在线讨论”对应的扇形圆心角的度数;(3)该校共有学生2100人,请你估计该校对在线阅读最感兴趣的学生人数.(2)在线讨论所占圆心角︒=︒⨯=⨯=483609012圆周角调查总人数在线讨论人数18.(本小题满分8分)2019年,成都马拉松成为世界马拉松大满贯联盟的候选赛事,这大幅提升了成都市的国际影响力.如图,在一场马拉松比赛中,某人在大楼A 处,测得起点拱门CD 的顶部C 的俯角为35°,底部D 的俯角为45°,如果A 处离地面的高度AB=20米,求起点拱门CD 的高度.(结果精确到1米;参考数据:sin35°≈0.57,cos35°≈0.82,tan35°≈0.70)19.(本小题满分10分)如图,在平面直角坐标系xOy 中,一次函数521+=x y 和x y 2-=的图象相交于点A ,反比例函数xky =的图象经过点A. (1)求反比例函数的表达式;(2)设一次函数521+=x y 的图象与反比例函数xky = 的图象的另一个交点为B ,连接OB ,求∠ABO 的面积。
成都市二0 0九年高中阶段教育学校统一招生考试试卷(含成都市初三毕业会考)数 学全卷分A 卷和B 卷,A 卷满分100分,8卷满分50分;考试时间l20分钟。
A 卷分第Ⅰ卷和第Ⅱ卷,第Ⅰ卷为选择题,第Ⅱ卷为其他类型的题。
A 卷(共100分) 第Ⅰ卷(选择题,共30分)注意事项:1.第Ⅰ卷共2页。
答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目涂写在试卷和答题卡上。
考试结束,监考人员将试卷和答题卡一并收回。
2.第Ⅰ卷全是选择题,各题均有四个选项,只有一项符合题目要求。
每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案,选择题的答案不能答在试卷上。
请注意机读答题卡的横竖格式。
一、选择题:(每小题3分,共30分) 1. 计算2×(12-)的结果是 (A)-1 (B) l (C)一2 (D) 2 2. 在函数131y x =-中,自变量x 的取值范围是 (A)13x < (B) 13x ≠- (C) 13x ≠ (D) 13x >3. 如图所示的是某几何体的三视图,则该几何体的形状是 (A)长方体 (B)三棱柱 (C)圆锥 (D)正方体 4. 下列说法正确的是(A)某市“明天降雨的概率是75%”表示明天有75%的时间会降雨 (B)随机抛掷一枚均匀的硬币,落地后正面一定朝上 (C)在一次抽奖活动中,“中奖的概率是1100”表示抽奖l00次就一定会中奖 (D)在平面内,平行四边形的两条对角线一定相交5. 已知△ABC∽△DEF,且AB :DE=1:2,则△ABC 的面积与△DEF 的面积之比为 (A)1:2 (B)1:4 (C)2:1 (D)4:16. 在平面直角坐标系xOy 中,已知点A(2,3),若将OA 绕原点O 逆时针旋转180°得到0A′, 则点A ′在平面直角坐标系中的位置是在(A)第一象限 (B)第二象限 (c)第三象限 (D)第四象限7. 若关于x 的一元二次方程2210kx x --=有两个不相等的实数根,则k 的取值范围是(A)1k>- (B) 1k >-且0k ≠ (c)1k < (D) 1k <且0k ≠8. 若一个圆锥的底面圆的周长是4πcm ,母线长是6cm ,则该圆锥的侧面展开图的圆心角的度数是 (A)40° (B)80° (C)120° (D)150°AB CDEA′9. 某航空公司规定,旅客乘机所携带行李的质量x (kg)与其运费y (元)由如图所示的一次函数图象确定,那么旅客可携带的免费行李的最大质量为 (A)20kg (B)25kg(C)28kg (D)30kg10.为了解某小区居民的日用电情况,居住在该小区的一名同学随机抽查了l5户家庭的日用电量,结果如下表:则关于这l5户家庭的日用电量,下列说法错误的是 (A)众数是6度 (B)平均数是度 (C)极差是5度 (D)中位数是6度成都市二0 0九年高中阶段教育学校统一招生考试试卷(含成都市初三毕业会考)数 学注意事项: 1.A 卷的第Ⅱ卷和B 卷共l0页,用蓝、黑钢笔或圆珠笔直接答在试卷上。
四川省二○○四年中等学校统一招生考试试卷(含成都市初三毕业会考)数 学全卷分A 卷和B 卷,A 卷满分100分,B 卷满分50分;考试时间120分钟。
A 卷分第I 卷和第II 卷,第I 卷为选择题,第II 卷为其他类型的题。
一、选择题:(每小题4分,共60分) 1.下列算式结果是-3的是( )A .(-3)-1B .(-3)0C .-(-3)D .-|-3| 2.下列各式中正确的是( )A .c b a c b a +-=+-)(B .22)1(1-=-x xC .))((2c a b a ac ac ab a +-=-+-D .)0()(32≠=÷-x x x x3.不等式组⎩⎨⎧-≤-->x x x 28132的最小整数解是( )A .-1B .0C .2D .34ABCD 的对角线AC 、BD 相交于点O ,那么圈中 的全等三角形共有 ( ) A .1对 B .2对C .3对D .4对5.函数11+-=x y 中,自变量x 的取值范围是 ( )A .x ≠ -1B .x ≠0C .x ≤-1D .x ≥-16.为了充分利用我国丰富的水力资源,国家计划在四川省境内长江上游修建一系列大型水力发电站,预计这些水力发电站的总发电量相当于10个三峡电站的发电量。
已知三峡电站的年发电量将达到84,700,000,000千瓦时,那么四川省境内的这些大型水力发电站的年发电总量用科学记数法表示为 ( )A .8.47×109千瓦时B .8.47×1011千瓦时C .8.47×1010千瓦时D .8.47×1012千瓦时7.如图,已知正方形ABCD 的边长为2,如果将线段BD 绕着点B 旋转后,点D 落在CB的延长线上的D ′处,那么tan ∠BAD ′等于 ( )A .1B .2C .22D .228.下列说法中,错误的是( )A .一组对边平行且相等的四边形是平行四边形B .两条对角线互相垂直且平分的四边形是菱形C .四个角都相等的四边形是矩形D .邻边相等的四边形是正方形9.如果用换元法解分式方程,1,03141222x x y x x x x +==++-+并设那么原方程可化为( )A .0432=-+y yB .0432=+-y yC .0342=-+y yD .0342=+-y y10.已知相交两圆的半径分别是5和8,那么这两圆的圆心距d 的取值范围是 ( )A .d >3B .d <13C .3<d <13D .d =3或d =1311.如图,已知AB 是半圆O 的直径,∠BAC =32°,D 是AC 的中点,那么∠DAC 的度数是 ( ) A .25° B .29°C .30°D .32°12.汽车由重庆驶往相距400千米的成都,如果汽车的平均速度是100千米/小时,那么汽车(距成都的路程S (千米)与行驶时间t (小时)的函数关系用图象表示应为( )13.如图,已知D 、E 分别是△ABC 的AB 、AC 边上一点,DE//BC ,且那么四边形,3:1=∆D BCE AD E S S AD:AB 等于 ( )A .41B .31C .21D .3214.中央电视台2004年5月8日7时30分发布的天气预报,我国内地31个直辖市和省会城市5月9日的最高气温(℃)统计如下表:那么这些城市5月9日的最高气温的中位数和众数分别是 ( )A .27℃,30℃B .28.5℃,29℃C .29℃,28℃D .28℃,28℃15.小明要制作一个圆锥模型,其侧面是由一个半径为9cm ,圆心角为240°的扇形纸板制成的,还需要一块圆形纸板做底面,那么这块圆形纸板的直径为 ( )A .15cmB.12cmC .10cmD .9cm第Ⅱ卷(非选择题,共40分)二、解答下列各题(每小题6分,共12分) 1. 计算:.13260sin 2|2|+-+-2.解方程:1032=+x x .三、解答下列各题:(每小题6分,共12分)1.已知:如图,D 是△ABC 的BC 边上的中点,DE ⊥AC ,DF ⊥AB ,垂足分别是E 、F ,且BF=CE.求证:(1)△ABC 是等腰三角形;(2)当∠A=90°时,试判断四边形AFDE是怎样的四边形,证明你的结论.2.如图,小丽的家住在成都市锦江河畔的电梯公寓AD 内,她家的河对岸新建了一座大厦BC ,为了测得大厦的高度,小丽在她家的楼底A 处测得大厦顶部B 的仰角为60°,爬上楼顶D 处测得大厦顶部B 的仰角为30°。
四川省成都市青羊区中考数学模拟试卷(一)一、选择题:(每小题3分,共30分)1.﹣3的绝对值是()A.﹣3 B. 3 C.±3 D.﹣2.下列运算正确的是()A. 3a+2a=a5 B. a2•a3=a6 C.(a+b)(a﹣b)=a2﹣b2 D.(a+b)2=a2+b23.下列图中,可能是三棱锥的三视图的是()A. B. C. D.4.经专家估算,整个南海属我国传统海疆线的油气资源约合15000亿美元,开采前景甚至要超过英国的北海油田,用科学记数法表示15000亿美元是()美元.A. 1.5×104 B. 1.5×105 C. 1.5×1012 D. 1.5×10135.如果要用正三角形和正方形两种图案进行密铺,那么至少需要()A.三个正三角形,两个正方形 B.两个正三角形,三个正方形C.两个正三角形,两个正方形 D.三个正三角形,三个正方形6.下列命题是真命题的是()A.一组对边相等,另一组对边平行的四边形是平行四边形B.两边及一边的对角对应相等的两个三角形全等C.三点确定一个圆D.若a>b,c>0,则ac>bc7.在如图的方格纸中,每个小方格都是边长为1的正方形,点A、B是方格纸中的两个格点(即正方形的顶点),在这个5×5的方格纸中,找出格点C使△ABC的面积为2个平方单位,则满足条件的格点C的个数是()A. 5 B. 4 C. 3 D. 28.若A()、B(﹣)、C()三点都在函数(k<0)的图象上,则y1、y2、y3的大小关系为()A. y2>y3>y1 B. y2>y1>y3 C. y3>y1>y2 D. y3>y2>y19.如图,已知菱形ABCD中,对角线AC与BD相交于点O,OE∥DC,交BC于点E,AD=6cm,则OE的长为()A. 6cm B. 4cm C. 3cm D. 2cm10.如图,正方形MNEF的四个顶点在直径为4的大圆上,小圆与正方形各边都相切,AB与CD 是大圆的直径,AB⊥CD,CD⊥MN,则图中阴影部分的面积是()A. 4π B. 3π C. 2π D.π二、填空题:(每小题4分,共16分)11.分解因式:x2﹣5x=.12.如图,已知点A在反比例函数图象上,AM⊥x轴于点M,且△AOM的面积为1,则反比例函数的解析式为.13.在Rt△ABC中,∠C=90°,2a=c,则∠A=.14.如图,AB是半圆O的直径,弦AD,BC相交于点P,且CD,AB的长分别是一元二次方程x2﹣7x+12=0的两根,则cos∠DPB=.三、解答题:(本大题共6个小题,共54分)15.(1)计算:﹣22×+|﹣2|+12sin60°解不等式组,并把解集在数轴上表示出来.16.化简:+÷.17.已知:如图,在△ABC中,AB=BC=2,∠ABC=120°,BC∥x轴,点B的坐标是(﹣3,1).(1)画出△ABC关于y轴对称的△A′B′C′;求以点A、B、B′、A′为顶点的四边形的面积.18.为了解学生的艺术特长发展情况,某校音乐组决定围绕“在舞蹈、乐器、声乐、戏曲、其它活动项目中,你最喜欢哪一项活动(每人只限一项)”的问题,在全校范围内随机抽取部分学生进行问卷调查,并将调查结果绘制成如下两幅不完整的统计图.请你根据统计图解答下列问题:(1)在这次调查中一共抽查了名学生,其中,喜欢“舞蹈”活动项目的人数占抽查总人数的百分比为,喜欢“戏曲”活动项目的人数是人;若在“舞蹈、乐器、声乐、戏曲”活动项目任选两项设立课外兴趣小组,请用列表或画树状图的方法求恰好选中“舞蹈、声乐”这两项活动的概率.19.如图,在平面直角坐标系中,已知四边形ABCD为菱形,且A(0,3)、B(﹣4,0).(1)求经过点C的反比例函数的解析式;设P是(1)中所求函数图象上一点,以P、O、A顶点的三角形的面积与△COD的面积相等.求点P的坐标.20.如图,正方形ABCD的边长为8,M、N分别是边BC、CD上的两个动点,当M点在BC上运动时,始终保持AM和MN垂直.(1)证明:Rt△ABM∽Rt△MCN;设BM=x,梯形ABCN的面积为y,求y与x之间的函数关系式;当M点运动到什么位置时,梯形ABCN的面积最大,并求出最大面积;(3)当M点运动到什么位置时,Rt△ABM∽Rt△AMN?一、填空题(每小题4分,共20分)21.已知,则x+y=.22.如图所示,小明和小龙做转陀螺游戏,他们同时分别转动一个陀螺,当两个陀螺都停下来时,与桌面相接触的边上的数字都是奇数的概率是.23.如图是四张全等的矩形纸片拼成的图形,请利用图中的空白部分面积的不同表示方法,写出一个关于a,b的恒等式.24.如图,AB为半圆O的直径,AD、BC分别切⊙O于A、B两点,CD切⊙O于点E,AD与CD 相交于D,BC与CD相交于C,连接OD、OC,对于下列结论:①OD2=DE•CD;②AD+BC=CD;③OD=OC;④S梯形ABCD=CD•OA;⑤∠DOC=90°,其中正确的是.(只需填上正确结论的序号)25.如图,在一单位为1cm的方格纸上,依右图所示的规律,设定点A1、A2、A3、A4…A n、连接点A1、A2、A3组成三角形,记为△1,连结点A2、A3、A4组成三角形,记为△2…,连结点A n、A n+1、A n+2组成三角形,记为△n(n为正整数)请你推断,当△n的面积为225cm2时,n=.二、解答题26.今年南方某地发生特大洪灾,政府为了尽快搭建板房安置灾民,给某厂下达了生产A种板材48000㎡和B种板材24000㎡的任务.(1)如果该厂安排210人生产这两种材,每人每天能生产A种板材60㎡或B种板材40㎡,请问:应分别安排多少人生产A种板材和B种板材,才能确保同时完成各自的生产任务?