2010年四川省成都市数学中考真题(word版含答案)
- 格式:doc
- 大小:2.38 MB
- 文档页数:16
2024年四川省成都市高新区中考数学一诊试卷一、选择题(本大题共8小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1. 在数轴上,点A 与点B 位于原点的两侧,且到原点的距离相等.若点A 表示的数为5,则点B 表示的数是( )A B. C. 5 D. 2. 空气,无色无味,无形无质,却承载着生命的呼吸,它的密度约为,将用科学记数法表示应为( )A. B. C. D. 3. 用一个平面去截下列几何体,截面可能是矩形的几何体是( )A. B. C. D.4. 下列计算正确的是( )A. B. C. D. 5. 已知一个多边形的内角和等于900º,则这个多边形是( )A. 五边形B. 六边形C. 七边形D. 八边形6. 若关于的一元二次方程有两个相等的实数根,则的值是( )A. B. C. D. 7. 《九章算术》是中国传统数学的重要著作,其中《盈不足》卷记载了这样一个问题:“今有共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?”其大意是:几个人一起去购买某物品,每人出钱,则多钱;每人出钱,则差钱,问人数和物品价格各是多少?设有人.根据题意,下面所列方程正确的是( )A. B. C. D. 8. 如图,,在射线上取一点C ,使,以点O 为圆心,的长为半径作,.1515-5-30.00129g/cm 0.00129412.910⨯﹣31.2910⨯﹣41.2910⨯﹣20.12910⨯﹣222a a -=236a a a ⋅=222632m n m n n ÷=()()22444m n m n m n+-=-x 220x x m -+=m 18-188-88374x 8374x x -=+8374x x +=-3487x x -+=3487x x +-=60AOB ∠=︒OA 6OC =OC MN交射线于点D ,连接,以点D 为圆心,的长为半径作弧,交于点E (不与点C 重合),连接.以下结论错误的是( )A. B.C. 的长为πD. 扇形的面积为12π二、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)9. 因式分解=______.10. 如图,一边为平面镜,点在射线上,从点射出的一束光线经上一点反射后,反射光线恰好与平行.现测得入射光线与反射光线的夹角,则的度数为____.11. 某公司要招聘一名职员,根据实际需要,从学历、能力和态度三个方面进行测试,将学历、能力和态度三项成绩按的比例确定最终成绩.某面试者学历、能力和态度三项测试成绩分别为80分,85分,90分,则该面试者的最终成绩为____分.12. 若点,都在二次函数的图象上,则____.(填“>”,“=”或“<”)13. 如图,在中,,点为上一点,过、两点分别作射线的垂线,垂足分别为点,点.若点为中点,,则的长为____.的OB CD CD MN CE OE ,30DCE ∠=︒OD CE ⊥ DECOE 2242x x -+AOB ∠OB C OA C OB D DE OA CD DE 110CDE ∠=︒AOB ∠︒2:4:4()11A y ,()24B y ,()2221y x =--1y 2y Rt ABC △AB AC =D BC B C AD E F F AE 2BE =BC三、解答题(本大题共5个小题,共48分,解答过程写在答题卡上)14. (1)计算:;(2)解不等式组:.15. 为学习新时代榜样,某校准备组织师生开展“点亮人生灯塔”的社会实践活动,活动项目有“环境保护”“敬老服务”“文明宣传”“义卖捐赠”四项,每名参加活动的师生只参加其中一项.为了解各项活动参与情况,该校随机调查了部分师生的参与意愿,并根据调查结果绘制成不完整的统计图表. 项目人数环境保护6敬老服务a 文明宣传8义卖捐赠b(1)分别计算出表中a ,b 的值;(2)该校共有1200名师生参加活动,请估计选择参加“环境保护”项目的师生人数;(3)现拟从甲、乙、丙、丁四人中任选两人担任联络员,请利用画树状图或列表的方法,求出恰好选中甲、乙两人的概率.16. 近几年,中国新能源汽车凭借其创新技术、智能化特性和独特设计赢得了全球的关注.某品牌新能源汽21(2cos 45|1|3--︒+-3262723x x x x -<+⎧⎪--⎨≥⎪⎩车的侧面示意图如图所示,当汽车后背箱门关闭时,后备厢门与水平面的夹角,顶端A 和底端B 与水平地面的距离分别为和.现将后背箱门绕顶端A 逆时针旋转至,若,求此时的后备厢门底端到地面的距离.(参考数据:)17. 如图,是外接圆,,直线,的延长线交于点,交直线于点.(1)求证:直线是的切线;(2)若,,求的半径及的长.18. 如图,在平面直角坐标系中,一次函数的图象与反比例函数的图象交于,点.(1)求反比例函数的表达式及点的坐标;(2)过点的直线与轴交于点,与轴负半轴交于点.若,求的面积;AB 72ABH ∠=︒MN 152cm 70.3cm AB AB '102BAB '∠=︒B 'MN sin 720.95cos720.31tan 72 3.08︒≈︒=︒≈,,O ABC AC BC=CD AB ∥AO BC E DC F CF O 6AB =tan 3B ∠=O CF xOy 5y x =-+k y x=(1,)A a B B B x M y N 13BM MN =AMN(3)点在第三象限内反比例函数图象上,横坐标和纵坐标相等.点关于原点的对称点为点.平面内是否存在点,使得?若存在,求点的坐标;若不存在,请说明理由.一、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)19. 已知,则代数式的值为____.20. 待定系数法是确定函数表达式的常用方法,也可用于化学方程式配平.石青[]加热分解的化学方程式为:,其中x ,y 为正整数,则____.21. 如图,飞镖游戏板中每一块小正方形除颜色外都相同,任意投掷飞镖次(假设每次飞镖均落在游戏板上),击中阴影部分的概率是_____.22. 如图,中,,,点E ,F 分别在,上,将沿所在直线翻折,点C 的对应点D 恰好在边上,过点D 作的垂线,交的延长线于点G ,设,则的值为____.(用含x 的代数式表示)23. 对于平面直角坐标系中图形M 和图形N ,给出如下定义:P 为图形M 上任意一点,Q 为图形N 上任意一点,如果P ,Q 两点间的距离有最小值,则称这个最小值为图形M ,N 间的“捷径距离”,记为d (图形M ,图形N ).已知三个顶点的坐标分别为,,,将三角形绕点逆时针旋转得到,若上任意点都在半径为4的内部或圆上,则与的“捷径距离”的最小值是____,最大值是_____.的的C C O D E ABD ACE ∽E 2225m m =+211()m m m m+-÷()32CuCO Cu OH x y ⋅()32CuCO Cu OH x y ⋅223CuO H O CO x ++↑y x -=1ABC 90ACB ∠=︒24AC BC ==AC BC CEF EF AB AB BC CG x =tan EFC ∠xOy ABC ()21A -,()32B -,()12C -,ABC ()D a a ,90︒A B C ''' A B C ''' O ABC A B C ''' ()d ABC A B C ''' ,二、解答题(本大题共3个小题,共30分,解答过程写在答题卡上)24. 年月日是联合国教科文组织确定的第个“世界读书日”.在世界读书日来临之际,某书店准备购进甲、乙两种图书进行销售,已知每本甲种图书的进价比每本乙种图书的进价多元,用元购买甲种图书的数量与用元购买乙种图书的数量相同.(1)求每本甲种图书与乙种图书的进价;(2)如果该书店决定用不超过元购买本甲种图书和若干本乙种图书,则乙种图书最多能购买多少本?25. 在平面直角坐标系中,抛物线与x 轴交于,B 两点,与y 轴交于点C ,对称轴为.(1)求抛物线的函数表达式;(2)如图1,连接,点D 在直线上方的抛物线上,过点D 作的垂线交于点E ,作y 轴的平行线交于点F .若,求线段的长;(3)直线与抛物线交于P ,Q 两点(点P 在点Q 左侧),直线与直线交点为S ,的面积是否为定值?若是,请求出此定值;若不是,请说明理由.26. 已知,在菱形中,,分别是,边上的点,线段,交于点.的2024423292526001600200020xOy 24y ax bx =++()20A -,1x =BC BC BC BC BC 3CE EF =DF (4)y x m m =-+<PC BQ OCS ABCD E F BC CD AE BF G(1)如图1,,点与点重合,连接;(i )求证:;(ⅱ)若为直角三角形,求的值;(2)如图2,,.当时,求线段的长.BGE ABC ∠=∠F D CG BE AD AE AG ⋅=⋅CDG EG CGAB ==45ABC ∠︒3cos 5AE BGE BF ∠==BE。
2021年成都市高中阶段教育学校统一招生考试数学(满分150分,考试时间120分钟)A卷(共100分)第Ⅰ卷(选择题共30分)一、选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求)1.﹣7的倒数是()A.﹣B.C.﹣7 D.72.如图所示的几何体是由6个大小相同的小立方块搭成,它的俯视图是()A.B.C.D.3.2021年5月15日7时18分,天问一号探测器成功着陆距离地球逾3亿千米的神秘火星,在火星上首次留下中国人的印迹,这是我国航天事业发展的又一具有里程碑意义的进展.将数据3亿用科学记数法表示为()A.3×105B.3×106C.3×107D.3×1084.在平面直角坐标系xOy中,点M(﹣4,2)关于x轴对称的点的坐标是()A.(﹣4,2)B.(4,2)C.(﹣4,﹣2)D.(4,﹣2)5.下列计算正确的是()A.3mn﹣2mn=1 B.(m2n3)2=m4n6C.(﹣m)3•m=m4D.(m+n)2=m2+n2 6.如图,四边形ABCD是菱形,点E,F分别在BC,DC边上,添加以下条件不能判定△ABE≌△ADF的是()A.BE=DF B.∠BAE=∠DAFC.AE=AD D.∠AEB=∠AFD7.菲尔兹奖是数学领域的一项国际大奖,常被视为数学界的诺贝尔奖,每四年颁发一次,最近一届获奖者获奖时的年龄(单位:岁)分别为:30,40,34,36,则这组数据的中位数是()A.34 B.35 C.36 D.408.分式方程+=1的解为()A.x=2 B.x=﹣2 C.x=1 D.x=﹣19.《九章算术》卷八方程第十题原文为:“今有甲、乙二人持钱不知其数.甲得乙半而钱五十,乙得甲太半而亦钱五十.问:甲、乙持钱各几何?”题目大意是:甲、乙两人各带了若干钱.如果甲得到乙所有钱的一半,那么甲共有钱50;如果乙得到甲所有钱的,那么乙也共有钱50.问:甲、乙两人各带了多少钱?设甲、乙两人持钱的数量分别为x,y,则可列方程组为()A.B.C.D.10.如图,正六边形ABCDEF的边长为6,以顶点A为圆心,AB的长为半径画圆,则图中阴影部分的面积为()A.4π B.6π C.8π D.12π第Ⅱ卷(非选择题共70分)二、填空题(本大题共4个小题,每小题4分,共16分)11.因式分解:x2﹣4=.12.如图,数字代表所在正方形的面积,则A所代表的正方形的面积为.13.在平面直角坐标系xOy中,若抛物线y=x2+2x+k与x轴只有一个交点,则k=.14.如图,在Rt△ABC中,∠C=90°,AC=BC,按以下步骤作图:①以点A为圆心,以任意长为半径作弧,分别交AC,AB于点M,N;②分别以M,N为圆心,以大于MN的长为半径作弧,两弧在∠BAC内交于点O;③作射线AO,交BC于点D.若点D到AB的距离为1,则BC的长为.三、解答题(本大题共6个小题,共54分,解答过程写在答题卡上)15.(12分)(1)计算:+(1+π)0﹣2cos45°+|1﹣|.(2)解不等式组:.16.(6分)先化简,再求值:(1+)÷,其中a=﹣3.17.(8分)为有效推进儿童青少年近视防控工作,教育部办公厅等十五部门联合制定《儿童青少年近视防控光明行动工作方案(2021﹣2025年)》,共提出八项主要任务,其中第三项任务为强化户外活动和体育锻炼.我市各校积极落实方案精神,某学校决定开设以下四种球类的户外体育选修课程:篮球、足球、排球、乒乓球.为了解学生需求,该校随机对本校部分学生进行了“你选择哪种球类课程”的调查(要求必须选择且只能选择其中一门课程),并根据调查结果绘制成不完整的统计图表.根据图表信息,解答下列问题:(1)分别求出表中m ,n 的值;(2)求扇形统计图中“足球”对应的扇形圆心角的度数;(3)该校共有2000名学生,请你估计其中选择“乒乓球”课程的学生人数.18.(8分)越来越多太阳能路灯的使用,既点亮了城市的风景,也是我市积极落实节能环保的举措.某校学生开展综合实践活动,测量太阳能路灯电池板离地面的高度.如图,已知测倾器的高度为1.6米,在测点A 处安置测倾器,测得点M 的仰角∠MBC =33°,在与点A 相距3.5米的测点D 处安置测倾器,测得点M 的仰角∠MEC =45°(点A ,D 与N 在一条直线上),求电池板离地面的高度MN 的长.(结果精确到1米;参考数据sin33°≈0.54,cos33°≈0.84,tan33°≈0.65)19.(10分)如图,在平面直角坐标系xOy 中,一次函数y =x+的图象与反比例函数y =(x >0)的图象相交于点A (a ,3),与x 轴相交于点B .(1)求反比例函数的表达式;(2)过点A 的直线交反比例函数的图象于另一点C ,交x 轴正半轴于点D ,当△ABD 是以BD 为底的等腰三角形时,求直线AD 的函数表达式及点C 的坐标.20.(10分)如图,AB 为⊙O 的直径,C 为⊙O 上一点,连接AC ,BC ,D 为AB 延长线上一点,连接CD ,且∠BCD =∠A .(1)求证:CD 是⊙O 的切线;(2)若⊙O 的半径为,△ABC 的面积为2,求CD 的长;(3)在(2)的条件下,E 为⊙O 上一点,连接CE 交线段OA 于点F ,若=,求BF 的长. B 卷(共50分)课程人数 篮球 m 足球 21 排球 30 乒乓球 n一、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)21.在正比例函数y=kx中,y的值随着x值的增大而增大,则点P(3,k)在第象限.22.若m,n是一元二次方程x2+2x﹣1=0的两个实数根,则m2+4m+2n的值是.23.如图,在平面直角坐标系xOy中,直线y=x+与⊙O相交于A,B两点,且点A在x轴上,则弦AB的长为.24.如图,在矩形ABCD中,AB=4,AD=8,点E,F分别在边AD,BC上,且AE=3,按以下步骤操作:第一步,沿直线EF翻折,点A的对应点A′恰好落在对角线AC上,点B的对应点为B′,则线段BF的长为;第二步,分别在EF,A′B′上取点M,N,沿直线MN继续翻折,使点F与点E重合,则线段MN的长为.25.我们对一个三角形的顶点和边都赋给一个特征值,并定义:从任意顶点出发,沿顺时针或逆时针方向依次将顶点和边的特征值相乘,再把三个乘积相加,所得之和称为此三角形的顺序旋转和或逆序旋转和.如图1,ar+cq+bp是该三角形的顺序旋转和,ap+bq+cr是该三角形的逆序旋转和.已知某三角形的特征值如图2,若从1,2,3中任取一个数作为x,从1,2,3,4中任取一个数作为y,则对任意正整数z,此三角形的顺序旋转和与逆序旋转和的差都小于4的概率是.二、解答题(本大题共3个小题,共30分,答过程写在答题卡上)26.(8分)为改善城市人居环境,《成都市生活垃圾管理条例》(以下简称《条例》)于2021年3月1日起正式施行.某区域原来每天需要处理生活垃圾920吨,刚好被12个A型和10个B型预处置点位进行初筛、压缩等处理.已知一个A型点位比一个B型点位每天多处理7吨生活垃圾.(1)求每个B型点位每天处理生活垃圾的吨数;(2)由于《条例》的施行,垃圾分类要求提高,在每个点位每天将少处理8吨生活垃圾,同时由于市民环保意识增强,该区域每天需要处理的生活垃圾比原来少10吨.若该区域计划增设A 型、B型点位共5个,试问至少需要增设几个A型点位才能当日处理完所有生活垃圾?27.(10分)在Rt△ABC中,∠ACB=90°,AB=5,BC=3,将△ABC绕点B顺时针旋转得到△A′BC′,其中点A,C的对应点分别为点A′,C′.(1)如图1,当点A′落在AC的延长线上时,求AA′的长;(2)如图2,当点C′落在AB的延长线上时,连接CC′,交A′B于点M,求BM的长;(3)如图3,连接AA′,CC′,直线CC′交AA′于点D,点E为AC的中点,连接DE.在旋转过程中,DE是否存在最小值?若存在,求出DE的最小值;若不存在,请说明理由.28.(12分)如图,在平面直角坐标系xOy中,抛物线y=a(x﹣h)2+k与x轴相交于O,A两点,顶点P的坐标为(2,﹣1).点B为抛物线上一动点,连接AP,AB,过点B的直线与抛物线交于另一点C.(1)求抛物线的函数表达式;(2)若点B的横坐标与纵坐标相等,∠ABC=∠OAP,且点C位于x轴上方,求点C的坐标;(3)若点B的横坐标为t,∠ABC=90°,请用含t的代数式表示点C的横坐标,并求出当t<0时,点C的横坐标的取值范围.答案与解析A卷(共100分)第Ⅰ卷(选择题共30分)一、选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求)1.﹣7的倒数是()A.﹣B.C.﹣7 D.7【知识考点】倒数.【思路分析】根据倒数:乘积是1的两数互为倒数,即可得出答案.【解题过程】解:∵﹣7×(﹣)=1,∴﹣7的倒数是:﹣.故选:A.【总结归纳】此题主要考查了倒数,正确掌握倒数的定义是解题关键.2.如图所示的几何体是由6个大小相同的小立方块搭成,它的俯视图是()A.B.C.D.【知识考点】简单组合体的三视图.【思路分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【解题过程】解:从上面看,底层的最右边是一个小正方形,上层是四个小正方形,右齐.故选:C.【总结归纳】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.3.2021年5月15日7时18分,天问一号探测器成功着陆距离地球逾3亿千米的神秘火星,在火星上首次留下中国人的印迹,这是我国航天事业发展的又一具有里程碑意义的进展.将数据3亿用科学记数法表示为()A.3×105B.3×106C.3×107D.3×108【知识考点】科学记数法—表示较大的数.【思路分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,且n比原来的整数位数少1,据此判断即可.【解题过程】解:3亿=300000000=3×108.故选:D.【总结归纳】此题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.4.在平面直角坐标系xOy中,点M(﹣4,2)关于x轴对称的点的坐标是()。
2024年四川省成都市新都区中考数学一诊试卷一、选择题(本大题共8个小题,每小题4分,共32分;在每个小题给出的四个选项中,有且只有一个答案是符合题目要求的,并将自己所选答案的字母涂在答题卡上)1.(4分)﹣2024的绝对值是( )A.2024B.﹣2024C.D.2.(4分)提高交通安全意识是每一位青少年的“必修课”,以下有关交通安全的标识图,既是轴对称图形,又是中心对称图形的是( )A.B.C.D.3.(4分)据统计,仅2024年大年初一这一天,我国全社会跨区域人员流动量约为1.9亿人次.将1.9亿用科学记数法表示为( )A.19×108B.1.9×109C.0.19×1010D.1.9×1084.(4分)下列各式计算正确的是( )A.(x+y)2=x2+y2B.(2x2)3=6x6C.4x3÷2x=2x2D.x2﹣4y2=(x+4y)(x﹣4y)5.(4分)在平面直角坐标系中,点P(﹣2,﹣4)关于x轴对称的点的坐标是( )A.(2,4)B.(0,﹣4)C.(﹣2,4)D.(2,﹣4)6.(4分)2024年,中国将迎来一系列重要的周年纪念活动,某校开展了主题为“牢记历史•吾辈自强”的演讲比赛,九年级8名同学参加该演讲比赛的成绩分别为76,78,80,85,80,74,78,80.则这组数据的众数和中位数分别为( )A.80,79B.80,78C.78,79D.80,807.(4分)如图,点E是▱ABCD的边AD上一点,且AE:DE=1:2,连接CE并延长,交BA的延长线于点F.若AE=4,AF=6,则▱ABCD的周长为( )A.21B.34C.48D.608.(4分)已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣2,与x轴的一个交点坐标为(﹣4,0),其部分图象如图所示,下列结论:①当x<0时,y随x增大而增大;②该抛物线一定过原点;③b2﹣4ac>0;④a﹣b+c<0;⑤b>0.其中结论正确的个数有( )个.A.1B.2C.3D.4二、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)9.(4分)分解因式:3a3﹣12a= .10.(4分)如图,直线:y=2x+4与直线l2:y=kx+b相交于点P(1,m),则方程组的解为 .11.(4分)一个箱子装有除颜色外都相同的3个蓝球,3个灰球和一定数量的粉球.从中随机抽取1个球,被抽到粉球的概率是,那么箱内粉球有 个.12.(4分)如图,经过原点的直线交反比例函数的图象于A,B两点,过点A作AC⊥x轴于点C,连接BC,当S△ABC=2时,k的值为 .13.(4分)如图,在Rt△ABC中,∠BAC=90°,按以下步骤作图:①分别以点A和点C 为圆心,大于的长为半径作弧,两弧相交于M,N两点;②作直线MN交BC于点D,连接AD.若AB=BD=2,则△ACD的面积为 .三、解答题(本大题共5小题,共48分,解答过程写在答题卡上)14.(12分)(1)计算:;(2)先化简,再求值:,其中a=﹣1.15.(8分)为提升同学们的综合素质,丰富课余生活,某校举行了“爱新都”为主题的视频制作评比活动.某兴趣小组同学积极参与,计划制作有代表性景点的城市宣传短片,现抽样调查了部分学生,从A锦门民国小镇,B桂湖公园,C宝光寺,D新繁东湖,E泥巴沱公园五个景点中,选出最具有新都代表性的地方,并将调查情况绘制成如图两幅不完整统计图.根据统计图中的信息解答下列问题:(1)本次被调查的学生有 人,扇形统计图中表示A的扇形圆心角α的度数等于 度,并把条形图补充完整;(2)该校学生共计1500人,请估算出该校认为最具有新都代表性的是宝光寺的学生人数;(3)该兴趣小组准备从校内四位“优秀共青团员”(两男两女)中,挑选两人作为宣传片中的讲解员,请利用列表或画树状图的方法,求所选两人恰好是1名男生和1名女生的概率.16.(8分)某校学生利用课余时间,使用卷尺和测角仪测量某公园古城门的高度.如图所示,他们先在公园广场点M处架设测角仪,测得古城门最高点A的仰角为22°,然后前进20m到达点N处,测得点A的仰角为45°;已知测角仪的高度为1.4m.求古城门最高点A距离地面的高度.(结果精确到0.1m;参考数据:sin22°≈0.37,cos22°≈0.93,tan22°≈0.40)17.(10分)如图,已知矩形ABCD和矩形AEFG共用顶点A,点E在线段BD上,连接EG,DG,且.(1)求证:∠ABE=∠ADG;(2)若,,,求EG的长.18.(10分)在平面直角坐标系xOy中,直线与反比例函数的图象交于A (3,m),B两点.(1)求直线AB的函数表达式及点B的坐标;(2)如图1,过点A的直线分别与x轴,反比例函数的图象(x<0)交于点M,N,且,连接BM,求△ABM的面积;(3)如图2,点D在另一条反比例函数的图象上,点C在x轴正半轴上,连接DC交该反比例函数图象于点E,且DE=2EC,再连接AD,BC,若此时四边形ABCD 恰好为平行四边形,求k的值.一、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)19.(4分)满足的整数x有 个.20.(4分)x1,x2为一元二次方程x(3x﹣1)﹣1=0的两个实数根,则x1+x2﹣3x1x2= .21.(4分)将抛物线C1:y=x2向左平移a(a>0)个单位长度后,再向下平移b个单位长度,得到新的抛物线C2,若A(﹣a﹣2,y1),B(﹣a+1,y2),C(﹣a+3,y3)为抛物线C2图象上的三点,则y1、y2、y3的大小关系 .(请用“<”表示)22.(4分)如图1,以矩形ABCD的宽BC为边在其内部作正方形BCFE,若,则称矩形ABCD为“黄金矩形”,=称为“黄金比率”,如图2,以矩形ABCD 的宽BC为边在其内部作两个正方形BCHG,GHFE,若,则称矩形ABCD为“白银矩形”,=称为“白银比率”,则该比率为 ;如图3,A4纸的长与宽的比值近似可以看作,若沿某条直线裁剪一次,使得A4纸剩下部分为一个“白银矩形”,则该“白银矩形”的面积是 .23.(4分)如图,在矩形ABCD中,BC=2AB,点M,N为直线AD上的两个动点,且∠MBN =30°,将线段BM关于BN翻折得线段BM′,连接CM′.当线段CM′的长度最小时,∠MM'C的度数为 度.24.(10分)为了美化校园,某校准备在校园广场中心安装一个圆形喷水池,喷水池中央设置一柱形喷水装置OA高2米,点A处的喷头向外喷水,水流在各个方向上沿形状相同的抛物线路径落下.O位于圆形喷水池中心的水面处,按照如图所示建立直角坐标系,该设计水流与OA的水平距离为1米时,喷出的水柱可以达到最大高度3米.(1)求出该抛物线的函数表达式;(2)为了使喷出的水流不至于溅落在圆形喷水池外,需要在水流落回水面处的外侧预留1米距离,则该圆形喷水池的半径至少设计为多少米合理?25.(10分)如图,在平面直角坐标系xOy中,已知抛物线y=ax2+c,经过点M(2,3),与y轴交于点A(0,﹣1),直线BC与抛物线交于异于点A的B,C两点.(1)求抛物线的函数表达式;(2)若三角形BOM是以OM为底的等腰三角形,试求出此时点B的横坐标;(3)若BA⊥CA,探究直线BC是否经过某一定点.若是,请求出该定点的坐标;若不是,请说明理由.26.(10分)如图1,在四边形ABFE中,∠F=90°,点C为线段EF上一点,使得AC⊥BC,AC=2BC=4,此时BF=CF,连接BE,BE⊥AE,且AE=BE.(1)求CE的长度;(2)如图2,点D为线段AC上一动点(点D不与A,C重合),连接BD,以BD为斜边向右侧作等腰直角三角形BGD.①当DG∥AB时,试求AD的长度;②如图3,点H为AB的中点,连接HG,试问HG是否存在最小值,如果存在,请求出最小值;如果不存在,请说明理由.2024年四川省成都市新都区中考数学一诊试卷参考答案与试题解析一、选择题(本大题共8个小题,每小题4分,共32分;在每个小题给出的四个选项中,有且只有一个答案是符合题目要求的,并将自己所选答案的字母涂在答题卡上)1.【分析】根据绝对值的意义解答即可.【解答】解:﹣2024的绝对值是2024.故选:A.【点评】本题主要考查了绝对值的意义,解题的关键是熟练掌握.2.【分析】根据中心对称图形与轴对称图形的概念,进行判断即可.把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.【解答】解:A.该图形既不是轴对称图形,也不是中心对称图形,故此选项不符合题意;B.该图形既是轴对称图形,又是中心对称图形,故此选项符合题意;C.该图形是轴对称图形,不是中心对称图形,故此选项不符合题意;D.该图形是轴对称图形,不是中心对称图形,故此选项不符合题意.故选:B.【点评】本题考查的是中心对称图形与轴对称图形的概念,常见的中心对称图形有平行四边形、圆形、正方形、长方形等等.常见的轴对称图形有等腰三角形,矩形,正方形,等腰梯形,圆等等.3.【分析】将一个数表示成a×10n的形式,其中1≤|a|<10,n为整数,这种记数方法叫做科学记数法,据此即可求得答案.【解答】解:1.9亿=190000000=1.9×108,故选:D.【点评】本题考查科学记数法表示较大的数,熟练掌握其定义是解题的关键.4.【分析】计算出各个选项中式子的正确结果,即可判断哪个选项符合题意.【解答】解:(x+y)2=x2+2xy+y2,故选项A错误,不符合题意;(2x2)3=8x6,故选项B错误,不符合题意;4x3÷2x=2x2,故选项C正确,符合题意;x2﹣4y2=(x+2y)(x﹣2y),故选项D错误,不符合题意;故选:C.【点评】本题考查整式的混合运算、因式分解,熟练掌握运算法则是解答本题的关键.5.【分析】根据关于x轴对称的点的坐标特点解答即可.【解答】解:点P(﹣2,﹣4)关于x轴对称的点的坐标是(﹣2,4).故选:C.【点评】本题考查的是关于x轴对称的点的坐标,熟知关于x轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数是解题的关键.6.【分析】将数据重新排列,再根据众数和中位数的定义求解即可.【解答】解:将这组数据重新排列为74,76,78,78,80,80,80,85,所以这组数据的众数为80,中位数为=79,故选:A.【点评】本题主要考查众数和中位数,解题的关键是掌握众数和中位数的定义.7.【分析】由平行四边形的性质推出CD∥AB,DC=AB,AD=BC,得到△FAE∽△CDE,推出FA:CD=AE:DE=1:2,求出CD=12,由AE=4,AE:DE=1:2求出DE=8,得到AD=AE+ED=12,即可求出▱ABCD的周长=2(AD+CD)=48.【解答】解:∵四边形ABCD是平行四边形,∴CD∥AB,DC=AB,AD=BC,∴△FAE∽△CDE,∴FA:CD=AE:DE=1:2,∵FA=6,∴CD=12,∵AE=4,AE:DE=1:2,∴DE=8,∴AD=AE+ED=12,∴▱ABCD的周长=2(AD+CD)=2×(12+12)=48.故选:C.【点评】本题考查平行四边形的性质,相似三角形的判定和性质,关键是由△FAE∽△CDE,得到FA:CD=AE:DE=1:2,求出CD的长.8.【分析】①根据函数图象变化趋势进行解答;②根据对称轴,求出抛物线与x轴的另一个交点,便可判断;③根据由函数图象可知,与x轴有两个交点;④根据当x=﹣1时,y的函数值的位置进行判断;⑤根据开口方向和对称轴的位置解答即可.【解答】解:①由函数图象可知,当﹣2<x<0时,y随x增大而减小,则此小题结论错误;②∵对称轴为直线x=﹣2,与x轴的一个交点坐标为(﹣4,0),∴另一个交点为(0,0),即抛物线一定过原点,则此小题结论正确;③∵由函数图象可知,与x轴有两个交点,b2﹣4ac>0;则此小题结论正确;④由函数图象可知,当x=﹣1时,y=a﹣b+c>0,则此小题结论错误;⑤∵开口向下,∴a<0,对称轴为直线x=﹣2,∴b<0,则此小题结论错误;故选:B.【点评】本题考查了抛物线与x轴的交点,二次函数与不等式的关系,二次函数图象与系数的关系以及二次函数图象上点的坐标特征,逐一分析五条结论的正误是解题的关键.二、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)9.【分析】先提取公因式3a,再对余下的多项式利用平方差公式继续分解.【解答】解:3a3﹣12a=3a(a2﹣4),=3a(a+2)(a﹣2).故答案为:3a(a+2)(a﹣2).