某灾民安置点计划用该厂生产的两种板材搭建甲、乙两种规格的板房共400间,已知建设一间甲型板房和一间乙型板房所需板材及安置人数如下表所示:板房 A种板材(m2) B种板材(m2)安置人数甲型 108 61 12乙型 156 51 10问这400间板房最多能安置多少灾民?27.如图,PB为⊙O的切线,B为切点,直线PO交⊙于点E、F,过点B作PO的垂线BA,垂足为点D,交⊙O于点A,延长AO与⊙O交于点C,连接BC,AF.(1)求证:直线PA为⊙O的切线;试探究线段EF、OD、OP之间的等量关系,并加以证明;(3)若BC=6,tan∠F=,求cos∠ACB的值和线段PE的长.28.如图,抛物线m:y=﹣(x+h)2+k与x轴的交点为A、B,与y轴的交点为C,顶点为M (3,),将抛物线m绕点B旋转180°,得到新的抛物线n,它的顶点为D;(1)求抛物线n的解析式;设抛物线n与x轴的另一个交点为E,点P是线段ED上一个动点(P不与E、D重合),过点P作y轴的垂线,垂足为F,连接EF.如果P点的坐标为(x,y),△PEF的面积为S,求S与x的函数关系式,写出自变量x的取值范围,并求出S的最大值;(3)设抛物线m的对称轴与x轴的交点为G,以G为圆心,A、B两点间的距离为直径作⊙G,试判断直线CM与⊙G的位置关系,并说明理由.四川省成都市青羊区中考数学模拟试卷(一)参考答案与试题解析一、选择题:(每小题3分,共30分)1.﹣3的绝对值是()A.﹣3 B. 3 C.±3 D.﹣考点:绝对值.专题:计算题.分析:计算绝对值要根据绝对值的定义求解.第一步列出绝对值的表达式;第二步根据绝对值定义去掉这个绝对值的符号.解答:解:根据负数的绝对值是它的相反数,得|﹣3|=3.故选B.点评:考查了绝对值的定义,绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.下列运算正确的是()A. 3a+2a=a5 B. a2•a3=a6 C.(a+b)(a﹣b)=a2﹣b2 D.(a+b)2=a2+b2考点:完全平方公式;合并同类项;同底数幂的乘法;平方差公式.专题:计算题.分析:根据合并同类项对A进行判断;根据同底数幂的乘法法则对B进行判断;根据平方差公式对C进行判断;根据完全平方公式对D进行判断.解答:解:A、3a+2a=5a,所以A选项错误;B、a2•a3=a5,所以B选项错误;C、(a+b)(a﹣b)=a2﹣b2,所以C选项正确;D、(a+b)2=a2+2ab+b2,所以D选项错误.故选C.点评:本题考查了完全平方公式:(a±b)2=a2±2ab+b2.也考查了合并同类项和平方差公式.3.下列图中,可能是三棱锥的三视图的是()A. B. C. D.考点:简单几何体的三视图.分析:主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.解答:解:三棱锥的主视图是三角形,左视图是三角形,俯视图是,故选:D.点评:本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.4.经专家估算,整个南海属我国传统海疆线的油气资源约合15000亿美元,开采前景甚至要超过英国的北海油田,用科学记数法表示15000亿美元是()美元.A. 1.5×104 B. 1.5×105 C. 1.5×1012 D. 1.5×1013考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于15000亿有13位,所以可以确定n=13﹣1=12.解答:解:15000亿=1 500 000 000 000=1.5×1012.故选C.点评:此题考查科学记数法表示较大的数的方法,准确确定n值是关键.5.如果要用正三角形和正方形两种图案进行密铺,那么至少需要()A.三个正三角形,两个正方形 B.两个正三角形,三个正方形C.两个正三角形,两个正方形 D.三个正三角形,三个正方形考点:平面镶嵌(密铺).分析:分别求出各个正多边形的每个内角的度数,结合镶嵌的条件即可求出答案.解答:解:正三角形的每个内角是60°,正方形的每个内角是90°,∵3×60°+2×90°=360°,∴至少需要三个正三角形,两个正方形.故选:A.点评:几何图形镶嵌成平面的关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角.本题需注意题中包含的至少2个字.6.下列命题是真命题的是()A.一组对边相等,另一组对边平行的四边形是平行四边形B.两边及一边的对角对应相等的两个三角形全等C.三点确定一个圆D.若a>b,c>0,则ac>bc考点:确定圆的条件;不等式的性质;全等三角形的判定;平行四边形的判定.分析:根据平行四边形的判定定理,三角形全等的判定方法,确定圆的条件以及不等式的性质即可解决.解答:解:A、一组对边相等,另一组对边平行的四边形有可能是等腰梯形,故原命题错误;B、符合SSA的两个三角形不一定全等,故命题错误;C、不在同一直线上的三点确定一个圆,故错误;D、若a>b,c>0,则ac>bc,故正确.故选D.点评:本题综合考查了各个易错点,应在做题过程中熟练掌握.7.在如图的方格纸中,每个小方格都是边长为1的正方形,点A、B是方格纸中的两个格点(即正方形的顶点),在这个5×5的方格纸中,找出格点C使△ABC的面积为2个平方单位,则满足条件的格点C的个数是()A. 5 B. 4 C. 3 D. 2考点:三角形的面积.专题:压轴题;网格型.分析:首先分别在AB的两侧找到一个使其面积是2个平方单位的点,再分别过这两点作AB的平行线.找到所有的格点即可.即有5个.解答:解:满足条件的C点有5个,如图平行于AB的直线上,与网格的所有交点就是.故选:A.点评:此题主要是注意:根据两条平行线间的距离处处相等,只需在两侧各找一个符合条件的点,再作平行线,即可找到所有符合条件的点.8.若A()、B(﹣)、C()三点都在函数(k<0)的图象上,则y1、y2、y3的大小关系为()A. y2>y3>y1 B. y2>y1>y3 C. y3>y1>y2 D. y3>y2>y1考点:反比例函数图象上点的坐标特征.分析:首先根据反比例函数的性质画出草图,再利用图象比较大小即可.解答:解:如图所示:y2>y1>y3,故选:B.点评:此题主要考查了反比例函数图象上点的坐标特点,关键是画出图形,这样比较直观地得到答案.9.如图,已知菱形ABCD中,对角线AC与BD相交于点O,OE∥DC,交BC于点E,AD=6cm,则OE的长为()A. 6cm B. 4cm C. 3cm D. 2cm考点:菱形的性质;三角形中位线定理.分析:根据已知可得OE是△ABC的中位线,从而求得OE的长.解答:解:∵OE∥DC,AO=CO,∴OE是△ABC的中位线,∵四边形ABCD是菱形,∴AB=AD=6cm,∴OE=3cm.故选C.点评:本题考查了菱形的性质及三角形的中位线定理,属于基础题,关键是得出OE是△ABC的中位线,难度一般.10.如图,正方形MNEF的四个顶点在直径为4的大圆上,小圆与正方形各边都相切,AB与CD 是大圆的直径,AB⊥CD,CD⊥MN,则图中阴影部分的面积是()A. 4π B. 3π C. 2π D.π考点:扇形面积的计算;轴对称的性质.专题:探究型.分析:由AB⊥CD,CD⊥MN可知阴影部分的面积恰好为正方形MNEF外接圆面积的,再根据圆的面积公式进行解答即可.解答:解:∵AB⊥CD,CD⊥MN,∴阴影部分的面积恰好为正方形MNEF外接圆面积的,∵正方形MNEF的四个顶点在直径为4的大圆上,∴S阴影=π×()2=π.故选D.点评:本题考查的是扇形的面积及轴对称的性质,根据题意得出阴影部分的面积恰好为正方形MNEF外接圆面积的是解答此题的关键.二、填空题:(每小题4分,共16分)11.分解因式:x2﹣5x=x(x﹣5).考点:因式分解-提公因式法.分析:直接提取公因式x分解因式即可.解答:解:x2﹣5x=x(x﹣5).故答案为:x(x﹣5).点评:此题考查的是提取公因式分解因式,关键是找出公因式.12.如图,已知点A在反比例函数图象上,AM⊥x轴于点M,且△AOM的面积为1,则反比例函数的解析式为y=﹣.考点:反比例函数系数k的几何意义.分析:过双曲线上任意一点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S是个定值,即S=|k|.解答:解:由于A是图象上任意一点,则S△AOM=|k|=1,又反比例函数的图象在二、四象限,k<0,则k=﹣2.所以这个反比例函数的解析式是y=﹣.故答案为:y=﹣.点评:主要考查了反比例函数中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得三角形面积为|k|,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义13.在Rt△ABC中,∠C=90°,2a=c,则∠A=60°.考点:特殊角的三角函数值.分析: sinA=,得出sinA的值即可得出∠A.解答:解:由题意,得:=∴sinA==,∴∠A=60°.故答案为:60°.点评:本题考查了特殊角的三角函数值,解答本题的关键是熟练记忆一些特殊角的三角函数值.14.如图,AB是半圆O的直径,弦AD,BC相交于点P,且CD,AB的长分别是一元二次方程x2﹣7x+12=0的两根,则cos∠DPB=.考点:圆周角定理;相似三角形的判定与性质;锐角三角函数的定义.专题:计算题.分析:先利用因式分解法解方程得到AB=4,CD=3,再根据圆周角定理得∠C=∠ABP,∠CDP=∠A,则可判断△PCD∽△PBA,利用相似的性质得==,连接BD,如图,由AB是半圆O的直径得到∠ADB=90°,然后在Rt△PDB中根据余弦的定义求解.解答:解:解方程x2﹣7x+12=0得x1=3,x2=4,则AB=4,CD=3,∵∠C=∠ABP,∠CDP=∠A,∴△PCD∽△PBA,∴==,连接BD,如图,∵AB是半圆O的直径,∴∠ADB=90°,在Rt△PDB中,cos∠DPB==.故答案为.点评:本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.也考查了相似三角形的判定与性质和锐角三角函数.三、解答题:(本大题共6个小题,共54分)15.(1)计算:﹣22×+|﹣2|+12sin60°解不等式组,并把解集在数轴上表示出来.考点:实数的运算;在数轴上表示不等式的解集;解一元一次不等式组;特殊角的三角函数值.专题:计算题.分析:(1)原式第一项利用乘方的意义及二次根式的性质化简,第二项利用绝对值的代数意义化简,第三项利用特殊角的三角函数值计算即可得到结果;分别求出不等式组中两不等式的解集,找出解集的公共部分即可.解答:解:(1)原式=﹣4×2+2+12×=﹣8+2+6=0;由①得,x>﹣1;由②得,x≤4,则不等式组的解集为:﹣1<x≤4.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.16.化简:+÷.考点:分式的混合运算.专题:计算题.分析:原式利用除法法则变形,约分后两项通分并利用通分分式的加法法则计算即可得到结果.解答:解:原式=+•=+===﹣.点评:此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.17.已知:如图,在△ABC中,AB=BC=2,∠ABC=120°,BC∥x轴,点B的坐标是(﹣3,1).(1)画出△ABC关于y轴对称的△A′B′C′;求以点A、B、B′、A′为顶点的四边形的面积.考点:作图-轴对称变换.分析:(1)根据图形关于y轴的对称特点,找出相应的点,把相应的点连接起来即可;分别求出各点的坐标,利用梯形的性质求解.解答:解:(1)如图所示;过A点作AD⊥BC,交CB的延长线于点D,则∠ABD=180°﹣∠ABC=180°﹣120°=60°在Rt△ABD中,BD=AB•cos∠ABD=2×=1AD=AB•sin∠ABD=2×又知点B的坐标为(﹣3,1)∴点A的坐标为(﹣4,1+)∵AA′⊥y轴,BB′⊥y轴∴AA′⊥BB′∵AB与A′B′不平行∴以点A,B,B′,A′为顶点的四边形是等腰梯形由点A,B的坐标可求得AA′=2×4=8,BB′=2×3=6∴梯形ABB′A′的面积=(AA′+BB′)•AD=×(8+6)×=7.点评:解答此题要明确轴对称的性质:1、对称轴是一条直线;2、垂直并且平分一条线段的直线称为这条线段的垂直平分线,或中垂线.线段垂直平分线上的点到线段两端的距离相等;3、在轴对称图形中,对称轴两侧的对应点到对称轴两侧的距离相等;4、在轴对称图形中,对称轴把图形分成完全相等的两份;5、如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.18.为了解学生的艺术特长发展情况,某校音乐组决定围绕“在舞蹈、乐器、声乐、戏曲、其它活动项目中,你最喜欢哪一项活动(每人只限一项)”的问题,在全校范围内随机抽取部分学生进行问卷调查,并将调查结果绘制成如下两幅不完整的统计图.请你根据统计图解答下列问题:(1)在这次调查中一共抽查了50名学生,其中,喜欢“舞蹈”活动项目的人数占抽查总人数的百分比为24%,喜欢“戏曲”活动项目的人数是4人;若在“舞蹈、乐器、声乐、戏曲”活动项目任选两项设立课外兴趣小组,请用列表或画树状图的方法求恰好选中“舞蹈、声乐”这两项活动的概率.考点:条形统计图;扇形统计图;列表法与树状图法.分析:(1)总人数=参加某项的人数÷所占比例,用喜欢“舞蹈”活动项目的人数除以总人数再乘100%,即可求出喜欢“舞蹈”活动项目的人数占抽查总人数的百分比,用总人数减去其他4个小组的人数求出喜欢“戏曲”活动项目的人数;根据频率的计算方法,用选中“舞蹈、声乐”这两项活动的数除以总数计算即可解答.解答:解:(1)根据喜欢声乐的人数为8人,得出总人数=8÷16%=50,喜欢“舞蹈”活动项目的人数占抽查总人数的百分比为:×100%=24%,喜欢“戏曲”活动项目的人数是:50﹣12﹣16﹣8﹣10=4,故答案为:50,24%,4;(用树状图)设舞蹈、乐器、声乐、戏曲的序号依次是①②③④,故恰好选中“舞蹈、声乐”两项活动的概率是;(用列表法)舞蹈乐器声乐戏曲舞蹈舞蹈、乐器舞蹈、声乐舞蹈、戏曲乐器乐器、舞蹈乐器、声乐乐器、戏曲声乐声乐、舞蹈声乐、乐器声乐、戏曲戏曲戏曲、舞蹈戏曲、乐器戏曲、声乐故恰好选中“舞蹈、声乐”两项活动的概率是.点评:本题主要考查条形统计图与扇形统计图的综合运用,用到的知识点为:如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.总体数目=部分数目÷相应百分比.19.如图,在平面直角坐标系中,已知四边形ABCD为菱形,且A(0,3)、B(﹣4,0).(1)求经过点C的反比例函数的解析式;设P是(1)中所求函数图象上一点,以P、O、A顶点的三角形的面积与△COD的面积相等.求点P的坐标.考点:反比例函数综合题.专题:数形结合.分析:(1)根据菱形的性质可得菱形的边长,进而可得点C的坐标,代入反比例函数解析式可得所求的解析式;设出点P的坐标,易得△COD的面积,利用点P的横坐标表示出△PAO的面积,那么可得点P的横坐标,就求得了点P的坐标.解答:解:(1)由题意知,OA=3,OB=4在Rt△AOB中,AB=∵四边形ABCD为菱形∴AD=BC=AB=5,∴C(﹣4,﹣5).设经过点C的反比例函数的解析式为(k≠0),则=﹣5,解得k=20.故所求的反比例函数的解析式为.设P(x,y)∵AD=AB=5,OA=3,∴OD=2,S△COD=即,∴|x|=,∴当x=时,y==,当x=﹣时,y==﹣∴P()或().点评:综合考查反比例函数及菱形的性质,注意:根据菱形的性质得到点C的坐标;点P的横坐标的有两种情况.20.如图,正方形ABCD的边长为8,M、N分别是边BC、CD上的两个动点,当M点在BC上运动时,始终保持AM和MN垂直.(1)证明:Rt△ABM∽Rt△MCN;设BM=x,梯形ABCN的面积为y,求y与x之间的函数关系式;当M点运动到什么位置时,梯形ABCN的面积最大,并求出最大面积;(3)当M点运动到什么位置时,Rt△ABM∽Rt△AMN?考点:相似形综合题.专题:综合题.分析:(1)由四边形ABCD为正方形,得到一对直角相等,再由AM垂直于MN,得到∠AMN 为直角,利用同角的余角相等得到一对角相等,利用两对角相等的三角形相似即可得证;由(1)得出的相似三角形,可得对应边成比例,根据BM=x与AB=8,表示出CN,由CN为上底,AB为下底,BC为高,利用梯形的面积公式列出y与x的函数关系式,利用二次函数的性质确定出梯形ABCN面积最大时M的位置,并求出最大面积即可;(3)由一对直角相等,要使Rt△ABM∽Rt△AMN,必须有=,表示出BM,由(1)的结论表示出CM,可得出BM=CM,即此时M为BC的中点.解答:(1)证明:在正方形ABCD中,∠B=∠C=90°,∵AM⊥MN,∴∠AMN=90°,∴∠CMN+∠AMB=90°.在Rt△ABM中,∠BAM+∠AMB=90°,∴∠BAM=∠CMN,∴Rt△ABM∽Rt△MCN;∵Rt△ABM∽Rt△MCN,BM=x,∴=,即=,整理得:CN=,∴y=S梯形ABCN=×(+8)×8=﹣x2+4x+32=﹣(x﹣4)2+40(0<x<8),则当x=4,即M点运动到BC的中点时,梯形ABCN的面积最大,最大值为40;(3)∵∠B=∠AMN=90°,∴要使Rt△ABM∽Rt△AMN,必须有=,即BM=,由(1)知=,即MC=,∴BM=MC,则当点M运动到BC的中点时,Rt△ABM∽Rt△MCN.点评:此题属于相似形综合题,涉及的知识有:相似三角形的判定与性质,二次函数的性质,梯形的面积求法,以及正方形的性质,熟练掌握相似三角形的判定与性质是解本题的关键.一、填空题(每小题4分,共20分)21.已知,则x+y=1.考点:非负数的性质:算术平方根;非负数的性质:偶次方.专题:计算题;压轴题.分析:根据非负数的性质列出方程求出x、y的值,代入所求代数式计算即可.解答:解:∵,∴,解得,则x+y=﹣1+2=1,故答案为1.点评:本题考查了非负数的性质,利用该性质建立关于x、y的方程组是解题的关键.22.如图所示,小明和小龙做转陀螺游戏,他们同时分别转动一个陀螺,当两个陀螺都停下来时,与桌面相接触的边上的数字都是奇数的概率是.考点:列表法与树状图法.专题:压轴题.分析:列举出所有情况,让桌面相接触的边上的数字都是奇数的情况数除以总情况数即为所求的概率.解答:解:列表得:(4,6)(5,6)(6,6)(7,6)(8,6)(9,6)(4,5)(5,5)(6.5)(7,5)(8,5)(9,5)(4,4)(5,4)(6,4)(7,4)(8,4)(9,4)(4,3)(5,3)(6,3)(7,3)(8,3)(9,3)(4,2)(5,2)(6,2)(7,2)(8,2)(9,2)(4,1)(5,1)(6,1)(7,1)(8,1)(9,1)∴一共有36种情况,与桌面相接触的边上的数字都是奇数的有9种情况,∴与桌面相接触的边上的数字都是奇数的概率是,所以答案:.点评:列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;用到的知识点为:概率=所求情况数与总情况数之比.23.如图是四张全等的矩形纸片拼成的图形,请利用图中的空白部分面积的不同表示方法,写出一个关于a,b的恒等式(a﹣b)2=(a+b)2﹣4ab.考点:完全平方公式的几何背景.专题:压轴题.分析:从图中可以得出,大正方形的边长为a+b,大正方形的面积就为(a+b)2,4个矩形的边长相同,且长为a,宽为b,则4个矩形的面积为4ab,中间空心的正方形的边长为a﹣b,面积等于(a﹣b)2,大正方形面积减去4个阴影矩形的面积就等于中间空白部分的面积.解答:解:∵四周阴影部分都是全等的矩形,且长为a,宽为b∴四个矩形的面积为4ab∵大正方形的边长为a+b∴大正方形面积为(a+b)2∴中间小正方形的面积为(a+b)2﹣4ab而中间小正方形的面积也可表示为:(a﹣b)2∴(a﹣b)2=(a+b)2﹣4ab.故答案为:(a﹣b)2=(a+b)2﹣4ab.点评:本题考查了完全平方公式几何意义,利用大正方形面积减去阴影部分的面积就是中间的正方形的面积.24.如图,AB为半圆O的直径,AD、BC分别切⊙O于A、B两点,CD切⊙O于点E,AD与CD 相交于D,BC与CD相交于C,连接OD、OC,对于下列结论:①OD2=DE•CD;②AD+BC=CD;③OD=OC;④S梯形ABCD=CD•OA;⑤∠DOC=90°,其中正确的是①②⑤.(只需填上正确结论的序号)考点:切线的性质;相似三角形的判定与性质.专题:计算题.分析:连接OE,利用切线长定理得到AD=ED,CE=CB,且OD、OC分别为角平分线,利用平角的定义及等式性质得到∠COD为直角,进而确定出三角形ODE与三角形COD相似,由相似得比例列出关系式,根据CD=DE+EC,等量代换得到AD+BC=CD,即可得到正确的选项.解答:解:连接OE,∵DA、DE为圆O的切线,∴AD=ED,∠AOD=∠EOD,∵CE、CB为圆O的切线,∴CE=CB,∠EOC=∠BOC,∴CD=DE+EC=AD+BC,选项②正确;∵∠AOD+∠DOE+∠EOC+∠BOC=180°,∴∠DOE+∠EOC=90°,即∠DOC=90°,选项⑤正确;∵OE⊥CD,∴∠OED=∠COD=90°,∵∠EDO=∠ODC,∴△DOE∽△CDE,∴OD2=DE•CD,选项①正确;故答案为:①②⑤.点评:此题考查了切线的性质,相似三角形的判定与性质,熟练掌握切线的性质是解本题的关键.25.如图,在一单位为1cm的方格纸上,依右图所示的规律,设定点A1、A2、A3、A4…A n、连接点A1、A2、A3组成三角形,记为△1,连结点A2、A3、A4组成三角形,记为△2…,连结点A n、A n+1、A n+2组成三角形,记为△n(n为正整数)请你推断,当△n的面积为225cm2时,n=14.考点:规律型:点的坐标.分析:根据图形计算发现:第一个三角形的面积是×4×2=4,第二个三角形的面积是×6×3=9,第三个图形的面积是×8×4=16,即第n个图形的面积是×2(n+1)×(n+1)=(n+1)2,即可求得面积是225时,n的值.解答:解:由题意可得规律:第n个图形的面积是:n(n+1),所以当面积是225cm2时,(n+1)2=225.解得n=14.故答案是:14.点评:此题主要考查了点的坐标变化规律,通过计算前面几个具体图形的面积发现规律是解题关键.二、解答题。
四川省成都市2011年中考数学试卷—解析版一、选择题:(每小题3分,共30分)每小题均有四个选项,其中只有一项符合题目要求. 1、(2011?成都)4的平方根是( ) A 、±16 B 、16 C 、±2 D 、2 考点:平方根。
专题:计算题。
分析:由于某数的两个平方根应该互为相反数,所以可用直接开平方法进行解答. 解答:解:∵4=(±2)2, ∴4的平方根是±2. 故选C .点评:本题考查了平方根的概念.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根. 2、(2011?成都)如图所示的几何体的俯视图是( )A 、B 、C 、D 、 考点:简单几何体的三视图。
专题:应用题。
分析:题干图片为圆柱,主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形. 解答:解:圆柱的主视图为长方形,左视图为长方形,俯视图为圆形. 故选D .点评:本题考查了圆柱体的三视图,考查了学生的空间想象能了及解决问题的能力. 3、(2011?成都)在函数y =√1﹣2x 自变量x 的取值范围是()A 、x≤12B 、x <12C 、x ≥12D 、x >12考点:函数自变量的取值范围。
专题:计算题。
分析:让被开方数为非负数列式求值即可. 解答:解:由题意得:1﹣2x≥0, 解得x≤12.故选A .点评:考查求函数自变量的取值范围;用到的知识点为:函数有意义,二次根式的被开方数为非负数. 4、(2011?成都)近年来,随着交通网络的不断完善,我市近郊游持续升温.据统计,在今年“五一”期间,某风景区接待游览的人数约为万人,这一数据用科学记数法表示为( ) A 、×104人 B 、×105人 C 、×104人 D 、×103人 考点:科学记数法—表示较大的数。
专题:计算题。
分析:科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同. 解答:解:∵万=203000, ∴203000=×105; 故选B .点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值. 5、(2011?成都)下列计算正确的是( ) A 、x+x=x 2 B 、x?x=2x C 、(x 2)3=x 5 D 、x 3÷x=x 2考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方。
2023年四川省成都市中考数学试卷试题数:26.满分:150四个数中.最大的数是()1.(单选题.4分)在3.-7.0. 19A.3B.-7C.0D. 192.(单选题.4分)2023年5月17日10时49分.我国在西昌卫星发射中心成功发射第五十六颗北斗导航卫星.北斗系统作为国家重要基础设施.深刻改变着人们的生产生活方式.目前.某地图软件调用的北斗卫星日定位量超3000亿次.将数据3000亿用科学记数法表示为()A.3×108B.3×109C.3×1010D.3×10113.(单选题.4分)下列计算正确的是()A.(-3x)2=-9x2B.7x+5x=12x2C.(x-3)2=x2-6x+9D.(x-2y)(x+2y)=x2+4y24.(单选题.4分)近年来.随着环境治理的不断深入.成都已构建起“青山绿道蓝网”生态格局.如今空气质量越来越好.杜甫那句“窗含西岭千秋雪”已成为市民阳台外一道靓丽的风景.下面是成都市今年三月份某五天的空气质量指数(AQI):33.27.34.40.26.则这组数据的中位数是()A.26B.27C.33D.345.(单选题.4分)如图.在▱ABCD中.对角线AC与BD相交于点O.则下列结论一定正确的是()A.AC=BDB.OA=OCC.AC⊥BDD.∠ADC=∠BCD6.(单选题.4分)为贯彻教育部《大中小学劳动教育指导纲要(试行)》文件精神.某学校积极开设种植类劳动教育课.某班决定每位学生随机抽取一张卡片来确定自己的种植项目.老师提供6张背面完全相同的卡片.其中蔬菜类有4张.正面分别印有白菜、辣椒、豇豆、茄子图案;水果类有2张.正面分别印有草莓、西瓜图案.每个图案对应该种植项目.把这6张卡片背面朝上洗匀.小明随机抽取一张.他恰好抽中水果类卡片的概率是()A. 12B. 13C. 14D. 167.(单选题.4分)《孙子算经》是中国古代重要的数学著作.是《算经十书》之一.书中记载了这样一个题目:今有木.不知长短.引绳度之.余绳四尺五寸;屈绳量之.不足一尺.木长几何?其大意是:用一根绳子去量一根长木.绳子还剩余4.5尺;将绳子对折再量长木.长木还剩余1尺.问木长多少尺?设木长x尺.则可列方程为()A. 1(x+4.5)=x-12B. 1(x+4.5)=x+12C. 1(x+1)=x-4.52(x-1)=x+4.5D. 128.(单选题.4分)如图.二次函数y=ax2+x-6的图象与x轴交于A(-3.0).B两点.下列说法正确的是()A.抛物线的对称轴为直线x=1.-6)B.抛物线的顶点坐标为(- 12C.A.B两点之间的距离为5D.当x<-1时.y的值随x值的增大而增大9.(填空题.4分)因式分解:m2-3m=___ .10.(填空题.4分)若点A(-3.y1).B(-1.y2)都在反比例函数y= 6x的图象上.则y1___ y2(填“>”或“<”).11.(填空题.4分)如图.已知△ABC≌△DEF.点B.E.C.F依次在同一条直线上.若BC=8.CE=5.则CF的长为 ___ .12.(填空题.4分)在平面直角坐标系xOy中.点P(5.-1)关于y轴对称的点的坐标是 ___ .13.(填空题.4分)如图.在△ABC中.D是边AB上一点.按以下步骤作图:① 以点A为圆心.以适当长为半径作弧.分别交AB.AC于点M.N;② 以点D为圆心.以AM长为半径作弧.