【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.10.【分析】首先利用待定系数法求出m的值,进而得到P点坐标,再根据两函数图象的交点就是两函数组成的二元一次去方程组的解可得答案.【解答】解:∵直线y=2x+4经过点P(1,m),∴m=2+4=6,∴P(1,6),∴方程组的解为.故答案为:.【点评】此题主要考查了二元一次去方程组与一次函数的关系,关键是掌握两函数图象的交点的坐标就是两函数组成的二元一次去方程组的解.11.【分析】设箱内粉球有x个,根据概率公式列出方程,解方程即可.【解答】解:设箱内粉球有x个,由题意得:=,解得:x=6,经检验,x=6是原方程的解,且符合题意,即箱内粉球有6个,故答案为:6.【点评】此题考查了概率公式:概率=所求情况数与总情况数之比,熟记概率公式是解题的关键.12.【分析】根据反比例函数图象的对称性可得出A,B两点关于点O对称,进而得出△AOC 与△BOC的面积相等,据此可解决问题.【解答】解:因为反比例函数是中心对称图形,且坐标原点是对称中心,所以点A和点B关于点O对称,则OA=OB.又因为S△ABC=2,所以.因为AC⊥x轴,所以,则x A y A=2,所以k=x A y A=2.故答案为:2.【点评】本题考查反比例函数与一次函数图象交点问题,熟知反比例函数图象的对称性是解题的关键.13.【分析】只要证明△ABD是等边三角形,推出BD=AD=DC,可得S△ADC=S△ABC即可解决问题.【解答】解:由作法得MN垂直平分AC,∴DA=DC∴∠DAC=∠C,∴∠ADB=∠DAC+∠C=2∠C,∵AB=BD,∴∠BAD=∠ADB=2∠C,∵∠BAC=90°,∴∠BAD+∠C=90°,即2∠C+∠C=90°,∴∠C=30°,∴AC=AB=2.∴△ACD的面积=S△ABC=××2×2=,故答案为:.【点评】本题考查了作图﹣复杂作图:解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了线段垂直平分线的性质.三、解答题(本大题共5小题,共48分,解答过程写在答题卡上)14.【分析】(1)根据特殊角的三角函数值、二次根式的性质、零指数幂计算;(2)根据分式的减法法则、除法法则把原式化简,把a的值代入计算,得到答案.【解答】解:(1)原式=3×﹣﹣×+1=﹣2﹣1+1=﹣;(2)原式=÷(+)=÷=•=,当a=﹣1时,原式===.【点评】本题考查的是实数的运算、分式的化简求值,掌握实数的运算法则、分式的混合运算法则是解题的关键》15.【分析】(1)用条形统计图中B的人数除以扇形统计图中B的百分比可得本次被调查的学生人数;用360°乘以本次调查中选择A景点的人数所占的百分比,可得扇形统计图中表示A的扇形圆心角α的度数;求出选择D景点的人数,补全条形统计图即可.(2)根据用样本估计总体,用1500乘以样本中选择C的学生人数所占的百分比,即可得出答案.(3)画树状图得出所有等可能的结果数以及所选两人恰好是1名男生和1名女生的结果数,再利用概率公式可得出答案.【解答】解:(1)本次被调查的学生有18÷22.5%=80(人).扇形统计图中表示A的扇形圆心角α的度数等于360°×=72°.故答案为:80;72.选择D景点的人数为80﹣16﹣18﹣20﹣8=18(人).补全条形统计图如图所示.(2)1500×=375(人).∴该校认为最具有新都代表性的是宝光寺的学生人数约375人.(3)将2名男生分别记为甲,乙,2名女生分别记为丙,丁,画树状图如下:共有12种等可能的结果,其中所选两人恰好是1名男生和1名女生的结果有:甲丙,甲丁,乙丙,乙丁,丙甲,丙乙,丁甲,丁乙,共8种,∴所选两人恰好是1名男生和1名女生的概率为=.【点评】本题考查列表法与树状图法、条形统计图、扇形统计图、用样本估计总体,能够读懂统计图,掌握列表法与树状图法以及用样本估计总体是解答本题的关键.16.【分析】过A作AD⊥PM于D,延长BC交AD于E,则四边形BMNC,四边形BMDE 是矩形,于是得到BC=MN=20m,DE=CN=BM=1.4m,求得CE=AE,设AE=CE=x,得到BE=20+x,解直角三角形即可得到结论.【解答】解:过A点作AE⊥BC,交BC延长线于点E,交MP于点F,则BMNC,四边形BMDE是矩形,∴BC=MN=16m,ED=BM,设AE=xm,在Rt△ACE中,∠ACE=45°,∴AE=CE=xm,∵BC=20m,∴BE=x+20,在Rt△ABE中,∠ABE=22°,∴tan22°=,∴0.40=,解得:x≈13.33,∴ED=BM=1.4m,∴AF=13.33+1.4=14.73≈14.7(m).答:古城门最高点A距离地面的高度约为14.7m.【点评】本题考查了解直角三角形的应用﹣﹣仰角俯角问题,能借助仰角构造直角三角形并解直角三角形是解决问题的关键.17.【分析】(3)利用同角的余角相等可得∠BAE=∠DAG,结合条件即可证明△ABE∽△ADG,以此即可得证;(2)易得∠ADB=∠CBD,结合(1)中结论并根据等角加等角相等得∠EDG=90°,再由勾股定理求得BD的长,于是得出BE的长,由△ABE∽△ADG可求出DG的长,最后再利用勾股定理即可求解.【解答】(1)证明:∵四边形ABCD和四边形AEFG均为矩形,∴∠BAD=∠EAG=90°,即∠BAE+∠DAE=∠DAG+∠DAE=90°,∴∠BAE=∠DAG,又∵,∴△ABE∽△ADG,∴∠ABE=∠ADG.(2)解:∵四边形ABCD为矩形,∴AD∥BC,∠ABC=∠ABE+∠CBD=90°,∴∠ADB=∠CBD,∵∠ABE=∠ADG,∴∠ADG+∠ADB=∠ABE+∠CBD=90°,即∠EDG=90°,在Rt△ABD中,AB=,AD=,∴==,∴BE=BD=,DE=,由(1)知,△ABE∽△ADG,∴,∠ABE=∠ADG,∴,∴DG=,在Rt△DEG中,EG===.【点评】本题主要考查相似三角形的判定与性质、矩形的性质、勾股定理,解题关键:(1)由同角的余角相等得到∠BAE=∠DAG;(2)根据角之间的关系推理证明∠EDG=90°.18.【分析】(1)将A(3,m)代入直线y=﹣x+b与反比例函数y=,可得答案;(2)过点A作AP⊥x轴于P,过点N作NQ⊥AP于Q,根据平行线分线段成比例得,可得N(﹣4,﹣3),从而得出直线AM的解析式为y=x+1,M(﹣1,0),再计算S△ABM=S△AHM﹣S△BHM即可;(3)利用平行四边形的性质可得AB∥CD,设直线CD的解析式为y=﹣x+t,可得C(t,0),则D(t﹣3,2),过D作DG⊥x轴于G,过点E作EF⊥x轴于F,则DG∥EF,可得△CEF∽CDG,利用相似三角形的性质得,可得出EF=,OF=t﹣1,则E(t﹣1,),根据反比例函数图象上点的坐标特征可得t=,即可解决问题.【解答】解:(1)将A(3,m)代入反比例函数y=得,m=4,∴A(3,4),将点A(3,4)代入y=﹣x+b得,b=6,∴直线AB的函数表达式为y=﹣x+6,联立直线y=﹣x+6与反比例函数y=得,,解得,∴点B的坐标为(6,2);(2)过点A作AP⊥x轴于P,过点N作NQ⊥AP于Q,设AB与x轴交于H,∴MP∥NQ,∴,∵A(3,4),∴AP=4,∴PQ=3,∴N(﹣4,﹣3),设线AM的解析式为y=k′x+b′,∴,解得,∴直线AM的解析式为y=x+1,令y=0,则x=﹣1,∴M(﹣1,0),∵直线AB的函数表达式为y=﹣x+6,令y=0,则x=9,∴H(9,0),∴S△ABM=S△AHM﹣S△BHM=×4×(1+9)﹣×2×(1+9)=10;(3)∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∴设直线CD的解析式为y=﹣x+t,令y=0,则x=t,∴C(t,0),∵A(3,4),B(6,2),∴D(t﹣3,2),∵DE=2EC,∴,过D作DG⊥x轴于G,过点E作EF⊥x轴于F,∴DG∥EF,∴△CEF∽CDG,∴,∴,,∴EF=,OF=t﹣1,∴E(t﹣1,),∵D,E都在另一条反比例函数(k>0)的图象上,∴k=(t﹣1)=2(t﹣3),∴t=,∴k=×(×﹣1)=2.【点评】本题是反比例函数综合题,主要考查了函数图象上点的坐标的特征,反比例函数图象与一次函数图象的交点问题,平行四边形的性质,相似三角形的判定与性质等知识,作辅助线构造相似三角形是解题的关键.一、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)19.【分析】求出﹣,的取值范围,进而可得出答案.【解答】解:∵﹣2<﹣<﹣1,2<<3,∴满足<x<的整数x有﹣1,0,1,2共4个,故答案为:4.【点评】本题考查了估算无理数的大小,解题的关键是确定﹣,的取值范围.20.【分析】先把方程整理为一元二次方程的一般形式,再求出x1+x2与x1•x2的值,代入代数式进行计算即可.【解答】解:一元二次方程x(3x﹣1)﹣1=0可化为3x2﹣x﹣1=0,∵x1,x2为一元二次方程x(3x﹣1)﹣1=0的两个实数根,∴x1+x2=,x1•x2=﹣,∴x1+x2﹣3x1x2=﹣3×(﹣)=+1=.故答案为:.【点评】本题考查的是一元二次方程根与系数的关系,熟知x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=是解题的关键.21.【分析】求出A,B,C三个点离抛物线对称轴的远近,结合抛物线的开口方向即可解决问题.【解答】解:由题知,平移后的抛物线函数解析式为:y=(x+a)2﹣b,则此抛物线的对称轴为直线x=﹣a,且开口向上,所以抛物线上的点离对称轴越近,其纵坐标越小.因为﹣a﹣(﹣a﹣2)=2,﹣a+1﹣(﹣a)=1,﹣a+3﹣(﹣a)=3,且1<2<3,所以y2<y1<y3.故答案为:y2<y1<y3.【点评】本题考查二次函数图象上点的坐标特征,熟知二次函数的图象和性质是解题的关键.22.【分析】根据“白银矩形”的定义,列出方程即可求出“白银比率”,再利用求出的“白银比率”即可解决问题.【解答】解:令BC=x,由得,,解得AE=(舍负),所以AB=2x+AE=,则“白银比率”为:.如图所示,,x=,经检验x=是原方程的解,且符合题意.所以该“白银矩形”的面积为:.故答案为:,.【点评】本题考查矩形的性质及黄金分割,理解题中所给定义是解题的关键.23.【分析】将线段BA绕点B顺时针旋转60°后点A落在点E,连接BE,得到△ABM≌△EBM′,再由当CM⊥EF时,CM'有最小值,可得△EBG与△M′CG均为30°、60°、90°直角三角形,再证明△ABM为等腰直角三角形,△MBM是等边三角形,进而得到∠EM'B=∠AMB=60°,最后当CM′⊥EF于H时,CM′有最小值,由此可以求出∠MM'C =∠EM'C﹣∠EM'M=90°﹣15°=75°.【解答】解:将线段BA绕点B顺时针旋转60°后点A落在点E,连接BE,设EM交BC于G点,如下图所示:在矩形ABCD中,∠A=∠ABC=90°,AD=BC,根据折叠可知,∠MBM'=60°,BM=BM',∴∠ABM=∠ABE﹣∠MBE=60°﹣∠MBE,∠EBM'=∠MBM'﹣∠MBE=60°﹣∠MBE,∴∠ABM=∠EBM′,∵BA=BE,BM=BM′,∴△ABM≌△EBM′(SAS),∵AM=EM′,∠E=∠A=90°,∵∠EBG=90°﹣60°=30°,∴∠BGM'=∠EBG+∠BEG=90°+30°=120°,∴∠EGC=120°,∴∠CGM'=∠EGB=180°﹣120°=60°,∴点M在EF上,∵垂线段最短,∴当CM′⊥EF时,CM′有最小值,∴△EBG与△M′CG均为30°、60°、90°直角三角形,设EG=x,BC=2y,则BG=2EG=2x,CG=BC﹣BG=2y﹣2x,,∴,∵BC=2AB,,∴EM′=AB,∵AM=EM′,∴AB=AM,∴△ABM为等腰直角三角形,∴∠EM′B=∠AMB=45°,∵∠MBM'=60°,BM=M′B,∴△MBM是等边三角形,∴∠BM'M=60°,∴∠EM'M=∠BM'M﹣∠EM'B=60°﹣45°=15°,∴∠MM'C=∠EM'C﹣∠EM'M=90°﹣15°=75°,故答案为:75.【点评】本题考查了三角形全等的判定方法、矩形的性质、旋转的性质、轴对称的性质,等边三角形的判定和性质,属于四边形的综合题,难度较大,熟练掌握各图形的性质是解题的关键.24.【分析】(1)易得抛物线的顶点坐标为(1,3),用顶点式设出抛物线解析式,把点A 的坐标代入可得抛物线二次项系数的值,即可求得抛物线的解析式;(2)水流落回水面,即抛物线与x轴相交,那么纵坐标为0求得符合题意的x的值,再加上预留的一米即为该圆形喷水池的半径最少的米数.【解答】解:(1)由题意得:抛物线的顶点坐标为(1,3).∴设抛物线的解析式为:y=a(x﹣1)2+3(a≠0).∵抛物线经过点(0,2),∴a+3=2.解得:a=﹣1.∴该抛物线的函数表达式为:y=﹣(x﹣1)2+3;(2)∵水流落回水面,∴抛物线与x轴相交.∴﹣(x﹣1)2+3=0.(x﹣1)2=3,x﹣1=,x﹣1=﹣.∴x1=+1,x2=1﹣(不合题意,舍去).∴该圆形喷水池的半径至少设计为:+1+1=(+2)米.答:该圆形喷水池的半径至少设计为(+2)米.【点评】本题考查二次函数的应用.根据题意设出符合题意的函数解析式是解决本题的关键.用到的知识点为:若二次函数有顶点坐标,设二次函数的解析式为:y=a(x﹣h)2+k(a≠0)计算比较简便.25.【分析】(1)由待定系数法即可求解;(2)求出OM中垂线表达式中的k值为﹣,得到直线OM中垂线的表达式,即可求解;(3)证明tan∠ACN=tan∠BAM,得到,整理得:mn=﹣1,进而求解.【解答】解:(1)将点A、M的坐标代入函数表达式得:,解得:,则抛物线的表达式为:y=x2﹣1;(2)由点O、M的坐标得,直线OM的表达式为:y=x,则OM中垂线表达式中的k值为﹣,OM的中点坐标为:(1,),则直线OM中垂线的表达式为:y=﹣(x﹣1)+,联立上式和抛物线的表达式得:x2﹣1=﹣(x﹣1)+,解得:x=,即点B的横坐标为:;(3)直线BC过定点(0,0),理由:过点A作x轴的平行线交过点B和y轴的平行线于点M,交过点C和y轴的平行线于点N,设点B(m,m2﹣1)、C(n,n2﹣1),∵BA⊥CA,∴∠BAM+∠CAN=90°,∵∠ACN+∠CAN=90°,∴∠ACN=∠BAM,∴tan∠ACN=tan∠BAM,即,即,整理得:mn=﹣1,由点B、C的坐标得,直线BC的表达式为:y=(m+n)(x﹣m)+m2﹣1=(m+n)x﹣mn ﹣1=(m+n)x,当x=0时,y=(m+n)x=0,即直线BC过定点(0,0).【点评】本题考查的是二次函数综合运用,涉及到解直角三角形、中垂线的性质,数据处理是本题的难点,题目有一定的综合性,难度适中.26.【分析】(1)取AB的中点为H,连接EH、HC,证明△BCF是等腰直角三角形,∠BCF =45°,得BF=CF=,再证明△AEB是等腰直角三角形,得∠ABE=45°,然后证明∠BAC=∠BEF,即可解决问题;(2)①过点D作DM⊥EF于点M,DK⊥AB于点K,证明△CMD是等腰直角三角形,得CD=DM,再证明△DBC∽△GBF,得∠BCD=∠BFG=90°,==,进而证明△BKD是等腰直角三角形,得DK=BK,然后证明DK=AB,求出DK=,即可解决问题;②过点H作HP⊥EF于点P,连接EH,由①得点G在EF上运动,当G、P重合时,HG值最小,HP的长即为HG的最小值,设AC交BE于点N,即N与①中的D重合,由等腰直角三角形的性质得AE=,再由锐角三角函数定义得sin∠ENA=,设∠BEF=∠BAC=α,则∠HEF=α+45°,然后证明∠HEF=∠EAN,即可得出结论.【解答】解:(1)如图1,取AB的中点为H,连接EH、HC,设AC交BE于点N,∵AC=2BC=4,∴BC=2,∵∠F=90°,BF=CF,∴△BCF是等腰直角三角形,∠BCF=45°,∴BF=CF=BC=×2=,∵AC⊥BC,∴∠ACB=90°,∴∠ACE=180°﹣∠ACB﹣∠BCF=180°﹣90°﹣45°=45°,∵BE⊥AE,AE=BE,∴△AEB是等腰直角三角形,∴∠ABE=45°,∴∠ABN=∠NCE,∵∠ANB=∠CNE,∴∠BAC=∠BEF,∴tan∠BAC=tan∠BEF,∵tan∠BAC===,∴tan∠BEF==,∴EF=2BF=2,∴CE=EF﹣CF=2﹣=;(2)①如图2,过点D作DM⊥EF于点M,DK⊥AB于点K,则∠DMG=90°,由(1)得:∠ACE=45°,∴△CMD是等腰直角三角形,∴CD=DM,∵△BCF、△BGD都是等腰直角三角形,∴DG=BG,∠BGD=90°,∠DBG=∠CBF=45°,==,∴∠DBG﹣∠CBG=∠CBF﹣∠CBG,即∠DBC=∠GBF,=,∴△DBC∽△GBF,∴∠BCD=∠BFG=90°,==,∴CD=FG,∴DM=FG,∵∠BFE=90°,∴点G在EF上,∵DG∥AB,∠BGD=90°,∴∠GBA=90°,∵∠ABE=45°,∠DBG=45°,∴D在BE上,∵tan∠BAC=,∴=,∴AK=2DK,∴AD===DK,∵DK⊥AB,∠ABE=45°,∴△BKD是等腰直角三角形,∴DK=BK,∵AK=2DK,AB=AK+BK,∴DK=AB,在Rt△ABC中,由勾股定理得:AB===2,∴DK=AB=×2=,∴AD=DK=×=;②HG存在最小值,理由如下:如图3,过点H作HP⊥EF于点P,连接EH,由①得:点G在EF上运动,当G、P重合时,HG值最小,HP的长即为HG的最小值,设AC交BE于点N,则N与①中的D重合,由①得:AN=,∵△AEB是等腰直角三角形,∴AE=AB=×2=,∵点H为AB的中点,∴EH=AB=×2=,∠BEH=45°,∴sin∠ENA===,设∠BEF=∠BAC=α,则∠HEF=α+45°,∵∠EAN=∠ABE+∠BAC=45°+α,∴∠HEF=∠EAN,在Rt△PEH中,PH=EH•sin∠HEF=EH•sin∠ETA=×=,∴HG的最小值为.【点评】本题是三角形综合题,考查了等腰直角三角形的判定与性质、相似三角形的判定与性质、勾股定理、平行线的性质以及锐角三角函数定义等知识,本题综合性强,难度较大,熟练掌握等腰直角三角形的判定与性质和锐角三角函数定义,证明三角形相似是解题的关键,属于中考常考题型.。
2024年四川省达州市中考数学试题本考试为闭卷考试.考试时间120分钟、满分150分.本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1-2页,第Ⅱ卷3-8页,共8页.温馨提示:1.答题前,考生需用0.5毫米黑色签字笔将自己的姓名、准考证号、座位号正确填写在答题卡对应位置,待监考老师粘贴条形码后,再认真核对条形码上的信息与自己的准考证上的信息是否一致.2.选择题必须使用2B 铅笔在答题卡相应位置规范填涂.如需改动,用橡皮擦擦干净后,再选涂其他答案标号;非选择题用0.5毫米黑色签字笔作答,答案必须写在答题卡对应的框内.超出答题区答案无效;在草稿纸、试题卷上作答无效.3.不要折叠、弄破、弄皱答题卡.不得使用涂改液、修正带、刮纸刀等影响答题卡整洁.4.考试结束后,将试卷及答题卡一并交回.第Ⅰ卷(选择题共40分)一、单项选择题(每小题4分.共40分)1.有理数2024的相反数是()A.2024B.2024- C.12024D.12024-【答案】B 【解析】【分析】本题主要考查了求一个数的相反数,只有符号不同的两个数互为相反数,0的相反数是0,据此求解即可.【详解】解:有理数2024的相反数是2024-,故选:B .2.大米是我国居民最重要的主食之一,与此同时,我国也是世界上最大的大米生产国,水稻产量常年稳定在2亿吨以上.将2亿用科学记数法表示为()A.9210⨯B.8210⨯ C.80.210⨯ D.7210⨯【答案】B 【解析】【分析】本题考查了科学记数法.科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值大于1与小数点移动的位数相同.【详解】解:2亿8200000000210==⨯,故选:B .3.下列计算正确的是()A.235a a a +=B.()22224a a a +=++C.()3236928a b a b -=- D.1262a a a ÷=【答案】C 【解析】【分析】本题主要考查了完全平方公式,积的乘方计算,同底数幂除法计算,合并同类项,熟知相关计算法则是解题的关键.【详解】解:A 、2a 与3a 不是同类项,不能合并,原式计算错误,不符合题意;B 、()22244a a a +=++,原式计算错误,不符合题意;C 、()3236928a b a b -=-,原式计算正确,符合题意;D 、1266a a a ÷=,原式计算错误,不符合题意;故选:C .4.如图,正方体的表面展开图上写有“我们热爱中国”六个字,还原成正方体后“我”的对面的字是()A.热B.爱C.中D.国【答案】B 【解析】【分析】本题考查了正方体相对两个面上的文字,正方体的平面展开图中,相对面的特点是中间必须间隔一个正方形,据此作答即可.【详解】解:正方体的平面展开图中,相对面的特点是中间必须间隔一个正方形,则与“我”字相对的字是“爱”,与“们”字相对的字是“中”,与“国”字相对的字是“热”,故选:B .5.小明在处理一组数据“12,12,28,35,■”时,不小心将其中一个数据污染了,只记得该数据在30~40之间.则“■”在范围内无论为何值都不影响这组数据的()A.平均数B.众数C.中位数D.方差【答案】C 【解析】【分析】此题考查数据平均数、众数、中位数方差的计算方法,根据中位数的定义求解可得.【详解】解:依题意“■”该数据在30~40之间,则这组数据的中位数为28,∴“■”在范围内无论为何值都不影响这组数据的中位数.故选:C .6.当光线从空气射入水中时,光线的传播方向发生了改变,这就是光的折射现象(如图所示).图中180∠=︒,240∠=︒,则3∠的度数为()A.30︒B.40︒C.50︒D.70︒【答案】B 【解析】【分析】本题考查了平行线的性质,根据平行线的性质可得123∠=∠+∠,代入数据,即可求解.【详解】解:依题意,水面与容器底面平行,∴123∠=∠+∠∵180∠=︒,240∠=︒,∴312804040∠=∠-∠=︒-︒=︒故选:B .7.甲乙两人各自加工120个零件,甲由于个人原因没有和乙同时进行,乙先加工30分钟后,甲开始加工.甲为了追赶上乙的进度,加工的速度是乙的1.2倍,最后两人同时完成.求乙每小时加工零件多少个?设乙每小时加工x 个零件.可列方程为()A.120120301.2x x-= B.120120301.2x x-=C.120120301.260x x -= D.120120301.260x x -=【答案】D 【解析】【分析】本题主要考查了分式方程的实际应用,设乙每小时加工x 个零件,则甲每小时加工1.2x 个零件,再根据时间=工作总量÷工作效率结合甲的工作时间比乙的工作时间少30分钟列出方程即可.【详解】解:设乙每小时加工x 个零件,则甲每小时加工1.2x 个零件,由题意得120120301.260x x -=,故选:D .8.如图,由8个全等的菱形组成的网格中,每个小菱形的边长均为2,120ABD ∠=︒,其中点A ,B ,C 都在格点上,则tan BCD ∠的值为()A.2B.C.32D.3【答案】B 【解析】【分析】本题考查了菱形的性质,解直角三角形,延长BC 交格点于点F ,连接AF ,,E G 分别在格点上,根据菱形的性质,进而得出90AFC ∠=︒,解直角三角形求得,AF FC 的长,根据对顶角相等,进而根据正切的定义,即可求解.【详解】解:如图所示,延长BC 交格点于点F ,连接AF ,,E G 分别在格点上,依题意,120,EGF EG GF ∠=︒=,,60GF GC FGC =∠=︒∴30,60CEF ECF ∠=︒∠=︒∴90AFC ∠=︒又2FC =,∴324cos30422AF EF EG ==︒=⨯⨯=∴tan tan 2AF BCD ACF FC ∠=∠===故选:B .9.抛物线2y x bx c =-++与x 轴交于两点,其中一个交点的横坐标大于1,另一个交点的横坐标小于1,则下列结论正确的是()A.1b c +>B.2b = C.240b c +< D.0c <【答案】A 【解析】【分析】本题考查了二次函数的性质,设抛物线2y x bx c =-++与x 轴交于两点,横坐标分别为1212,,x x x x <,依题意,121,1x x <>,根据题意抛物线开口向下,当1x =时,0y >,即可判断A 选项,根据对称轴即可判断B 选项,根据一元二次方程根的判别式,即可求解.判断C 选项,无条件判断D 选项,据此,即可求解.【详解】解:依题意,设抛物线2y x bx c =-++与x 轴交于两点,横坐标分别为1212,,x x x x <依题意,121,1x x <>∵10a =-<,抛物线开口向下,∴当1x =时,0y >,即10b c -++>∴1b c +>,故A 选项正确,符合题意;若对称轴为1222b b b x a =-=-==-,即2b =,而121,1x x <>,不能得出对称轴为直线1x =,故B 选项不正确,不符合题意;∵抛物线与坐标轴有2个交点,∴方程20x bx c -++=有两个不等实数解,即240b ac ∆=->,又1a =-∴240b c +>,故C 选项错误,不符合题意;无法判断c 的符号,故D 选项错误,不符合题意;故选:A .10.如图,ABC 是等腰直角三角形,90ABC ∠=︒,4AB =,点D ,E 分别在AC ,BC 边上运动,连结AE ,BD 交于点F ,且始终满足2AD =,则下列结论:①AE BD =;②135DFE ∠=︒;③ABF △面积的最大值是4;④CF 的最小值是-)A.①③B.①②④C.②③④D.①②③④【答案】D 【解析】【分析】过点B 作BM AC ⊥于点M ,证明ABE BMD ∽,根据相似三角形的性质即可判断①;得出BAE MBD ∠=∠,根据三角形内角和定理即可判断②;在AB 的左侧,以AB 为斜边作等腰直角三角形AOB ,以OA 为半径作O ,根据定弦定角得出F 在O 的 AB 上运动,进而根据当OF AB ⊥时,ABF △面积的最大,根据三角形的面积公式求解,即可判断③,当F 在OC 上时,FC 最小,过点O 作OH BC⊥交CB 的延长线于点H ,勾股定理,即可求解.【详解】解:如图所示,过点B 作BM AC ⊥于点M ,∵ABC 是等腰直角三角形,90ABC ∠=︒,4AB =,∴AB BC AC ===,,∵2AD =,∴()1122222222DM AC AD CE BC CE BE =-=-=-=∴22DM AD BE CE ==又∵90DMB EBA ∠=∠=︒∴ABE BMD ∽,∴AE AB BD BM==∵ABE BMD ∽,∴BAE MBD ∠=∠,∴BAE ABD MBD ABD∠+∠=∠+∠即()()180180BAE ABD MBD ABD ︒-∠+∠=︒-∠+∠在ABF △中,()180AFB BAE ABD ∠=︒-∠+∠即()180AFB MBD ABD ∠=︒-∠+∠∵ABC 是等腰直角三角形,BM AC ⊥∴BM 平分ABC ∠∴1452ABM CBM ABC ∠=∠=∠=︒∴()180180135AFB MBD ABD ABM ∠=︒-∠+∠=︒-∠=︒∴()180135AFB BAE ABD ∠=︒-∠+∠=︒,∴135DFE ∠=︒,故②正确,如图所示,在AB 的左侧,以AB 为斜边作等腰直角三角形AOB ,以OA 为半径作O ,且4AB =∴90AOB ∠=︒,4OA OB ====,AB ∵135AFB ∠=︒∴11802DFE AOB ∠+∠=︒∴F 在O 的 AB 上运动,∴422OF AO AB ====,连接OF 交AB 于点G ,则2AG GB ==,∴当OF AB ⊥时,结合垂径定理,OG 最小,∵OF 是半径不变∴此时CF 最大则ABF △面积的最大,∴()22ABF AGF AOF AOG S S S S ==- 211222OF AG OG ⎛⎫=⨯⨯- ⎪⎝⎭222=-4=-,故③正确;如图所示,当F 在OC 上时,FC 最小,过点O 作OHBC ⊥交CB 的延长线于点H ,∴OHB 是等腰直角三角形,∴22222OH HB OB OA ====,在Rt OHC 中,6HC HB BC =+=,∴OC ==∴CF 的最小值是故选:D .【点睛】本题考查了相似三角形的性质与判定,圆内接四边形对角互补,求圆外一点到圆上的距离最值问题,勾股定理,等腰直角三角形的性质与判定,熟练掌握以上知识是解题的关键.第II 卷(非选择题共110分)二、填空题(每小题4分,共20分)11.分解因式:3x 2﹣18x+27=________.【答案】3(x ﹣3)2【解析】【分析】先提取公因式3,再根据完全平方公式进行二次分解.【详解】3x 2-18x+27,=3(x 2-6x+9),=3(x-3)2.故答案为:3(x-3)2.12.“四大名著”《红楼梦》《水浒传》《三国演义》《西游记》是中国优秀文化的重要组成部分.某校七年级准备从这四部名著中随机抽取两本(先随机抽取一本,不放回,再随机抽取另一本)开展“名著共读”活动,则该年级的学生恰好抽取到《三国演义》和《西游记》的概率是______.【答案】16【解析】【分析】本题考查画树状图法求等可能事件的概率;画树状图,共有12种等可能的结果,其中抽取的两本恰好是《水浒传》和《西游记》的结果有2种,再由概率公式求解即可.【详解】解:把《红楼梦》《水浒传》《三国演义》《西游记》四本书分别记为A ,B ,C ,D ,根据题意,画出如下的树状图:由树状图可知看出,所有可能出现的结果共有12种,这些结果出现的可能性相等.两本是《三国演义》和《西游记》的结果有2种,所以P (两本是《三国演义》和《西游记》)21126==.故答案为:16.13.若关于x 的方程31122k x x --=--无解,则k 的值为______.【答案】4【解析】【分析】本题主要考查了根据分式方程解的情况求参数,先解分式方程得到6x k =-,再根据分式方程无解得到620k --=,解方程即可得到答案.【详解】解:31122k x x --=--去分母得:312k x -+=-,解得6x k =-,∵关于x 的方程31122k x x --=--无解,∴原方程有增根,∴20x -=,即620k --=,∴4k =,故答案为:4.14.如图,在ABC 中,1AE ,1BE 分别是内角CAB ∠、外角CBD ∠的三等分线,且113E AD CAB ∠=∠,113E BD CBD ∠=∠,在1ABE 中,2AE ,2BE 分别是内角1E AB ∠,外角1E BD ∠的三等分线.且2113E AD E AB ∠=∠,2113E BD E BD ∠=∠,…,以此规律作下去.若C m ∠=︒.则n E ∠=______度.【答案】13n m 【解析】【分析】本题考查了三角形的外角定理,等式性质,熟练掌握知识点是解题的关键.先分别对1,ABC E AB △△运用三角形的外角定理,设1E AD α∠=,则3CAB α∠=,1E BD β∠=,则3CBD β∠=,得到1E βα=+∠,33C βα=+∠,同理可求:2211133E E C ⎛⎫∠=∠=∠ ⎪⎝⎭,所以可得13nn E C ⎛⎫∠=∠ ⎪⎝⎭.【详解】解:如图:∵113E AD CAB ∠=∠,113E BD CBD ∠=∠,∴设1E AD α∠=,1E BD β∠=,则3CAB α∠=,3CBD β∠=,由三角形的外角的性质得:1E βα=+∠,33C βα=+∠,∴113E C ∠=∠,如图:同理可求:2113E E ∠=∠,∴2213E C ⎛⎫∠=∠ ⎪⎝⎭,……,∴13nn E C ⎛⎫∠=∠ ⎪⎝⎭,即13n nE m ∠=︒,故答案为:13n m .15.