交DB于点M′;③ 以点M′为圆心.以MN长为半径作弧.在∠BAC内部交前面的弧于点N′;④ 过点N′作射线DN′交BC于点E.若△BDE与四边形ACED的面积比为4:21.则BECE的值为 ___ .14.(问答题.12分)(1)计算:√4 +2sin45°-(π-3)0+|√2 -2|.(2)解不等式组:{2(x+2)−x≤5①4x+13>x−1②.15.(问答题.8分)文明是一座城市的名片.更是一座城市的底蕴.成都市某学校于细微处着眼.于贴心处落地.积极组织师生参加“创建全国文明典范城市志愿者服务”活动.其服务项目有“清洁卫生”“敬老服务”“文明宣传”“交通劝导”.每名参加志愿者服务的师生只参加其中一项.为了解各项目参与情况.该校随机调查了参加志愿者服务的部分师生.将调查结果绘制成如下两幅不完整的统计图.根据统计图信息.解答下列问题:(1)本次调查的师生共有 ___ 人.请补全条形统计图;(2)在扇形统计图中.求“敬老服务”对应的圆心角度数;(3)该校共有1500名师生.若有80%的师生参加志愿者服务.请你估计参加“文明宣传”项目的师生人数.16.(问答题.8分)为建设美好公园社区.增强民众生活幸福感.某社区服务中心在文化活动室墙外安装遮阳篷.便于社区居民休憩.如图.在侧面示意图中.遮阳篷AB长为5米.与水平面的夹角为16°.且靠墙端离地高BC为4米.当太阳光线AD与地面CE的夹角为45°时.求阴影CD的长.(结果精确到0.1米;参考数据:sin16°≈0.28.cos16°≈0.96.tan16°≈0.29)17.(问答题.10分)如图.以△ABC的边AC为直径作⊙O.交BC边于点D.过点C作CE || AB交⊙O于点E.连接AD.DE.∠B=∠ADE.(1)求证:AC=BC;(2)若tanB=2.CD=3.求AB和DE的长.18.(问答题.10分)如图.在平面直角坐标系xOy中.直线y=-x+5与y轴交于点A.与反比例函数y= kx的图象的一个交点为B(a.4).过点B作AB的垂线l.(1)求点A的坐标及反比例函数的表达式;(2)若点C在直线l上.且△ABC的面积为5.求点C的坐标;(3)P是直线l上一点.连接PA.以P为位似中心画△PDE.使它与△PAB位似.相似比为m.若点D.E恰好都落在反比例函数图象上.求点P的坐标及m的值.19.(填空题.4分)若3ab-3b2-2=0.则代数式(1- 2ab−b2a2)÷ a−ba2b的值为 ___ .20.(填空题.4分)一个几何体由几个大小相同的小立方块搭成.它的主视图和俯视图如图所示.则搭成这个几何体的小立方块最多有 ___ 个.21.(填空题.4分)为传承非遗文化.讲好中国故事.某地准备在一个场馆进行川剧演出.该场馆底面为一个圆形.如图所示.其半径是10米.从A到B有一笔直的栏杆.圆心O到栏杆AB的距离是5米.观众在阴影区域里观看演出.如果每平方米可以坐3名观众.那么最多可容纳 ___ 名观众同时观看演出.(π取3.14. √3取1.73)22.(填空题.4分)如图.在Rt△ABC中.∠ABC=90°.CD平分∠ACB交AB于点D.过D作DE || BC交AC于点E.将△DEC沿DE折叠得到△DEF.DF交AC于点G.若AGGE =73.则tanA=___ .23.(填空题.4分)定义:如果一个正整数能表示为两个正整数m.n的平方差.且m-n>1.则称这个正整数为“智慧优数”.例如.16=52-32.16就是一个智慧优数.可以利用m2-n2=(m+n)(m-n)进行研究.若将智慧优数从小到大排列.则第3个智慧优数是 ___ ;第23个智慧优数是 ___ .24.(问答题.8分)2023年7月28日至8月8日.第31届世界大学生运动会将在成都举行.“当好东道主.热情迎嘉宾”.成都某知名小吃店计划购买A.B两种食材制作小吃.已知购买1千克A种食材和1千克B种食材共需68元.购买5千克A种食材和3千克B种食材共需280元.(1)求A.B两种食材的单价;(2)该小吃店计划购买两种食材共36千克.其中购买A种食材千克数不少于B种食材千克数的2倍.当A.B两种食材分别购买多少千克时.总费用最少?并求出最少总费用.25.(问答题.10分)如图.在平面直角坐标系xOy中.已知抛物线y=ax2+c经过点P(4.-3).与y轴交于点A(0.1).直线y=kx(k≠0)与抛物线交于B.C两点.(1)求抛物线的函数表达式;(2)若△ABP是以AB为腰的等腰三角形.求点B的坐标;(3)过点M(0.m)作y轴的垂线.交直线AB于点D.交直线AC于点E.试探究:是否存在常数m.使得OD⊥OE始终成立?若存在.求出m的值;若不存在.请说明理由.26.(问答题.12分)探究式学习是新课程倡导的重要学习方式.某兴趣小组拟做以下探究.在Rt△ABC中.∠C=90°.AC=BC.D是AB边上一点.且ADBD = 1n(n为正整数).E是AC边上的动点.过点D作DE的垂线交直线BC于点F.【初步感知】AB.请写出证明过程.(1)如图1.当n=1时.兴趣小组探究得出结论:AE+BF= √22【深入探究】(2)①如图2.当n=2.且点F在线段BC上时.试探究线段AE.BF.AB之间的数量关系.请写出结论并证明;② 请通过类比、归纳、猜想.探究出线段AE.BF.AB之间数量关系的一般结论(直接写出结论.不必证明).【拓展运用】(3)如图3.连接EF.设EF的中点为M.若AB=2 √2 .求点E从点A运动到点C的过程中.点M 运动的路径长(用含n的代数式表示).2023年四川省成都市中考数学试卷参考答案与试题解析试题数:26.满分:1501.(单选题.4分)在3.-7.0. 1四个数中.最大的数是()9A.3B.-7C.0D. 19【正确答案】:A【解析】:运用有理数大小比较的知识进行求解.<3.【解答】:解:∵-7<0<19∴最大的数是3.故选:A.【点评】:此题考查了有理数大小比较的能力.关键是能准确理解并运用以上知识.2.(单选题.4分)2023年5月17日10时49分.我国在西昌卫星发射中心成功发射第五十六颗北斗导航卫星.北斗系统作为国家重要基础设施.深刻改变着人们的生产生活方式.目前.某地图软件调用的北斗卫星日定位量超3000亿次.将数据3000亿用科学记数法表示为()A.3×108B.3×109C.3×1010D.3×1011【正确答案】:D【解析】:运用科学记数法进行变形、求解.【解答】:解:3000亿=3000×108=3×1011.故选:D.【点评】:此题考查了科学记数法的应用能力.关键是能准确理解并运用以上知识.3.(单选题.4分)下列计算正确的是()A.(-3x)2=-9x2B.7x+5x=12x2C.(x-3)2=x2-6x+9D.(x-2y)(x+2y)=x2+4y2【正确答案】:C【解析】:利用幂的乘方与积的乘方的性质.合并同类项的法则.完全平方公式和平方差公式对每个选项进行逐一判断即可得出结论.【解答】:解:∵(-3x)2=9x2.∴A选项的运算不正确.不符合题意;∵7x+5x=12x.∴B选项的运算不正确.不符合题意;∵(x-3)2=x2-6x+9.∴C选项的运算正确.符合题意;∵(x-2y)(x+2y)=x2-4y2.∴D选项的运算不正确.不符合题意.故选:C.【点评】:本题主要考查了整式的混合运算.幂的乘方与积的乘方的性质.合并同类项的法则.完全平方公式和平方差公式.熟练掌握上述性质与公式是解题的关键.4.(单选题.4分)近年来.随着环境治理的不断深入.成都已构建起“青山绿道蓝网”生态格局.如今空气质量越来越好.杜甫那句“窗含西岭千秋雪”已成为市民阳台外一道靓丽的风景.下面是成都市今年三月份某五天的空气质量指数(AQI):33.27.34.40.26.则这组数据的中位数是()A.26B.27C.33D.34【正确答案】:C【解析】:根据中位数的定义即可得出答案.【解答】:解:把这些数从小到大排列为:26.27.33.34.40.则这组数据的中位数是33.故选:C.【点评】:此题考查了中位数.中位数是将一组数据从小到大(或从大到小)重新排列后.最中间的那个数(最中间两个数的平均数).叫做这组数据的中位数.如果中位数的概念掌握得不好.不把数据按要求重新排列.就会错误地将这组数据最中间的那个数当作中位数.5.(单选题.4分)如图.在▱ABCD中.对角线AC与BD相交于点O.则下列结论一定正确的是()A.AC=BDB.OA=OCC.AC⊥BDD.∠ADC=∠BCD【正确答案】:B【解析】:利用平行四边形的性质一一判断即可解决问题.【解答】:解:A、错误.平行四边形的对角线互相平分.但不一定相等.不合题意;B、正确.因为平行四边形的对角线互相平分.符合题意;C、错误.平行四边形的对角线不一定垂直.不合题意;D、错误.平行四边形的对角相等.但邻角不一定相等.不合题意;故选:B.【点评】:本题考查平行四边形的性质.熟练掌握平行四边形的性质是解题的关键.6.(单选题.4分)为贯彻教育部《大中小学劳动教育指导纲要(试行)》文件精神.某学校积极开设种植类劳动教育课.某班决定每位学生随机抽取一张卡片来确定自己的种植项目.老师提供6张背面完全相同的卡片.其中蔬菜类有4张.正面分别印有白菜、辣椒、豇豆、茄子图案;水果类有2张.正面分别印有草莓、西瓜图案.每个图案对应该种植项目.把这6张卡片背面朝上洗匀.小明随机抽取一张.他恰好抽中水果类卡片的概率是()A. 12B. 13C. 14D. 16【正确答案】:B【解析】:根据概率公式直接计算即可.【解答】:解:∵卡片共6张.其中水果类卡片有2张.∴恰好抽中水果类卡片的概率是26=13.故选:B.【点评】:本题考查了概率公式.用到的知识点为:概率=所求情况数与总情况数之比.7.(单选题.4分)《孙子算经》是中国古代重要的数学著作.是《算经十书》之一.书中记载了这样一个题目:今有木.不知长短.引绳度之.余绳四尺五寸;屈绳量之.不足一尺.木长几何?其大意是:用一根绳子去量一根长木.绳子还剩余4.5尺;将绳子对折再量长木.长木还剩余1尺.问木长多少尺?设木长x尺.则可列方程为()A. 12(x+4.5)=x-1B. 12(x+4.5)=x+1C. 12(x+1)=x-4.5D. 12(x-1)=x+4.5【正确答案】:A【解析】:设木长x尺.根据题意列出方程解答即可.【解答】:解:设木长x尺.根据题意可得:12(x+4.5)=x−1 .故选:A.【点评】:此题主要考查了由实际问题抽象出一元一次方程.正确得出等量关系是解题的关键.8.(单选题.4分)如图.二次函数y=ax2+x-6的图象与x轴交于A(-3.0).B两点.下列说法正确的是()A.抛物线的对称轴为直线x=1B.抛物线的顶点坐标为(- 12.-6)C.A.B两点之间的距离为5D.当x<-1时.y的值随x值的增大而增大【正确答案】:C【解析】:A将点A的坐标代入即可解答即可判定A;B先运用二次函数图象的性质确定B;C利用两点间的距离公式解答即可;D根据函数图象即可解答.【解答】:解:A、把A(-3.0)代入y=ax2+x-6得.0=9a-3-6.解得a=1.∴y=x2+x-6.对称轴直线为:x=- b2a =−12.故A错误;令y=0.0=x2+x-6.解得x1=-3.x2=2.∴AB=2-(-3)=5.∴A.B两点之间的距离为5.故C正确;当x=- 12时.y= 14−12−6=−254.故B错误;由图象可知当x >−12时.y的值随x值的增大而增大.故D错误.故选:C.【点评】:本题主要考查二次函数图象的性质.掌握二次函数图象的性质.对称轴的计算方法.函数最值的计算方法是解题的关键.9.(填空题.4分)因式分解:m2-3m=___ .【正确答案】:[1]m(m-3)【解析】:直接找出公因式m.进而分解因式得出答案.【解答】:解:m2-3m=m(m-3).故答案为:m(m-3).【点评】:此题主要考查了提取公因式法分解因式.正确找出公因式是解题关键.10.(填空题.4分)若点A(-3.y1).B(-1.y2)都在反比例函数y= 6x的图象上.则y1___ y2(填“>”或“<”).【正确答案】:[1]>【解析】:根据反比例函数的性质得出答案即可.中k=6>0.【解答】:解:∵y= 6x∴在每个象限内.y随x的增大而减小.∵-3<-1<0.∴y1>y2.故答案为:>.【点评】:本题考查了反比例函数图象上点的坐标特征.能熟记反比例函数的性质是解此题的 . ① 当k>0时.在每个象限内.y随x的增大而减小. ② 当k<0时.在每关键.反比例函数y= kx个象限内.y随x的增大而增大.11.(填空题.4分)如图.已知△ABC≌△DEF.点B.E.C.F依次在同一条直线上.若BC=8.CE=5.则CF的长为 ___ .【正确答案】:[1]3【解析】:根据全等三角形的对应边相等得到EF=BC=8.计算即可.【解答】:解:∵△ABC≌△DEF.∴BC=EF.又BC=8.∴EF=8.∵EC=5.∵CF=EF-EC=8-5=3.故答案为:3.【点评】:本题考查的是全等三角形的性质.掌握全等三角形的对应边相等、全等三角形的对应角相等是解题的关键.12.(填空题.4分)在平面直角坐标系xOy中.点P(5.-1)关于y轴对称的点的坐标是 ___ .【正确答案】:[1](-5.-1)【解析】:根据关于y 轴的对称点的坐标特点:横坐标互为相反数.纵坐标不变即可得出答案.【解答】:解:∵关于y 轴对称.∴横坐标互为相反数.纵坐标不变.∴点P (5.-1)关于y 轴对称的点的坐标是(-5.-1).故答案为:(-5.-1).【点评】:本题考查了关于x 轴.y 轴对称的点的坐标.掌握关于y 轴的对称点的坐标特点:横坐标互为相反数.纵坐标不变是解题的关键.13.(填空题.4分)如图.在△ABC 中.D 是边AB 上一点.按以下步骤作图:① 以点A 为圆心.以适当长为半径作弧.分别交AB.AC 于点M.N ;② 以点D 为圆心.以AM 长为半径作弧.交DB 于点M′;③ 以点M′为圆心.以MN 长为半径作弧.在∠BAC 内部交前面的弧于点N′;④ 过点N′作射线DN ′交BC 于点E .若△BDE 与四边形ACED 的面积比为4:21.则 BE CE 的值为 ___ . 【正确答案】:[1] 23【解析】:由作图知∠A=∠BDE .由平行线的性质得到DE || AC.证得△BDE∽△BAC .