如图,在Rt ABC △中,90C ∠=︒.点D 在线段BC 上,45BAD ∠=︒.若4AC =,1CD =,则ABC 的面积是______.【答案】403【解析】【分析】本题考查解直角三角形,勾股定理.过D 作DE AB ⊥于E ,设DB x =,则1CB x =+,利用sin AC DE B AB DBÐ==列出等式即可.【详解】解:过D 作DE AB ⊥于E ,90C ∠=︒ ,4AC =,1CD =,AD \=45BAD ∠=︒ADE ∴V 是等腰直角三角形23422DE AD \==设DB x =,则1CB x =+AB \=sin AC DE B AB DB Ð==342x \解得175x =-(舍去)或173x =经检验173x =是原分式方程的解,111740(142233ABC S CB AC \=鬃=�△.故答案为:403.三、解答题:解答时应写出必要的文字说明、证明过程或演算步骤(共90分)16.(1)计算:()2012sin 60π20242-⎛⎫--︒-- ⎪⎝⎭;(2)解不等式组323122x x x --<-⎧⎪⎨-≤+⎪⎩【答案】(1)3-(2)15x -<≤【解析】【分析】本题考查了实数的混合运算,解一元一次不等式组;(1)根据负整数指数幂,二次根式的性质,特殊角的三角函数值,零指数幂进行计算即可求解;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【详解】解:(1)()212sin 60π20242-⎛⎫--︒-- ⎪⎝⎭4212=-⨯-41=-3=-(2)323122x x x --<-⎧⎪⎨-≤+⎪⎩①②解不等式①得:1x >-解不等式②得:5x ≤∴不等式组的解集为:15x -<≤17.先化简:22224x x x x x x x +⎛⎫-÷ ⎪-+-⎝⎭,再从2-,1-,0,1,2之中选择一个合适的数作为x 的值代入求值.【答案】41x +,当1x =时,原式2=.【解析】【分析】本题主要考查了分式的化简求值,先把小括号内的式子通分,再把除法变成乘法后约分化简,接着根据分式有意义的条件确定x 的值,最后代值计算即可.【详解】解:22224x x x x x x x +⎛⎫-÷ ⎪-+-⎝⎭()()()()()()()2212222x x x x x x x x x x +--+=÷-+-+()()()()()222222221x x x x x x x x x x -++-+=⋅-++()()()()()224221x x x x x x x -+=⋅-++41x =+,∵分式要有意义,∴()()()22010x x x x ⎧+-≠⎪⎨+≠⎪⎩,∴2x ≠±且0x ≠且1x ≠-,∴当1x =时,原式4211==+.18.2024年4月21日,达州马拉松暨“跑遍四川”达州站马拉松赛鸣枪开跑.本次赛事以“相约巴人故里,乐跑红色达州”为主题.旨在增强全市民众科学健身意识.推动全民健身活动,本届赛事共设置马拉松,半程马拉松和欢乐跑三个项目赛后随机抽样了部分参赛选手对本次赛事组织进行满意度评分调查,整理后得到下列不完整的图表:等级A B C D分数段90~10080~8970~7960~69频数440280m40请根据表中提供的信息.解答下列问题:(1)此次调查共抽取了______名选手,m=______,n=______;(2)扇形统计图中,B等级所对应的扇形圆心角度数是______度;(3)赛后若在三个项目的冠军中随机抽取两人访谈,请用列表或画树状图的方法,求出恰好抽到马拉松和欢乐跑冠军的概率.【答案】(1)800,40,5(2)126(3)1 3【解析】【分析】本题考查了列表法求概率,频数分布表以及扇形统计图;(1)根据A等级的人数除以占比得出总人数,进而求得,m n的值;(2)根据B等级的占比乘以360︒,即可求解;(3)设三个项目的冠军分别为,,A B C,根据列表法求概率,即可求解.【小问1详解】解:依题意,44080055%=名选手,8005%40m=⨯=,40%100%5%800n=⨯=∴5n=故答案为:800,40,5.【小问2详解】扇形统计图中,B 等级所对应的扇形圆心角度数是280360126800⨯︒=︒,故答案为:126.【小问3详解】解:设三个项目的冠军分别为,,A B C ,列表如下,A B CA AB AC B BA BCC CA CB共有6种等可能结果,其中恰好抽到马拉松和欢乐跑冠军的有2种情形,∴恰好抽到马拉松和欢乐跑冠军的概率为2163=19.如图,线段AC 、BD 相交于点O .且AB CD ∥,AE BD ⊥于点E .(1)尺规作图:过点C 作BD 的垂线,垂足为点F 、连接AF 、CE ;(不写作法,保留作图痕迹,并标明相应的字母)(2)若AB CD =,请判断四边形AECF 的形状,并说明理由.(若前问未完成,可画草图完成此问)【答案】(1)见解析(2)四边形AECF 是平行四边形,理由见解析【解析】【分析】本题主要考查了平行四边形的判定,垂线的尺规作图,全等三角形的性质与判定:(1)先根据垂线的尺规作图方法作出点F ,再连接AF 、CE 即可;(2)先证明()ASA ABO CDO ≌,得到OA OC =,再证明90AE CF AEO CFO ==︒∥,∠∠,进而证明()AAS AOE COF ≌,得到AE CF =,即可证明四边形AECF 是平行四边形.【小问1详解】解:如图所示,即为所求;【小问2详解】解:四边形AECF 是平行四边形,理由如下:∵AB CD ∥,∴B D OAB OCD ==∠∠,∠∠,又∵AB CD =,∴()ASA ABO CDO ≌,∴OA OC =,∵AE BD CF BD ⊥⊥,,∴90AE CF AEO CFO ==︒∥,∠∠,又∵AOE COF ∠=∠,∴()AAS AOE COF ≌,∴AE CF =,∴四边形AECF 是平行四边形.20.“三汇彩婷会”是达州市渠县三汇镇独有的传统民俗文化活动、起源于汉代、融数学,力学,锻造,绑扎,运载于一体,如图1,在一次展演活动中,某数学综合与实践小组将彩婷抽象成如图2的示意图,AB 是彩婷的中轴、甲同学站在C 处.借助测角仪观察,发现中轴AB 上的点D 的仰角是30︒,他与彩婷中轴的距离6BC =米.乙同学在观测点E 处借助无人机技术进行测量,测得AE 平行于水平线BC ,中轴AB 上的点F 的仰角45AEF ∠=︒,点E 、F 之间的距离是4米,已知彩婷的中轴 6.3AB =米,甲同学的眼睛到地面的距离 1.5MC =米,请根据以上数据,求中轴上DF 的长度.(结果精确到0.1米,参考数据1.73≈1.41≈)【答案】中轴上DF 的长度为1.5米【解析】【分析】本题考查了解直角三角形的应用;过点M 作MN AB ⊥于点N ,分别求得,DN AF 的长,根据DF AF DB AB =+-,即可求解.【详解】解:如图,过点M 作MN AB ⊥于点N ,依题意,四边形MCBN 是矩形,30,45DMN AEF ∠=︒∠=︒∴3tan 3063DN MN =⋅︒=⨯=2sin 4542AF EF =⋅︒=⨯=∴DF AF DB AB =+-1.5 6.3=++-21.4121.73 1.5 6.3=⨯+⨯+-1.5≈米答:中轴上DF 的长度为1.5米.21.如图,一次函数y kx b =+(k 、b 为常数,0k ≠)的图象与反比例函数m y x=(m 为常数,0m ≠)的图象交于点()2,3A ,(),2B a -.(1)求反比例函数和一次函数的解析式;(2)若点C 是x 轴正半轴上的一点.且90BCA ∠=︒.求点C 的坐标.【答案】(1)6y x =,1y x =+(2)(3,0)C 【解析】【分析】本题考查反比例函数与一次函数综合题型,也考查了锐角三角函数的应用.(1)用待定系数法先求反比例函数解析式,再求一次函数解析式即可;(2)过A 作AM x ⊥轴于M ,过B 作BN x ⊥轴于N ,设(,0)C c ,先求得NCB MAC ∠=∠得到tan tan NCB MAC Ð=Ð,即NB MC NC AM =,得出等量关系解出c 即可.【小问1详解】解:将()2,3A 代入m y x=得236m =⨯=6y x∴=将(),2B a -代入6y x =得62a -=3a ∴=-()3,2B ∴--将()2,3A 和()3,2B --代入y kx b =+得2332k b k b +=⎧⎨-+=-⎩解得11k b =⎧⎨=⎩1y x ∴=+故反比例函数和一次函数的解析式分别为6y x=和1y x =+;【小问2详解】如图,过A 作AM x ⊥轴于M ,过B 作BN x ⊥轴于N ,90BCA ∠=︒90NCB ACM \Ð+Ð=°90MAC ACM Ð+Ð=°NCB MAC\Ð=Ðtan tan NCB MAC\Ð=Ð即NB MC NC AM=设(,0)C c ,则2MC c =-,3NC c =+3,2AM BN == 2233c c -\=+解得4c =-(舍去)或3c =经检验,3c =是原分式方程的解,(3,0)C ∴.22.为拓宽销售渠道,助力乡村振兴,某乡镇帮助农户将A 、B 两个品种的柑橘加工包装成礼盒再出售.已知每件A 品种柑橘礼盒比B 品种柑橘礼盒的售价少20元.且出售25件A 品种柑橘礼盒和15件B 品种柑橘礼盒的总价共3500元.(1)求A 、B 两种柑橘礼盒每件的售价分别为多少元?(2)已知加工A 、B 两种柑橘礼盒每件的成本分别为50元、60元、该乡镇计划在某农产品展销活动中售出A 、B 两种柑橘礼盒共1000盒,且A 品种柑橘礼盒售出的数量不超过B 品种柑橘礼盒数量的1.5倍.总成本不超过54050元.要使农户收益最大,该乡镇应怎样安排A 、B 两种柑橘礼盒的销售方案,并求出农户在这次农产品展销活动中的最大收益为多少元?【答案】(1)A 、B 两种柑橘礼盒每件的售价分别为80,100元(2)要使农户收益最大,销售方案为售出A 种柑橘礼盒595盒,售出B 种柑橘礼盒405盒,最大收益为34050元【解析】【分析】本题考查了二元一次方程组的应用;一元一次不等式的应用,一次函数的应用;(1)设A 、B 两种柑橘礼盒每件的售价分别为a 元,b 元,根据题意列出二元一次方程组,即可求解;(2)设售出A 种柑橘礼盒x 盒,则售出B 种柑橘礼盒()1000x -盒,根据题意列出不等式组,得出595600x ≤≤,设收益为y 元,根据题意列出函数关系式,进而根据一次函数的性质,即可求解.【小问1详解】解:设A 、B 两种柑橘礼盒每件的售价分别为a 元,b 元,根据题意得,2025153500a b a b +=⎧⎨+=⎩解得:80100a b =⎧⎨=⎩答:A 、B 两种柑橘礼盒每件的售价分别为80,100元;【小问2详解】解:设售出A 种柑橘礼盒x 盒,则售出B 种柑橘礼盒()1000x -盒,根据题意得,()()1.510005060100054050x x x x ⎧≤-⎪⎨+-≤⎪⎩解得:595600x ≤≤设收益为y 元,根据题意得,()()()80501006010001040000y x x x =-+--=-+∵100-<∴y 随x 的增大而减小,∴当595x =时,y 取得最大值,最大值为105954000034050-⨯+=(元)∴售出B 种柑橘礼盒1000595405-=(盒)答:要使农户收益最大,销售方案为售出A 种柑橘礼盒595盒,售出B 种柑橘礼盒405盒,最大收益为34050元.23.如图,BD 是O 的直径.四边形ABCD 内接于O .连接AC ,且AB AC =,以AD 为边作DAF ACD ∠=∠交BD 的延长线于点F .(1)求证:AF 是O 的切线;(2)过点A 作AE BD ⊥交BD 于点E .若3CD DE =,求cos ABC ∠的值.【答案】(1)证明见解析(2【解析】【分析】(1)如图所示,连接OA ,由直径所对的圆周角是直角得到90BAD ∠=︒,导角可证明DAF OAB ∠=∠,进而得到90OAF ∠=︒,据此即可证明AF 是O 的切线;(2)延长CD 交AF 于H ,延长AO 交BC 于G ,连接OC ,由直径所对的圆周角是直角得到90BCD ∠=︒,证明AG CH ∥,得到90AHC ∠=︒,接着证明()AAS ABE ACH ≌,得到AE AH BE CH ==,,进一步证明()Rt Rt HL ADE ADH ≌,得到DH DE =,设DH DE a ==,则3CD a =,4BE CH a ==,进而得到5BD BE DE a =+=,则 2.5OA OD a ==,由勾股定理得到2AE a ==,AD ==,则cos 5DE ADE AD ==∠,进一步可得cos cos 5ABC ADE ==∠∠.【小问1详解】证明:如图所示,连接OA ,∵BD 是O 的直径,∴90BAD ∠=︒,∴90OAB OAD ∠+∠=︒,∵OA OB =,∴OAB OBA ∠=∠,∵DAF ACD ∠=∠,OBA ACD ∠=∠,∴DAF OAB ∠=∠,∴90DAF OAD OAB OAD +=+=︒∠∠∠∠,∴90OAF ∠=︒,∴OA AF ⊥,又∵OA 是O 的半径,∴AF 是O 的切线;【小问2详解】解:如图所示,延长CD 交AF 于H ,延长AO 交BC 于G ,连接OC ,∵BD 是O 的直径,∴90BCD ∠=︒,即CH BC ⊥,∵AB AC OB OC ==,,∴OA 垂直平分BC ,∴AG BC ⊥,∴AG CH ∥,∵90OAF ∠=︒,∵AE BD ⊥,∴90AEB AHC ==︒∠∠,又∵ABE ACH ∠=∠,∴()AAS ABE ACH ≌,∴AE AH BE CH ==,,∵AD AD =,∴()Rt Rt HL ADE ADH ≌,∴DH DE =,设DH DE a ==,则3CD a =,∴4BE CH DH CD a ==+=,∴5BD BE DE a =+=,∴ 2.5OA OD a ==,∴ 1.5OE OD DE a =-=,∴2AE a ==,∴AD ==,∴5cos 5DE ADE AD ==∠,∵AB AC =,∴A ABC CB =∠∠,∵ADE ACB ∠=∠,∴ABC ADE ∠=∠,∴cos cos 5ABC ADE ==∠∠.【点睛】本题主要考查了切线的判定,求角的余弦值,直径所对的圆周角是直角,同弧所对的圆周角相等,勾股定理,全等三角形的性质与判定等等,正确作出辅助线构造全等三角形和直角三角形是解题的关键.24.如图1,抛物线23y ax kx =+-与x 轴交于点()3,0A -和点()1,0B ,与y 轴交于点C .点D 是抛物线的顶点.(1)求抛物线的解析式;(2)如图2,连接AC ,DC ,直线AC 交抛物线的对称轴于点M ,若点P 是直线AC 上方抛物线上一点,且2PMC DMC S S =△△,求点P 的坐标;(3)若点N 是抛物线对称轴上位于点D 上方的一动点,是否存在以点N ,A ,C 为顶点的三角形是等腰三角形,若存在,请直接写出满足条件的点N 的坐标;若不存在,请说明理由.【答案】(1)223y x x =+-(2)()1,0P 或()4,5P -;(3)(N -或(1,-或()1,1--或()3-【解析】【分析】(1)待定系数法求解析式,即可求解;(2)先求得,,C M D 的坐标,根据勾股定理的逆定理得出MCD △是等腰三角形,进而根据2PMC DMC S S =△△得出2PMC S =△,连接MB ,设MD 交x 轴于点E ,则2ME EB ==得出MBE △是等腰直角三角形,进而得出2BMC S =△,则点P 与点B 重合时符合题意,()1,0P ,过点B 作BP AC ∥交抛物线于点P ,得出直线BP 的解析式为1y x =-+,联立抛物线解析式,即可求解;(3)勾股定理求得222,,AC AN CN ,根据等腰三角形的性质,分类讨论解方程,即可求解.【小问1详解】解:∵抛物线23y ax kx =+-与x 轴交于点()3,0A -和点()1,0B ,∴933030a k a k --=⎧⎨+-=⎩解得:12a k =⎧⎨=⎩∴抛物线的解析式为223y x x =+-;【小问2详解】由223y x x =+-,当0x =时,=3y -,则()0,3C -∵()222314y x x x =+-=+-,则()1,4D --,对称轴为直线=1x -设直线AC 的解析式为11y k x b =+,代入()3,0A -,()0,3C -∴11303k b b -+=⎧⎨=-⎩解得:1113k b =-⎧⎨=-⎩∴直线AC 的解析式为3y x =--,当=1x -时,=2y -,则()1,2M --∴()242,MC MD CD ===---===∴222MD MC CD =+∴MCD △是等腰三角形,∴212222PMC DMC S CD S ==⨯⨯=△△连接MB ,设MD 交x 轴于点E ,则2ME EB ==∴MBE △是等腰直角三角形,∴45BME ∠=︒,BM =,又45DMC ∠=︒∴BM AC⊥∴11222BMC S MC BM =⨯⨯== ∴点P 与点B 重合时符合题意,()1,0P 如图所示,过点B作BP AC ∥交抛物线于点P ,设直线BP 的解析式为y x m =-+,将()1,0B 代入得,01m=-+解得:1m =∴直线BP 的解析式为1y x =-+联立2123y x y x x =-+⎧⎨=+-⎩解得:45x y =-⎧⎨=⎩,10x y =⎧⎨=⎩∴()4,5P -综上所述,()1,0P 或()4,5P -;【小问3详解】解:∵()3,0A -,()0,3C -,∴2223318AC =+=∵点N 是抛物线对称轴上位于点D 上方的一动点,设()1,N n -其中4n >-∴()2222314AN n n =-++=+,()222213610CN n n n =++=++①当AN AC =时,2418n +=,解得:n =或n =②当NA NC =时,224610n n n +=++,解得:1n =-③当CA CN =时,218610n n =++,解得:3n =-或3n =(舍去)综上所述,(N -或(1,-或()11--,或()13-.【点睛】本题考查了二次函数综合问题,待定系数法求解析式,面积问题,特殊三角形问题,熟练掌握二次函数的性质是解题的关键.25.倍,某数学兴趣小组以此为方向对菱形的对角线和边长的数量关系探究发现,具体如下:如图1.(1) 四边形ABCD 是菱形,AC BD ∴⊥,AO CO =,BO DO =.222AB AO BO ∴=+.又2AC AO = ,2BD BO =,2AB ∴=______+______.化简整理得22AC BD +=______.【类比探究】(2)如图2.若四边形ABCD 是平行四边形,请说明边长与对角线的数量关系.【拓展应用】(3)如图3,四边形ABCD 为平行四边形,对角线AC ,BD 相交于点O ,点E 为AO 的中点,点F 为BC 的中点,连接EF ,若8AB =,8BD =,12AC =,直接写出EF 的长度.【答案】(1)214AC ,214BD ,24AB ;(2)222222AC BD AB AD +=+;(3【解析】【分析】(1)根据菱形的性质及勾股定理补充过程,即可求解;(2)过点D 作DE AB ⊥于点E ,过点C 作CF AB ⊥交AB 的延长线于点F ,根据平行四边形的性质得AB CD =,AB CD ∥,AD BC =,证明()AAS DAE CBF ≌,得AE BF =,DE CF =,,根据勾股定理得()22222DB DE BB DE AB AE =+=+-,()22222AC CF AF CF AB BF =+=++,继而得出22AC BD +的值即可;(3)由(2)可得222222AC BD AB AD +=+得出AD =,过点,E O 分别作BC 的垂线,垂足分别为,M G ,连接OF ,根据勾股定理以及已知条件,分别求得,,OG CG BG ,根据EM OG ∥得出131024MG CG ==,MF =根据COG CEM ∽得出32EM OG ==可求解.【详解】解:(1) 四边形ABCD 是菱形,AC BD ∴⊥,AO CO =,BO DO =.222AB AO BO ∴=+.又2AC AO = ,2BD BO =,2221144AB AC BD ∴=+.化简整理得2224AC BD AB +=故答案为:214AC ,214BD ,24AB .(2)222222AC BD AB AD +=+,理由如下,过点D 作DE AB ⊥于点E ,过点C 作CF AB ⊥交AB 的延长线于点F,∴90DEA DEB CFB ∠=∠=∠=︒,∵四边形ABCD 是平行四边形,∴AB CD =,AB CD ∥,AD BC =,∴DAE CBF ∠=∠,在DAE 和CBF V 中,DAE CBF DEA CFB AD BC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()AAS DAE CBF ≌,∴AE BF =,DE CF =,在Rt DBE 中,()22222DB DE BE DE AB AE =+=+-,在Rt CAF △中,()22222AC CF AF CF AB BF =+=++,∴()()222222AC BD DE AB AE CF AB BF +=+-+++22222222DE AB AB AE AE AB AB AE AE =+-⋅+++⋅+()22222DE AE AB =++2222AD AB =+,∴222222AC BD AB AD +=+(3)∵四边形ABCD 是平行四边形,8AB =,8BD =,12AC =,∴由(2)可得222222AC BD AB AD +=+∴2222128282AD +=⨯+解得:AD =∵四边形ABCD 是平行四边形,12,8,AC BD ==∴BC AD ==6OA OC ==,142OB OD BD ===,如图所示,过点,E O 分别作BC 的垂线,垂足分别为,M G ,连接OF ,∵F 分别为BC 的中点,∴11422OF AB OB BD ====,∵OG BF ⊥,∴BG GF =12BF =,∵F 是BC 的中点,∴12BF BC =∴BG GF =1110242BF BC ===,∴CG BC BG =-=,在Rt OGC △中,OG BC ⊥,∴362OG ===,∵E 为AO 的中点,∴12OE OA =,∵AO OC =,∴12OE OC =,∴23OC EC =,12OE OC =,∵,EM BC OG BC ⊥⊥,∴EM OG ∥,∴12EO MG OC CG ==,∴131024MG CG ==,∴3101042MF MG GF =+=+=,∵EM OG ∥,∴COG CEM ∽,∴23OG OC EM EC ==,∴32EM OG ==在Rt EMF △中,EF ===.【点睛】本题考查了菱形的性质,平行四边形的性质,勾股定理,全等三角形的性质与判定,相似三角形的性质与判定,平行线分线段成比例,熟练掌握勾股定理是解题的关键.。
班级 姓名 学号 成绩一、精心选一选1.下列运算正确的是( ) A.()11a a --=-- B.()23624aa -=C.()222a b a b -=-D.3252a a a +=2.如图,由几个小正方体组成的立体图形的左视图是( )3.下列事件中确定事件是( ) A.掷一枚均匀的硬币,正面朝上 B.买一注福利彩票一定会中奖C.把4个球放入三个抽屉中,其中一个抽屉中至少有2个球D.掷一枚六个面分别标有1,2,3,4,5,6的均匀正方体骰子,骰子停止转动后奇数点朝上 4.如图,AB CD ∥,下列结论中正确的是( ) A.123180++=∠∠∠ B.123360++=∠∠∠C.1322+=∠∠∠D.132+=∠∠∠5.已知24221x y k x y k +=⎧⎨+=+⎩,且10x y -<-<,则k 的取值范围为( )A.112k -<<-B.102k <<C.01k <<D.112k << 6.顺次连接矩形各边中点所得的四边形( ) A.是轴对称图形而不是中心对称图形 B.是中心对称图形而不是轴对称图形 C.既是轴对称图形又是中心对称图形 D.没有对称性 7.已知点()3A a -,,()1B b -,,()3C c ,都在反比例函数4y x=的图象上,则a ,b ,c 的大小关系为( ) A.a b c >> B.c b a >>C.b c a >> D.c a b >>8.某款手机连续两次降价,售价由原来的1185元降到580元.设平均每次降价的百分率为x ,则下面列出的方程中正确的是( ) A.21185580x = B.()211851580x -= C.()211851580x-=D.()258011185x +=9.如图,P 是Rt ABC △斜边AB 上任意一点(A ,B 两点除外),过P 点作一直线,使截得的三角形与Rt ABC △相似,这样的直线可以作( ) A.1条 B.2条 C.3条 D.4A. B. C. D.A B DC32 1 第4题图10.某校为了了解学生课外阅读情况,随机调查了50名学生各自平均每天的课外阅读时间,并绘制成条形图(如图),据此可以估计出该校所有学生平均每人每天的课外阅读时间为( ) A.1小时 B.0.9小时 C.0.5小时 D.1.5小时11.如图,I 是ABC △的内切圆,D ,E ,F 为三个切点,若52DEF =∠,则A ∠的度数为( ) A.76B.68C.52D.38当输入数据是时,输出的数是( ) A.861B.865C.867D.869二、细心填一填 13.化简21111mm m ⎛⎫+÷ ⎪--⎝⎭的结果是_______________. 14.从边长为a 的大正方形纸板中挖去一个边长为b 的小正方形后,将其裁成四个相同的等腰梯形(如图甲),然后拼成一个平行四边形(如图乙).那么通过计算阴影部分的面积可以验证公式______________.第10题图第11题图 ab15.把一组数据中的每一个数据都减去80,得一组新数据,若求得新一组数据的平均数是1.2,方差是4.4,则原来一组数据的平均数和方差分别为_______________.16.在平面直角坐标系中,已知()24A ,,()22B -,,()62C -,,则过A ,B ,C 三点的圆的圆心坐标为_______________.17.实验中学要修建一座图书楼,为改善安全性能,把楼梯的倾斜角由原来设计的42改为36.已知原来设计的楼梯长为4.5m ,在楼梯高度不变的情况下,调整后的楼梯多占地面_____________m .(精确到0.01m )三、用心用一用18.用配方法解方程:2210x x --=.答案:二、填空题 13.1m + 14.()()22a b a b a b -=+-15.81.2,4.416.()41,17.0.80三、解答题18.解:两边都除以2,得211022x x --=. 移项,得21122x x -=. 配方,得221192416x x ⎛⎫-+= ⎪⎝⎭,第17题图219416x ⎛⎫-= ⎪⎝⎭. 1344x ∴-=或1344x -=-. 11x ∴=,212x =-数学试题库2注意事项:1.试卷分为第I 卷和第II 卷两部分,共6页,全卷 150分,考试时间120分钟. 2.第I 卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需要改动,先用橡皮擦干净后,再选涂其它答案,答案写在本试卷上无效.3.答第II 卷时,用0.5毫米黑色墨水签字笔,将答案写在答题卡上指定的位置.答案写在试卷上火答题卡上规定的区域以外无效. 4.作图要用2B 铅笔,加黑加粗,描写清楚. 5.考试结束,将本试卷和答题卡一并交回.第I 卷 (选择题 共24分)一、选择题(本大题共8小题,每小题3分,共24分.在每小题所给出的四个选项中,只有一项是正确的,请把正确选项前的字母代号填涂在答题卡相应位置.......上) 1.﹣3的相反数是A .﹣3B .13- C .13D .3 2.地球与太阳的平均距离大约为150 000 000km ,将150 000 000用科学记数法表示应为 A .15×107B .1.5×108C .1.5×109D .0.15×1093.若一组数据3、4、5、x 、6、7的平均数是5,则x 的值是 A .4 B .5 C .6 D .7 4.若点A(﹣2,3)在反比例函数ky x=的图像上,则k 的值是 A .﹣6 B .﹣2 C .2 D .65.如图,三角板的直角顶点落在矩形纸片的一边上,若∠1=35°,则∠2的度数是 A .35° B .45° C .55° D .65°6.如图,菱形ABCD 的对角线AC 、BD 的长分别为6和8,则这个菱形的周长是A .20B .24C .40D .487.若关于x 的一元二次方程x 2﹣2x ﹣k +1=0有两个相等的实数根,则k 的值是 A .﹣1 B .0 C .1 D .2 8.如图,点A 、B 、C 都在⊙O 上,若∠AOC =140°,则∠B 的度数是 A .70° B .80° C .110° D .140°第II 卷 (选择题 共126分)二、填空题(本大题共8小题,每小题3分,本大题共24分.不需要写出解答过程,只需把答案直接填写在答题卡相应位置.......上) 9.计算:23()a = .10.一元二次方程x 2﹣x =0的根是 .11.某射手在相同条件下进行射击训练,结果如下:该射手击中靶心的概率的估计值是 (明确到0.01).12.若关于x ,y 的二元一次方程3x ﹣ay =1有一个解是32x y =⎧⎨=⎩,则a = .13.若一个等腰三角形的顶角等于50°,则它的底角等于 .14.将二次函数21y x =-的图像向上平移3个单位长度,得到的图像所对应的函数表达式是 .15.如图,在Rt △ABC 中,∠C =90°,AC =3,BC =5,分别以点A 、B 为圆心,大于12AB 的长为半径画弧,两弧交点分别为点P 、Q ,过P 、Q 两点作直线交BC 于点D ,则CD 的长是 .16.如图,在平面直角坐标系中,直线l 为正比例函数y =x 的图像,点A 1的坐标为(1,0),过点A 1作x 轴的垂线交直线l 于点D 1,以A 1D 1为边作正方形A 1B 1C 1D 1;过点C 1作直线l 的垂线,垂足为A 2,交x 轴于点B 2,以A 2B 2为边作正方形A 2B 2C 2D 2;过点C 2作x 轴的垂线,垂足为A 3,交直线l 于点D 3,以A 3D 3为边作正方形A 3B 3C 3D 3;…;按此规律操作下去,所得到的正方形A n B n C n D n 的面积是 .三、解答题(本大题共11小题,共102分.请在答题卡...指定区域....内作答,解答时应写出文字说明、证明过程或演算步骤) 17.(本题满分10分)(1)计算:02sin 45(1)1822π︒+--+-; (2)解不等式组:35131212x x x x -<+⎧⎪⎨--≥⎪⎩.18.(本题满分8分)先化简,再求值:212(1)11aa a -÷+-,其中a =﹣3.19.(本题满分8分)已知:如图,□ABCD 的对角线AC 、BD 相交于点O ,过点O 的直线分别与AD 、BC 相交于点E 、F ,求证:AE =CF .20.(本题满分8分)某学校为了解学生上学的交通方式,现从全校学生中随机抽取了部分学生进行“我上学的交通方式”问卷调查,规定每人必须并且只能在“乘车”、“步行”、“骑车”和“其他”四项中选择一项,并将统计结果绘制了如下两幅不完整的统计图.请解答下列问题:(1)在这次调查中,该学校一共抽样调查了 名学生; (2)补全条形统计图;(3)若该学校共有1500名学生,试估计该学校学生中选择“步行”方式的人数.21.(本题满分8分)一只不透明袋子中装有三只大小、质地都相同的小球,球面上分别标有数字1、﹣2、3,搅匀后先从中任意摸出一个小球(不放回),记下数字作为点A 的横坐标,再从余下的两个小球中任意摸出一个小球,记下数字作为点A 的纵坐标.(1)用画树状图或列表等方法列出所有可能出现的结果; (2)求点A 落在第四象限的概率.22.(本题满分8分)如图,在平面直角坐标系中,一次函数y =kx +b 的图像经过点A(﹣2,6),且与x 轴相交于点B ,与正比例函数y =3x 的图像交于点C ,点C 的横坐标为1.(1)求k 、b 的值;(2)若点D 在y 轴负半轴上,且满足S △COD =13S △BOC ,求点D 的坐标.23.(本题满分8分)为了计算湖中小岛上凉亭P 到岸边公路l 的距离,某数学兴趣小组在公路l 上的点A 处,测得凉亭P 在北偏东60°的方向上;从A 处向正东方向行走200米,到达公路l 上的点B 处,再次测得凉亭P 在北偏东45°的方向上,如图所示.求凉亭P 到公路l 的距离.(结果保留整数,参考数据:2 1.414≈,3 1.732≈)24.(本题满分10分)如图,AB 是⊙O 的直径,AC 是⊙O 的切线,切点为A ,BC 交⊙O 于点D ,点E 是AC 的中点.(1)试判断直线DE 与⊙O 的位置关系,并说明理由;(2)若⊙O的半径为2,∠B=50°,AC=4.8,求图中阴影部分的面积.25.(本题满分10分)某景区商店销售一种纪念品,每件的进货价为40元.经市场调研,当该纪念品每件的销售价为50元时,每天可销售200件;当每件的销售价每增加1元,每天的销售数量将减少10件.(1)当每件的销售价为52元时,该纪念品每天的销售数量为件;(2)当每件的销售价x为多少时,销售该纪念品每天获得的利润y最大?并求出最大利润.26.(本题满分12分)+=90°,那么我们称这样的三角形为“准互如果三角形的两个内角α与β满足2αβ余三角形”.(1)若△ABC是“准互余三角形”,∠C>90°,∠A=60°,则∠B=°;(2)如图①,在Rt△ABC中,∠ACB=90°,AC=4,BC=5,若AD是∠BAC的平分线,不难证明△ABD是“准互余三角形”.试问在边BC上是否存在点E(异于点D),使得△ABE 也是“准互余三角形”?若存在,请求出BE的长;若不存在,请说明理由.(3)如图②,在四边形ABCD中,AB=7,CD=12,BD⊥CD,∠ABD=2∠BCD,且△ABC 是“准互余三角形”.求对角线AC的长.27.(本题满分12分)如图,在平面直角坐标系中,一次函数243y x=-+的图像与x轴和y轴分别相交于A、B两点.动点P从点A出发,在线段AO上以每秒3个单位长度的速度向点O作匀速运动,到达点O停止运动.点A关于点P的对称点为点Q,以线段PQ为边向上作正方形PQMN.设运动时间为t秒.(1)当t=13秒时,点Q的坐标是;(2)在运动过程中,设正方形PQMN与△AOB重叠部分的面积为S,求S与t的函数表达式;(3)若正方形PQMN对角线的交点为T,请直接写出在运动过程中OT+PT的最小值.参考答案三、解答题17.(1)1;(2)13x ≤<. 18.化简结果为12a -,计算结果为﹣2. 19.先证△AOE ≌△COF ,即可证出AE =CF .20.(1)50;(2)在条形统计图画出,并标数据15;(3)450名.21.(1)六种:(1,﹣2)、(1,3)、(﹣2,1)、(﹣2,3)、(3,1)、(3,﹣2); (2)点A 落在第四象限的概率为13. 22.(1)k 的值为﹣1,b 的值为4; (2)点D 坐标为(0,﹣4).23.凉亭P 到公路l 的距离是273米.24.(1)先根据“SSS ”证明△AEO ≌△DEO ,从而得到∠ODE =∠OAE =90°,即可判断出直线DE 与⊙O 相切; (2)阴影部分面积为:241059π-. 25.(1)180;(2)2[20010(50)](40)10(55)2250y x x x =---=--+,∴当每件的销售价为55元时,每天获得利润最大为2250元.26.(1)15°;(2)存在,BE 的长为95(思路:利用△CAE ∽△CBA 即可); (3)20,思路:作AE ⊥CB 于点E ,CF ⊥AB 于点F ,先根据△FCB ∽△FAC 计算出AF =16,最后运用勾股定理算出AC =20.27.(1)(4,0);(2)22233,01439418,1434312,23t t S t t t t t ⎧≤<⎪⎪⎪=-+≤≤⎨⎪⎪-+<≤⎪⎩;(3)OT +PT.。
成都市2013中考(含成都市初三毕业会考)数学考试时间120分钟。
一、选择题(本大题共10个小题,每小题3分,共30分)1。
2的相反数是( )A.2 B 。
-2 C 。
12 D.1-2答案:B解析:2的相反数为-2,较简单。
2.如图所示的几何体的俯视图可能是( )答案:C解析:圆锥的俯视图为一个圆及圆心,圆锥的顶点俯视图是圆心(一个点)。
3.要使分式5x 1-有意义,则X的取值范围是( ) A.x 1≠ B.x 1> C.1x <D.x 1≠-答案:A解析:由分式的意义,得:x -1≠0,即x ≠1,选A 。
4.如图,在△ABC中,B C ∠=∠,AB=5,则AC 的长为( )A 。
2 B.3 C 。
4 D.5答案:D解析:由∠B =∠C ,得AC =AB =5(等角对等边),故选D >5。
下列运算正确的是( )A.1-=3⨯(3)1B.5-8=-3C.-32=6D.0-=0(2013) 答案:B解析:13×(-3)=-1,3128-=,(-2013)0=1,故A 、C 、D 都错,选B 。
6.参加成都市今年初三毕业会考的学生约为13万人,将13万用科学记数法表示应为( ) A.51.310⨯ B 。
41.310⨯ C.50.1310⨯ D. 40.1310⨯ 答案:A解析:科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数13万=130000=51.310⨯7.如图,将矩形ABCD 沿对角线BD 折叠,使点C 与点C ’重合。
若AB=2,则'C D 的长为( )A 。
1B 。
2C 。
3D 。
4答案:B解析:由折叠可知,'C D =CD =AB =2。
8。
在平面直角坐标系中,下列函数的图像经过原点的是( )A 。
成都市二0 0九年高中阶段教育学校统一招生考试试卷(含成都市初三毕业会考)数 学全卷分A 卷和B 卷,A 卷满分100分,8卷满分50分;考试时间l20分钟。
A 卷分第Ⅰ卷和第Ⅱ卷,第Ⅰ卷为选择题,第Ⅱ卷为其他类型的题。
A 卷(共100分) 第Ⅰ卷(选择题,共30分)注意事项:1.第Ⅰ卷共2页。
答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目涂写在试卷和答题卡上。
考试结束,监考人员将试卷和答题卡一并收回。
2.第Ⅰ卷全是选择题,各题均有四个选项,只有一项符合题目要求。
每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案,选择题的答案不能答在试卷上。
请注意机读答题卡的横竖格式。
一、选择题:(每小题3分,共30分) 1. 计算2×(12-)的结果是 (A)-1 (B) l (C)一2 (D) 2 2. 在函数131y x =-中,自变量x 的取值范围是 (A)13x < (B) 13x ≠- (C) 13x ≠ (D) 13x >3. 如图所示的是某几何体的三视图,则该几何体的形状是 (A)长方体 (B)三棱柱 (C)圆锥 (D)正方体 4. 下列说法正确的是(A)某市“明天降雨的概率是75%”表示明天有75%的时间会降雨 (B)随机抛掷一枚均匀的硬币,落地后正面一定朝上 (C)在一次抽奖活动中,“中奖的概率是1100”表示抽奖l00次就一定会中奖 (D)在平面内,平行四边形的两条对角线一定相交5. 已知△ABC∽△DEF,且AB :DE=1:2,则△ABC 的面积与△DEF 的面积之比为 (A)1:2 (B)1:4 (C)2:1 (D)4:16. 在平面直角坐标系xOy 中,已知点A(2,3),若将OA 绕原点O 逆时针旋转180°得到0A′, 则点A ′在平面直角坐标系中的位置是在(A)第一象限 (B)第二象限 (c)第三象限 (D)第四象限7. 若关于x 的一元二次方程2210kx x --=有两个不相等的实数根,则k 的取值范围是(A)1k>- (B) 1k >-且0k ≠ (c)1k < (D) 1k <且0k ≠8. 若一个圆锥的底面圆的周长是4πcm ,母线长是6cm ,则该圆锥的侧面展开图的圆心角的度数是 (A)40° (B)80° (C)120° (D)150°AB CDEA′9. 某航空公司规定,旅客乘机所携带行李的质量x (kg)与其运费y (元)由如图所示的一次函数图象确定,那么旅客可携带的免费行李的最大质量为 (A)20kg (B)25kg(C)28kg (D)30kg10.为了解某小区居民的日用电情况,居住在该小区的一名同学随机抽查了l5户家庭的日用电量,结果如下表:则关于这l5户家庭的日用电量,下列说法错误的是 (A)众数是6度 (B)平均数是度 (C)极差是5度 (D)中位数是6度成都市二0 0九年高中阶段教育学校统一招生考试试卷(含成都市初三毕业会考)数 学注意事项: 1.A 卷的第Ⅱ卷和B 卷共l0页,用蓝、黑钢笔或圆珠笔直接答在试卷上。
秘 密姓名__________________成都市二〇一〇年高中阶段教育学校统一招生考试试卷(含成都市初三毕业会考)数 学全卷分A 卷和B 卷,A 卷满分100分,B 卷满分50分;考试时间120分钟。
A 卷分第Ⅰ卷和第Ⅱ卷,第Ⅰ卷为选择题,第Ⅱ卷为其他类型的题。
A 卷(共100分) 第Ⅰ卷(选择题,共30分)注意事项:1.第Ⅰ卷共2页。
答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目涂写在试卷和答题卡上。
考试结束,监考人员将试卷和答题卡一并收回。
2.第Ⅰ卷全是选择题,各题均有四个选项,只有一项符合题目要求。
每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案,选择题的答案不能答在试卷上。
情注意机读答题卡的横竖格式。
一、选择题:(每小题3分,共15分) 1.下列各数中,最大的数是( ) (A )2- (B )0 (C )12(D )32.3x 表示( )(A )3x (B )x x x ++ (C )x x x ⋅⋅ (D )3x + 3.上海“世博会”吸引了来自全球众多国家数以千万的人前来参观.据统计,2010年5月某日参观世博园的人数约为256 000,这一人数用科学记数法表示为( )(A )52.5610⨯ (B )525.610⨯ (C )42.5610⨯ (D )425.610⨯ 4.如图是一个几何体的三视图,则这个几何体的形状是( )(A )圆柱 (B )圆锥 (C )圆台 (D )长方体5.把抛物线2y x =向右平移1个单位,所得抛物线的函数表达式为( ) (A )21y x =+ (B )2(1)y x =+ (C )21y x =- (D )2(1)y x =-6.如图,已知//A B E D ,65ECF ∠= ,则B A C ∠的度数为( ) (A )115 (B )65 (C )60 (D )257.为了解某班学生每天使用零花钱的情况,小红随机调查了15名同学,结果如下表:则这15名同学每天使用零花钱的众数和中位数分别是( )(A )3,3 (B )2,3 (C )2,2 (D )3,5 8.已知两圆的半径分别是4和6,圆心距为7,则这两圆的位置关系是( ) (A )相交 (B )外切 (C )外离 (D )内含9.若一次函数y kx b =+的函数值y 随x 的增大而减小,且图象与y 轴的负半轴相交,那么对k 和b 的符号判断正确的是( )(A )0,0k b >> (B )0,0k b >< (C )0,0k b <> (D )0,0k b <<10.已知四边形A B C D ,有以下四个条件:①//A B C D ;②AB CD =;③//B C A D ;④BC AD =.从这四个条件中任选两个,能使四边形A B C D 成为平行四边形的选法种数共有( )(A )6种 (B )5种 (C )4种 (D )3种二、填空题:(每小题3分,共15分)11.在平面直角坐标系中,点(2,3)A -位于第___________象限.12.若,x y 为实数,且20x ++=,则2010()x y +的值为___________.13.如图,在A B C ∆中,A B 为⊙O 的直径,60,70B C ∠=∠=, 则B O D ∠的度数是_____________度.14.甲计划用若干天完成某项工作,在甲独立工作两天后,乙加入此项工作,且甲、乙两人工效相同,结果提前两天完成任务.设甲计划完成此项工作的天数是x,则x的值是_____________.15.若一个圆锥的侧面积是18π,侧面展开图是半圆,则该圆锥的底面圆半径是___________.三、(第1小题7分,第2小题8分,共15分)16.解答下列各题:(1)计算:()1 021126.330tan6-⎪⎭⎫⎝⎛+--+︒π.(2)若关于x的一元二次方程2420x x k++=有两个实数根,求k的取值范围及k的非负整数值.四、(第17题8分,第18题10分,共18分)17.已知:如图,A B与⊙O相切于点C,O A O B=,⊙O的直径为4,8AB=.(1)求O B的长;(2)求sin A的值.18.如图,已知反比例函数kyx=与一次函数y x b=+的图象在第一象限相交于点(1,4)A k-+.(1)试确定这两个函数的表达式;(2)求出这两个函数图象的另一个交点B的坐标,并根据图象写出使反比例函数的值大于一次函数的值的x的取值范围.五、(第19题10分,第20题12分,共22分)19.某公司组织部分员工到一博览会的A B C D E、、、、五个展馆参观,公司所购门票种类、数量绘制成的条形和扇形统计图如图所示.请根据统计图回答下列问题:(1)将条形统计图和扇形统计图在图中补充完整;(2)若A馆门票仅剩下一张,而员工小明和小华都想要,他们决定采用抽扑克牌的方法来确定,规则是:“将同一副牌中正面分别标有数字1,2,3,4的四张牌洗匀后,背面朝上放置在桌面上,每人随机抽一次且一次只抽一张;一人抽后记下数字,将牌放回洗匀背面朝上放置在桌面上,再由另一人抽.若小明抽得的数字比小华抽得的数字大,门票给小明,否则给小华.”请用画树状图或列表的方法计算出小明和小华获得门票的概率,并说明这个规则对双方是否公平.20.已知:在菱形A B C D中,O是对角线B D上的一动点.(1)如图甲,P为线段B C上一点,连接P O并延长交A D于点Q,当O是B D的中点时,求证:OP OQ;(2)如图乙,连结A O 并延长,与D C 交于点R ,与B C 的延长线交于点S .若460,10A D D CB B S ===,∠,求A S 和O R 的长.B 卷(共50分)一、填空题:(每小题4分,共20分)21.设1x ,2x 是一元二次方程2320x x --=的两个实数根,则2211223x x x x ++的值为__________________.22.如图,在A B C ∆中,90B ∠= ,12m m AB =,24m m B C =,动点P 从点A 开始沿边A B 向B 以2m m /s 的速度移动(不与点B 重合),动点Q 从点 B 开始沿边B C 向C 以4m m /s 的速度移动(不与点C 重合).如果P 、Q 分别从A 、B 同时出发,那么经过_____________秒,四边形APQC 的面积最小.23.有背面完全相同,正面上分别标有两个连续自然数,1k k +(其中0,1,2,,19k = )的卡片20张.小李将其混合后,正面朝下放置在桌面上,并从中随机地抽取一张,则该卡片上两个数的各位数字之和(例如:若取到标有9,10的卡片,则卡片上两个数的各位数字之和为91010++=)不小于14的概率为_________________.24.已知n 是正整数,111222(,),(,),,(,),n n n P x y P x y P x y 是反比例函数k y x=图象上的一列点,其中121,2,,,n x x x n === .记112A xy =,223A x y =,1n n n A x y += ,,若1A a =(a 是非零常数),则A 1·A 2·…·A n 的值是________________________(用含a 和n 的代数式表示).25.如图,A B C ∆内接于⊙O ,90,B AB BC ∠== ,D 是⊙O 上与点B 关于圆心O 成中心对称的点,P 是B C 边上一点,连结A D D C A P 、、.已知8A B =, 2C P =,Q 是线段A P 上一动点,连结BQ 并延长交四边形A B C D 的一边于点R ,且满足AP BR =,则 BQ Q R的值为_______________.二、(共8分)26.随着人们经济收入的不断提高及汽车产业的快速发展,汽车已越来越多地进入普通家庭,成为居民消费新的增长点.据某市交通部门统计,2007年底全市汽车拥有量为180万辆,而截止到2009年底,全市的汽车拥有量已达216万辆.(1)求2007年底至2009年底该市汽车拥有量的年平均增长率;(2)为保护城市环境,缓解汽车拥堵状况,该市交通部门拟控制汽车总量,要求到2011年底全市汽车拥有量不超过231.96万辆;另据估计,从2010年初起,该市此后每年报废的汽车数量是上年底汽车拥有量的10%.假定每年新增汽车数量相同,请你计算出该市每年新增汽车数量最多不能超过多少万辆.三、(共10分)27.已知:如图,A B C ∆内接于⊙O ,A B 为直径,弦C E A B ⊥于F ,C 是AD 的中点,连结B D 并延长交E C 的延长线于点G ,连结A D ,分别交C E 、B C 于点P 、Q . (1)求证:P 是ACQ ∆的外心; (2)若3tan ,84A B C C F ∠==,求CQ 的长;(3)求证:2()FP PQ FP FG += .⌒四、(共12分)28.在平面直角坐标系xOy 中,抛物线2y ax bx c =++与x 轴交于A B 、两点(点A 在点B 的左侧),与y 轴交于点C ,点A 的坐标为(30)-,,若将经过A C 、两点的直线y k x b =+沿y 轴向下平移3个单位后恰好经过原点,且抛物线的对称轴是直线2x =-.(1)求直线A C 及抛物线的函数表达式;(2)如果P 是线段A C 上一点,设A B P ∆、B P C ∆的面积分别为ABP S ∆、BPC S ∆,且:2:3ABP BPC S S ∆∆=,求点P 的坐标;(3)设⊙Q 的半径为l ,圆心Q 在抛物线上运动,则在运动过程中是否存在⊙Q 与坐标轴相切的情况?若存在,求出圆心Q 的坐标;若不存在,请说明理由.并探究:若设⊙Q 的半径为r ,圆心Q 在抛物线上运动,则当r 取何值时,⊙Q 与两坐轴同时相切?成都市2010年中考数学答案一、选择题:(每小题3分,共30分) ⒈D ⒉C ⒊A ⒋B ⒌D⒍B⒎B⒏A⒐D⒑C二、填空题:(每小题3分,共15分) ⒒ 四; ⒓ 1; ⒔ 100; ⒕ 6; ⒖ 3 三、(第1小题7分,第2小题8分,共15分)16..(1)解:原式=6123⨯+-=3(2)解:∵关于x 的一元二次方程2420x x k ++=有两个实数根, ∴△=244121680k k -⨯⨯=-≥ 解得2k ≤∴k 的非负整数值为0,1,2。
2024年四川省成都市锦江区中考数学二诊试卷一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1.(4分)某植物种子发芽的最适宜温度是,如果低于最适宜发芽温度记作,那么高于最适宜发芽温度应该记作 A .B .C .D .2.(4分)如图是由六个相同的小正方体搭成的几何体,这个几何体从正面看到的图形是 A .B .C .D .3.(4分)2024年2月,中国载人月球探测任务新飞行器名称已经确定,新一代载人飞船命名为“梦舟”,月面着陆器命名为“揽月”,中国探月工程正向新的目标迈进.已知地球与月球之间的平均距离大约是384000千米,数据384000用科学记数法表示为 A .B .C .D .4.(4分)下列运算正确的是 A .B .C .D .5.(4分)《义务教育课程标准年版)》首次把学生学会炒菜纳入劳动教育课程,并作出明确规定.某班有7名学生已经学会炒的菜品的种数依次为:2,4,3,2,5,2,3.则这组数据的众数和中位数分别是 A .2,2B .2,2.5C .2,3D .3,36.(4分)如图,为了估算河的宽度,小明采用的办法是:在河的对岸选取一点,在近岸取点,,26C ︒1C ︒1C ︒-0.5C ︒()0.5C ︒0.5C ︒-26.5C ︒26.5C︒-()()50.38410⨯60.38410⨯53.8410⨯63.8410⨯()224527a a a +=326(3)9x x -=623422a a a ÷=222()a b a ab b -=-+(2022()A D B使得,,在一条直线上,且与河的边沿垂直,然后又在垂直于的直线上取点,并测得,.如果,则河宽为 A .B .C .D .7.(4分)明代数学家程大位的《算法统宗》中有这样一个问题:隔墙听得客分银,不知人数不知银;七两分之多四两,九两分之少半斤.其大意为:有一群人分银子,如果每人分七两,则剩余四两;如果每人分九两,则还差八两,问有多少人,多少银两(注:明代当时1斤两,故有“半斤八两”这个成语).设有人,银子有两,可列方程组是 A .B .C .D .8.(4分)如图,抛物线的部分图象如图所示,与轴的一个交点坐标为,抛物线的对称轴是直线.下列结论正确的是 A .B .C .关于的方程没有实数根D .若点在该抛物线上,则A D B DE AB C 15BD m =40BC m =30DE m =AD ()30m 35m 40m 45m16=x y ()7498x y x y =-⎧⎨=+⎩7498x y x y =+⎧⎨=-⎩4789y x y x ⎧=-⎪⎪⎨⎪=+⎪⎩4789y x y x ⎧=+⎪⎪⎨⎪=-⎪⎩2(0)y ax bx c a =++≠x (4,0)1x =()abc >420a b c -+>x 22ax bx c ++=(,)P m n 2am bm c a b c++++…二、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)9.(4分)分解因式: .10.(4分)已知关于的一元二次方程有两个相等的实数根,则的值为 .11.(4分)如图,在菱形中,,分别是,上的点,且,连接,.若,,则的大小为 .12.(4分)如图,正比例函数的图象与反比例函数的图象交于,两点,若点的坐标为,则关于的不等式的解集为 .13.(4分)如图,在中,按以下步骤操作:①分别以点和为圆心,以大于的长为半径作弧,两弧相交于点和;②以点为圆心,以任意长为半径作弧,分别交,于点,;③分别以,为圆心,以大于的长为半径作弧,两弧交于点;④作射线,交直线于点,连接.若,,则 .三、解答题(本大题共5个小题,共48分,解答过程写在答题卡上)14.(12分)(1;(2)解不等式组:.24x y y -=x 22470x x a ++-=a ABCD E F AB BC BE BF =DE DF 140ADC ∠=︒50CDF ∠=︒EDF ∠1y k x =2k y x=A B A (1,2)-x 21k k x x >ABC ∆B C 12BC M N C AC BC E F E F 12EF O CO MN P BP 110BAC ∠=︒7ABP ∠=︒PBC ∠=201tan 60()(3π-︒+---523(1)131722x x x x +>-⎧⎪⎨-≤-⎪⎩15.(8分)“岁岁春草生,踏青二三月”,又到了阳光明媚,适合春季研学的季节.某校数学实践小组就春季研学地点进行了调研:“:非遗博览园;:武侯祠;:杜甫草堂;:大熊猫繁育基地;:金沙遗址博物馆”.实践小组随机抽取了部分同学进行“春季研学最想去的地点”(每人必选且只选一个地点)调查,根据调查结果绘制了如图所示的两幅不完整的统计图.请结合统计图中的信息,解决下列问题:(1)数学实践小组在这次活动中,调查的学生共有 人,在扇形统计图中,地点所对应的圆心角是 度;(2)补全“春季研学最想去的地点统计图”中的条形统计图;(3)若要选出两名研学小组组长,有两名男同学和两名女同学报名,为保证公平决定采取抽签方式抽取两名组长,请用列表或画树状图的方法,求恰好抽到一名男同学和一名女同学担任组长的概率.16.(8分)如图,为了测量山坡的护坡石坝坝顶与坝脚之间的距离,把一根长为6米的竹竿斜靠在石坝旁,量出竿长1米处距离地面的高度为0.6米,又测得石坝与地面的倾斜角为.求石坝坝顶与坝脚之间的距离.(结果精确到,参考数据:,,17.(10分)如图,在中,以边为直径作,交于点,交的延长线于点,连接交于点,且.(1)求证:;(2)如图1,若,求的值;A B C D E D C B AC α72︒C B 0.1m sin 720.95︒≈cos720.31︒≈tan 72 3.08)︒≈ABC ∆AB O BC D CA E DE AB F DE DC =BD DC =23EF FD =EA AC(3)如图2,若,求阴影部分的面积.18.(10分)如图,已知一次函数的图象与反比例函数的图象交于点和点.(1)求反比例函数的表达式及点的坐标;(2)连接,,点为反比例函数图象第一象限上一点,连接,,若,求点的坐标;(3)已知为轴上一点,作直线关于点中心对称的直线,交反比例函数的图象于点,,若,求的值.一、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)19.(4分)若,则的值为 .20.(4分)如图,将沿方向平移得到,随机在与组成的图形中取点,取到重叠部分(图中阴影部分)的概率为.若,则平移的距离为 .21.(4分)如图,在的正方形网格中,每个小正方形的顶点叫做格点.直线经过格点,,直3EF FD ==23y x =+k y x=(1,)A a B B AO BO P AP BP 2ABP ABO S S ∆∆=P (,0)T t x AB T CD E F EF =t 10m n +=11(2)()n m m n m n++÷+ABC ∆BC DEF ∆ABC ∆DEF ∆176BF =ABC ∆108⨯l A B线经过格点,,直线经过格点,.点,分别在直线,上,连接交直线于点,则的值为 .22.(4分)如图,为了提醒司机安全驾驶,要在隧道中安装电子显示屏.已知隧道截面为抛物线型,水平路面宽米,抛物线顶点到距离为12米.根据计划,安装矩形显示屏的高为1米,为了确保行车安全,显示屏底部距离地面至少8米,若距离左右墙壁各留至少1米的维修空间,则该矩形显示屏的宽的最大长度为 米.23.(4分)如图,在等边中,,点是边上一点,且,过点作于点,连接,则 ;点是的中点,连接,过点作交于点,则 .二、解答题(本大题共3个小题,共30分,解答过程写在答题卡上)24.(8分)2024年3月14日是第五个“国际数学日”,某校数学组在今年“日”举行了数学游园活动,购买了一批钢笔和自动铅笔作为奖品.在前期询价时,通过电话询问文具店了解到,钢笔的价格比自动铅笔贵,且花300元购买的自动铅笔比花400元购买的钢笔多10支.(1)求前期电话询问时钢笔和自动铅笔的单价分别为多少?m C D n E F O Q l n OQ m P OP PQ16AB =C AB MNPQ MQ MNPQ QP ABC ∆9BC =D BC 6BD =D DE AB ⊥E AD AD =F AD CF F FG CF ⊥DE G FG =π60%(2)前往文具店购买时,恰逢商家对价格进行了调整:自动铅笔比之前询问时涨价,而钢笔则按之前询问价格的8.5折出售.若学校最终购买了钢笔和自动铅笔共200支,且购买奖品的费用没有超过1250元,则学校最多购买了多少支钢笔作为奖品?25.(10分)如图,二次函数的图象与轴交于点,(点在点的左侧),与轴交于点,二次函数图象的顶点为.(1)若,求顶点的坐标及线段的长;(2)当时,二次函数的最小值为,求的值;(3)连接,,,若,求点的坐标.26.(12分)已知两个矩形,若其中一个矩形的四个顶点分别在另一个矩形的四条边上(顶点不重合),我们称这个矩形为另一个矩形的“衍生矩形”.【模型探究】(1)如图1,矩形是矩形的“衍生矩形”,不连接其它线段,图中有哪几组全等三角形,请写出并任选一组证明;【迁移应用】(2)如图2,在矩形中,,.点在线段上,且,点是边上的动点,连接,以为边作矩形,点在边上,点落在矩形内.连接,,当面积为时,求的长;【拓展延伸】(3)如图3,在矩形中,,.点是的中点,点是边上的动点,连接,以为边作矩形,点在边上,点始终落在矩形内(不含边界).连接,点是的中点,连接,求长的取值范围(用含,的式子表示).20%2221(0)y x mx m m =--->x A B A B y C D 2m =D AB 14x ……6-m AC BC DC ACB BCD ∠=∠C EFGH ABCD ABCD 7AB =8AD =M AD 5AM =N AB MN MN MNPQ P BC Q ABCD CQ DQ CDQ ∆72AN ABCD 2AB a =2()AD b a b =<N AB M AD MN MN MNPQ P BC Q ABCD MP O MP CO CO a b2024年四川省成都市锦江区中考数学二诊试卷参考答案与试题解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1.(4分)某植物种子发芽的最适宜温度是,如果低于最适宜发芽温度记作,那么高于最适宜发芽温度应该记作 A .B .C .D .【解答】解:低于最适宜发芽温度记作,那么高于最适宜发芽温度应该记作,故选:.2.(4分)如图是由六个相同的小正方体搭成的几何体,这个几何体从正面看到的图形是 A .B .C .D .【解答】解:从正面看,共有三列,左边一列是三个小正方形,中间和右边一列分别是一个小正方形.故选:.3.(4分)2024年2月,中国载人月球探测任务新飞行器名称已经确定,新一代载人飞船命名为“梦舟”,月面着陆器命名为“揽月”,中国探月工程正向新的目标迈进.已知地球与月球之间的平均距离大约是384000千米,数据384000用科学记数法表示为 A .B .C .D .【解答】解:.故选:.4.(4分)下列运算正确的是 A .B.26C ︒1C ︒1C ︒-0.5C ︒()0.5C ︒0.5C ︒-26.5C ︒26.5C︒-1C ︒1C ︒-0.5C ︒0.5C ︒+A ()B ()50.38410⨯60.38410⨯53.8410⨯63.8410⨯5384000 3.8410=⨯C ()224527a a a +=326(3)9x x -=C .D .【解答】解:,故错误,不符合题意;,故正确,符合题意;,故错误,不符合题意;,故错误,不符合题意;故选:.5.(4分)《义务教育课程标准年版)》首次把学生学会炒菜纳入劳动教育课程,并作出明确规定.某班有7名学生已经学会炒的菜品的种数依次为:2,4,3,2,5,2,3.则这组数据的众数和中位数分别是 A .2,2B .2,2.5C .2,3D .3,3【解答】解:这组数据2,2,2,3,3,4,5中2出现3次,次数最多,所以这组数据的众数为2,中位数为3.