根据相似三角形的性质即可求出答案.【解答】:解:由作图知.∠A=∠BDE .∴DE || AC .∴△BDE∽△BAC .△BAC 的面积:△BDE 的面积=(△BDE 的面积+四边形ACED 的面积):△BDE 的面积=1+四边形ACED 的面积:△BDE 的面积=1+ 214 = 254 .∴△BDC 的面积:△BAC 的面积=( BE BC )2= 425 .∴ BE BC = 25 .∴ BE CE = 23 .故答案为: 23 .【点评】:本题考查作图-复杂作图.相似三角形的性质和判定.平行线的判定和性质等知识.解题的关键是读懂图象信息.灵活运用所学知识解决问题.14.(问答题.12分)(1)计算:√4 +2sin45°-(π-3)0+| √2 -2|.(2)解不等式组:{2(x+2)−x≤5①4x+13>x−1②.【正确答案】:【解析】:(1)分别根据算术平方根的定义.特殊角的三角函数值.零指数幂的定义以及绝对值的性质计算即可;(2)先求出不等式组中每一个不等式的解集.再求出它们的公共部分即可.【解答】:解:(1)原式=2+2× √22-1+2- √2=2+ √2 -1+2- √2=3;(2){2(x+2)−x≤5①4x+13>x−1②.解不等式① .得x≤1.解不等式② .得x>-4.所以原不等式组的解集为-4<x≤1.【点评】:本题考查了实数的运算以及解一元一次不等式组.掌握相关定义与运算法则是解答本题的关键.15.(问答题.8分)文明是一座城市的名片.更是一座城市的底蕴.成都市某学校于细微处着眼.于贴心处落地.积极组织师生参加“创建全国文明典范城市志愿者服务”活动.其服务项目有“清洁卫生”“敬老服务”“文明宣传”“交通劝导”.每名参加志愿者服务的师生只参加其中一项.为了解各项目参与情况.该校随机调查了参加志愿者服务的部分师生.将调查结果绘制成如下两幅不完整的统计图.根据统计图信息.解答下列问题:(1)本次调查的师生共有 ___ 人.请补全条形统计图;(2)在扇形统计图中.求“敬老服务”对应的圆心角度数;(3)该校共有1500名师生.若有80%的师生参加志愿者服务.请你估计参加“文明宣传”项目的师生人数.【正确答案】:300【解析】:(1)根据“清洁卫生”的人数和所占的百分比求出样本容量.再用样本容量减去其他三个项目的人数.可得“文明宣传”的人数.进而补全条形统计图;(2)用360°乘“敬老服务”所占的百分比即可得出“敬老服务”对应的圆心角度数;(3)用参加志愿者服务的人数乘样本中参加“文明宣传”的人数所占的百分比即可.【解答】:解:(1)本次调查的师生共有:60÷20%=300(人).“文明宣传”的人数为:300-60-120-30=90(人).补全条形统计图如下:故答案为:300;=144°;(2)在扇形统计图中.求“敬老服务”对应的圆心角度数为:360°× 120300=360(名).(3)1500×80%× 90300答:估计参加“文明宣传”项目的师生人数大约为360名.【点评】:本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图.从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.16.(问答题.8分)为建设美好公园社区.增强民众生活幸福感.某社区服务中心在文化活动室墙外安装遮阳篷.便于社区居民休憩.如图.在侧面示意图中.遮阳篷AB长为5米.与水平面的夹角为16°.且靠墙端离地高BC为4米.当太阳光线AD与地面CE的夹角为45°时.求阴影CD的长.(结果精确到0.1米;参考数据:sin16°≈0.28.cos16°≈0.96.tan16°≈0.29)【正确答案】:【解析】:过A作AT⊥BC于T.AK⊥CE于K.在Rt△ABT中.BT=AB•sin∠BAT=1.4(米).AT=AB•cos∠BAT≈4.8(米).可得CK=AT=4.8米.AK=CT=BC-BT=4-1.4=2.6(米).而∠ADK=45°.知DK=AK=2.6米.故CD=CK-DK=4.8-2.6=2.2米.【解答】:解:过A作AT⊥BC于T.AK⊥CE于K.如图:在Rt△ABT中.BT=AB•sin∠BAT=5×sin16°≈1.4(米).AT=AB•cos∠BAT=5×cos16°≈4.8(米).∵∠ATC=∠C=∠CKA=90°.∴四边形ATCK是矩形.∴CK=AT=4.8米.AK=CT=BC-BT=4-1.4=2.6(米).在Rt△AKD中.∵∠ADK=45°.∴DK=AK=2.6米.∴CD=CK-DK=4.8-2.6=2.2(米).∴阴影CD的长约为2.2米.【点评】:本题考查解直角三角形的应用.解题的关键是掌握锐角三角函数的定义.求出相关线段的长度.17.(问答题.10分)如图.以△ABC的边AC为直径作⊙O.交BC边于点D.过点C作CE || AB交⊙O于点E.连接AD.DE.∠B=∠ADE.(1)求证:AC=BC;(2)若tanB=2.CD=3.求AB和DE的长.【正确答案】:【解析】:(1)结合已知条件.根据同弧所对的圆周角相等易证得∠ADE=∠ACE=∠BAC=∠B.再由等边对等角即可证得结论;(2)连接AE.易证得△ABC∽△ADE.根据已知条件.利用直径所对的圆周角为直角可得∠ADB=∠ADC=90°.根据三角函数值可得AD=2BD.再结合.CD=3.AC=3+BD.利用勾股定理列得方程.求得CD的长度.从而得出AD.BC.AB的长度.再利用相似三角形的对应边成比例即可求得答案.【解答】:(1)证明:∵∠ADE=∠ACE.∠ADE=∠B.∴∠B=∠ACE.∵CE || AB.∴∠BAC=∠ACE.∴∠B=∠BAC.∴AC=BC;(2)解:如图.连接AE.∵∠ADE=∠B.∠AED=∠ACB.∴△ADE∽△ABC.∴ AD AB = DEBC.∵AC为⊙O的直径.∴∠ADB=∠ADC=90°.∴tanB= ADBD=2.∴AD=2BD.∵CD=3.∴AC=BC=BD+CD=BD+3.∵AD2+CD2=AC2.∴(2BD)2+32=(BD+3)2.解得:BD=2或BD=0(舍去).∴AD=2BD=4.AB= √AD2+BD2 = √42+22 =2 √5 .BC=2+3=5.∵ AD AB = DEBC.∴ 42√5 = DE 5 . ∴DE=2 √5 .【点评】:本题主要考查圆与相似三角形的综合应用.(2)中利用三角函数值可得AD=2BD.再根据勾股定理列得方程是解题的关键.18.(问答题.10分)如图.在平面直角坐标系xOy 中.直线y=-x+5与y 轴交于点A.与反比例函数y= kx 的图象的一个交点为B (a.4).过点B 作AB 的垂线l.(1)求点A 的坐标及反比例函数的表达式;(2)若点C 在直线l 上.且△ABC 的面积为5.求点C 的坐标;(3)P 是直线l 上一点.连接PA.以P 为位似中心画△PDE .使它与△PAB 位似.相似比为m.若点D.E 恰好都落在反比例函数图象上.求点P 的坐标及m 的值.【正确答案】:【解析】:(1)解方程得到点A 的坐标为(0.5).将B (a.4)代入y=-x+5得.4=-a+5.求得B (1.4).将B (1.4)代入y= k x 得.求得反比例函数的表达式为y= 4x ; (2)设直线l 与y 轴交于M.直线y=-x+5与x 轴交于N.解方程得到N (S.0).求得OA=ON=5.根据两点间的距离的结论公式得到 AB =√(1−0)2+(4−5)2 = √2 .求得M (0.3).待定系数法求得直线l 的解析式为y=x+3.设点C 的坐标为(t.t+3).根据三角形的面积公式列方程得到t=-4或t=6.求得点C 的坐标为(6.9)或(-4.-1);(3)解方程组求得E (-4.-1).根据相似三角形的性质得到∠PAB=∠PDE .根据平行线的判定定理得到AB || DE.求得直线DE 的解析式为y=-x-5.解方程组得到D (-1.-4).则直线AD 的解析式为y=9x+5.于是得到P (- 14 . 114 ).根据两点间的距离距离公式即可得到结论.【解答】:解:(1)令x=0.则y=-x+5=5.∴点A 的坐标为(0.5).将B (a.4)代入y=-x+5得.4=-a+5.∴a=1.∴B (1.4).将B (1.4)代入y= k x 得.4= k1 .解得k=4.∴反比例函数的表达式为y= 4x ;(2)设直线l 与y 轴交于M.直线y=-x+5与x 轴交于N.令y=-x+5=0得.x=5.∴N (5.0).∴OA=ON=5.∵∠AON=90°.∴∠OAN=45°.∵A (0.5).B (1.4).∴ AB =√(1−0)2+(4−5)2 = √2 .∵直线l 是AB 的垂线.即∠ABM=90°.∠OAN=45°.∴ AB =BM =√2,AM =√AB 2+BM 2=2 .∴M (0.3).设直线l 的解析式为y=k 1x+b 1.将M (0.3).B (1.4)代入y=k 1x+b 1得. {k 1+b 1=4b 1=3. 解得 {k 1=1b 1=3. ∴直线l 的解析式为y=x+3.设点C 的坐标为(t.t+3).∵ S △ABC =12AM •|x B -x C |= 12×2×|1−t |=5 .解得t=-4或t=6.当t=-4时.t+3=-1.当t=6时.t+3=9.∴点C的坐标为(6.9)或(-4.-1);方法二:设点C的坐标为(t.t+3). ∴BC= √(1−t)2+(4−t−3)2 =|1-t|.∴S△ABC= 12AB•BC = 12×2×|1−t| =5.∴t=-4或t=6.当t=-4时.t+3=-1.当t=6时.t+3=9.∴点C的坐标为(6.9)或(-4.-1);(3)∵位似图形的对应点与位似中心三点共线.∴点B的对应点也在直线l上.不妨设为E点.则点A的对应点为D.将直线l与双曲线的解析式联立方程组{y=4xy=x+3.解得. {x=1y=4或{x=−4y=−1 .∴E(-4.-1).画出图形如图所示.∵△PAB∽△PDE.∴∠PAB=∠PDE.∴AB || DE.∴直线AB与直线DE的一次项系数相等. 设直线DE的解析式为y=-x+b2.∴-1=-(-4)+b2.∴b2=-5.∴直线DE的解析式为y=-x-5.∵点D在直线DE与双曲线的另一个交点.∴解方程组{y=4xy=−x−5得. {x=−1y=−4或{x=−4y=−1 .∴D (-1.-4).则直线AD 的解析式为y=9x+5.解方程组 {y =9x +5y =x +3 得. {x =−14y =114 . ∴P (- 14 . 114 ).∴ BP =√(−14−1)2+(114−4)2=54√2 . EP =√[−14−(−4)]2+[114−(−1)]2=154√2 .∴m= EP BP =3 .【点评】:本题考查了反比例函数的综合题.待定系数法求函数的解析式.反比例函数的性质.勾股定理.相似三角形的判定和性质.正确的作出图形是解题的关键.19.(填空题.4分)若3ab-3b 2-2=0.则代数式(1-2ab−b 2a 2 )÷ a−b a 2b 的值为 ___ . 【正确答案】:[1] 23【解析】:先根据分式的减法法则进行计算.再根据分式的除法法则把除法变成乘法.算乘法.最后代入求出答案即可.【解答】:解:(1- 2ab−b 2a 2 )÷ a−b a 2b =a 2−(2ab−b 2)a 2 • a 2b a−b = (a−b )2a 2 • a 2b a−b=b (a-b )=ab-b 2.∵3ab -3b 2-2=0.∴3ab -3b 2=2.∴ab -b 2= 23 .当ab-b 2= 23 时.原式= 23 .故答案为: 23 .【点评】:本题考查了分式的化简求值.能正确根据分式的运算法则进行计算是解此题的关键.20.(填空题.4分)一个几何体由几个大小相同的小立方块搭成.它的主视图和俯视图如图所示.则搭成这个几何体的小立方块最多有 ___ 个.【正确答案】:[1]6【解析】:根据正面看与上面看的图形.得到搭成这个几何体底层4个.上面1层最多2个小正方体.【解答】:解:根据俯视图发现最底层有4个小立方块.从主视图发现第二层最多有2个小立方块.故最多有4+2=6(个)小立方块.故答案为:6.【点评】:本题考查的是三视图知识.以及由三视图判断几何体.利用三视图判断得出几何体形状是解题关键.21.(填空题.4分)为传承非遗文化.讲好中国故事.某地准备在一个场馆进行川剧演出.该场馆底面为一个圆形.如图所示.其半径是10米.从A到B有一笔直的栏杆.圆心O到栏杆AB的距离是5米.观众在阴影区域里观看演出.如果每平方米可以坐3名观众.那么最多可容纳 ___ 名观众同时观看演出.(π取3.14. √3取1.73)【正确答案】:[1]184【解析】:过O作OD⊥AB.D为垂足.可得到∠AOD=60°.所以∠AOB=120°.再求出S阴影部分=S扇形OAB-S△OAB= 120π×102360 - 12×10 √3 ×5= 1003π-25 √3≈61(m2).然后乘以3即可得到观看马戏的观众人数约为183人.【解答】:解:过O作OD⊥AB.D为垂足.∴AD=BD.OD=5m.∵cos∠AOD= ODOA = 510= 12.∴∠AOD=60°.AD= √3 OD=5 √3 m. ∴∠AOB=120°.AB=10 √3 m.∴S阴影部分=S扇形OAB-S△OAB= 120π×102360 - 12×10 √3 ×5= 1003π-25 √3≈61.4(m2).∴61.4×3=184(人).∴观看马戏的观众人数约为184人.故答案为:184人.【点评】:本题考查的是垂径定理的应用.根据题意作出辅助线.构造出直角三角形是解答此题的关键.也考查了三角函数的概念和特殊角的三角函数值.22.(填空题.4分)如图.在Rt△ABC中.∠ABC=90°.CD平分∠ACB交AB于点D.过D作DE || BC交AC于点E.将△DEC沿DE折叠得到△DEF.DF交AC于点G.若AGGE =73.则tanA=___ .【正确答案】:[1] 3√77【解析】:过点G作GM⊥DE于M.证明△DGE∽△CGD.得出DG2=GE×GC.根据AD || GM.得AGEG = DMEM= 73.设GE=3k.AG=7k.EM=3n.DM=7n.则EC=DE=10n.在Rt△DGM中.GM2=DG2-DM2.在Rt△GME中 GM2=GE2-EM2.则 DG2-DM2=GE2-EM2.解方程求得n=34k.则EM=94k.GE=3k.用勾股定理求得GM.根据正切的定义.即可求解.【解答】:解:过点G作GM⊥DE于M.如图.∵CD平分∠ACB交AB于点D.DE || BC.∴∠1=∠2.∠2=∠3.∴∠1=∠3.∴ED=EC.∵将△DEC沿DE折叠得到△DEF.∴∠3=∠4.∴∠1=∠4.又∵∠DGE=∠CGD.∴△DGE∽△CGD.∴ DG CG =GEDG.∴DG2=GE×GC.∵∠ABC=90°.DE || BC. ∴AD⊥DE.∴AD || GM.∴ AG GE = DMEM.∠MGE=∠A.∵ AG GE =73.∴ DM EM =73.设GE=3k.EM=3n.则AG=7k.DM=7n.∴EC=DE=10n.∴DG2=GE×GC=3k×(3k+10n)=9k2+30kn. 在Rt△DGM中.GM2=DG2-DM2.在Rt△GME中.GM2=GE2-EM2.∴DG2-DM2=GE2-EM2.即9k2+30kn-(7n)2=(3k)2-(3n)2.解得:n=34k.∴EM= 94k.∵GE=3k.∴GM= √GE2−EM2 = √(3k)2−(94k)2= 3√74k.∴tanA=tan∠EGM= EMGM =94k3√74k= 3√77.故答案为:3√77.【点评】:本题考查了求正切.折叠的性质.勾股定理.平行线分线段成比例.相似三角形的性质与判定.熟练掌握以上知识是解题的关键.23.(填空题.4分)定义:如果一个正整数能表示为两个正整数m.n的平方差.且m-n>1.则称这个正整数为“智慧优数”.例如.16=52-32.16就是一个智慧优数.可以利用m2-n2=(m+n)(m-n)进行研究.若将智慧优数从小到大排列.则第3个智慧优数是 ___ ;第23个智慧优数是 ___ .【正确答案】:[1]15; [2]57【解析】:根据新定义m2-n2.可以分别列出m2和n2的值.进而即可求解.。