故选:.6.(4分)如图,为了估算河的宽度,小明采用的办法是:在河的对岸选取一点,在近岸取点,,使得,,在一条直线上,且与河的边沿垂直,然后又在垂直于的直线上取点,并测得,.如果,则河宽为 A .B .C .D .【解答】解:,,,,,即:,623422a a a ÷=222()a b a ab b -=-+222527a a a +=A 326(3)9x x -=B 624422a a a ÷=C 222()2a b a ab b -=-+D B (2022()C AD B A D B DE AB C 15BD m =40BC m =30DE m =AD ()30m 35m 40m 45mAB DE ⊥ BC AB ⊥//DE BC ∴ADE ABC ∴∆∆∽∴AD DE AB BC=301540AD AD =+解得:.故选:.7.(4分)明代数学家程大位的《算法统宗》中有这样一个问题:隔墙听得客分银,不知人数不知银;七两分之多四两,九两分之少半斤.其大意为:有一群人分银子,如果每人分七两,则剩余四两;如果每人分九两,则还差八两,问有多少人,多少银两(注:明代当时1斤两,故有“半斤八两”这个成语).设有人,银子有两,可列方程组是 A .B .C .D .【解答】解:如果每人分七两,则剩余四两,;如果每人分九两,则还差八两,.根据题意可列出方程组.故选:.8.(4分)如图,抛物线的部分图象如图所示,与轴的一个交点坐标为,抛物线的对称轴是直线.下列结论正确的是 A .B.45AD m =D 16=x y ()7498x y x y =-⎧⎨=+⎩7498x y x y =+⎧⎨=-⎩4789y x y x ⎧=-⎪⎪⎨⎪=+⎪⎩4789y x y x ⎧=+⎪⎪⎨⎪=-⎪⎩ 74x y ∴=- 98x y ∴=+∴7498x y x y =-⎧⎨=+⎩A 2(0)y ax bx c a =++≠x (4,0)1x =()abc >420a b c -+>C .关于的方程没有实数根D .若点在该抛物线上,则【解答】解:抛物线开口向下,,对称轴在轴的右侧,、异号,,抛物线与轴交于正半轴,,,故错误;抛物线与轴的一个交点坐标为,且抛物线的对称轴是直线,抛物线与轴的另一个交点坐标为,,故错误;由图象可知抛物线与直线有两个交点,关于的方程有两个不相等的实数根,故错误;当时,该函数取得最大值,此时,当点在该抛物线上,此时,,即,故正确;故选.二、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)9.(4分)分解因式: .【解答】解:,x 22ax bx c ++=(,)P m n 2am bm c a b c++++… 0a ∴< y a ∴b 0b ∴> y 0c ∴>0abc ∴<A 2(0)y ax bx c a =++≠x (4,0)1x =∴x (2,0)-420a b c ∴-+=B 2(0)y ax bx c a =++≠2y =∴x 22ax bx c ++=C 1x =y a b c =++(,)A m n 2n am bm c =++2am bm c a b c ∴++++…2am bm a b ++…D D 24x y y -=(2)(2)y x x +-24x y y-2(4)y x =-(2)(2)y x x =+-故答案为:.10.(4分)已知关于的一元二次方程有两个相等的实数根,则的值为 2 .【解答】解:根据题意得△,解得,即的值为2.故答案为:2.11.(4分)如图,在菱形中,,分别是,上的点,且,连接,.若,,则的大小为 .【解答】解:四边形是菱形,,,,,,即,在和中,,;,,故答案为:.12.(4分)如图,正比例函数的图象与反比例函数的图象交于,两点,若点的坐标为,则关于的不等式的解集为 或 .(2)(2)y x x +-x 22470x x a ++-=a 224(47)0a =--=2a =a ABCD E F AB BC BE BF =DE DF 140ADC ∠=︒50CDF ∠=︒EDF ∠40︒ ABCD A C ∴∠=∠AB CB =AD DC =BE BF = AB BE CB BF ∴-=-AE CF =ADE ∆CDF ∆AD CD A C AE CF =⎧⎪∠=∠⎨⎪=⎩()ADE CDF SAS ∴∆≅∆50ADE CDF ∴∠=∠=︒140505040EDF ∴∠=︒-︒-︒=︒40︒1y k x =2k y x =A B A (1,2)-x 21k k x x>1x <-01x <<【解答】解:正比例函数的图象与反比例函数的图象交于,两点,点的坐标为,,关于的不等式的解集为或.故答案为:或.13.(4分)如图,在中,按以下步骤操作:①分别以点和为圆心,以大于的长为半径作弧,两弧相交于点和;②以点为圆心,以任意长为半径作弧,分别交,于点,;③分别以,为圆心,以大于的长为半径作弧,两弧交于点;④作射线,交直线于点,连接.若,,则 .【解答】解:由作图过程可知,直线为线段的垂直平分线,为的平分线,,,.,即,,.故答案为:.三、解答题(本大题共5个小题,共48分,解答过程写在答题卡上)14.(12分)(1;1y k x =2k y x =A B A (1,2)-(1,2)B ∴-∴x 21k k x x>1x <-01x <<1x <-01x <<ABC ∆B C 12BC M N C AC BC E F E F 12EF O CO MN P BP 110BAC ∠=︒7ABP ∠=︒PBC ∠=21︒MN BC CP ACB ∠PB PC ∴=ACP BCP ∠=∠PBC BCP ACP ∴∠=∠=∠180BAC ABC ACB ∠+∠+∠=︒ 180BAC ABP PBC BCP ACP ∠+∠+∠+∠+∠=︒11073180PBC ∴︒+︒+∠=︒21PBC ∴∠=︒21︒201tan 60()(3π-︒+---(2)解不等式组:.【解答】解:(1)原式;(2)由得:,由得:,则不等式组的解集为.15.(8分)“岁岁春草生,踏青二三月”,又到了阳光明媚,适合春季研学的季节.某校数学实践小组就春季研学地点进行了调研:“:非遗博览园;:武侯祠;:杜甫草堂;:大熊猫繁育基地;:金沙遗址博物馆”.实践小组随机抽取了部分同学进行“春季研学最想去的地点”(每人必选且只选一个地点)调查,根据调查结果绘制了如图所示的两幅不完整的统计图.请结合统计图中的信息,解决下列问题:(1)数学实践小组在这次活动中,调查的学生共有 200 人,在扇形统计图中,地点所对应的圆心角是 度;(2)补全“春季研学最想去的地点统计图”中的条形统计图;(3)若要选出两名研学小组组长,有两名男同学和两名女同学报名,为保证公平决定采取抽签方式抽取两名组长,请用列表或画树状图的方法,求恰好抽到一名男同学和一名女同学担任组长的概率.【解答】解:(1)调查的总人数为(人,在扇形统计图中,地点所对应的圆心角为;故答案为:200,36;523(1)131722x x x x +>-⎧⎪⎨-≤-⎪⎩91=+-8=523(1)x x +>-52x >-131722x x --...4x (542)x -<…A B C D E D 6030%200÷=)D 2036036200︒⨯=︒(2)组人数为(人,组人数为(人,条形统计图补充为:(3)画树状图为:共有12种等可能的结果,其中一名男同学和一名女同学的结果数为8种,所以恰好抽到一名男同学和一名女同学担任组长的概率.16.(8分)如图,为了测量山坡的护坡石坝坝顶与坝脚之间的距离,把一根长为6米的竹竿斜靠在石坝旁,量出竿长1米处距离地面的高度为0.6米,又测得石坝与地面的倾斜角为.求石坝坝顶与坝脚之间的距离.(结果精确到,参考数据:,,【解答】解:过点作,垂足为,,,,,,C 20015%30⨯=)A ∴2006030204050----=)82123==C B AC α72︒C B 0.1m sin 720.95︒≈cos720.31︒≈tan 72 3.08)︒≈C CF AB ⊥F 90CFB ∴∠=︒DE AB ⊥ 90AED ∴∠=︒90AED AFC ∴∠=∠=︒DAE CAF ∠=∠,,,解得:,在中,,(米,石坝坝顶与坝脚之间的距离约为3.8米.17.(10分)如图,在中,以边为直径作,交于点,交的延长线于点,连接交于点,且.(1)求证:;(2)如图1,若,求的值;(3)如图2,若,求阴影部分的面积.【解答】(1)证明:如图1,连接,,,,,,是的直径,,,.(2)解:如图1,连接,ADE ACF ∴∆∆∽∴AD DE AC CF =∴10.66CF= 3.6CF =Rt CBF ∆72CBF ∠=︒3.6 3.8sin 720.95CF BC ∴=≈≈︒)∴C B ABC ∆AB O BC D CA E DE AB F DE DC =BD DC =23EF FD =EA AC3EF FD ==AD DE DC = C E ∴∠=∠B E ∠=∠ B C ∴∠=∠AB AC ∴=AB O 90ADB ∴∠=︒AD BC ∴⊥BD DC ∴=OD,,,,,,,,,,的值为.(3)解:如图2,连接,,则,是的直径,且,,,由(2)得,,,垂直平分,,是等边三角形,,,,,阴影部分的面积是BD DC = BO OA =//OD AC ∴12OD AC =//AE OD AEF ODF ∴∆∆∽∴23EA EF OD FD ==32OD EA ∴=∴3122EA AC =∴13EA AC =∴EA AC 13OD AD OD OA =AB O 3EF FD ==AB DE ∴⊥90OFD ∴∠=︒AEF ODF ∆∆∽∴1AF EF OF FD==1122OF AF OA OD ∴===DE ∴OA AD OA OD ∴==AOD ∴∆60AOD ∴∠=︒180120BOD AOD ∴∠=︒-∠=︒3FD ==== OB OD ∴==1342BOD BOD S S S π∆∴=-=-⨯=-阴影扇形∴4π-18.(10分)如图,已知一次函数的图象与反比例函数的图象交于点和点.(1)求反比例函数的表达式及点的坐标;(2)连接,,点为反比例函数图象第一象限上一点,连接,,若,求点的坐标;(3)已知为轴上一点,作直线关于点中心对称的直线,交反比例函数的图象于点,,若,求的值.【解答】解:(1)把点代入中得,,点,把点代入得,,反比例函数的表达式为,23y x =+k y x=(1,)A a B B AO BO P AP BP 2ABP ABO S S ∆∆=P (,0)T t x AB T CD E F EF =t (1,)A a 23y x =+235a =+=∴(1,5)A (1,5)A k y x=5k =∴5y x =由,得或,,;(2)延长,交反比例函数的图象于点,则,,,点与点重合,,,,,,,作,交轴于,设直线为,把,代入得,,解得,直线为,由一次函数可知,,将直线向上平移6个单位得到,235y x y x =+⎧⎪⎨=⎪⎩15x y =⎧⎨=⎩522x y ⎧=-⎪⎨⎪=-⎩5(2B ∴-2)-BO k y x =C OB OC =2ABC ABO S S ∆∆∴=2ABP ABO S S ∆∆= P ∴C 5(2B - 2)-5(2C ∴2)5(2P ∴2)//CD AB y D CD 2y x b =+5(2C 2)25b =+3b =-∴CD 23y x =-23y x =+(0,3)E 6DE ∴=23y x =+29y x =+由解得或,,,综上,点的坐标为,或,;(3)设直线为,则,,,,由消去得,,整理得,,是方程的两个根,,,,,295y x y x =+⎧⎪⎨=⎪⎩1210x y ⎧=⎪⎨⎪=⎩51x y =-⎧⎨=-⎩1(2P ∴10)P 5(22)1(210)CD 2y x b =+1(E x 22)x b +2(F x 22)x b +25y x b y x =+⎧⎪⎨=⎪⎩y 52x b x +=2250x bx +-=1x ∴2x 2250x bx +-=122b x x ∴+=-1252x x =-EF ∴===== EF =∴=,直线为,令,则,由可知直线与轴的交点为,,,,的值为一、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)19.(4分)若,则的值为 10 .【解答】解:;故答案为:10.20.(4分)如图,将沿方向平移得到,随机在与组成的图形中取点,取到重叠部分(图中阴影部分)的概率为.若,则平移的距离为 2 .【解答】解:由平移可得,,,,,,∴210164b +=b ∴=±∴CD 2y x =±0y =x =23y x =+23y x =+x 3(2-0)3(4T ∴-0)t ∴34-34-10m n +=11(2)()n m m n m n ++÷+11(2)()n m m n m n++÷+222n m mn n m mn mn+++=÷2()m n mn mn m n+=⋅+m n=+10=ABC ∆BC DEF ∆ABC ∆DEF ∆176BF =ABC ∆//DE AB BE CF =ABC GEC ∴∆∆∽∴21()4GEC ABC S EC S BC ∆∆==∴12CE BC =设,,,,,解得,,故平移的距离为2.21.(4分)如图,在的正方形网格中,每个小正方形的顶点叫做格点.直线经过格点,,直线经过格点,,直线经过格点,.点,分别在直线,上,连接交直线于点,则的值为 .【解答】解:取格点、、,连接交直线于点,连接、,,,,,,,,连接、、、,则四边形和四边形都是平行四边形,,,,∴CE x =2BC x =2BE CF x x x ∴==-=6BF = 26x x ⨯+=2x =2BE CF ∴==ABC ∆108⨯l A B m C D n E F O Q l n OQ m P OP PQ 54H L K AE m I CH DL //CH DL CHI DLI ∴∆∆∽∴12HI CH LI DL ==13HI ∴=23LI =110333AI ∴=+=28233IE =+=AC KD EC FD AKDC CDFE ////AK CD EF ∴////l m n ∴∴1053843OP AI PQ IE===故答案为:.22.(4分)如图,为了提醒司机安全驾驶,要在隧道中安装电子显示屏.已知隧道截面为抛物线型,水平路面宽米,抛物线顶点到距离为12米.根据计划,安装矩形显示屏的高为1米,为了确保行车安全,显示屏底部距离地面至少8米,若距离左右墙壁各留至少1米的维修空间,则该矩形显示屏的宽的最大长度为 6 米.【解答】解:由题意,如图,建立平面直角坐标系.由顶点为,可设抛物线的解析式为.又,.5416AB =C AB MNPQ MQ MNPQ QP C (0,12)∴212y mx =+(8,0)B 06412m ∴=+.抛物线为.显示屏底部距离地面至少8米,令..或..又显示屏两侧留1米,(米,此时是最大值.故答案为:6.23.(4分)如图,在等边中,,点是边上一点,且,过点作于点,连接,则 是的中点,连接,过点作交于点,则 .【解答】解:,,,,,,,在中,由勾股定理得:.点是的中点,,过点作于,过点作于,过点作于,延长交于,316m ∴=-∴231216y x =-+ ∴819y =+=2391216x ∴=-+4x ∴=4x =-(4,9)D ∴2(41)6PQ MN ∴==⨯-=)ABC ∆9BC =D BC 6BD =D DE AB ⊥E AD AD =F AD CF F FG CF ⊥DE G FG =6BD = 60B ∠=︒90BED ∠=︒3BE ∴=ED =9AB BC AC === 936AE ∴=-=Rt AED ∆AD === F AD 12FD AD ∴==A AL BC ⊥L F FH BC ⊥H G GK BC ⊥K FG BC P是等边三角形,,,,,,,,,,即,,,,,,,,,,,,设,则,,,,,,,即,解得:ABC ∆ 9BC =1922BL CL BC ∴===AL =93622DL BD BL ∴=-=-=FH BC ⊥ AL BC ⊥//FH AL ∴DFH DAL ∴∆∆∽∴DH FH DF DL AL AD ==1322DH =34DH ∴=FH =315344CH CD DH ∴=+=+=CF ∴==90CFP CHP ∠=∠=︒ PCF FCH ∠=∠CPF CFH ∴∆∆∽∴FP CP CF FH CF CH ====FP ∴=395CP =3915815420PH CP CH ∴=-=-=3924355DP CP CD =-=-=GK x =22DG GK x ==DK =245PK DP DK ∴=-=//GK FH PGK PFH ∴∆∆∽∴GK PK FH PH=GK PH PK FH ∴⋅=⋅8124()205x =-x =,,,.二、解答题(本大题共3个小题,共30分,解答过程写在答题卡上)24.(8分)2024年3月14日是第五个“国际数学日”,某校数学组在今年“日”举行了数学游园活动,购买了一批钢笔和自动铅笔作为奖品.在前期询价时,通过电话询问文具店了解到,钢笔的价格比自动铅笔贵,且花300元购买的自动铅笔比花400元购买的钢笔多10支.(1)求前期电话询问时钢笔和自动铅笔的单价分别为多少?(2)前往文具店购买时,恰逢商家对价格进行了调整:自动铅笔比之前询问时涨价,而钢笔则按之前询问价格的8.5折出售.若学校最终购买了钢笔和自动铅笔共200支,且购买奖品的费用没有超过1250元,则学校最多购买了多少支钢笔作为奖品?【解答】解:(1)设前期电话询问时自动铅笔的单价是元,则自钢笔的单价是元,根据题意得:,解得:,经检验,是所列方程的解,且符合题意,(元.答:前期电话询问时钢笔的单价是8元,自动铅笔的单价是5元;(2)设学校购买了支钢笔作为奖品,则购买了支自动铅笔,根据题意得:,解得:,GK ∴=24955PK ==PG ∴===FG FP PG ∴=-==π60%20%x (160%)x +30040010(160%)x x-=+5x =5x =(160%)(160%)58x ∴+=+⨯=)y (200)y -5(120%)(200)80.851250y y ⨯+-+⨯ (1252)y …又为正整数,的最大值为62.答:学校最多购买了62支钢笔作为奖品.25.(10分)如图,二次函数的图象与轴交于点,(点在点的左侧),与轴交于点,二次函数图象的顶点为.(1)若,求顶点的坐标及线段的长;(2)当时,二次函数的最小值为,求的值;(3)连接,,,若,求点的坐标.【解答】解:(1)当时,抛物线的表达式为:,则抛物线的顶点坐标为:;令,则或5,即;(2)由抛物线的表达式知,其对称轴为直线,当时,,同理可得:时,,当时,;当时,函数在时取得最小值,即,解得:(舍去);当时,y y ∴2221(0)y x mx m m =--->x A B A B y C D 2m =D AB 14x ……6-m AC BC DC ACB BCD ∠=∠C 2m =245y x x =--D (2,9)-2450y x x =--=1x =-6AB =x m =1x =22214y x mx m m =---=-4x =1510y m =-x m =221y m m =---4m …4x =15106m -=-2.1m =1m …函数在时取得最小值,即,解得:(舍去);当时,函数在时取得最小值,即,解得:;综上,(3)由抛物线的表达式知,点、、、的坐标分别为、、、,则直线的表达式为:,的表达式为:,过点作交的延长线于点,则直线的表达式为:,联立和的表达式得:,解得:,则点,由中点坐标公式得点的坐标为:,将点的坐标代入得表达式得:,解得:(舍去)或,则点.1x =46m -=-1.5m =14m <<x m =2621m m -=---1m =-1m =-A B C D (1,0)-(21,0)m +(0,21)m --2(,21)m m m ---BC 21y x m =--CD 21y mx m =---A AH BC ⊥CD H AH 1y x =-+AH BC 211x m x --=-+x m =(,1)N m m --H (21,22)m m +--H DC 22(21)21m m m m --=-+--1m =-12(0,2)C -26.(12分)已知两个矩形,若其中一个矩形的四个顶点分别在另一个矩形的四条边上(顶点不重合),我们称这个矩形为另一个矩形的“衍生矩形”.【模型探究】(1)如图1,矩形是矩形的“衍生矩形”,不连接其它线段,图中有哪几组全等三角形,请写出并任选一组证明;【迁移应用】(2)如图2,在矩形中,,.点在线段上,且,点是边上的动点,连接,以为边作矩形,点在边上,点落在矩形内.连接,,当面积为时,求的长;【拓展延伸】(3)如图3,在矩形中,,.点是的中点,点是边上的动点,连接,以为边作矩形,点在边上,点始终落在矩形内(不含边界).连接,点是的中点,连接,求长的取值范围(用含,的式子表示).【解答】解:(1)图中全等三角形有:,.选进行证明,证明:如图1,四边形、是矩形,,,,,EFGH ABCD ABCD 7AB =8AD =M AD 5AM =N AB MN MN MNPQ P BC Q ABCD CQ DQ CDQ ∆72AN ABCD 2AB a =2()AD b a b =<N AB M AD MN MN MNPQ P BC Q ABCD MP O MP CO CO a b AEF CGH ∆≅∆BFG DHE ∆≅∆AEF CGH ∆≅∆ ABCD EFGH 90A B C EFG FGH ∴∠=∠=∠=∠=∠=︒EF GH =90AEF AFE AFE BFG BFG BGF BGF CGH ∴∠+∠=∠+∠=∠+∠=∠+∠=︒AEF CGH ∴∠=∠;选进行证明,证明:四边形、是矩形,,,,,;(2)如图2,过点作于,于,则,四边形、是矩形,,,,,,,,,,,,,四边形是矩形,()AEF CGH AAS ∴∆≅∆BFG DHE ∆≅∆ ABCD EFGH 90A B D EFG FEH ∴∠=∠=∠=∠=∠=︒EH FG =90AEF AFE AFE BFG BFG BGF AEF DEH ∴∠+∠=∠+∠=∠+∠=∠+∠=︒BGF DEH ∴∠=∠()BFG DHE AAS ∴∆≅∆Q QK CD ⊥K QL BC ⊥L 90QKC QLC QLP ∠=∠=∠=︒ ABCD MNPQ 90A B BCD MNP NPQ ∴∠=∠=∠=∠=∠=︒8BC AD ==7CD AB ==MN PQ =90AMN ANM ANM BNP BNP BPN BPN LPQ ∴∠+∠=∠+∠=∠+∠=∠+∠=︒AMN LPQ ∴∠=∠()AMN LPQ AAS ∴∆≅∆5AM LP ∴==AN QL =17722CDQ S QK ∆=⨯⋅= 1QK ∴=90QKC BCD QLC ∠=∠=∠=︒ ∴CKQL,,,,,,即,或5;(3)当点落在边上时,此时,最小,如图3,连接,过点作于,四边形是矩形,经过点,且,,,当点落在矩形的内部,且时,此时最大,如图4,则1CL QK ∴==8512BP BC LP CL ∴=--=--=A B ∠=∠ AMN BNP ∠=∠AMN BNP ∴∆∆∽∴AN AM BP BN =527AN AN=-2AN ∴=Q CD OC NQ O OT BC ⊥T MNPQ NQ ∴O 111222MO NO MP NQ AD b =====CT b ∴=OT a =OC ∴=Q ABCD AM AN a ==OC OC ==CO ∴OC <…。
2020年成都中考数学试题A 卷(共100分)第I 卷(选择题,共30分)一、选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1. -2的绝对值是(A) -2 (B) 1 (C) 2 (D)122.如图所示的几何体是由4个大小相同的小立方块搭成,其左视图是3.2020 年6月23日,北斗三号最后一颗全球组网卫星在西昌卫星发射中心成功发射并顺利进入预定轨道它的稳定运行标志着全球四大卫星导航系统之一的中国北斗卫星导航系统全面建成。该卫星距离地面约36000千米,将数据36000用科学记数法表示为 ()3A 3.610⨯ 4()3.610B ⨯ 5()3.610C ⨯ 4()3610D ⨯4.在平面直角坐标系中将点P(3,2)向下平移2个单位长度得到的点的坐标是(A) (3,0) (B) (1,2) (C) (5,2) (D) (3,4)5.下列计算正确的是()325A a b ab += 326()B a a a ⋅=3262()()C a b a b -= 233()D a b a b ÷=6.成都是国家历史文化名城,区域内的都江堰、武侯祠、杜甫草堂、金沙遗址、青羊宫都有深厚的文化底蕴。某班同学分小组到以上五个地方进行研学旅行,人数分别为:12 ,5,11,5,7(单位:人) ,这组数据的众数和中位数分别是(A)5人,7人 (B) 5人,11人 (C) 5人,12人 (D) 7人,11人7.如图,在△ABC 中,按以下步骤作图:①分别以点B 和C 为圆心,以大于12BC 的长为半径作弧,两弧相交于点M 和N;②作直线MN交AC 于点D,连接BD.若AC=6,AD=2,则BD 的长为(A) 2 (B) 3 (C) 4 (D) 68.已知x=2是分式方程311k x x x -+=-的解,那么实数k 的值为 (A) 3 (B)4 (C) 5 (D) 69. 如图,直线123////,l l l 直线AC 和DF 被123,,l l l 所截,AB=5, BC=6,EF=4,则DE 的长为(A) 2 (B) 3(C) 4 10()3D 10.关于二次函数228y x x =+-,下列说法正确的是(A)图象的对称轴在y 轴的右侧(B)图象与y 轴的交点坐标为(0,8)(C)图象与x 轴的交点坐标为(-2 ,0)和(4,0)(D)y 的最小值为-9第II 卷(非选择题,共70分)二、填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上)11.分解因式:23x x += ______.12.一次函数y=(2m-1)x + 2的值随x 值的增大而增大,则常数m 的取值范围为________.13.如图,A,B,C 是⊙O 上的三个点,∠AOB=50°,∠B=55° ,则∠A 的度数为_______.14.《九章算术》是我国古代一部著名的算书,它的出现标志着中国古代数学形成了完整的体系。其中卷八方程【七】中记载:“今有牛五、羊二,直金十两.牛二、羊五,直金八两.牛、羊各直金几何?”题目大意是:5头牛、2只羊共值金10两.2头牛5只羊共值金8两.每头牛、每只羊各值金多少两?设1头牛值金x 两,1只羊值金y 两,则可列方程组为______.三、解答题(本大题共6个小题,共54分,解答过程写在答题卡上)15.(本小题满分12分,每题6分)(1)计算: 212sin 60()|22︒-++ (2)解不等式组:4(1)2,21 1.3x x x x -≥+⎧⎪⎨+>-⎪⎩②①16. (本小题满分6分)先化简,再求值:212(1)39x x x +-÷+-,其中3x =17. (本小题满分8分)2021年,成都将举办世界大学生运动会,这是在中国西部第一次举办的世界综合性运动会。目前,运动会相关准备工作正在有序进行,比赛项目已经确定。某校体育社团随机调查了部分同学在田径、跳水、篮球、游泳四种比赛项目中选择一种观看的意愿,并根据调查结果绘制成了如下两幅不完整的统计图。根据以上信息,解答下列问题:(1)这次被调查的同学共有______人;(2)扇形统计图中“篮球”对应的扇形圆心角的度数为____.(3)现拟从甲、乙、丙、丁四人中任选两名同学担任大运会志愿者,请利用画树状图或列表的方法,求恰好选中甲、乙两位同学的概率。18. (本小题满分8分)成都“339”电视塔作为成都市地标性建筑之一,现已成为外地游客到成都旅游打卡的网红地。如图,为测量电视塔观景台A 处的高度,某数学兴趣小组在电视塔附近一建筑物楼顶D 处测得塔A 处的仰角为45° ,塔底部B 处的俯角为22°.已知建筑物的高CD 约为61米,请计算观景台的高AB 的值.(结果精确到1米;参考数据:sin22°≈0.37 ,cos22°≈0.93 ,tan22°≈0.40)19. (本小题满分10分)在平面直角坐标系xOy 中,反比例函数(0)m y x x=>的图象经过点A(3,4) ,过点A 的直线y=kx+b 与x 轴、y 轴分别交于B,C 两点。(1)求反比例函数的表达式;(2)若△AOB 的面积为△BOC 的面积的2倍,求此直线的函数表达式。20. (本小题满分10分)如图,在△ABC 的边BC 上取一点O,以O 为圆心,OC 为半径画⊙O, ⊙O 与边AB 相切于点D,AC=AD,连接OA 交⊙O 于点E,连接CE ,并延长交线段AB 于点F.(1)求证:AC 是⊙O 的切线;(2)若AB=10,tanB=43,求⊙O 的半径; (3)若F 是AB 的中点,试探究BD+CE 与AF 的数量关系并说明理由。B 卷(共50分)一、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)21.已知a =7-3b,则代数式2269a ab b ++的值为______.22.关于x 的一元二次方程232402x x m -+-=有实数根,则实数m 的取值范围是___.23.如图,六边形ABCDEF 是正六边形,曲线111111FA B C D E F ⋅⋅⋅叫做“正六边形的渐开线”,11111111111,,,,,FA A B B C C D D E E F …的圆心依次按A,B,C,D,E,F 循环,且每段弧所对的圆心角均为正六边形的一个外角.当AB=1时,曲线111111FA B C D E F 的长度是____.24.在平面直角坐标系xOy 中,已知直线y=mx (m> 0)与双曲线4y x=交于A,C 两点(点A 在第一象限),直线y=nx(n<0)与双曲线1y=-交于B,D两点。当这两条直线互相垂直,且四边形ABCD的x周长为时,点A的坐标为___.25.如图,在矩形ABCD中,AB=4,BC=3,E,F分别为AB,CD边的中点.动点P从点E出发沿EA向点A运动,同时,动点Q从点F出发沿FC向点C运动,连接PQ,过点B作BH⊥PQ于点H,连接DH.若点P 的速度是点Q的速度的2倍,在点P从点E运动至点A的过程中,线段PQ长度的最大值为_____,线段DH长度的最小值为____.二、解答题(本大题共3个小题,共30分,解答过程写在答题卡上)26. (本小题满分8分)在“新冠”疫情期间,全国人民“众志成城,同心抗疫”,某商家决定将一个月获得的利润全部捐赠给社区用于抗疫。已知商家购进一批产品,成本为10元/件,拟采取线上和线下两种方式进行销售。调查发现,线下的月销量y(单位:件)与线下售价x(单位:元/件,12≤x<24)满足一次函数的关系,部分数据如下表:(1)求y与x的函数关系式;(2)若线上售价始终比线下每件便宜2元,且线上的月销量固定为400件.试问:当x为多少时,线上和线下月利润总和达到最大?并求出此时的最大利润.27. (本小题满分10分)在矩形ABCD的CD边上取一点E,将△BCE沿BE翻折,使点C 恰好落在AD边上点F处.(1)如图1,若BC=2BA,求∠CBE 的度数;(2)如图2,当AB=5,且AF·FD= 10时,求BC 的长;(3)如图3,延长EF,与∠ABF 的角平分线交于点M , BM 交AD 于点N,当NF=AN+FD 时,求AB BC的值.28. (本小题满分12分)在平面直角坐标系xOy 中,已知抛物线2y ax bx c =++与x 轴交于A(-1 ,0),B(4,0)两点,与y 轴交于点C(0,-2).(1)求抛物线的函数表达式;(2)如图1,点D 为第四象限抛物线上一点,连接AD,BC 交于点E,连接BD,记△BDE 的面积为1,S △ABE 的面积为2,S 求12S S 的最大值;(3)如图2,连接AC,BC,过点O 作直线l//BC,点P,Q 分别为直线l 和抛物线上的点.试探究:在第一象限是否存在这样的点P,Q,使△PQB ∽△CAB.若存在,请求出所有符合条件的点P 的坐标;若不存在,请说明理由.。