2010年成都市中考数学试题A卷(共100分)一、选择题:(每小题3分,共30分)1.(2010年四川成都,1,3分)下列各数中,最大的数是()A.2-B.0C.12D.3【答案】D2.(2010年四川成都,2,3分)3x表示()A.3x B.x x x++C.x x x⋅⋅D.3x+【答案】C3.(2010年四川成都,3,3分)上海“世博会”吸引了来自全球众多国家数以千万的人前来参观.据统计,2010年5月某日参观世博园的人数约为256 000,这一人数用科学记数法表示为()A.52.5610⨯B.525.610⨯C.42.5610⨯D.425.610⨯【答案】A4.(2010年四川成都,4,3分)如图是一个几何体的三视图,则这个几何体的形状是()A.圆柱B.圆锥C.圆台D.长方体【答案】B5.(2010年四川成都,5,3分)把抛物线2y x=向右平移1个单位,所得抛物线的函数表达式为()A.21y x=+B.2(1)y x=+C.21y x=-D.2(1)y x=-【答案】D6.(2010年四川成都,6,3分)如图,已知//AB ED,65ECF∠=,则BAC∠的度数为()A.115B.65C.60D.25【答案】B 7.(2010年四川成都,7,3分)为了解某班学生每天使用零花钱的情况,小红随机调查了15则这15A .3,3 B .2,3 C .2,2 D .3,5 【答案】B 8.(2010年四川成都,8,3分)已知两圆的半径分别是4和6,圆心距为7,则这两圆的位置关系是( )A .相交B .外切C .外离D .内含 【答案】A 9.(2010年四川成都,9,3分)若一次函数y kx b =+的函数值y 随x 的增大而减小,且图象与y 轴的负半轴相交,那么对k 和b 的符号判断正确的是( ) A .0,0k b >> B .0,0k b ><C .0,0k b <>D .0,0k b <<【答案】D 10.(2010年四川成都,10,3分)已知四边形ABCD ,有以下四个条件:①//AB CD ;②AB CD =;③//BC AD ;④BC AD =.从这四个条件中任选两个,能使四边形ABCD 成为平行四边形的选法种数共有( )A .6种B .5种C .4种D .3种 【答案】C 二、填空题:(每小题3分,共15分) 11.(2010年四川成都,11,3分)在平面直角坐标系中,点(2,3)A -位于第___________象限.【答案】第四象限12.(2010年四川成都,12,3分)若,x y 为实数,且20x +,则2010()x y +的值为___________.【答案】113.(2010年四川成都,13,3分)如图,在ABC ∆中,AB 为O 的直径,60,70B C ∠=∠=,则BOD ∠的度数是_____________度.【答案】100; 14.(2010年四川成都,14,3分)甲计划用若干天完成某项工作,在甲独立工作两天后,乙加入此项工作,且甲、乙两人工效相同,结果提前两天完成任务.设甲计划完成此项工作的天数是x ,则x 的值是_____________. 【答案】6; 15.(2010年四川成都,15,3分)若一个圆锥的侧面积是18π,侧面展开图是半圆,则该圆锥的底面圆半径是___________. 【答案】3 三、(第1小题7分,第2小题8分,共15分) 16.(2010年四川成都,16(1),7分)解答下列各题:(1)计算:0116tan30(3.6π)()2-+-.【答案】解:原式=612+-=3 (2)(2010年四川成都,16(2),8分)若关于x 的一元二次方程2420x x k ++=有两个实数根,求k 的取值范围及k 的非负整数值. 【答案】解:∵关于x 的一元二次方程2420x x k ++=有两个实数根, ∴△=244121680k k -⨯⨯=-≥ 解得2k ≤∴k 的非负整数值为0,1,2。
2020年成都中考数学试题A 卷(共100分)第I 卷(选择题,共30分)一、选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1. -2的绝对值是(A) -2 (B) 1 (C) 2 (D)122.如图所示的几何体是由4个大小相同的小立方块搭成,其左视图是3.2020 年6月23日,北斗三号最后一颗全球组网卫星在西昌卫星发射中心成功发射并顺利进入预定轨道它的稳定运行标志着全球四大卫星导航系统之一的中国北斗卫星导航系统全面建成。该卫星距离地面约36000千米,将数据36000用科学记数法表示为 ()3A 3.610⨯ 4()3.610B ⨯ 5()3.610C ⨯ 4()3610D ⨯4.在平面直角坐标系中将点P(3,2)向下平移2个单位长度得到的点的坐标是(A) (3,0) (B) (1,2) (C) (5,2) (D) (3,4)5.下列计算正确的是()325A a b ab += 326()B a a a ⋅=3262()()C a b a b -= 233()D a b a b ÷=6.成都是国家历史文化名城,区域内的都江堰、武侯祠、杜甫草堂、金沙遗址、青羊宫都有深厚的文化底蕴。某班同学分小组到以上五个地方进行研学旅行,人数分别为:12 ,5,11,5,7(单位:人) ,这组数据的众数和中位数分别是(A)5人,7人 (B) 5人,11人 (C) 5人,12人 (D) 7人,11人7.如图,在△ABC 中,按以下步骤作图:①分别以点B 和C 为圆心,以大于12BC 的长为半径作弧,两弧相交于点M 和N;②作直线MN交AC 于点D,连接BD.若AC=6,AD=2,则BD 的长为(A) 2 (B) 3 (C) 4 (D) 68.已知x=2是分式方程311k x x x -+=-的解,那么实数k 的值为 (A) 3 (B)4 (C) 5 (D) 69. 如图,直线123////,l l l 直线AC 和DF 被123,,l l l 所截,AB=5, BC=6,EF=4,则DE 的长为(A) 2 (B) 3(C) 4 10()3D 10.关于二次函数228y x x =+-,下列说法正确的是(A)图象的对称轴在y 轴的右侧(B)图象与y 轴的交点坐标为(0,8)(C)图象与x 轴的交点坐标为(-2 ,0)和(4,0)(D)y 的最小值为-9第II 卷(非选择题,共70分)二、填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上)11.分解因式:23x x += ______.12.一次函数y=(2m-1)x + 2的值随x 值的增大而增大,则常数m 的取值范围为________.13.如图,A,B,C 是⊙O 上的三个点,∠AOB=50°,∠B=55° ,则∠A 的度数为_______.14.《九章算术》是我国古代一部著名的算书,它的出现标志着中国古代数学形成了完整的体系。其中卷八方程【七】中记载:“今有牛五、羊二,直金十两.牛二、羊五,直金八两.牛、羊各直金几何?”题目大意是:5头牛、2只羊共值金10两.2头牛5只羊共值金8两.每头牛、每只羊各值金多少两?设1头牛值金x 两,1只羊值金y 两,则可列方程组为______.三、解答题(本大题共6个小题,共54分,解答过程写在答题卡上)15.(本小题满分12分,每题6分)(1)计算: 212sin 60()|22︒-++ (2)解不等式组:4(1)2,21 1.3x x x x -≥+⎧⎪⎨+>-⎪⎩②①16. (本小题满分6分)先化简,再求值:212(1)39x x x +-÷+-,其中3x =17. (本小题满分8分)2021年,成都将举办世界大学生运动会,这是在中国西部第一次举办的世界综合性运动会。目前,运动会相关准备工作正在有序进行,比赛项目已经确定。某校体育社团随机调查了部分同学在田径、跳水、篮球、游泳四种比赛项目中选择一种观看的意愿,并根据调查结果绘制成了如下两幅不完整的统计图。根据以上信息,解答下列问题:(1)这次被调查的同学共有______人;(2)扇形统计图中“篮球”对应的扇形圆心角的度数为____.(3)现拟从甲、乙、丙、丁四人中任选两名同学担任大运会志愿者,请利用画树状图或列表的方法,求恰好选中甲、乙两位同学的概率。18. (本小题满分8分)成都“339”电视塔作为成都市地标性建筑之一,现已成为外地游客到成都旅游打卡的网红地。如图,为测量电视塔观景台A 处的高度,某数学兴趣小组在电视塔附近一建筑物楼顶D 处测得塔A 处的仰角为45° ,塔底部B 处的俯角为22°.已知建筑物的高CD 约为61米,请计算观景台的高AB 的值.(结果精确到1米;参考数据:sin22°≈0.37 ,cos22°≈0.93 ,tan22°≈0.40)19. (本小题满分10分)在平面直角坐标系xOy 中,反比例函数(0)m y x x=>的图象经过点A(3,4) ,过点A 的直线y=kx+b 与x 轴、y 轴分别交于B,C 两点。(1)求反比例函数的表达式;(2)若△AOB 的面积为△BOC 的面积的2倍,求此直线的函数表达式。20. (本小题满分10分)如图,在△ABC 的边BC 上取一点O,以O 为圆心,OC 为半径画⊙O, ⊙O 与边AB 相切于点D,AC=AD,连接OA 交⊙O 于点E,连接CE ,并延长交线段AB 于点F.(1)求证:AC 是⊙O 的切线;(2)若AB=10,tanB=43,求⊙O 的半径; (3)若F 是AB 的中点,试探究BD+CE 与AF 的数量关系并说明理由。B 卷(共50分)一、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)21.已知a =7-3b,则代数式2269a ab b ++的值为______.22.关于x 的一元二次方程232402x x m -+-=有实数根,则实数m 的取值范围是___.23.如图,六边形ABCDEF 是正六边形,曲线111111FA B C D E F ⋅⋅⋅叫做“正六边形的渐开线”,11111111111,,,,,FA A B B C C D D E E F …的圆心依次按A,B,C,D,E,F 循环,且每段弧所对的圆心角均为正六边形的一个外角.当AB=1时,曲线111111FA B C D E F 的长度是____.24.在平面直角坐标系xOy 中,已知直线y=mx (m> 0)与双曲线4y x=交于A,C 两点(点A 在第一象限),直线y=nx(n<0)与双曲线1y=-交于B,D两点。当这两条直线互相垂直,且四边形ABCD的x周长为时,点A的坐标为___.25.如图,在矩形ABCD中,AB=4,BC=3,E,F分别为AB,CD边的中点.动点P从点E出发沿EA向点A运动,同时,动点Q从点F出发沿FC向点C运动,连接PQ,过点B作BH⊥PQ于点H,连接DH.若点P 的速度是点Q的速度的2倍,在点P从点E运动至点A的过程中,线段PQ长度的最大值为_____,线段DH长度的最小值为____.二、解答题(本大题共3个小题,共30分,解答过程写在答题卡上)26. (本小题满分8分)在“新冠”疫情期间,全国人民“众志成城,同心抗疫”,某商家决定将一个月获得的利润全部捐赠给社区用于抗疫。已知商家购进一批产品,成本为10元/件,拟采取线上和线下两种方式进行销售。调查发现,线下的月销量y(单位:件)与线下售价x(单位:元/件,12≤x<24)满足一次函数的关系,部分数据如下表:(1)求y与x的函数关系式;(2)若线上售价始终比线下每件便宜2元,且线上的月销量固定为400件.试问:当x为多少时,线上和线下月利润总和达到最大?并求出此时的最大利润.27. (本小题满分10分)在矩形ABCD的CD边上取一点E,将△BCE沿BE翻折,使点C 恰好落在AD边上点F处.(1)如图1,若BC=2BA,求∠CBE 的度数;(2)如图2,当AB=5,且AF·FD= 10时,求BC 的长;(3)如图3,延长EF,与∠ABF 的角平分线交于点M , BM 交AD 于点N,当NF=AN+FD 时,求AB BC的值.28. (本小题满分12分)在平面直角坐标系xOy 中,已知抛物线2y ax bx c =++与x 轴交于A(-1 ,0),B(4,0)两点,与y 轴交于点C(0,-2).(1)求抛物线的函数表达式;(2)如图1,点D 为第四象限抛物线上一点,连接AD,BC 交于点E,连接BD,记△BDE 的面积为1,S △ABE 的面积为2,S 求12S S 的最大值;(3)如图2,连接AC,BC,过点O 作直线l//BC,点P,Q 分别为直线l 和抛物线上的点.试探究:在第一象限是否存在这样的点P,Q,使△PQB ∽△CAB.若存在,请求出所有符合条件的点P 的坐标;若不存在,请说明理由.。
成都市中考数学模拟试题(3)A卷(共100分)第Ⅰ卷一.选择题(共10小题,满分30分,每小题3分)1.(3分)在有理数2,0,﹣1,﹣3中,任意取两个数相加,和最小是()A.2 B.﹣1 C.﹣3 D.﹣4【答案】D【解析】(﹣1)+(﹣3)=﹣4.故选:D.2.(3分)八个大小相同的正方体搭成的几何体如图所示,其主视图是()A.B.C.D.【答案】C【解析】从正面看,共有三列,每列的小正方形个数分别为2、1、2,故选:C.3.(3分)据央视网消息,全国广大共产党员积极响应党中央号召,踊跃捐款,表达对新冠肺炎疫情防控工作的支持.据统计,截至2020年3月26日,全国已有7901万多名党员自愿捐款,共捐款82.6亿元.82.6亿用科学记数法可表示为()A.0.826×1010B.8.26×109C.8.26×108D.82.6×108【答案】B【解析】82.6亿=8 260 000 000=8.26×109,故选:B.4.(3分)将点P(2,1)沿x轴方向向左平移3个单位,再沿y轴方向向上平移2个单位,所得的点的坐标是()A.(﹣1,﹣1)B.(﹣1,3)C.(5,﹣1)D.(5,3)【答案】B【解析】将点P(2,1)沿x轴方向向左平移3个单位,再沿y轴方向向上平移2个单位,所得的点的坐标是(﹣1,3).故选:B.5.(3分)一块含有45°的直角三角板和直尺如图放置,若∠1=55°,则∠2的度数是()A.30°B.35°C.40°D.45°【答案】B【解析】如图,延长ME,交CD于点F,∵AB∥CD,∠1=55°,∴∠MFC=∠1=55°,在Rt△NEF中,∠NEF=90°,∴∠3=90°﹣∠MFC=35°,∴∠2=∠3=35°,故选:B.6.(3分)下列计算正确的是()A.(a﹣b)(﹣a﹣b)=a2﹣b2B.2a3+3a3=5a6C.6x3y2÷3x=2x2y2D.(﹣2x2)3=﹣6x6【答案】C【解析】(a﹣b)(﹣a﹣b)=b2﹣a2,故选项A错误;2a3+3a3=5a3,故选项B错误;6x3y2÷3x=2x2y2,故选项C正确;(﹣2x2)3=﹣8x6,故选项D错误;故选:C.7.(3分)方程=的解为()A.﹣2 B.﹣1 C.1 D.2【答案】A【解析】方程两边都乘以2x(x﹣2),得:2x=x﹣2,移项,得:2x﹣x=﹣2,合并同类项,得:x=﹣2.经检验,x=﹣2是原方程的根.所以,原方程的根为x=﹣2.故选:A.8.(3分)在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如图所示,则这些运动员成绩的中位数为()A.160 B.165 C.170 D.175【答案】B【解析】把这些数从小到大排列,中位数是第8个数,则这些运动员成绩的中位数为165cm.故选:B.9.(3分)如图,⊙O是正六边形ABCDEF的外接圆,P是弧AB上一点,则∠CPD的度数是()A.30°B.40°C.45°D.60°【答案】A【解析】连接OC,OD,∵六边形ABCDEF是正六边形,∴∠COD==60°,∴∠CPD=COD=30°,故选:A.10.(3分)抛物线y=ax2+bx+c经过点(﹣2,0),且对称轴为直线x=1,其部分图象如图所示.对于此抛物线有如下四个结论:①b=2a;②4a+2b+c>0;③若n>m>0,则x=1+m时的函数值小于x=1﹣n时的函数值;④点(,0)一定在此抛物线上.其中正确结论的个数是()A.4个B.3个C.2个D.1个【答案】C【解析】∵抛物线的对称轴为直线x=1,∴﹣=1,∴b=﹣2a,故①错误;∵抛物线的对称轴为直线x=1,而点(﹣2,0)关于直线x=1的对称点的坐标为(4,0),∵抛物线开口向下,∴当x=2时,y>0,∴4a+2b+c>0,故②正确;∵抛物线开口向下,对称轴为直线x=1,∴横坐标是1﹣n的点的对称点的横坐标为1+n,∵若n>m>0,∴1+n>1+m,∴x=1+m时的函数值大于x=1﹣n时的函数值,故③错误;∵b=﹣2a,∴抛物线为y=ax2﹣2ax+c,∵抛物线y=ax2+bx+c经过点(﹣2,0),∴4a+4a+c=0,即8a+c=0,∴c=﹣8a,∴﹣=4,∵点(﹣2,0)的对称点是(4,0),∴点(﹣,0)一定在此抛物线上,故④正确,故选:C.二.填空题(共4小题,满分16分,每小题4分)11.(4分)若2x﹣3和1﹣4x互为相反数,则x的值是________.【答案】﹣1.【解析】∵2x﹣3和1﹣4x互为相反数,∴2x﹣3+1﹣4x=0,解得:x=﹣1.12.(4分)一个等腰三角形一腰上的高与另一腰的夹角为36°,则此三角形顶角度数为________.【答案】54°或126°【解析】当△ABC是锐角三角形时,∠ACD=36°,∠ADC=90°,∴∠A=54°,当△ABC是钝角三角形时,∴∠ACD=36°,∠ADC=90°,∴∠BAC=∠ADC+∠ACD=126°13.(4分)已知直线y=(k﹣2)x+k经过第一、二、四象限,则k的取值范围是________.【答案】0<k<2.【解析】∵一次函数y=(k﹣2)x+k的图象经过第一、二、四象限,∴k﹣2<0且k>0;∴0<k<2,14.(4分)如图,在▱ABCD中,CD=2,∠B=60°,BE:EC=2:1,依据尺规作图的痕迹,则▱ABCD的面积为________.【答案】3.【解析】如图,过点A作AH⊥BC于H,由作图可知,EF垂直平分线段AB∴EA=EB,∵∠B=60°,∴△ABE是等边三角形,∴AB=BE=AE,∵四边形ABCD是平行四边形,∴AB=CD=2,∴BE=AB=2,∵AH⊥BE,∴BH=EH=1,∴AH===,∵BE:EC=2:1,∴EC=1,BC=BE+EC=3,∴平行四边形ABCD的面积=BC•AH=3,三.解答题(共6小题,满分54分)15.(12分)(1)计算:+(1+π)0﹣2cos45°+|1﹣|.(2)解不等式组:.【答案】见解析【解析】(1)原式=2+1﹣2×+﹣1=2+1﹣+﹣1=2;(2)由①得:x>2.5,由②得:x≤4,则不等式组的解集为2.5<x≤4.16.(6分)先化简,再求值:(+)÷,其中m=9.【答案】见解析【解析】原式=×=,当m=9时,原式==.17.(8分)新学期,某校开设了“防疫宣传”“心理疏导”等课程,为了解学生对新开设课程的掌握情况,从八年级学生中随机抽取了部分学生进行了一次综合测试.测试结果分为四个等级:A级为优秀,B 级为良好,C级为及格,D级为不及格.将测试结果绘制了两幅不完整的统计图.根据统计图中的信息解答下列问题:(1)本次抽样测试的学生人数是________名;(2)扇形统计图中表示A级的扇形圆心角α的度数是________,并把条形统计图补充完整;(3)该校八年级共有学生400名,如果全部参加这次测试,估计优秀的人数为多少?【答案】见解析【解析】(1)本次抽样测试的学生人数是:12÷30%=40(名),故答案为:40;(2)扇形统计图中表示A级的扇形圆心角α的度数是:360°×=54°,故答案为:54°,C级的人数为:40×35%=14,补充完整的条形统计图如右图所示;(3)400×=60(人),即优秀的有60人.18.(8分)如图,某办公楼AB的右边有一建筑物CD,在建设物CD离地面2米高的点E处观测办公楼顶A点,测得的仰角∠AEM=22°,在离建设物CD25米远的F点观测办公楼顶A点,测得的仰角∠AFB=45°(B,F,C在一条直线上).(1)求办公楼AB的高度;(2)若要在A,E之间挂一些彩旗,请你求出A,E之间的距离.(参考数据:)【答案】见解析【解析】(1)如图,过点E作EM⊥AB于点M,设AB为x.Rt△ABF中,∠AFB=45°,∴BF=AB=x,∴BC=BF+FC=x+25,在Rt△AEM中,∠AEM=22°,AM=AB﹣BM=AB﹣CE=x﹣2,,则,解得:x=20.即办公楼的高20m;(2)由(1)可得ME=BC=x+25=20+25=45.在Rt△AME中,cos22°=.∴AE===48,即A、E之间的距离约为48m.19.(10分)如图,一次函数y1=ax+b与反比例函数y2=的图象相交于A(2,8),B(8,2)两点,连接AO,BO,延长AO交反比例函数图象于点C.(1)求一次函数y1的表达式与反比例函数y2的表达式;(2)当y1<y2,时,直接写出自变量x的取值范围为________;(3)点P是x轴上一点,当S△P AC=S△AOB时,请直接写出点P的坐标为________.【答案】见解析【解析】(1)将A(2,8),B(8,2)代入y=ax+b得,解得,∴一次函数为y=﹣x+10,将A(2,8)代入y2=得8=,解得k=16,∴反比例函数的解析式为y=;(2)由图象可知,当y1<y2时,自变量x的取值范围为:x>8或0<x<2, 故答案为x>8或0<x<2;(3)由题意可知OA=OC,∴S△APC=2S△AOP,把y=0代入y1=﹣x+10得,0=﹣x+10,解得x=10,∴D(10,0),∴S△AOB=S△AOD﹣S△BOD=﹣=30,∵S△P AC=S△AOB=×30=24,∴2S△AOP=24,∴2××y A=24,即2×OP×8=24,∴OP=3,∴P(3,0)或P(﹣3,0),故答案为P(3,0)或P(﹣3,0).20.(10分)如图,过点P作P A,PB,分别与以OA为半径的半圆切于A,B,延长AO交切线PB于点C,交半圆与于点D.(1)若PC=5,AC=4,求BC的长;(2)设DC:AD=1:2,求的值.【答案】见解析【解析】(1)∵P A,PB是⊙O的切线∴P A=PB,∠P AC=90°∴AP==3∴PB=AP=3∴BC=PC﹣PB=2(2)连接OB,∵CD:AD=1:2,AD=2OD∴CD=OD=OB∴CO=2OB∵PB是⊙O切线∴OB⊥PC∴∠OBC=90°=∠P AC,且∠C=∠C∴△OBC∽△P AC∴∴PC=2P A,∴=B卷(共50分)一.填空题(共5小题,满分20分,每小题4分)21.(4分)估算:≈________.(结果精确到1)【答案】7.【解析】≈7;22.(4分)设x1、x2是方程x2+mx﹣5=0的两个根,且x1+x2﹣x1x2=1,则m=________.【答案】4.【解析】∵x1、x2是方程x2+mx﹣5=0的两个根,∴x1+x2=﹣m,x1x2=﹣5.∵x1+x2﹣x1x2=1,即﹣m﹣(﹣5)=1,∴m=4.23.(4分)一个密码箱的密码,每个位数上的数都是从0到9的自然数,若要使不知道密码的一次就拨对密码的概率小于,则密码的位数至少需要________位.【答案】3.【解析】因为取一位数时一次就拨对密码的概率为,取两位数时一次就拨对密码的概率为,取三位数时一次就拨对密码的概率为,故密码的位数至少需要3位.24.(4分)如图,在边长为2的菱形ABCD中,∠ABC=60°,将△BCD沿直线BD平移得到△B′C′D′,连接AC′、AD′,则AC′+AD′的最小值为________.【答案】2.【解析】如图,连接BC',连接直线CC',∵四边形ABCD是菱形,∴AB∥CD,AB=CD,∵将△BCD沿直线BD平移得到△B′C′D′,∴AB∥C'D',AB=C'D',∴四边形ABC'D'是平行四边形,∴AD'=BC',∴AC′+AD′=AC'+BC',∵点C′在过点C且平行于BD的定直线CC'上,∴作点B关于定直线CC'的对称点E,连接AE,连接BE交CC'于H,则AE的长度即为AC′+AD′的最小值,在Rt△BHC中,∠BCH=∠DBC=30°,AD=2,∴∠CBH=60°,BH=EH=BC=1,∴BE=2,∴BE=AB,∵∠ABE=∠EBB′+∠DBA=90°+30°=120°,∴∠E=∠BAE=30°,∴AE=2×AB=2.25.(4分)如图,在平面直角坐标系中,A(3,0),B(0,4),C(2,0),D(0,1),连接AD、BC交于点E,则三角形ABE的面积为________.【答案】.【解析】连接OE,如图,∵A(3,0),B(0,4),C(2,0),D(0,1),∴AO=3,OB=4,OC=2,OD=1,设E(m,n),∵S△OAD=,∴S△OAD=S△OED+S△OAE=;∵S△OCB==4,∴S△OEB+S△OEC=2m+n=4;解方程组得,,∴S△BEA=S△BCA﹣S△AEC==.二.解答题(共3小题,满分30分)26.(8分)某汽车清洗店,清洗一辆汽车定价20元时每天能清洗45辆,定价25元时每天能清洗30辆,假设清洗汽车辆数y(辆)与定价x(元)(x取整数)是一次函数关系(清洗每辆汽车成本忽略不计).(1)求y与x之间的函数表达式;(2)若清洗一辆汽车定价不低于15元且不超过50元,且该汽车清洗店每天需支付电费、水和员工工资共计200元,问:定价为多少时,该汽车清洗店每天获利最大?最大获利多少?【答案】见解析【解析】(1)设y与x的一次函数式为y=kx+b,由题意可知:,解得:,∴y与x之间的函数表达式为y=﹣3x+105;(2)设汽车美容店每天获利润为w元,由题意得:w=xy﹣200=x(﹣3x+105)﹣200=﹣3(x﹣17.5)2+718.75,∵15≤x≤50,且x为整数,∴当x=17或18时,w最大=718(元).∴定价为17元或18元时,该汽车清洗店每天获利最大,最大获利是718元.27.(10分)【探究证明】(1)某班数学课题学习小组对矩形内两条互相垂直的线段与矩形两邻边的数量关系进行探究,提出下列问题,请你给出证明:如图①,在矩形ABCD中,EF⊥GH,EF分别交AD、BC于点E、F,GH分别交AB、DC于点G、H,求证:=;【结论应用】(2)如图②,将矩形ABCD沿EF折叠,使得点B和点D重合,若AB=2,BC=3.