湖北省十堰市2024年中考数学试卷参考答案与试题解析一、选择题:(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请把正确选项的字母填涂在答题卡中相应的格子内.1.(3分)(2024•十堰)3的倒数是()C.3D.﹣3A.B.﹣考点:倒数.分析:依据倒数的定义可知.解答:解:3的倒数是.故选A.点评:主要考查倒数的定义,要求娴熟驾驭.须要留意的是:倒数的性质:负数的倒数还是负数,正数的倒数是正数,0没有倒数.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.(3分)(2024•十堰)如图,直线m∥n,则∠α为()A.70°B.65°C.50°D.40°考点:平行线的性质.分析:先求出∠1,再依据平行线的性质得出∠α=∠1,代入求出即可.解答:解:∠1=180°﹣130°=50°,∵m∥n,∴∠α=∠1=50°,故选C.点评:本题考查了平行线的性质的应用,留意:两直线平行,同位角相等.3.(3分)(2024•十堰)在下面的四个几何体中,左视图与主视图不相同的几何体是()A.正方体B.长方体C.球D.圆锥考点:简洁几何体的三视图分析:主视图、左视图是分别从物体正面、左面看,所得到的图形.解答:解:A、正方体的左视图与主视图都是正方形,故此选项不合题意;B、长方体的左视图与主视图都是矩形,但是矩形的不一样,故此选项符合题意;C、球的左视图与主视图都是圆,故此选项不合题意;D、圆锥左视图与主视图都是等腰三角形,故此选项不合题意;故选:B.点评:本题考查了几何体的三种视图,驾驭定义是关键.留意全部的看到的棱都应表现在三视图中.4.(3分)(2024•十堰)下列计算正确的是()A.﹣=B.=±2 C.a6÷a2=a3D.(﹣a2)3=﹣a6考点:同底数幂的除法;实数的运算;幂的乘方与积的乘方分析:依据二次根式的运算法则推断,开算术平方根,同底数幂的除法及幂的乘方运算.解答:解:A、不是同类二次根式,不能合并,故选项错误;B、=2≠±2,故选项错误;C、a6÷a2=a4≠a3,故选项错误;D、(﹣a2)3=﹣a6正确.故选:D.点评:本题主要考查了二次根式的运算法则推断,开算术平方根,同底数幂的除法及幂的乘方运算.熟记法则是解题的关键.5.(3分)(2024•十堰)为了调查某小区居民的用水状况,随机抽查了若干户家庭的月用水月用水量(吨)3 4 5 8户数 2 3 4 1A.众数是4 B.平均数是4.6C.调查了10户家庭的月用水量D.中位数是4.5考点:众数;统计表;加权平均数;中位数.分析:依据众数、中位数和平均数的定义分别对每一项进行分析即可.解答:解:A、5出现了4次,出现的次数最多,则众数是5,故本选项错误;B、这组数据的平均数是:(3×2+4×3+5×4+8×1)÷10=4.6,故本选项正确;C、调查的户数是2+3+4+1=10,故本选项正确;D、把这组数据从小到大排列,最中间的两个数的平均数是(4+5)÷2=4.5,则中位数是4.5,故本选项正确;故选A .点评:此题考查了众数、中位数和平均数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数;众数是一组数据中出现次数最多的数.6.(3分)(2024•十堰)如图,在平行四边形ABCD中,AB=4,BC=6,AC的垂直平分线交AD于点E,则△CDE的周长是()A.7B.10 C.11 D.12考点:平行四边形的性质;线段垂直平分线的性质.分析:依据线段垂直平分线的性质可得AE=EC,再依据平行四边形的性质可得DC=AB=4,AD=BC=6,进而可以算出△CDE的周长.解答:解:∵AC的垂直平分线交AD于E,∴AE=EC,∵四边形ABCD是平行四边形,∴DC=AB=4,AD=BC=6,∴△CDE的周长为:EC+CD+ED=AD+CD=6+4=10,故选:B.点评:此题主要考查了平行四边形的性质和线段垂直平分线的性质,关键是驾驭平行四边形两组对边分别相等.7.(3分)(2024•十堰)依据如图中箭头的指向规律,从2024到2024再到2024,箭头的方向是以下图示中的()A.B.C.D.考点:规律型:数字的改变类.分析:视察不难发觉,每4个数为一个循环组依次循环,用2024除以4,依据商和余数的状况解答即可.解答:解:由图可知,每4个数为一个循环组依次循环,2024÷4=503…1,∴2024是第504个循环组的第2个数,∴从2024到2024再到2024,箭头的方向是.故选D.点评:本题是对数字改变规律的考查,细致视察图形,发觉每4个数为一个循环组依次循环是解题的关键.8.(3分)(2024•十堰)已知:a2﹣3a+1=0,则a+﹣2的值为()A.+1 B.1C.﹣1 D.﹣5考点:分式的混合运算.专题:计算题.分析:已知等式变形求出a+的值,代入原式计算即可得到结果.解答:解:∵a2﹣3a+1=0,且a≠0,∴a+=3,则原式=3﹣2=1,故选B.点评:此题考查了分式的混合运算,娴熟驾驭运算法则是解本题的关键.9.(3分)(2024•十堰)如图,在四边形ABCD中,AD∥BC,DE⊥BC,垂足为点E,连接AC交DE于点F,点G为AF的中点,∠ACD=2∠ACB.若DG=3,EC=1,则DE的长为()A.2B.C.2D.考点:勾股定理;等腰三角形的判定与性质;直角三角形斜边上的中线.分析:依据直角三角形斜边上的中线的性质可得DG=AG,依据等腰三角形的性质可得∠GAD=∠GDA,依据三角形外角的性质可得∠CGD=2∠GAD,再依据平行线的性质和等量关系可得∠ACD=∠CGD,依据等腰三角形的性质可得CD=DG,再依据勾股定理即可求解.解答:解:∵AD∥BC,DE⊥BC,∴DE⊥AD,∠CAD=∠ACB∵点G为AF的中点,∴DG=AG,∴∠GAD=∠GDA,∴∠CGD=2∠CAD,∵∠ACD=2∠ACB,∴∠ACD=∠CGD,∴CD=DG=3,在Rt△CED中,DE==2.故选:C.点评:综合考查了勾股定理,等腰三角形的判定与性质和直角三角形斜边上的中线,解题的关键是证明CD=DG=3.10.(3分)(2024•十堰)已知抛物线y=ax2+bx+c(a≠0)经过点(1,1)和(﹣1,0).下列结论:①a﹣b+c=0;②b2>4ac;③当a<0时,抛物线与x轴必有一个交点在点(1,0)的右侧;④抛物线的对称轴为x=﹣.其中结论正确的个数有()A.4个B.3个C.2个D.1个考点:二次函数图象与系数的关系.分析:将点(﹣1,0)代入y=ax2+bx+c,即可推断①正确;将点(1,1)代入y=ax2+bx+c,得a+b+c=1,又由①得a﹣b+c=0,两式相加,得a+c=,两式相减,得b=.由b2﹣4ac=﹣4a(﹣a)=﹣2a+4a2=(2a﹣)2,当a=时,b2﹣4ac=0,即可推断②错误;③由b2﹣4ac=(2a﹣)2>0,得出抛物线y=ax2+bx+c与x轴有两个交点,设另一个交点的横坐标为x,依据一元二次方程根与系数的关系可得﹣1•x==﹣1,即x=1﹣,再由a<0得出x>1,即可推断③正确;④依据抛物线的对称轴公式为x=﹣,将b=代入即可推断④正确.解答:解:①∵抛物线y=ax2+bx+c(a≠0)经过点(﹣1,0),∴a﹣b+c=0,故①正确;②∵抛物线y=ax2+bx+c(a≠0)经过点(1,1),∴a+b+c=1,又a﹣b+c=0,两式相加,得2(a+c)=1,a+c=,两式相减,得2b=1,b=.∵b2﹣4ac=﹣4a(﹣a)=﹣2a+4a2=(2a﹣)2,当2a﹣=0,即a=时,b2﹣4ac=0,故②错误;③当a<0时,∵b2﹣4ac=(2a﹣)2>0,∴抛物线y=ax2+bx+c与x轴有两个交点,设另一个交点的横坐标为x,则﹣1•x===﹣1,即x=1﹣,∵a<0,∴﹣>0,∴x=1﹣>1,即抛物线与x轴必有一个交点在点(1,0)的右侧,故③正确;④抛物线的对称轴为x=﹣=﹣=﹣,故④正确.故选B.点评:本题考查了二次函数图象上点的坐标特征,二次函数图象与系数的关系,二次函数与一元二次方程的关系,一元二次方程根与系数的关系及二次函数的性质,不等式的性质,难度适中.二、填空题:(本题有6个小题,每小题3分,共18分)11.(3分)(2024•十堰)世界文化遗产长城总长约6700 000m,用科学记数法可表示为6.7×106m.考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的肯定值与小数点移动的位数相同.当原数肯定值>1时,n是正数;当原数的肯定值<1时,n是负数.解答:解:将6700 000m用科学记数法表示为:6.7×106m.故答案为:6.7×106m.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.(3分)(2024•十堰)计算:+(π﹣2)0﹣()﹣1=1.考点:实数的运算;零指数幂;负整数指数幂.分析:本题涉及零指数幂、负指数幂、二次根式化简等考点.针对每个考点分别进行计算,然后依据实数的运算法则求得计算结果.解答:解:原式=2+1﹣=3﹣2=1.故答案为1.点评:本题考查实数的综合运算实力,是各地中考题中常见的计算题型.解决此类题目的关键是驾驭零指数幂、负指数幂、二次根式化简等考点的运算.13.(3分)(2024•十堰)不等式组的解集为﹣1<x≤2.考点:解一元一次不等式组.分析:先求出每个不等式的解集,依据不等式的解集找出不等式组的解集即可.解答:解:∵解不等式x<2x+1得:x>﹣1,解不等式3x﹣2(x﹣1)≤4得:x≤2,∴不等式组的解集是﹣1<x≤2,故答案为:﹣1<x≤2.点评:本题考查了解一元一次不等式和解一元一次不等式组的应用,解此题的关键是能依据不等式的解集找出不等式组的解集.14.(3分)(2024•十堰)如图,在△ABC中,点D是BC的中点,点E,F分别在线段AD 及其延长线上,且DE=DF.给出下列条件:①BE⊥EC;②BF∥CE;③AB=AC;从中选择一个条件使四边形BECF是菱形,你认为这个条件是①(只填写序号).考点:菱形的判定.分析:首先利用对角线相互平分的四边形是平行四边形判定该四边形为平行四边形,然后结合菱形的判定得到答案即可.解答:解:由题意得:BD=CD,ED=FD,∴四边形EBFC是平行四边形,∵邻边相等或对角线垂直的平行四边形是菱形,∴选择BE⊥EC,故答案为:①.点评:本题考查了菱形的判定,解题的关键是了解菱形的判定定理,难度不是很大.15.(3分)(2024•十堰)如图,轮船在A处观测灯塔C位于北偏西70°方向上,轮船从A 处以每小时20海里的速度沿南偏西50°方向匀速航行,1小时后到达码头B处,此时,观测灯塔C位于北偏西25°方向上,则灯塔C与码头B的距离是24海里.(结果精确到个位,参考数据:≈1.4,≈1.7,≈2.4)考点:解直角三角形的应用-方向角问题.分析:作BD⊥AC于点D,在直角△ABD中,利用三角函数求得BD的长,然后在直角△BCD中,利用三角函数即可求得BC的长.解答:解:∠CBA=25°+50°=75°.作BD⊥AC于点D.则∠CAB=(90°﹣70°)+(90°﹣50°)=20°+40°=60°,∠ABD=30°,∴∠CBD=75°﹣35°=45°.在直角△ABD中,BD=AB•sin∠CAB=20×sin60°=20×=10.在直角△BCD中,∠CBD=45°,则BC=BD=10×=10≈10×2.4=24(海里).故答案是:24.点评:本题主要考查了方向角含义,正确求得∠CBD以及∠CAB的度数是解决本题的关键.16.(3分)(2024•十堰)如图,扇形OAB中,∠AOB=60°,扇形半径为4,点C在上,CD⊥OA,垂足为点D,当△OCD的面积最大时,图中阴影部分的面积为2π﹣4.考点:扇形面积的计算;二次函数的最值;勾股定理.分析:由OC=4,点C在上,CD⊥OA,求得DC==,运用S△OCD=OD•,求得OD=2时△OCD的面积最大,运用阴影部分的面积=扇形AOC的面积﹣△OCD的面积求解.解答:解:∵OC=4,点C在上,CD⊥OA,∴DC==∴S△OCD=OD•∴=OD2•(16﹣OD2)=﹣OD4﹣4OD2=﹣(OD2﹣8)2+16∴当OD2=8,即OD=2时△OCD的面积最大,∴DC===2,∴∠COA=45°,∴阴影部分的面积=扇形AOC的面积﹣△OCD的面积=﹣×2×2=2π﹣4,故答案为:2π﹣4.点评:本题主要考查了扇形的面积,勾股定理,解题的关键是求出OD=2时△OCD的面积最大.三、解答题:(本题有9个小题,共72分)17.(6分)(2024•十堰)化简:(x2﹣2x)÷.考点:分式的混合运算.专题:计算题.分析:原式利用除法法则变形,约分即可得到结果.解答:解:原式=x(x﹣2)•=x.点评:此题考查了分式的混合运算,娴熟驾驭运算法则是解本题的关键.18.(6分)(2024•十堰)如图,点D在AB上,点E在AC上,AB=AC,AD=AE.求证:∠B=∠C.考点:全等三角形的判定与性质.专题:证明题.分析:首先依据条件AB=AC,AD=AE,再加上公共角∠A=∠A可利用SAS定理证明△ABE ≌△ACD,进而得到∠B=∠C.解答:证明:在△ABE和△ACD中,,∴△ABE≌△ACD(SAS).∴∠B=∠C.点评:本题主要考查三角形全等的判定方法和性质,关键是驾驭全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.19.(6分)(2024•十堰)甲、乙两人打算整理一批新到的图书,甲单独整理须要40分钟完工;若甲、乙共同整理20分钟后,乙需再单独整理30分钟才能完工.问乙单独整理这批图书须要多少分钟完工?考点:分式方程的应用.分析:将总的工作量看作单位1,依据本工作分两段时间完成列出分式方程解之即可.解答:解:设乙单独整理x分钟完工,依据题意得:+=1,解得x=100,经检验x=100是原分式方程的解.答:乙单独整理100分钟完工.点评:本题考查了分式方程的应用.分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.此题等量关系比较多,主要用到公式:工作总量=工作效率×工作时间.20.(9分)(2024•十堰)据报道,“国际剪刀石头布协会”提议将“剪刀石头布”作为奥运会竞赛项目.某校学生会想知道学生对这个提议的了解程度,随机抽取部分学生进行了一次问卷调查,并依据收集到的信息进行了统计,绘制了下面两幅尚不完整的统计图.请你依据统计图中所供应的信息解答下列问题:(1)接受问卷调查的学生共有60名,扇形统计图中“基本了解”部分所对应扇形的圆心角为90°;请补全条形统计图;(2)若该校共有学生900人,请依据上述调查结果,估计该校学生中对将“剪刀石头布”作为奥运会竞赛项目的提议达到“了解”和“基本了解”程度的总人数;(3)“剪刀石头布”竞赛时双方每次随意出“剪刀”、“石头”、“布”这三种手势中的一种,规则为:剪刀胜布,布胜石头,石头胜剪刀,若双方出现相同手势,则算打平.若小刚和小明两人只竞赛一局,请用树状图或列表法求两人打平的概率.考点:条形统计图;用样本估计总体;扇形统计图;列表法与树状图法.专题:计算题.分析:(1)由“了解很少”的人数除以占的百分比得出学生总数,求出“基本了解”的学生占的百分比,乘以360得到结果,补全条形统计图即可;(2)求出“了解”和“基本了解”程度的百分比之和,乘以900即可得到结果;(3)列表得出全部等可能的状况数,找出两人打平的状况数,即可求出所求的概率.解答:解:(1)依据题意得:30÷50%=60(名),“了解”人数为60﹣(15+30+10)=5(名),“基本了解”占的百分比为×100%=25%,占的角度为25%×360°=90°,补全条形统计图如图所示:(2)依据题意得:900×=300(人),则估计该校学生中对将“剪刀石头布”作为奥运会竞赛项目的提议达到“了解”和“基本了解”程度的总人数为300人;(3)列表如下:剪石布剪(剪,剪)(石,剪)(布,剪)石(剪,石)(石,石)(布,石)布(剪,布)(石,布)(布,布)全部等可能的状况有9种,其中两人打平的状况有3种,则P==.点评:此题考查了条形统计图,扇形统计图,以及列表法与树状图法,弄清题意是解本题的关键.21.(7分)(2024•十堰)已知关于x的一元二次方程x2+2(m+1)x+m2﹣1=0.(1)若方程有实数根,求实数m的取值范围;(2)若方程两实数根分别为x1,x2,且满意(x1﹣x2)2=16﹣x1x2,求实数m的值.考点:根的判别式;根与系数的关系.分析:(1)若一元二次方程有两实数根,则根的判别式△=b2﹣4ac≥0,建立关于m的不等式,求出m的取值范围;(2)由x1+x2=﹣2(m+1),x1x2=m2﹣1;代入(x1﹣x2)2=16﹣x1x2,建立关于m的方程,据此即可求得m的值.解答:解:(1)由题意有△=[2(m+1)]2﹣4(m2﹣1)≥0,整理得8m+8≥0,解得m≥﹣1,∴实数m的取值范围是m≥﹣1;(2)由两根关系,得x1+x2=﹣(2m+1),x1•x2=m2﹣1,(x1﹣x2)2=16﹣x1x2(x1+x2)2﹣3x1x2﹣16=0,∴[﹣2(m+1)]2﹣3(m2﹣1)﹣16=0,∴m2+8m﹣9=0,解得m=﹣9或m=1∵m≥﹣1∴m=1.点评:本题考查了一元二次方程根的判别式及根与系数关系,利用两根关系得出的结果必需满意△≥0的条件.22.(8分)(2024•十堰)某市政府为了增加城镇居民抵挡大病风险的实力,主动完善城镇医疗费用范围报销比例标准不超过8000元不予报销超过8000元且不超过30000元的部分50%超过30000元且不超过50000元的部分60%超过50000元的部分70%y元.(1)干脆写出x≤50000时,y关于x的函数关系式,并注明自变量x的取值范围;(2)若某居民大病住院医疗费用按标准报销了20000元,问他住院医疗费用是多少元?考点:一次函数的应用;分段函数.分析:(1)首先把握x、y的意义,报销金额y分3段①当x≤8000时,②当8000<x≤30000时,③当30000<x≤50000时分别表示;(2)利用代入法,把y=20000代入第三个函数关系式即可得到x的值.解答:解:(1)由题意得:①当x≤8000时,y=0;②当8000<x≤30000时,y=(x﹣8000)×50%=0.5x﹣4000;③当30000<x≤50000时,y=(30000﹣8000)×50%+(x﹣30000)×60%=0.6x﹣7000;(2)当花费30000元时,报销钱数为:y=0.5×30000﹣4000=11000,∵20000>11000,∴他的住院医疗费用超过30000元,把y=20000代入y=0.6x﹣7000中得:20000=0.6x﹣7000,解得:x=45000.答:他住院医疗费用是45000元.点评:此题主要考查了一次函数的应用,关键是正确理解题意,找出题目中的等量关系,列出函数关系式.23.(8分)(2024•十堰)如图,点B(3,3)在双曲线y=(x>0)上,点D在双曲线y=﹣(x<0)上,点A和点C分别在x轴,y轴的正半轴上,且点A,B,C,D构成的四边形为正方形.(1)求k的值;(2)求点A的坐标.考点:正方形的性质;反比例函数图象上点的坐标特征;全等三角形的判定与性质.分析:(1)把B的坐标代入求出即可;(2)设MD=a,OM=b,求出ab=4,过D作DM⊥x轴于M,过B作BN⊥x轴于N,证△ADM≌△BAN,推出BN=AM=3,MD=AN=a,求出a=b,求出a的值即可.解答:解:(1)∵点B(3,3)在双曲线y=上,∴k=3×3=9;(2)∵B(3,3),∴BN=ON=3,设MD=a,OM=b,∵D在双曲线y=﹣(x<0)上,∴﹣ab=﹣4,即ab=4,过D作DM⊥x轴于M,过B作BN⊥x轴于N,则∠DMA=∠ANB=90°,∵四边形ABCD是正方形,∴∠DAB=90°,A D=AB,∴∠MDA+∠DAM=90°,∠DAM+∠BAN=90°,∴∠ADM=∠BAN,在△ADM和△BAN中,,∴△ADM≌△BAN(AAS),∴BN=AM=3,MD=AN=a,∴0A=3﹣a,即AM=b+3﹣a=3,a=b,∵ab=4,∴a=b=2,∴OA=3﹣2=1,即点A的坐标是(1,0).点评:本题考查了正方形的性质,反比例函数图象上点的坐标特征,全等三角形的性质和判定的应用,主要考查学生运用性质进行推理和计算的实力,题目比较好,难度适中.24.(10分)(2024•十堰)如图1,AB为半圆的直径,O为圆心,C为圆弧上一点,AD垂直于过C点的切线,垂足为D,AB的延长线交直线CD于点E.(1)求证:AC平分∠DAB;(2)若AB=4,B为OE的中点,CF⊥AB,垂足为点F,求CF的长;(3)如图2,连接OD交AC于点G,若=,求sin∠E的值.考点:圆的综合题.专题:计算题.分析:(1)连结OC,如图1,依据切线的性质得OC⊥DE,而AD⊥DE,依据平行线的性质得OC∥AD,所以∠2=∠3,加上∠1=∠3,则∠1=∠2,所以AC平分∠DAB;(2)如图1,由B为OE的中点,AB为直径得到OB=BE=2,OC=2,在Rt△OCE 中,由于OE=2OC,依据含30度的直角三角形三边的关系得∠OEC=30°,则∠COE=60°,由CF⊥AB得∠OFC=90°,所以∠OCF=30°,再依据含30度的直角三角形三边的关系得OF=OC=1,CF=OF=;(3)连结OC,如图2,先证明△OCG∽△DAG,利用相像的性质得==,再证明△ECO∽△EDA,利用相像比得到==,设⊙O的半径为R,OE=x,代入求得OE=3R;最终在Rt△OCE中,依据正弦的定义求解.解答:(1)证明:连结OC,如图1,∵DE与⊙O切于点C,∴OC⊥DE,∵AD⊥DE,∴OC∥AD,∴∠2=∠3,∵OA=OC,∴∠1=∠3,∴∠1=∠2,即AC平分∠DAB;(2)解:如图1,∵直径AB=4,B为OE的中点,∴OB=BE=2,OC=2,在Rt△OCE中,OE=2OC,∴∠OEC=30°,∴∠COE=60°,∵CF⊥AB,∴∠OFC=90°,∴∠OCF=30°,∴OF=OC=1,CF=OF=;(3)解:连结OC,如图2,∵OC∥AD,∴△OCG∽△DAG,∴==,∵OC∥AD,∴△ECO∽△EDA,∴==,设⊙O的半径为R,OE=x,∴=,解得OE=3R,在Rt△OCE中,sin∠E===.点评:本题考查了圆的综合题:娴熟驾驭切线的性质、平行线的性质和锐角三角函数的定义;会依据含30度的直角三角形三边的关系和相像比进行几何计算.25.(12分)(2024•十堰)已知抛物线C1:y=a(x+1)2﹣2的顶点为A,且经过点B(﹣2,﹣1).(1)求A点的坐标和抛物线C1的解析式;(2)如图1,将抛物线C1向下平移2个单位后得到抛物线C2,且抛物线C2与直线AB相交于C,D两点,求S△OAC:S△OAD的值;(3)如图2,若过P(﹣4,0),Q(0,2)的直线为l,点E在(2)中抛物线C2对称轴右侧部分(含顶点)运动,直线m过点C和点E.问:是否存在直线m,使直线l,m与x轴围成的三角形和直线l,m与y轴围成的三角形相像?若存在,求出直线m的解析式;若不存在,说明理由.考点:二次函数综合题;待定系数法求一次函数解析式;待定系数法求二次函数解析式;相像三角形的判定与性质;锐角三角函数的增减性.专题:压轴题;存在型.分析:(1)由抛物线的顶点式易得顶点A坐标,把点B的坐标代入抛物线的解析式即可解决问题.(2)依据平移法则求出抛物线C2的解析式,用待定系数法求出直线AB的解析式,再通过解方程组求出抛物线C2与直线AB的交点C、D的坐标,就可以求出S△OAC:S△OAD的值.(3)设直线m与y轴交于点G,直线l,m与x轴围成的三角形和直线l,m与y轴围成的三角形形态、位置随着点G的改变而改变,故需对点G的位置进行探讨,借助于相像三角形的判定与性质、三角函数的增减性等学问求出符合条件的点G的坐标,从而求出相应的直线m的解析式.解答:解:(1)∵抛物线C1:y=a(x+1)2﹣2的顶点为A,∴点A的坐标为(﹣1,﹣2).∵抛物线C1:y=a(x+1)2﹣2经过点B(﹣2,﹣1),∴a(﹣2+1)2﹣2=﹣1.解得:a=1.∴抛物线C1的解析式为:y=(x+1)2﹣2.(2)∵抛物线C2是由抛物线C1向下平移2个单位所得,∴抛物线C2的解析式为:y=(x+1)2﹣2﹣2=(x+1)2﹣4.设直线AB的解析式为y=kx+b.∵A(﹣1,﹣2),B(﹣2,﹣1),∴解得:∴直线AB的解析式为y=﹣x﹣3.联立解得:或.∴C(﹣3,0),D(0,﹣3).∴OC=3,OD=3.过点A作AE⊥x轴,垂足为E,过点A作AF⊥y轴,垂足为F,∵A(﹣1,﹣2),∴AF=1,AE=2.∴S△OAC:S△OAD=(OC•AE):(OD•AF)=(×3×2):(×3×1)=2.∴S△OAC:S△OAD的值为2.(3)设直线m与y轴交于点G,与直线l交于点H,设点G的坐标为(0,t)当m∥l时,CG∥PQ.∴△OCG∽△OPQ.∴=.∵P(﹣4,0),Q(0,2),∴OP=4,OQ=2,∴=.∴OG=.∴t=时,直线l,m与x轴不能构成三角形.∵t=0时,直线m与x轴重合,∴直线l,m与x轴不能构成三角形.∴t≠0且t≠.①t<0时,如图2①所示.∵∠PHC>∠PQG,∠PHC>∠QGH,∴∠PHC≠∠PQG,∠PHC≠∠QGH.当∠PHC=∠GHQ时,∵∠PHC+∠GHQ=180°,∴∠PHC=∠GHQ=90°.∵∠POQ=90°,∴∠HPC=90°﹣∠PQO=∠HGQ.∴△PHC∽△GHQ.∵∠QPO=∠OGC,∴tan∠QPO=tan∠OGC.∴=.∴=.∴OG=6.∴点G的坐标为(0,﹣6)设直线m的解析式为y=mx+n,∵点C(﹣3,0),点G(0,﹣6)在直线m上,∴.解得:.∴直线m的解析式为y=﹣2x﹣6,联立,解得:或∴E(﹣1,﹣4).此时点E在顶点,符合条件.∴直线m的解析式为y=﹣2x﹣6.②O<t<时,如图2②所示,∵ta n∠GCO==<,tan∠PQO===2,∴tan∠GCO≠tan∠PQO.∴∠GCO≠∠PQO.∵∠GCO=∠PCH,∴∠PCH≠∠PQO.又∵∠HPC>∠PQO,∴△PHC与△GHQ不相像.∴符合条件的直线m不存在.③<t≤2时,如图2③所示.∵tan∠CGO==≥,tan∠QPO===.∴tan∠CGO≠tan∠QPO.∴∠CGO≠∠QPO.∵∠CGO=∠QGH,∴∠QGH≠∠QPO,又∵∠HQG>∠QPO,∴△PHC与△GHQ不相像.∴符合条件的直线m不存在.④t>2时,如图2④所示.此时点E在对称轴的右侧.∵∠PCH>∠CGO,∴∠PCH≠∠CGO.当∠QPC=∠CGO时,∵∠PHC=∠QHG,∠HPC=∠HGQ,∴△PCH∽△GQH.∴符合条件的直线m存在.∵∠QPO=∠CGO,∠POQ=∠GOC=90°,∴△POQ∽△GOC.∴=.∴=.∴OG=6.∴点G的坐标为(0,6).设直线m的解析式为y=px+q∵点C(﹣3,0)、点G(0,6)在直线m上,∴.解得:.∴直线m的解析式为y=2x+6.综上所述:存在直线m,使直线l,m与x轴围成的三角形和直线l,m与y轴围成的三角形相像,此时直线m的解析式为y=﹣2x﹣6和y=2x+6.点评:本题考查了二次函数的有关学问,考查了三角形相像的判定与性质、三角函数的定义及增减性等学问,考查了用待定系数法求二次函数及一次函数的解析式,考查了通过解方程组求两个函数图象的交点,强化了对运算实力、批判意识、分类探讨思想的考查,具有较强的综合性,有肯定的难度.。