求折痕EF的长;【拓展运用】(3)如图③,将矩形ABCD沿EF折叠.使得点D落在AB边上的点G处,点C落在点P处,得到四边形EFPG,若AB=2,BC=3,EF=,请求BP的长.【答案】见解析【解析】(1):如图①,过点A作AP∥EF,交BC于P,过点B作BQ∥GH,交CD于Q,BQ交AP于T.∵四边形ABCD是矩形,∴AB∥DC,AD∥BC.∴四边形AEFP、四边形BGHQ都是平行四边形, ∴AP=EF,GH=BQ.又∵GH⊥EF,∴AP⊥BQ,∴∠BAT+∠ABT=90°.∵四边形ABCD是矩形,∴∠ABP=∠C=90°,AD=BC,∴∠ABT+∠CBQ=90°,∴∠BAP=∠CBQ,∴△ABP∽△BCQ,∴=,∴=.(2)如图②中,连接BD.∵四边形ABCD是矩形,∴∠C=90°,AB=CD=2,∴BD===,∵D,B关于EF对称,∴BD⊥EF,∴=,∴=,∴EF=.(3)如图③中,过点F作FH⊥EG于H,过点P作PJ⊥BF于J.∵四边形ABCD是矩形,∴AB=CD=2,AD=BC=3,∠A=90°,∴=,∴DG=,∴AG===1,由翻折可知:ED=EG,设ED=EG=x,在Rt△AEG中,∵EG2=AE2+AG2,∴x2=AG2+AE2,∴x2=(3﹣x)2+1,∴x=,∴DE=EG=,∵FH⊥EG,∴∠FHG=∠HGP=∠GPF=90°,∴四边形HGPF是矩形,∴FH=PG=CD=2,∴EH===,∴GH=FP=CF=EG﹣EH=﹣=1,∵PF∥EG,EA∥FB,∴∠AEG=∠IPF,∵∠A=∠FJP=90°,∴△AEG∽△JFP,∴==,∴==,∴FJ=,PJ=,∴BJ=BC﹣FJ﹣CF=3﹣﹣1=,在Rt△BJP中,BP===.解法二:作PH垂直AB于H,证△AEG∽△HGP,求出GH,HP,然后在直角三角形BPH,勾股定理求出BP.28.(12分)如图,在平面直角坐标系中,抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于点C.(1)直接写出抛物线的解析式为:________;(2)点D为第一象限内抛物线上的一动点,作DE⊥x轴于点E,交BC于点F,过点F作BC的垂线与抛物线的对称轴和y轴分别交于点G,H,设点D的横坐标为m.①求DF+HF的最大值;②连接EG,若∠GEH=45°,求m的值.【答案】见解析【解析】(1)将点A(﹣1,0),B(3,0)代入抛物线y=﹣x2+bx+c得:,解得:,∴抛物线的解析式为:y=﹣x2+2x+3.故答案为:y=﹣x2+2x+3;(2)①当x=0时,y=﹣x2+2x+3=3,∴点C(0,3),又∵B(3,0),∴直线BC的解析式为:y=﹣x+3,∵OB=OC=3,∴∠OBC=∠OCB=45°,作FK⊥y轴于点K,又∵FH⊥BC,∴∠KFH=∠KHF=45°,∴FH=KF=OE,∴DF+HF=DE﹣EF+OE=(﹣m2+2m+3)﹣(﹣m+3)+m=﹣m2+(3+)m,由题意有0<m<3,且0<﹣=<3,﹣1<0,∴当m=时,DF+HF取最大值,DF+HF的最大值为:﹣+(3+)×=;②作GM⊥y轴于点M,记直线FH与x轴交于点N,∵FK⊥y轴,DE⊥x轴,∠KFH=45°,∴∠EFH=∠ENF=45°,∴EF=EN,∵∠KHF=∠ONH=45°,∴OH=ON,∵y=﹣x2+2x+3的对称轴为直线x=1,∴MG=1,∵HG=MG=,∵∠GEH=45°,∴∠GEH=∠EFH,又∠EHF=∠GHE,∴△EHG∽△FHE,∴HE:HG=HF:HE, ∴HE2=HG•HF=×m=2m,在Rt△OEH中,OH=ON=|OE﹣EN|=|OE﹣EF|=|m﹣(﹣m+3)|=|2m﹣3|,OE=m,∴HE2=OE2+OH2=m2+(2m﹣3)2=5m2﹣12m+9,∴5m2﹣12m+9=2m, 解得:m=1或.。
2010年成都市中考数学试题A 卷(共100分)一、选择题:(每小题3分,共15分) 1.下列各数中,最大的数是( ) (A )2- (B )0 (C )12(D )32.3x 表示( )(A )3x (B )x x x ++ (C )x x x ⋅⋅ (D )3x + 3.上海“世博会”吸引了来自全球众多国家数以千万的人前来参观.据统计,2010年5月某日参观世博园的人数约为256 000,这一人数用科学记数法表示为( )(A )52.5610⨯ (B )525.610⨯ (C )42.5610⨯ (D )425.610⨯ 4.如图是一个几何体的三视图,则这个几何体的形状是( )(A )圆柱 (B )圆锥 (C )圆台 (D )长方体 5.把抛物线2y x =向右平移1个单位,所得抛物线的函数表达式为( ) (A )21y x =+ (B )2(1)y x =+ (C )21y x =- (D )2(1)y x =-6.如图,已知//AB ED ,65EC F ∠=,则BAC ∠的度数为( ) (A )115(B )65(C )60(D )257.为了解某班学生每天使用零花钱的情况,小红随机调查了15名同学,结果如下表:则这15名同学每天使用零花钱的众数和中位数分别是( )(A )3,3 (B )2,3 (C )2,2 (D )3,58.已知两圆的半径分别是4和6,圆心距为7,则这两圆的位置关系是( ) (A )相交 (B )外切 (C )外离 (D )内含9.若一次函数y kx b =+的函数值y 随x 的增大而减小,且图象与y 轴的负半轴相交,那么对k 和b 的符号判断正确的是( )(A )0,0k b >> (B )0,0k b >< (C )0,0k b <> (D )0,0k b <<10.已知四边形ABCD ,有以下四个条件:①//AB CD ;②AB CD =;③//BC AD ;④BC AD =.从这四个条件中任选两个,能使四边形ABCD 成为平行四边形的选法种数共有( )(A )6种 (B )5种 (C )4种 (D )3种二、填空题:(每小题3分,共15分) 11.在平面直角坐标系中,点(2,3)A -位于第___________象限.12.若,x y 为实数,且20x ++=,则2010()x y +的值为___________.13.如图,在ABC ∆中,A B 为O 的直径,60,70B C ∠=∠=,则BOD ∠的度数是_____________度.14.甲计划用若干天完成某项工作,在甲独立工作两天后,乙加入此项工作,且甲、乙两人工效相同,结果提前两天完成任务.设甲计划完成此项工作的天数是x ,则x 的值是_____________. 15.若一个圆锥的侧面积是18π,侧面展开图是半圆,则该圆锥的底面圆半径是___________. 三、(第1小题7分,第2小题8分,共15分) 16.解答下列各题:(1)计算:0116tan 30(3.6π)()2-+--.(2)若关于x 的一元二次方程2420x x k ++=有两个实数根,求k 的取值范围及k 的非负整数值.17.已知:如图,A B 与O 相切于点C ,OA OB =,O 的直径为4,8A B =. (1)求OB 的长; (2)求sin A 的值.18.如图,已知反比例函数k y x=与一次函数y x b =+的图象在第一象限相交于点(1,4)A k -+.(1)试确定这两个函数的表达式;(2)求出这两个函数图象的另一个交点B 的坐标,并根据图象写出使反比例函数的值大于一次函数的值的x 的取值范围.19.某公司组织部分员工到一博览会的A B C D E 、、、、五个展馆参观,公司所购门票种类、数量绘制成的条形和扇形统计图如图所示.请根据统计图回答下列问题:(1)将条形统计图和扇形统计图在图中补充完整;(2)若A 馆门票仅剩下一张,而员工小明和小华都想要,他们决定采用抽扑克牌的方法来确定,规则是:“将同一副牌中正面分别标有数字1,2,3,4的四张牌洗匀后,背面朝上放置在桌面上,每人随机抽一次且一次只抽一张;一人抽后记下数字,将牌放回洗匀背面朝上放置在桌面上,再由另一人抽.若小明抽得的数字比小华抽得的数字大,门票给小明,否则给小华.” 请用画树状图或列表的方法计算出小明和小华获得门票的概率,并说明这个规则对双方是否公平.20.已知:在菱形ABCD 中,O 是对角线B D 上的一动点.(1)如图甲,P 为线段BC 上一点,连接PO 并延长交A D 于点Q ,当O 是B D 的中点时,求证:O P O Q =;(2)如图乙,连结AO 并延长,与DC 交于点R ,与BC 的延长线交于点S .若460,10A D D C B B S ===,∠,求AS 和OR 的长.B 卷(共50分)一、填空题:(每小题4分,共20分)21.设1x ,2x 是一元二次方程2320x x --=的两个实数根,则2211223x x x x ++的值为__________________.22.如图,在ABC ∆中,90B ∠=,12m m AB =, 24mm BC =,动点P 从点A 开始沿边A B 向B 以2mm /s 的速度移动(不与点B 重合),动点Q 从点 B 开始沿边BC 向C 以4mm /s 的速度移动(不与点C 重合).如果P 、Q 分别从A 、B 同时出发,那么 经过_____________秒,四边形APQ C 的面积最小.23.有背面完全相同,正面上分别标有两个连续自然数,1k k +(其中0,1,2,,19k = )的卡片20张.小李将其混合后,正面朝下放置在桌面上,并从中随机地抽取一张,则该卡片上两个数的各位数字之和(例如:若取到标有9,10的卡片,则卡片上两个数的各位数字之和为91010++=)不小于14的概率为_________________.24.已知n 是正整数,111222(,),(,),,(,),n n n P x y P x y P x y 是反比例函数k y x=图象上的一列点,其中121,2,,,n x x x n === .记112A xy =,223A x y =,1n n n A x y +=,,若1A a =(a 是非零常数),则12n A A A 的值是________________________(用含a 和n 的代数式表示).25.如图,ABC ∆内接于O ,90,B AB BC ∠==,D 是O 上与点B 关于圆心O 成中心对称的点,P 是BC 边上一点,连结AD DC AP 、、.已知8AB =,2CP =,Q 是线段A P 上一动点,连结B Q 并延长交四边形ABCD 的一边于点R ,且满足A P B R =,则BQ Q R的值为_______________.26.随着人们经济收入的不断提高及汽车产业的快速发展,汽车已越来越多地进入普通家庭,成为居民消费新的增长点.据某市交通部门统计,2007年底全市汽车拥有量为180万辆,而截止到2009年底,全市的汽车拥有量已达216万辆.(1)求2007年底至2009年底该市汽车拥有量的年平均增长率; (2)为保护城市环境,缓解汽车拥堵状况,该市交通部门拟控制汽车总量,要求到2011年底全市汽车拥有量不超过231.96万辆;另据估计,从2010年初起,该市此后每年报废的汽车数量是上年底汽车拥有量的10%.假定每年新增汽车数量相同,请你计算出该市每年新增汽车数量最多不能超过多少万辆. 三、(共10分)27.已知:如图,ABC ∆内接于O ,A B 为直径,弦CE AB ⊥于F ,C 是A D 的中点,连结B D 并延长交EC 的延长线于点G ,连结AD ,分别交CE 、BC 于点P 、Q . (1)求证:P 是AC Q ∆的外心;(2)若3tan ,84ABC C F ∠==,求C Q 的长;(3)求证:2()FP PQ FP FG += .28.在平面直角坐标系xO y 中,抛物线2y ax bx c =++与x 轴交于A B 、两点(点A 在点B 的左侧),与y 轴交于点C ,点A 的坐标为(30)-,,若将经过A C 、两点的直线y k x b =+沿y 轴向下平移3个单位后恰好经过原点,且抛物线的对称轴是直线2x =-.(1)求直线AC 及抛物线的函数表达式;(2)如果P 是线段AC 上一点,设A B P ∆、BPC ∆的面积分别为ABP S ∆、BPC S ∆,且:2:3ABP BPC S S ∆∆=,求点P 的坐标;(3)设Q 的半径为l ,圆心Q 在抛物线上运动,则在运动过程中是否存在Q 与坐标轴相切的情况?若存在,求出圆心Q 的坐标;若不存在,请说明理由.并探究:若设⊙Q 的半径为r ,圆心Q 在抛物线上运动,则当r 取何值时,⊙Q 与两坐轴同时相切?成都市2010年中考数学答案一、选择题:(每小题3分,共30分) ⒈D ⒉C ⒊A ⒋B ⒌D ⒍B ⒎B ⒏A ⒐D ⒑C二、填空题:(每小题3分,共15分) ⒒ 四; ⒓ 1; ⒔ 100; ⒕ 6; ⒖ 3 三、(第1小题7分,第2小题8分,共15分) 16..(1)解:原式=6123⨯+-=3(2)解:∵关于x 的一元二次方程2420x x k ++=有两个实数根, ∴△=244121680k k -⨯⨯=-≥ 解得2k ≤∴k 的非负整数值为0,1,2。
四、(第17题8分,第18题10分,共18分) 17..解:(1)由已知,OC=2,BC=4。
在Rt △OBC 中,由勾股定理,得OB ==(2)在Rt △OAC 中,∵OA=OB=OC=2,∴sinA=5O C O A==18.解:(1)∵已知反比例函数k y x=经过点(1,4)A k -+,∴41k k -+=,即4k k -+=∴2k =∴A(1,2)∵一次函数y x b =+的图象经过点A(1,2), ∴21b =+ ∴1b =∴反比例函数的表达式为2y x=,一次函数的表达式为1y x =+。
(2)由12y x y x =+⎧⎪⎨=⎪⎩消去y ,得220x x +-=。
即(2)(1)0x x +-=,∴2x =-或1x =。
∴1y =-或2y =。
∴21x y =-⎧⎨=-⎩或12x y =⎧⎨=⎩∵点B 在第三象限,∴点B 的坐标为(21)--,。
由图象可知,当反比例函数的值大于一次函数的值时,x 的取值范围是2x <-或01x <<。
五、(第19题10分,第20题12分,共22分) 19..解:(1)馆名数量博览会门票扇形统计图B 馆门票为50张,C 占15%。