2024年四川省成都市中考数学A 卷(共100分)第I 卷(选择题,共32分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1. ﹣5的绝对值是( )A. 5B. ﹣5C. 15- D. 152. 如图所示的几何体是由5个大小相同的小立方块搭成,它的主视图是( )A. B. C. D.3. 下列计算正确的是( )A. ()2233x x = B. 336x y xy +=C. ()222x y x y +=+ D. ()()2224x x x +-=-4. 在平面直角坐标系xOy 中,点()1,4P -关于原点对称的点的坐标是( )A. ()1,4--B. ()1,4-C. ()1,4D. ()1,4-5. 为深入贯彻落实《中共中央、国务院关于学习运用“千村示范、万村整治”工程经验有力有效推进乡村全面振兴的意见》精神,某镇组织开展“村BA ”、村超、村晚等群众文化赛事活动,其中参赛的六个村得分分别为:55,64,51,50,61,55,则这组数据的中位数是( )A. 53B. 55C. 58D. 646. 如图,在矩形ABCD 中,对角线AC 与BD 相交于点O ,则下列结论一定正确的是( )A. AB AD =B. AC BD ⊥C. AC BD =D.ACB ACD∠=∠7. 中国古代数学著作《九章算术》中记载了这样一个题目:今有共买琎,人出半,盈四;人出少半,不足三.问人数,琎价各几何?其大意是:今有人合伙买琎石,每人出12钱,会多出4钱;每人出13钱,又差了3钱.问人数,琎价各是多少?设人数为x ,琎价为y ,则可列方程组为( )A. 142133y x y x ⎧=+⎪⎪⎨⎪=+⎪⎩ B. 142133y x y x ⎧=-⎪⎪⎨⎪=+⎪⎩ C. 142133y x y x ⎧=-⎪⎪⎨⎪=-⎪⎩ D.142133y x y x ⎧=+⎪⎪⎨⎪=-⎪⎩8. 如图,在ABCD Y 中,按以下步骤作图:①以点B 为圆心,以适当长为半径作弧,分别交BA ,BC 于点M ,N ;②分别以M ,N 为圆心,以大于12MN 的长为半径作弧,两弧在ABC ∠内交于点O ;③作射线BO ,交AD 于点E ,交CD 延长线于点F .若3CD =,2DE =,下列结论错误的是( )A. ABE CBE∠=∠ B. 5BC =C DE DF = D. 53BE EF =第II 卷(非选择题,共68分)二、填空题(本大题共5个小题,每小题4分,共20分)9. 若m ,n 为实数,且()240m +=,则()2m n +的值为______.10. 分式方程132x x=-解是____.11. 如图,在扇形AOB 中,6OA =,120AOB ∠=︒,则 AB 的长为______..的12. 盒中有x 枚黑棋和y 枚白棋,这些棋除颜色外无其他差别.从盒中随机取出一枚棋子,如果它是黑棋的概率是38,则x y的值为______.13. 如图,在平面直角坐标系xOy 中,已知()3,0A ,()0,2B ,过点B 作y 轴垂线l ,P 为直线l 上一动点,连接PO ,PA ,则PO PA +的最小值为______.三、解答题(本大题共5个小题,共48分)14. (1()02sin60π20242+︒---.(2)解不等式组:2311123x x x +≥-⎧⎪⎨--<⎪⎩①②15. 2024年成都世界园艺博览会以“公园城市美好人居”为主题,秉持“绿色低碳、节约持续、共享包容”的理念,以园艺为媒介,向世界人民传递绿色发展理念和诗意栖居的美好生活场景.在主会场有多条游园线路,某单位准备组织全体员工前往参观,每位员工从其中四条线路(国风古韵观赏线、世界公园打卡线、亲子互动慢游线、园艺小清新线)中选择一条.现随机选取部分员工进行了“线路选择意愿”的摸底调查,并根据调查结果绘制成如下统计图表.游园线路人数国风古韵观赏线44世界公园打卡线x 亲子互动慢游线48的园艺小清新线y根据图表信息,解答下列问题:(1)本次调查的员工共有______人,表中x 的值为______:(2)在扇形统计图中,求“国风古韵观赏线”对应的圆心角度数;(3)若该单位共有2200人,请你根据调查结果,估计选择“园艺小清新线”的员工人数.16. 中国古代运用“土圭之法”判别四季.夏至时日影最短,冬至时日影最长,春分和秋分时日影长度等于夏至和冬至日影长度的平均数.某地学生运用此法进行实践探索,如图,在示意图中,产生日影的杆子AB 垂直于地面,AB 长8尺.在夏至时,杆子AB 在太阳光线AC 照射下产生的日影为BC ;在冬至时,杆子AB 在太阳光线AD 照射下产生的日影为BD .已知73.4ACB ∠=︒,26.6ADB ∠=︒,求春分和秋分时日影长度.(结果精确到0.1尺;参考数据:sin26.60.45︒≈,cos26.60.89︒≈,tan26.60.50︒≈,sin73.40.96︒≈,cos73.40.29︒≈,tan73.4 3.35︒≈)17. 如图,在Rt ABC △中,90C ∠=︒,D 为斜边AB 上一点,以BD 为直径作O ,交AC 于E ,F 两点,连接BE ,BF ,DF .(1)求证:BC DF BF CE ⋅=⋅;(2)若A CBF ∠=∠,tan BFC ∠=,AF =CF 的长和O 的直径.18. 如图,在平面直角坐标系xOy 中,直线y x m =-+与直线2y x =相交于点()2,A a ,与x 轴交于点(),0B b ,点C 在反比例函数()0k y k x=<图象上.(1)求a ,b ,m 值;(2)若O ,A ,B ,C 为顶点的四边形为平行四边形,求点C 的坐标和k 的值;(3)过A ,C 两点的直线与x 轴负半轴交于点D ,点E 与点D 关于y 轴对称.若有且只有一点C ,使得ABD △与ABE 相似,求k 的值.B 卷(共50分)一、填空题(本大题共5个小题,每小题4分,共20分)19. 如图,ABC CDE △≌△,若35D ∠=︒,45ACB ∠=︒,则DCE ∠的度数为______.20. 若m ,n 是一元二次方程2520x x -+=的两个实数根,则()22m n +-的值为______.21. 在综合实践活动中,数学兴趣小组对1n 这n 个自然数中,任取两数之和大于n 的取法种数k 进行了探究.发现:当2n =时,只有{}1,2一种取法,即1k =;当3n =时,有{}1,3和{}2,3两种取法,即2k =;当4n =时,可得4k =;…….若6n =,则k 的值为______;若24n =,则k 的值为______.22. 如图,在Rt ABC △中,90C ∠=︒,AD 是ABC 的一条角平分线,E 为AD中点,的连接BE .若BE BC =,2CD =,则BD =______.23. 在平面直角坐标系xOy 中,()11,A x y ,()22,B x y ,()33,C x y 是二次函数241y x x =-+-图象上三点.若101x <<,24x >,则1y ______2y (填“>”或“<”);若对于11m x m <<+,212m x m +<<+,323m x m +<<+,存在132y y y <<,则m 的取值范围是______.二、解答题(本大题共3个小题,共30分)24. 推进中国式现代化,必须坚持不懈夯实农业基础,推进乡村全面振兴.某合作社着力发展乡村水果网络销售,在水果收获季节,该合作社用17500元从农户处购进A ,B 两种水果共1500kg 进行销售,其中A 种水果收购单价10元/kg ,B 种水果收购单价15元/kg .(1)求A ,B 两种水果各购进多少千克;(2)已知A 种水果运输和仓储过程中质量损失4%,若合作社计划A 种水果至少要获得20%的利润,不计其他费用,求A 种水果的最低销售单价.25. 如图,在平面直角坐标系xOy 中,抛物线L :()2230y ax ax a a =-->与x 轴交于A ,B 两点(点A 在点B 的左侧),其顶点为C ,D 是抛物线第四象限上一点.(1)求线段AB 的长;(2)当1a =时,若ACD 的面积与ABD △的面积相等,求tan ABD ∠的值;(3)延长CD 交x 轴于点E ,当AD DE =时,将ADB 沿DE 方向平移得到A EB '' .将抛物线L 平移得到抛物线L ',使得点A ',B '都落在抛物线L '上.试判断抛物线L '与L 是否交于某个定点.若是,求出该定点坐标;若不是,请说明理由.26.数学活动课上,同学们将两个全等的三角形纸片完全重合放置,固定一个顶点,然后将的其中一个纸片绕这个顶点旋转,来探究图形旋转的性质.已知三角形纸片ABC 和ADE 中,3AB AD ==,4BC DE ==,90ABC ADE ∠=∠=︒.【初步感知】(1)如图1,连接BD ,CE ,在纸片ADE 绕点A 旋转过程中,试探究BD CE的值.【深入探究】(2)如图2,在纸片ADE 绕点A 旋转过程中,当点D 恰好落在ABC 的中线BM 的延长线上时,延长ED 交AC 于点F ,求CF 的长.【拓展延伸】(3)在纸片ADE 绕点A 旋转过程中,试探究C ,D ,E 三点能否构成直角三角形.若能,直接写出所有直角三角形CDE 的面积;若不能,请说明理由.2024年四川省成都市中考数学A卷(共100分)第I卷(选择题,共32分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1. ﹣5的绝对值是()A. 5B. ﹣5C.15D.15【答案】A【解析】【分析】根据负数的绝对值等于它的相反数可得答案.【详解】解:|﹣5|=5.故选A.2. 如图所示的几何体是由5个大小相同的小立方块搭成,它的主视图是()A. B. C. D.【答案】A【解析】【分析】本题考查简单几何体的三视图,根据主视图是从正面看到的图形求解即可.【详解】解:该几何体的主视图为,故选:A.3. 下列计算正确的是()A. ()2233x x = B. 336x y xy +=C. ()222x y x y +=+ D. ()()2224x x x +-=-【答案】D【解析】【分析】本题主要考查了积的乘方运算,同类项的合并,完全平方公式以及平方差公式,根据积的乘方运算法则,同类项的合并法则以及完全平方公式以及平方差公式一一计算判断即可.【详解】解:A .()2239x x =,原计算错误,故该选项不符合题意;B .3x 和3y 不是同类项,不能合并,故该选项不符合题意;C .()2222x y x y xy +=++,原计算错误,故该选项不符合题意;D .()()2224x x x +-=-,原计算正确,故该选项符合题意;故选:D .4. 在平面直角坐标系xOy 中,点()1,4P -关于原点对称的点的坐标是( )A. ()1,4-- B. ()1,4- C. ()1,4 D. ()1,4-【答案】B【解析】【分析】本题考查了求关于原点对称的点的坐标.关于原点对称的两点,则其横、纵坐标互为相反数,由点关于原点对称的坐标特征即可求得对称点的坐标.【详解】解:点()1,4P -关于原点对称的点的坐标为()1,4-;故选:B .5. 为深入贯彻落实《中共中央、国务院关于学习运用“千村示范、万村整治”工程经验有力有效推进乡村全面振兴的意见》精神,某镇组织开展“村BA ”、村超、村晚等群众文化赛事活动,其中参赛的六个村得分分别为:55,64,51,50,61,55,则这组数据的中位数是( )A. 53B. 55C. 58D. 64【答案】B【解析】【分析】本题主要考查了中位数的定义,根据中位数的定义求解即可.【详解】解:参赛的六个村得分分别为:55,64,51,50,61,55,把这6个数从小到大排序:50,51,55,55,61,64,∴这组数据的中位数是:5555552+=,故选:B .6. 如图,在矩形ABCD 中,对角线AC 与BD 相交于点O ,则下列结论一定正确的是( )A AB AD = B. AC BD ⊥ C. AC BD = D. ACB ACD∠=∠【答案】C【解析】【分析】本题考查矩形的性质,根据矩形的性质逐项判断即可.【详解】解:∵四边形ABCD 是矩形,∴AB CD =,AC BD =,AD BC ∥,则ACB DAC ∠=∠,∴选项A 中AB AD =不一定正确,故不符合题意;选项B 中AC BD ⊥不一定正确,故不符合题意;选项C 中AC BD =一定正确,故符合题意;选项D 中ACB ACD ∠=∠不一定正确,故不符合题意,故选:C .7. 中国古代数学著作《九章算术》中记载了这样一个题目:今有共买琎,人出半,盈四;人出少半,不足三.问人数,琎价各几何?其大意是:今有人合伙买琎石,每人出12钱,会多出4钱;每人出13钱,又差了3钱.问人数,琎价各是多少?设人数为x ,琎价为y ,则可列方程组为( )A. 142133y x y x ⎧=+⎪⎪⎨⎪=+⎪⎩ B. 142133y x y x ⎧=-⎪⎪⎨⎪=+⎪⎩ C. 142133y x y x ⎧=-⎪⎪⎨⎪=-⎪⎩D. .142133y x y x ⎧=+⎪⎪⎨⎪=-⎪⎩【答案】B【解析】【分析】本题主要考查了列二元一次方程组,根据题意列出二元一次方程组即可.【详解】解:设人数为x ,琎价为y ,根据每人出12钱,会多出4钱可得出1y x 42=-,每人出13钱,又差了3钱.可得出133y x =+,则方程组为:142133y x y x ⎧=-⎪⎪⎨⎪=+⎪⎩,故选:B .8. 如图,在ABCD Y 中,按以下步骤作图:①以点B 为圆心,以适当长为半径作弧,分别交BA ,BC 于点M ,N ;②分别以M ,N 为圆心,以大于12MN 的长为半径作弧,两弧在ABC ∠内交于点O ;③作射线BO ,交AD 于点E ,交CD 延长线于点F .若3CD =,2DE =,下列结论错误的是( )A. ABE CBE∠=∠ B. 5BC =C. DE DF = D. 53BE EF =【答案】D【解析】【分析】本题考查角平分线的尺规作图、平行四边形的性质、等腰三角形的判定以及相似性质与判定的综合.先由作图得到BF 为ABC ∠的角平分,利用平行线证明AEB ABE ∠=∠,从而得到3AE AB CD ===,再利用平行四边形的性质得到325BC AD AE ED ==+=+=,再证明AEB DEF △∽△,分别求出32BE EF =,2DF =,则各选项可以判定.【详解】解:由作图可知,BF 为ABC ∠的角平分,∴ABE CBE ∠=∠,故A 正确;∵四边形ABCD 为平行四边形,∴,,AD BC AB CD AD BC == ,∵AD BC∥∴AEB CBE ∠=∠,∴AEB ABE ∠=∠,∴3AE AB CD ===,∴325BC AD AE ED ==+=+=,故B 正确;∵AB CD =,∴ABE F ∠=∠,∵AEB DEF ∠=∠,∴AEB DEF △∽△,∴BE AB AE EF DF ED==,∴332BE EF DF ==,∴32BE EF =,2DF =,故D 错误;∵2DE =,∴DE DF =,故C 正确,故选:D .第II 卷(非选择题,共68分)二、填空题(本大题共5个小题,每小题4分,共20分)9. 若m ,n 为实数,且()240m +=,则()2m n +的值为______.【答案】1【解析】【分析】本题考查非负数的性质,根据平方式和算术平方数的非负数求得m 、n 值,进而代值求解即可.【详解】解:∵()240m ++=,∴40m +=,50n -=,解得4m =-,5n =,∴()()22451m n +=-+=,故答案为:1.10. 分式方程132x x=-的解是____.【答案】x=3【解析】【详解】试题分析:分式方程去分母转化为整式方程x=3(x ﹣2),求出整式方程的解得到x=3,经检验x=3是分式方程的解,即可得到分式方程的解.考点:解分式方程11. 如图,在扇形AOB 中,6OA =,120AOB ∠=︒,则 AB 的长为______.【答案】4π【解析】【分析】此题考查了弧长公式,把已知数据代入弧长公式计算即可.【详解】解:由题意得 AB 的长为π120π64π180180n r ⨯==,故答案为:4π12. 盒中有x 枚黑棋和y 枚白棋,这些棋除颜色外无其他差别.从盒中随机取出一枚棋子,如果它是黑棋的概率是38,则x y的值为______.【答案】35【解析】【分析】本题考查简单的概率计算、比例性质,根据随机取出一枚棋子,它是黑棋的概率是38,可得38x x y =+,进而利用比例性质求解即可.【详解】解:∵随机取出一枚棋子,它是黑棋的概率是38,∴38x x y =+,则35x y =,故答案为:35.13. 如图,在平面直角坐标系xOy 中,已知()3,0A ,()0,2B ,过点B 作y 轴的垂线l ,P 为直线l 上一动点,连接PO ,PA ,则PO PA +的最小值为______.【答案】5【解析】【分析】本题考查轴对称—最短问题以及勾股定理和轴对称图形的性质.先取点A 关于直线l 的对称点A ',连A O '交直线l 于点C ,连AC ,得到AC A C '=,A A l '⊥,再由轴对称图形的性质和两点之间线段最短,得到当,,O P A '三点共线时,PO PA +的最小值为A O ',再利用勾股定理求A O '即可.【详解】解:取点A 关于直线l 的对称点A ',连A O '交直线l 于点C ,连AC ,则可知AC A C '=,A A l '⊥,∴PO PA PO PA A O ''+=+≥,即当,,O P A '三点共线时,PO PA +的最小值为A O ',∵直线l 垂直于y 轴,∴A A x '⊥轴,∵()3,0A ,()0,2B ,∴3,4AO AA '==,∴在Rt A AO ' 中,5A O '===,故答案为:5三、解答题(本大题共5个小题,共48分)14. (1()02sin60π20242+︒---.(2)解不等式组:2311123x x x +≥-⎧⎪⎨--<⎪⎩①②【答案】(1)5;(2)29x -≤<【解析】【分析】本题考查实数的混合运算、解一元一次不等式组,熟练掌握相关运算法则并正确求解是解答的关键.(1)先计算算术平方根、特殊角的三角函数值、零指数幂、化简绝对值,然后加减运算即可;(2)先求得每个不等式的解集,再求得它们的公共部分即为不等式组的解集.【详解】解:(1()02sin6020242π︒--4212=+-+-5=+-5=;(2)解不等式①,得2x ≥-,解不等式②,得9x <,∴该不等式组的解集为29x -≤<.15. 2024年成都世界园艺博览会以“公园城市美好人居”为主题,秉持“绿色低碳、节约持续、共享包容”的理念,以园艺为媒介,向世界人民传递绿色发展理念和诗意栖居的美好生活场景.在主会场有多条游园线路,某单位准备组织全体员工前往参观,每位员工从其中四条线路(国风古韵观赏线、世界公园打卡线、亲子互动慢游线、园艺小清新线)中选择一条.现随机选取部分员工进行了“线路选择意愿”的摸底调查,并根据调查结果绘制成如下统计图表.游园线路人数国风古韵观赏线44世界公园打卡线x 亲子互动慢游线48园艺小清新线y根据图表信息,解答下列问题:(1)本次调查的员工共有______人,表中x 的值为______:(2)在扇形统计图中,求“国风古韵观赏线”对应的圆心角度数;(3)若该单位共有2200人,请你根据调查结果,估计选择“园艺小清新线”的员工人数.【答案】(1)160,40(2)99︒(3)385【解析】【分析】本题考查统计表和扇形统计图的关联、用样本估计总体,理解题意,能从统计图中获取有用信息 是解答的关键.(1)根据选择“亲子互动慢游线”人数及其所占的百分比可求得调查总人数,再根据选择“世界公园打卡线”对应的圆心角是90︒可求解x 值;(2)由360︒乘以选择“国风古韵观赏线”所占的百分比可得答案;(3)先求得选择“园艺小清新线”的人数,再由单位总人数乘以样本中选择“园艺小清新线”所占的比例求解即可.的【小问1详解】解:调查总人数为4830160÷%=(人),选择“世界公园打卡线”的人数为9016040360⨯=(人),故答案为:160,40;【小问2详解】解:“国风古韵观赏线”对应的圆心角度数为4436099160︒⨯=︒;【小问3详解】解:选择“园艺小清新线”的人数为16044404828---=(人),∴该单位选择“园艺小清新线”的员工人数为282200385160⨯=(人).16. 中国古代运用“土圭之法”判别四季.夏至时日影最短,冬至时日影最长,春分和秋分时日影长度等于夏至和冬至日影长度的平均数.某地学生运用此法进行实践探索,如图,在示意图中,产生日影的杆子AB 垂直于地面,AB 长8尺.在夏至时,杆子AB 在太阳光线AC 照射下产生的日影为BC ;在冬至时,杆子AB 在太阳光线AD 照射下产生的日影为BD .已知73.4ACB ∠=︒,26.6ADB ∠=︒,求春分和秋分时日影长度.(结果精确到0.1尺;参考数据:sin26.60.45︒≈,cos26.60.89︒≈,tan26.60.50︒≈,sin73.40.96︒≈,cos73.40.29︒≈,tan73.4 3.35︒≈)【答案】9.2尺【解析】【分析】本题主要考查解直角三角形和求平均数,利用正切分别求得BC 和BD ,结合题意利用平均数即可求得春分和秋分时日影长度.【详解】解:∵73.4ACB ∠=︒,杆子AB 垂直于地面,AB 长8尺.∴tan ∠=AB ACB BC ,即8 2.393.35BC ≈≈,∵26.6ADB ∠=︒,∴tan AB ADB BD ∠=,即8160.50BD ≈=,∵春分和秋分时日影长度等于夏至和冬至日影长度的平均数.∴春分和秋分时日影长度为2.39169.22+≈.答:春分和秋分时日影长度9.2尺.17. 如图,在Rt ABC △中,90C ∠=︒,D 为斜边AB 上一点,以BD 为直径作O ,交AC 于E ,F 两点,连接BE ,BF ,DF .(1)求证:BC DF BF CE ⋅=⋅;(2)若A CBF ∠=∠,tan BFC ∠=,AF =CF 的长和O 的直径.【答案】(1)见详解;(2.【解析】【分析】(1)先证明EBC DBF ∽,然后利用对应边成比例,即可证明;(2)利用EBC DBF ∽,知道EBC DBF ∠=∠,从而推出CBF EBA ∠=∠,结合A CBF ∠=∠,知道A EBA ∠=∠,推出AE BE =,接下来证明BFC ABC ∠=∠,那么有tan tan BFC ∠=∠,即CB AC CF BC==不妨设CF x =,代入求得CF 的长度,不妨设EF y =,在Rt CEB △和Rt CFB △中利用勾股定理求得EF 和BF 的长度,最后利用tan tan CEB FDB ∠=∠,求得DF 的长度,然后在利用勾股定理求得BD 的长度.【小问1详解】BD Q 是O 的直径90BFD C∴∠=︒=∠又CEB FDB∠∠=EBC DBF∴ ∽EC CBDF FB∴=BC DF BF CE⋅=⋅∴【小问2详解】由(1)可知,EBC DBF∽EBC DBF ∴∠=∠EBC FBE DBF FBE∴∠-∠=∠-∠CBF EBA∴∠=∠A CBF∠=∠ A EBA∴∠=∠AE BE∴=A CBF∠=∠ 9090A CBF∴︒-∠=︒-∠ABC CFB∴∠=∠tan BFC ∠=tan tan BFC ∠∴=∠CBACCF BC ∴==不妨设CF x =,那么CB =AF ==x ∴=CF ∴=5CB ===不妨设EF y =,那么AE AF EF y BE=-=-=在Rt CEB △中,CE EF CF y =+=+5CB =,BE y=-222(5)y y ∴+=-y ∴=EF ∴=在Rt CFB △中,CF =,5BC =BF ∴===CEB FDB∠∠= tan tan CEB FDB∴∠=∠CB BF CE DF∴==DF ∴=BD ∴===∴O 的直径是故答案为:CF =,O 直径是【点睛】本题考查了同弧所对的圆周角相等,直径所对的圆周角是直角,三角形相似的判定与性质,勾股定理,解直角三角形,等腰三角形的性质,二次根式的化简,熟练掌握以上知识点是解题的关键.18. 如图,在平面直角坐标系xOy 中,直线y x m =-+与直线2y x =相交于点()2,A a ,与x 轴交于点(),0B b ,点C 在反比例函数()0k y k x=<图象上.(1)求a ,b ,m 的值;(2)若O ,A ,B ,C 为顶点的四边形为平行四边形,求点C 的坐标和k 的值;(3)过A ,C 两点的直线与x 轴负半轴交于点D ,点E 与点D 关于y 轴对称.若有且只有一点C ,使得ABD △与ABE 相似,求k 的值.【答案】(1)4a =,6m =,6b =(2)点C 的坐标为()4,4-或()4,4-,16k =- (3)1-【解析】【分析】(1)利用待定系数法求解即可;(2)设(),C t s ,根据平行四边形的性质,分当OA 为对角线时,当OB 为对角线时,当OC 为对角线时三种情况,分别利用中点坐标公式列方程组求解即可;(3)设点(),0D x ,则(),0E x -,0x <,利用相似三角形的性质得2AB BE BD =⋅,进而解方程得2x =-,则()2,0D -,利用待定系数法求得直线AC 的表达式为2y x =+,联立方程组得220x x k +-=,根据题意,方程220x x k +-=有且只有一个实数根,利用根的判别式求解即可.【小问1详解】解:由题意,将()2,A a 代入2y x =中,得224a =⨯=,则()2,4A ,将()2,4A 代入y x m =-+中,得42m =-+,则6m =,∴6y x =-+,将(),0B b 代入6y x =-+中,得06b =-+,则6b =;【小问2详解】解:设(),C t s ,由(1)知()2,4A ,()6,0B 若O ,A ,B ,C 为顶点的四边形为平行四边形,分以下情况:当OA 为对角线时,则026040t s +=+⎧⎨+=+⎩,解得44t s =-⎧⎨=⎩,∴()4,4C -,则4416k =-⨯=-;当OB 为对角线时,则062004ts +=+⎧⎨+=+⎩,解得44t s =⎧⎨=-⎩,∴()4,4C -,则4416k =-⨯=-;当OC 为对角线时,依题意,这种情况不存在,综上所述,满足条件的点C 的坐标为()4,4-或()4,4-,16k =-;【小问3详解】解:如图,设点(),0D x ,则(),0E x -,0x <,若ABD EBA △∽△,则AB BDBE AB=,即2AB BE BD =⋅,∴()()()()22264066x x -+-=+-,即24x =,解得2x =±,∵0x <,∴2x =-,则()2,0D -,设直线AC 的表达式为y px q =+,则2420p q p q +=⎧⎨-+=⎩,解得12p q =⎧⎨=⎩,∴直线AC 的表达式为2y x =+,联立方程组2y x ky x =+⎧⎪⎨=⎪⎩,得220x x k +-=,∵有且只有一点C ,∴方程220x x k +-=有且只有一个实数根,∴2402k +==∆,解得1k =-;由题意,ABD ABE ∽V V 不存在,故满足条件的k 值为1-.【点睛】本题考查一次函数与反比例函数的综合、反比例函数与几何的综合,涉及待定系数法、相似三角形的性质、平行四边形的性质、坐标与图形、一元二次方程根的判别式等知识,熟练掌握相关知识的联系与运用,利用分类讨论思想求解是解答的关键.B 卷(共50分)一、填空题(本大题共5个小题,每小题4分,共20分)19. 如图,ABC CDE △≌△,若35D ∠=︒,45ACB ∠=︒,则DCE ∠的度数为______.【答案】100︒##100度【解析】【分析】本题考查了三角形的内角和定理和全等三角形的性质,先利用全等三角形的性质,求出45CED ACB ∠=∠=︒,再利用三角形内角和求出DCE ∠的度数即可.【详解】解:由ABC CDE △≌△,35D ∠=︒,∴45CED ACB ∠=∠=︒,∵35D ∠=︒,∴1801803545100DCE D CED ∠=︒-∠-∠=︒-︒-︒=︒,故答案为:100︒20. 若m ,n 是一元二次方程2520x x -+=的两个实数根,则()22m n +-的值为______.【答案】7【解析】【分析】本题考查了根与系数的关系和完全平方公式和已知式子的值,求代数式的值.先利用已知条件求出2520n n -+=,5bm n a+=-=,从而得到252n n =-,再将原式利用完全平方公式展开,利用252n n =-替换2n 项,整理后得到m n 2++,再将5m n +=代入即可.【详解】解:∵m ,n 是一元二次方程2520x x -+=的两个实数根,∴2520n n -+=,5bm n a+=-=,则252n n =-∴()22m n +-244m n n =+-+5244m n n =+--+2m n =++52=+7=故答案为:721. 在综合实践活动中,数学兴趣小组对1n 这n 个自然数中,任取两数之和大于n 的取法种数k 进行了探究.发现:当2n =时,只有{}1,2一种取法,即1k =;当3n =时,有{}1,3和{}2,3两种取法,即2k =;当4n =时,可得4k =;…….若6n =,则k 的值为______;若24n =,则k 的值为______.【答案】 ①. 9②. 144【解析】【分析】本题考查数字类规律探究,理解题意,能够从特殊到一般,得到当n 为偶数或奇数时的不同取法是解答的关键.先根据前几个n 值所对应k 值,找到变化规律求解即可.【详解】解:当2n =时,只有{}1,2一种取法,则1k =;当3n =时,有{}1,3和{}2,3两种取法,则2k =;当4n =时,有{}1,4,{}2,4,{}3,4,{}2,3四种取法,则243144k =+==;故当5n =时,有{}1,5,{}2,5,{}3,5,{}4,5,{}2,4,{}3,4六种取法,则426k =+=;当6n =时,有{}1,6,{}2,6,{}3,6,{}4,6,{}5,6,{}2,5,{}3,5,{}4,5,{}3,4九种取法,则2653194k =++==;依次类推,当n 为偶数时,()()2135314n k n n =-+-++++= ,故当24n =时,2242321195311444k =++++++== ,故答案为:9,144.22. 如图,在Rt ABC △中,90C ∠=︒,AD 是ABC 的一条角平分线,E 为AD 中点,连接BE .若BE BC =,2CD =,则BD =______.【解析】【分析】连接CE ,过E 作EF CD ⊥于F ,设BD x =,EF m =,根据直角三角形斜边上的中线性质和等腰三角形的性质证得112CF DF CD ===,EAC ECA =∠∠,ECD EDC BEC ∠=∠=∠,进而利用三角形的外角性质和三角形的中位线性质得到2CED CAE ∠=∠,22AC EF m ==,证明CBE CED ∽,利用相似三角形的性质和勾股定理得到232m x =+;根据角平分线的定义和相似三角形的判定与性质证明CAB FBE ∽得到()()2212m x x =++,进而得到关于x 的一元二次方程,进而求解即可.【详解】解:连接CE ,过E 作EFCD ⊥于F ,设BD x =,EF m =,∵90ACB ∠=︒,E 为AD 中点,∴CE AE DE ==,又2CD =,∴112CF DF CD ===,EAC ECA =∠∠,ECD EDC ∠=∠,∴2CED CAE ∠=∠,22AC EF m ==,∵BE BC =,∴BEC ECB ∠=∠,则BEC EDC ∠=∠,又BCE ECD ∠=∠,∴CBE CED ∽,∴CE CBCD CE=,2CBE CED CAE ∠=∠=∠,∴()22242CE CD CB x x =⋅=+=+,则222232m EF CE CF x ==-=+;∵AD 是ABC 的一条角平分线,∴2CAB CAE CBE ∠=∠=∠,又90ACB BFE ∠=∠=︒,∴CAB FBE ∽,∴AC BCBF EF =∴221m x x m+=+,则()()2212m x x =++,∴()()()23212x x x +=++,即240x x --=,解得x =,【点睛】本题考查了相似三角形的判定与性质、直角三角形的性质、等腰三角形的性质、三角形的中位线性质、三角形的外角性质、角平分线的定义以及解一元二次方程等知识,是一道填空压轴题,有一定的难度,熟练掌握三角形相关知识是解答的关键.23. 在平面直角坐标系xOy 中,()11,A x y ,()22,B x y ,()33,C x y 是二次函数241y x x =-+-图象上三点.若101x <<,24x >,则1y ______2y (填“>”或“<”);若对于11m x m <<+,212m x m +<<+,323m x m +<<+,存在132y y y <<,则m 的取值范围是______.【答案】 ①.> ②. 112m -<<【解析】【分析】本题考查二次函数的性质、不等式的性质以及解不等式组,熟练掌握二次函数的性质是解答的关键.先求得二次函数的对称轴,再根据二次函数的性质求解即可.【详解】解:由()224123y x x x =-+-=--+得抛物线对称轴为直线2x =,开口向下,∵101x <<,24x >,∴1222x x -<-,∴12y y >;∵12m m m <+<+,11m x m <<+,212m x m +<<+,323m x m +<<+,∴123x x x <<, ∵存在132y y y <<,∴12x <,32x >,且()11,A x y 离对称轴最远,()22,B x y 离对称轴最近,∴132222x x x ->->-,即134x x +<,且234x x +>,∵132224m x x m +<+<+,232325m x x m +<+<+,∴224m +<且254m +>,解得112m -<<,故答案为:>;112m -<<.二、解答题(本大题共3个小题,共30分)24. 推进中国式现代化,必须坚持不懈夯实农业基础,推进乡村全面振兴.某合作社着力发展乡村水果网络销售,在水果收获的季节,该合作社用17500元从农户处购进A ,B 两种水果共1500kg 进行销售,其中A 种水果收购单价10元/kg ,B 种水果收购单价15元/kg .的(1)求A ,B 两种水果各购进多少千克;(2)已知A 种水果运输和仓储过程中质量损失4%,若合作社计划A 种水果至少要获得20%的利润,不计其他费用,求A 种水果的最低销售单价.【答案】(1)A 种水果购进1000千克,B 种水果购进500千克 (2)A 种水果的最低销售单价为12.5元/kg 【解析】【分析】本题主要考查一元二次方程的应用和一元一次不等式的应用,(1)设A 种水果购进x 千克, B 种水果购进y 千克,根据题意列出二元一次方程组求解即可.(2)根据题意列出关于利润和进价与售价的不等式求解即可.【小问1详解】解:设A 种水果购进x 千克, B 种水果购进y 千克,根据题意有:1500101517500x y x y +=⎧⎨+=⎩,解得:1000500x y =⎧⎨=⎩,∴A 种水果购进1000千克,B 种水果购进500千克【小问2详解】设A 种水果的销售单价为a 元/kg ,根据题意有:()()100014%120%100010a -≥+⨯⨯,解得12.5a ≥,故A 种水果的最低销售单价为12.5元/kg25. 如图,在平面直角坐标系xOy 中,抛物线L :()2230y ax ax a a =-->与x 轴交于A ,B 两点(点A 在点B 的左侧),其顶点为C ,D 是抛物线第四象限上一点.(1)求线段AB 的长;(2)当1a =时,若ACD 的面积与ABD △的面积相等,求tan ABD ∠的值;(3)延长CD 交x 轴于点E ,当AD DE =时,将ADB 沿DE 方向平移得到A EB '' .将抛物线L 平移得到抛物线L ',使得点A ',B '都落在抛物线L '上.试判断抛物线L '与L 否交于某个定点.若是,求出该定点坐标;若不是,请说明理由.【答案】(1)4AB = (2)10tan 3ABD ∠=(3)抛物线L '与L 交于定点()3,0【解析】【分析】(1)根据题意可得2230ax ax a --=,整理得2230x x --=,即可知()()1,0,3,0,A B -则有4AB =;(2)由题意得抛物线L :()222314y x x x =--=--,则()1,4,C -设()2,23,D n n n --()03n <<,可求得2246ABD S n n =-++△,结合题意可得直线AD 解析式为()()31y n x =-+,设直线AD 与抛物线对称轴交于点E ,则()1,26E n -,即可求得21ACD S n =- ,进一步解得点720,39D ⎛⎫- ⎪⎝⎭,过D 作DH AB ⊥于点H ,则220,39BH DH ==,即可求得tan DHABD BH ∠=;(3)设()2,23,D n an an a --可求得直线AD 解析式为()()31y a n x =-+,过点D 作DM AB ⊥,可得21,23AM n DM an an a =+=-++,结合题意得1,EM n =+()2,23,A n an an a -++'()24,23,B n an an a '+-++设抛物线L '解析式为是()20y ax bx c a =++>,由于过点A ',B '可求得抛物线L '解析式为()22463y ax an a x an a =+--++,根据()22232463ax ax a ax an a x an a--=+--++解得3x =,即可判断抛物线L '与L 交于定点()3,0.【小问1详解】解:∵抛物线L :()2230y ax ax a a =-->与x 轴交于A ,B 两点,∴2230ax ax a --=,整理得2230x x --=,解得121,3,x x =-=∴()()1,0,3,0,A B -则()314AB =--=;【小问2详解】当1a =时,抛物线L :()222314y x x x =--=--,则()1,4,C -设()2,23,D n n n --()03n <<,则()221142324622ABD D S AB y n n n n =⋅=-⨯⨯--=-++ ,设直线AD 解析式为()1y k x =+,∵点D 在直线AD 上,∴()2231n n k n --=+,解得3k n =-,则直线AD 解析式为()()31y n x =-+,设直线AD 与抛物线对称轴交于点E ,则()1,26E n -,∴()()()2112641122ACD D A S CE x x n n n ⎡⎤=⋅-=⨯---⨯+=-⎣⎦ ,∵ACD 的面积与ABD △的面积相等,。
2013年四川省成都市中考数学试卷(考试时间:120分钟满分150分)A卷(共100分)一、选择题(本大题共10个小题,每小题3分,共30分.每小题均有四个选项.其中只有一项符合题目要求,答案涂在答题卡上)1.2的相反数是()A.2 B.﹣2 C.D.2.如图所示的几何体的俯视图可能是()A.B.C.D.3.要使分式有意义,则x的取值范围是()A.x≠1 B.x>1 C.x<1 D.x≠﹣14.如图,在△ABC中,∠B=∠C,AB=5,则AC的长为()A.2 B.3 C.4 D.55.下列运算正确的是()A.×(﹣3)=1 B.5﹣8=﹣3 C.2﹣3=6 D.(﹣2013)0=06.参加成都市今年初三毕业会考的学生约有13万人,将13万用科学记数法表示应为()A.1.3×105B.13×104C.0.13×105D.0.13×1067.如图,将矩形ABCD沿对角线BD折叠,使点C和点C′重合,若AB=2,则C′D的长为()A.1 B.2 C.3 D.48.在平面直角坐标系中,下列函数的图象经过原点的是()A.y=﹣x+3 B.y=C.y=2x D.y=﹣2x2+x﹣79.一元二次方程x2+x﹣2=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根10.如图,点A,B,C在⊙O上,∠A=50°,则∠BOC的度数为()A.40°B.50°C.80°D.100°二.填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上)11.不等式2x﹣1>3的解集是.12.今年4月20日在雅安市芦山县发生了7.0级的大地震,全川人民众志成城,抗震救灾.某班组织“捐零花钱,献爱心”活动,全班50名学生的捐款情况如图所示,则本次捐款金额的众数是元.13.如图,∠B=30°,若AB∥CD,CB平分∠ACD,则∠ACD=度.14.如图,某山坡的坡面AB=200米,坡角∠BAC=30°,则该山坡的高BC的长为米.三、解答题(本大题共6个小题,共54分)15.(12分)(1)计算:(2)解方程组:.16.(6分)化简.17.(8分)如图,在边长为1的小正方形组成的方格纸上,将△ABC绕着点A顺时针旋转90°(1)画出旋转之后的△AB′C′;(2)求线段AC旋转过程中扫过的扇形的面积.18.(8分)“中国梦”关乎每个人的幸福生活,为进一步感知我们身边的幸福,展现成都人追梦的风采,我市某校开展了以“梦想中国,逐梦成都”为主题的摄影大赛,要求参赛学生每人交一件作品.现将参赛的50件作品的成绩(单位:分)进行统计如下:等级成绩(用s表示)频数频率A 90≤s≤100 x 0.08B 80≤s<90 35 yC s<80 11 0.22合计50 1请根据上表提供的信息,解答下列问题:(1)表中的x的值为,y的值为(2)将本次参赛作品获得A等级的学生依次用A1,A2,A3,…表示,现该校决定从本次参赛作品中获得A 等级学生中,随机抽取两名学生谈谈他们的参赛体会,请用树状图或列表法求恰好抽到学生A1和A2的概率.19.(10分)如图,一次函数y1=x+1的图象与反比例函数(k为常数,且k≠0)的图象都经过点A (m,2)(1)求点A的坐标及反比例函数的表达式;(2)结合图象直接比较:当x>0时,y1和y2的大小.20.(10分)如图,点B在线段AC上,点D、E在AC同侧,∠A=∠C=90°,BD⊥BE,AD=BC.(1)求证:AC=AD+CE;(2)若AD=3,CE=5,点P为线段AB上的动点,连接DP,作PQ⊥DP,交直线BE于点Q;(i)当点P与A、B两点不重合时,求的值;(ii)当点P从A点运动到AC的中点时,求线段DQ的中点所经过的路径(线段)长.(直接写出结果,不必写出解答过程)B卷(共50分)一、填空题(本大题共5个小题,每小题4分,共20分,)21.已知点(3,5)在直线y=ax+b(a,b为常数,且a≠0)上,则的值为.22.若正整数n使得在计算n+(n+1)+(n+2)的过程中,各数位均不产生进位现象,则称n为“本位数”.例如2和30是“本位数”,而5和91不是“本位数”.现从所有大于0且小于100的“本位数”中,随机抽取一个数,抽到偶数的概率为.23.若关于t的不等式组,恰有三个整数解,则关于x的一次函数的图象与反比例函数的图象的公共点的个数为.24.在平面直角坐标系xOy中,直线y=kx(k为常数)与抛物线y=x2﹣2交于A,B两点,且A点在y 轴左侧,P点的坐标为(0,﹣4),连接PA,PB.有以下说法:①PO2=PA•PB;②当k>0时,(PA+AO)(PB﹣BO)的值随k的增大而增大;③当k=时,BP2=BO•BA;④△PAB面积的最小值为.其中正确的是.(写出所有正确说法的序号)25.如图,A,B,C为⊙O上相邻的三个n等分点,=,点E在上,EF为⊙O的直径,将⊙O沿EF 折叠,使点A与A′重合,点B与B′重合,连接EB′,EC,EA′.设EB′=b,EC=c,EA′=p.现探究b,c,p三者的数量关系:发现当n=3时,p=b+c.请继续探究b,c,p三者的数量关系:当n=4时,p =;当n=12时,p=.(参考数据:sin15°=cos75°=,cos15°=sin75°=)二、解答题(本小题共三个小题,共30分.答案写在答题卡上)26.(8分)某物体从P点运动到Q点所用时间为7秒,其运动速度v(米每秒)关于时间t(秒)的函数关系如图所示.某学习小组经过探究发现:该物体前进3秒运动的路程在数值上等于矩形AODB的面积.由物理学知识还可知:该物体前t(3<t≤7)秒运动的路程在数值上等于矩形AODB的面积与梯形BDNM的面积之和.根据以上信息,完成下列问题:(1)当3<t≤7时,用含t的式子表示v;(2)分别求该物体在0≤t≤3和3<t≤7时,运动的路程s(米)关于时间t(秒)的函数关系式;并求该物体从P点运动到Q总路程的时所用的时间.27.(10分)如图,⊙O的半径r=25,四边形ABCD内接于圆⊙O,AC⊥BD于点H,P为CA延长线上的一点,且∠PDA=∠ABD.(1)试判断PD与⊙O的位置关系,并说明理由;(2)若tan∠ADB=,PA=AH,求BD的长;(3)在(2)的条件下,求四边形ABCD的面积.28.(12分)在平面直角坐标系中,已知抛物线y=x2+bx+c(b,c为常数)的顶点为P,等腰直角三角形ABC的顶点A的坐标为(0,﹣1),C的坐标为(4,3),直角顶点B在第四象限.(1)如图,若该抛物线过A,B两点,求该抛物线的函数表达式;(2)平移(1)中的抛物线,使顶点P在直线AC上滑动,且与AC交于另一点Q.(i)若点M在直线AC下方,且为平移前(1)中的抛物线上的点,当以M、P、Q三点为顶点的三角形是等腰直角三角形时,求出所有符合条件的点M的坐标;(ii)取BC的中点N,连接NP,BQ.试探究是否存在最大值?若存在,求出该最大值;若不存在,请说明理由.参考答案与试题解析一、选择题1.【解答】解:2的相反数为:﹣2.故选:B.2.【解答】解:所给图形的俯视图是一个带有圆心的圆.故选:C.3.【解答】解:∵分式有意义,∴x﹣1≠0,解得:x≠1.故选:A.4.【解答】解:∵∠B=∠C,∴AB=AC=5.故选:D.5.【解答】解:A、×(﹣3)=﹣1,运算错误,故本选项错误;B、5﹣8=﹣3,运算正确,故本选项正确;C、2﹣3=,运算错误,故本选项错误;D、(﹣2013)0=1,运算错误,故本选项错误;故选:B.6.【解答】解:将13万用科学记数法表示为1.3×105.故选:A.7.【解答】解:在矩形ABCD中,CD=AB,∵矩形ABCD沿对角线BD折叠后点C和点C′重合,∴C′D=CD,∴C′D=AB,∵AB=2,∴C′D=2.故选:B.8.【解答】解:A、当x=0时,y=3,不经过原点,故本选项错误;B、反比例函数,不经过原点,故本选项错误;C、当x=0时,y=0,经过原点,故本选项正确;D、当x=0时,y=﹣7,不经过原点,故本选项错误;故选:C.9.【解答】解:△=b2﹣4ac=12﹣4×1×(﹣2)=9,∵9>0,∴原方程有两个不相等的实数根.故选:A.10.【解答】解:由题意得∠BOC=2∠A=100°.故选:D.二.填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上)11.【解答】解:2x﹣1>3,移项得:2x>3+1,合并同类项得:2x>4,不等式的两边都除以2得:x>2,故答案为:x>2.12.【解答】解:捐款10元的人数最多,故本次捐款金额的众数是10元.故答案为:10.13.【解答】解:∵AB∥CD,∠B=30°,∴∠BCD=∠B=30°,∵CB平分∠ACD,∴∠ACD=2∠BCD=60°.故答案为:60.14.【解答】解:由题意得,∠BCA=90°,∠BAC=30°,AB=200米,故可得BC=AB=100米.故答案为:100.三、解答题(本大题共6个小题,共54分)15.【解答】解:(1)原式=4++2×﹣2=4;(2),①+②可得:3x=6,解得:x=2,将x=2代入①可得:y=﹣1,故方程组的解为.16.【解答】解:原式=a(a﹣1)×=a.17.【解答】解:(1)△AB′C′如图所示;(2)由图可知,AC=2,∴线段AC旋转过程中扫过的扇形的面积==π.18.【解答】解:(1)∵x+35+11=50,∴x=4,或x=50×0.08=4;y==0.7,或y=1﹣0.08﹣0.22=0.7;(2)依题得获得A等级的学生有4人,用A1,A2,A3,A4表示,画树状图如下:由上图可知共有12种结果,且每一种结果可能性都相同,其中抽到学生A1和A2的有两种结果,所以从本次参赛作品中获得A等级学生中,随机抽取两名学生谈谈他们的参赛体会,恰好抽到学生A1和A2的概率为:P=.19.【解答】解:(1)将A的坐标代入y1=x+1,得:m+1=2,解得:m=1,故点A坐标为(1,2),将点A的坐标代入:,得:2=,解得:k=2,则反比例函数的表达式y2=;(2)结合函数图象可得:当0<x<1时,y1<y2;当x=1时,y1=y2;当x>1时,y1>y2.20.【解答】(1)证明:∵BD⊥BE,∴∠1+∠2=180°﹣90°=90°,∵∠C=90°,∴∠2+∠E=180°﹣90°=90°,∴∠1=∠E,∵在△ABD和△CEB中,,∴△ABD≌△CEB(AAS),∴AB=CE,∴AC=AB+BC=AD+CE;(2)(i)如图,过点Q作QF⊥BC于F,则△BFQ∽△BCE,∴=,即=,∴QF=BF,∵DP⊥PQ,∴∠APD+∠FPQ=180°﹣90°=90°,∵∠APD+∠ADP=180°﹣90°=90°,∴∠ADP=∠FPQ,又∵∠A=∠PFQ=90°,∴△ADP∽△FPQ,∴=,即=,∴5AP﹣AP2+AP•BF=3•BF,整理得,(AP﹣BF)(AP﹣5)=0,∵点P与A,B两点不重合,∴AP≠5,∴AP=BF,由△ADP∽△FPQ得,=,∴=;(ii)线段DQ的中点所经过的路径(线段)就是△BDQ的中位线MN.由(2)(i)可知,QF=AP.当点P运动至AC中点时,AP=4,∴QF=.∴BF=QF×=4.在Rt△BFQ中,根据勾股定理得:BQ===.∴MN=BQ=.∴线段DQ的中点所经过的路径(线段)长为.21.【解答】解:∵点(3,5)在直线y=ax+b上,∴5=3a+b,∴b﹣5=﹣3a,则==.故答案为:﹣.22.【解答】解:所有大于0且小于100的“本位数”有:1、2、10、11、12、20、21、22、30、31、32,共有11个,7个偶数,4个奇数,所以,P(抽到偶数)=.故答案为:.23.【解答】解:不等式组的解为:a≤t≤,∵不等式组恰有3个整数解,∴﹣2<a≤﹣1.联立方程组,得:x2﹣ax﹣3a﹣2=0,△=a2+3a+2=(a+)2﹣=(a+1)(a+2)这是一个二次函数,开口向上,与x轴交点为(﹣2,0)和(﹣1,0),对称轴为直线a=﹣,其图象如下图所示:由图象可见:当a=﹣1时,△=0,此时一元二次方程有两个相等的根,即一次函数与反比例函数有一个交点;当﹣2<a<﹣1时,△<0,此时一元二次方程无实数根,即一次函数与反比例函数没有交点.∴交点的个数为:1或0.故答案为:1或0.24.【解答】解:设A(m,km),B(n,kn),其中m<0,n>0.联立y=x2﹣2与y=kx得:x2﹣2=kx,即x2﹣3kx﹣6=0,∴m+n=3k,mn=﹣6.设直线PA的解析式为y=ax+b,将P(0,﹣4),A(m,km)代入得:,解得a=,b=﹣4,∴y=()x﹣4.令y=0,得x=,∴直线PA与x轴的交点坐标为(,0).同理可得,直线PB的解析式为y=()x﹣4,直线PB与x轴交点坐标为(,0).∵+===0,∴直线PA、PB与x轴的交点关于y轴对称,即直线PA、PB关于y轴对称.(1)说法①错误.理由如下:如答图1所示,∵PA、PB关于y轴对称,∴点A关于y轴的对称点A′落在PB上.连接OA′,则OA=OA′,∠POA=∠POA′.假设结论:PO2=PA•PB成立,即PO2=PA′•PB,∴,又∵∠BPO=∠BPO,∴△POA′∽△PBO,∴∠POA′=∠PBO,∴∠AOP=∠PBO.而∠AOP是△PBO的外角,∴∠AOP>∠PBO,矛盾,∴说法①错误.(2)说法②错误.理由如下:易知:=﹣,∴OB=﹣OA.由对称可知,PO为△APB的角平分线,∴,∴PB=﹣PA.∴(PA+AO)(PB﹣BO)=(PA+AO)[﹣PA﹣(﹣OA)]=﹣(PA+AO)(PA﹣OA)=﹣(PA2﹣AO2).如答图2所示,过点A作AD⊥y轴于点D,则OD=﹣km,PD=4+km.∴PA2﹣AO2=(PD2+AD2)﹣(OD2+AD2)=PD2﹣OD2=(4+km)2﹣(﹣km)2=8km+16,∵m+n=3k,∴k=(m+n),∴PA2﹣AO2=8•(m+n)•m+16=m2+mn+16=m2+×(﹣6)+16=m2.∴(PA+AO)(PB﹣BO)=﹣(PA2﹣AO2)=﹣•m2=﹣mn=﹣×(﹣6)=16.即:(PA+AO)(PB﹣BO)为定值,所以说法②错误.(3)说法③正确.理由如下:当k=时,联立方程组:,得A(,2),B(,﹣1),∴BP2=12,BO•BA=2×6=12,∴BP2=BO•BA,故说法③正确.(4)说法④正确.理由如下:S△PAB=S△PAO+S△PBO=OP•(﹣m)+OP•n=OP•(n﹣m)=2(n﹣m)=2=2,∴当k=0时,△PAB面积有最小值,最小值为=.故说法④正确.综上所述,正确的说法是:③④.故答案为:③④.25.【解答】解:如解答图所示,连接AB、AC、BC.由题意,点A、B、C为圆上的n等分点,∴AB=BC,∠ACB=×=(度).在等腰△ABC中,过顶点B作BN⊥AC于点N,则AC=2CN=2BC•cos∠ACB=2cos•BC,∴=2cos.连接AE、BE,在AE上取一点D,使ED=EC,连接CD.∵∠ABC=∠CED,∴△ABC与△CED为顶角相等的两个等腰三角形,∴△ABC∽△CED.∴,∠ACB=∠DCE.∵∠ACB=∠ACD+∠BCD,∠DCE=∠BCE+∠BCD,∴∠ACD=∠BCE.在△ACD与△BCE中,∵,∠ACD=∠BCE,∴△ACD∽△BCE.∴,∴DA=•EB=2cos•EB.∴EA=ED+DA=EC+2cos•EB.由折叠性质可知,p=EA′=EA,b=EB′=EB,c=EC.∴p=c+2cos•b.当n=4时,p=c+2cos45°•b=c+b;当n=12时,p=c+2cos15°•b=c+b.故答案为:c+b,c+b.26.【解答】解:(1)设直线BC的解析式为v=kt+b,由题意,得,解得:用含t的式子表示v为v=2t﹣4;(2)由题意,得根据图示知,当0≤t≤3时,S=2t;当3<t≤7时,S=6+(2+2t﹣4)(t﹣3)=t2﹣4t+9.综上所述,S=,∴P点运动到Q点的路程为:72﹣4×7+9=49﹣28+9=30,∴30×=21,∴t2﹣4t+9=21,整理得,t2﹣4t﹣12=0,解得:t1=﹣2(舍去),t2=6.故该物体从P点运动到Q点总路程的时所用的时间为6秒.27.【解答】解:(1)PD与圆O相切.理由:如图,连接DO并延长交圆于点E,连接AE,∵DE是直径,∴∠DAE=90°,∴∠AED+∠ADE=90°,∵∠PDA=∠ABD=∠AED,∴∠PDA+∠ADE=90°,即PD⊥DO,∴PD与圆O相切于点D;(2)∵tan∠ADB=∴可设AH=3k,则DH=4k,∵PA=AH,∴PA=(4﹣3)k,∴PH=4k,∴在Rt△PDH中,tan∠P==,∴∠P=30°,∠PDH=60°,∵PD⊥DO,∴∠BDE=90°﹣∠PDH=30°,连接BE,则∠DBE=90°,DE=2r=50,∴BD=DE•cos30°=;(3)由(2)知,BH=﹣4k,∴HC=(﹣4k),又∵PD2=PA×PC,∴(8k)2=(4﹣3)k×[4k+(25﹣4k)],解得:k=4﹣3,∴AC=3k+(25﹣4k)=24+7,∴S四边形ABCD=BD•AC=×25×(24+7)=900+.补充方法:28.【解答】解:(1)∵等腰直角三角形ABC的顶点A的坐标为(0,﹣1),C的坐标为(4,3)∴点B的坐标为(4,﹣1).∵抛物线过A(0,﹣1),B(4,﹣1)两点,∴,解得:b=2,c=﹣1,∴抛物线的函数表达式为:y=x2+2x﹣1.(2)方法一:i)∵A(0,﹣1),C(4,3),∴直线AC的解析式为:y=x﹣1.设平移前抛物线的顶点为P0,则由(1)可得P0的坐标为(2,1),且P0在直线AC上.∵点P在直线AC上滑动,∴可设P的坐标为(m,m﹣1),则平移后抛物线的函数表达式为:y=(x﹣m)2+m﹣1.解方程组:,解得,∴P(m,m﹣1),Q(m﹣2,m﹣3).过点P作PE∥x轴,过点Q作QF∥y轴,则PE=m﹣(m﹣2)=2,QF=(m﹣1)﹣(m﹣3)=2.∴PQ==AP0.若以M、P、Q三点为顶点的等腰直角三角形,则可分为以下两种情况:①当PQ为直角边时:点M到PQ的距离为(即为PQ的长).由A(0,﹣1),B(4,﹣1),P0(2,1)可知,△ABP0为等腰直角三角形,且BP0⊥AC,BP0=.如答图1,过点B作直线l1∥AC,交抛物线y=x2+2x﹣1于点M,则M为符合条件的点.∴可设直线l1的解析式为:y=x+b1,∵B(4,﹣1),∴﹣1=4+b1,解得b1=﹣5,∴直线l1的解析式为:y=x﹣5.解方程组,得:,∴M1(4,﹣1),M2(﹣2,﹣7).②当PQ为斜边时:MP=MQ=2,可求得点M到PQ的距离为.如答图2,取AB的中点F,则点F的坐标为(2,﹣1).由A(0,﹣1),F(2,﹣1),P0(2,1)可知:△AFP0为等腰直角三角形,且点F到直线AC的距离为.过点F作直线l2∥AC,交抛物线y=x2+2x﹣1于点M,则M为符合条件的点.∴可设直线l2的解析式为:y=x+b2,∵F(2,﹣1),∴﹣1=2+b2,解得b2=﹣3,∴直线l2的解析式为:y=x﹣3.解方程组,得:,∴M3(1+,﹣2+),M4(1﹣,﹣2﹣).综上所述,所有符合条件的点M的坐标为:M1(4,﹣1),M2(﹣2,﹣7),M3(1+,﹣2+),M4(1﹣,﹣2﹣).方法二:∵A(0,1),C(4,3),∴l AC:y=x﹣1,∵抛物线顶点P在直线AC上,设P(t,t﹣1),∴抛物线表达式:,∴l AC与抛物线的交点Q(t﹣2,t﹣3),∵以M、P、Q三点为顶点的三角形是等腰直角三角形,P(t,t﹣1),①当M为直角顶点时,M(t,t﹣3),,∴t=1±,∴M1(1+,﹣2),M2(1﹣,﹣2﹣),②当Q为直角顶点时,点M可视为点P绕点Q顺时针旋转90°而成,将点Q(t﹣2,t﹣3)平移至原点Q′(0,0),则点P平移后P′(2,2),将点P′绕原点顺时针旋转90°,则点M′(2,﹣2),将Q′(0,0)平移至点Q(t﹣2,t﹣3),则点M′平移后即为点M(t,t﹣5),∴,∴t1=4,t2=﹣2,∴M1(4,﹣1),M2(﹣2,﹣7),③当P为直角顶点时,同理可得M1(4,﹣1),M2(﹣2,﹣7),综上所述,所有符合条件的点M的坐标为:M1(4,﹣1),M2(﹣2,﹣7),M3(1+,﹣2+),M4(1﹣,﹣2﹣).ii)存在最大值.理由如下:由i)知PQ=为定值,则当NP+BQ取最小值时,有最大值.如答图2,取点B关于AC的对称点B′,易得点B′的坐标为(0,3),BQ=B′Q.连接QF,FN,QB′,易得FN∥P′Q,且FN=PQ,∴四边形P′QFN为平行四边形.∴NP′=FQ.∴NP′+BQ=FQ+B′Q≥FB′==.∴当B′、Q、F三点共线时,NP′+BQ最小,最小值为.∴的最大值为=。
成都市二○一○年高中阶段教育学校统一招生考试试卷(含成都市初三毕业会考)数 学全卷分A 卷和B 卷,A 卷满分100分,B 卷满分50分;考试时间l20分钟.A 卷分第Ⅰ卷和第Ⅱ卷,第Ⅰ卷为选择题,第Ⅱ卷为其他类型的题.A 卷(共100分)第Ⅰ卷(选择题,共30分)注意事项:1.第Ⅰ卷共2页.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目涂写在试卷和答题卡上.考试结束,监考人员将试卷和答题卡一并收回.2.第Ⅰ卷全是选择题,各题均有四个选项,只有一项符合题目要求.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案,选择题的答案不能答在试卷上.请注意机读答题卡的横竖格式.一、选择题:(每小题3分,共30分) 1.下列各数中,最大的数是(A )2- (B )0 (C )12(D )3 2.3x 表示(A )3x (B )x x x ++ (C )x x x ⋅⋅ (D )3x + 3.上海“世博会”吸引了来自全球众多国家数以千万的人前来参观.据统计,2010年5月某日参观世博园的人数约为256 000,这一人数用科学计数法表示为(A )52.5610⨯ (B )525.610⨯ (C )42.5610⨯ (D )425.610⨯ 4.如图是一个几何体的三视图,则这个几何体的形状是(A )圆柱 (B )圆锥 (C )圆台 (D )长方体 5.把抛物线2y x =向右平移1个单位,所得抛物线的函数表达式为 (A )21y x =+ (B )2(1)y x =+ (C )21y x =- (D )2(1)y x =-6.如图,已知//AB ED ,65ECF ∠=,则BAC ∠的度数为 (A )115 (B )65(C )60 (D )257.为了解某班学生每天使用零花钱的情况,小红随机调查了15名同学,结果如下表:则这15名同学每天使用零花钱的众数和中位数分别为(A )3,3 (B )2,3 (C )2,2 (D )3,5 8.已知两圆的半径分别是4和6,圆心距为7,则这两圆的位置关系是(A )相交 (B )外切 (C )外离 (D )内含9.若一次函数y kx b =+的函数值y 随x 的增大而减小,且图象与y 轴的负半轴相交,那么对k 和b 的符号判断正确的是(A )00k b >>, (B )00k b ><, (C )00k b <>, (D )00k b <<,10.已知四边形ABCD ,有以下四个条件:①//AB CD ;②AB CD =;③//BC AD ;④BC AD =.从这四个条件中任选两个,能使四边形ABCD 成为平行四边形的选法种数共有(A )6种 (B )5种 (C )4种 (D )3种成都市二○一○年高中阶段教育学校统一招生考试试卷(含成都市初三毕业会考)数 学注意事项:1.A 卷的第Ⅱ卷和B 卷共l0页,用蓝、黑钢笔或圆珠笔直接答在试卷上. 2.答卷前将密封线内的项目填写清楚.第Ⅱ卷(非选择题,共70分)二、填空题:(每小题3分,共15分)将答案直接写在该题目中的横线上.11.在平面直角坐标系中,点(23)A -,位于第___________象限. 12.若,x y为实数,且20x +=,则2010()x y +的值为___________.13.如图,在ABC △中,AB 是O 的直径,6070B C ∠=∠=,,则BOD ∠的度数是_____________度.14.甲计划用若干天完成某项工作,在甲独立工作两天后,乙加入此项工作,且甲、乙两人工效相同,结果提前两天完成任务.设甲计划完成此项工作的天数是x ,则x 的值是_____________. 15.若一个圆锥的侧面积是18π,侧面展开图是半圆,则该圆锥的底面圆半径是___________. 三、(第1小题7分,第2小题8分,共15分) 16.解答下列各题:(1)计算:116tan30(3.6π)122-⎛⎫+-- ⎪⎝⎭.(2)若关于x 的一元二次方程2420x x k ++=有两个实数根,求k 的取值范围及k 的非负整数值.四、(第17题8分,第18题10分,共18分)17.已知:如图,AB 与O 相切于点C ,OA OB =,O 的直径为48AB =,. (1)求OB 的长; (2)求sin A 的值.18.如图,已知反比例函数ky x=与一次函数y x b =+的图象在第一象限相交于点(1,4)A k -+.(1)试确定这两个函数的表达式;(2)求出这两个函数图象的另一个交点B 的坐标,并根据图象写出使反比例函数的值大于一次函数的值的x 的取值范围.五、(第19题10分,第20题12分,共22分)、、、、五个展馆参观,公司所购门票种19.某公司组织部分员工到一博览会的A B C D E类、数量绘制成的条形和扇形统计图如图所示.请根据统计图回答下列问题:(1)将条形统计图和扇形统计图在图中补充完整;(2)若A馆门票仅剩下一张,而员工小明和小华都想要,他们决定采用抽扑克牌的方法来确定,规则是:“将同一副牌中正面分别标有数字1,2,3,4的四张牌洗匀后,背面朝上放置在桌面上,每人随机抽一次且一次只抽一张;一人抽后记下数字,将牌放回洗匀背面朝上放置在桌面上,再由另一人抽.若小明抽得的数字比小华抽得的数字大,门票给小明,否则给小华.”请用画树状图或列表的方法计算出小明和小华获得门票的概率,并说明这个规则对双方是否公平.20.已知:在菱形ABCD中,O是对角线BD上的一动点.(1)如图甲,P为线段BC上一点,连接PO并延长交AD于点Q,当O是BD的中点时,=;求证:OP OQ(2)如图乙,连结AO并延长,与DC交于点R,与BC的延长线交于点S.若,∠,,求AS和OR的长.46010===AD DCB BSB 卷(共50分)一、填空题:(每小题4分,共20分) 将答案直接写在该题目中的横线上.21.设1x ,2x 是一元二次方程2320x x --=的两个实数根,则2211223x x x x ++的值为__________________.22.如图,在ABC △中,90B ∠=,12mm AB =,24mm BC =,动点P 从点A 开始沿边AB 向B 以2mm /s 的速度移动(不与点B 重合),动点Q 从点 B 开始沿边BC 向C 以4mm /s 的速度移动(不与点C 重合).如果P 、Q 分别从A 、B 同时出发,那么经过_____________秒,四边形APQC 的面积最小.23.有背面完全相同,正面上分别标有两个连续自然数1k k +,(其中01219k =,,,,)的卡片20张.小李将其混合后,正面朝下放置在桌面上,并从中随机地抽取一张,则该卡片上两个数的各位数字之和(例如:若取到标有9,10的卡片,则卡片上两个数的各位数字之和为91010++=)不小于14的概率为_________________.24.已知n 是正整数,111222()()()n n n P x y P x y P x y ,,,,,,,是反比例函数ky x=图象上的一列点,其中1212n x x x n ===,,,,.记112223n n n A x y A x y A x y +===,,,,.若1A a =(a 是非零常数),则12n A A A 的值是________________________(用含a 和n 的代数式表示).25.如图,ABC △内接于O ,90B AB BC ∠==,,D 是O 上与点B 关于圆心O 成中心对称的点,P 是 BC 边上一点,连结AD DC AP 、、.已知8AB =,2CP =,Q 是线段AP 上一动点,连结BQ 并延长交四边形ABCD 的一边于点R ,且满足AP BR =,则BQQR的值为_______________.26.随着人们经济收入的不断提高及汽车产业的快速发展,汽车已越来越多地进入普通家庭,成为居民消费新的增长点.据某市交通部门统计,2007年底全市汽车拥有量为150万辆,而截止到2009年底,全市的汽车拥有量已达216万辆.(1)求2007年底至2009年底该市汽车拥有量的年平均增长率; (2)为保护城市环境,缓解汽车拥堵状况,该市交通部门拟控制汽车总量,要求到2011年底全市汽车拥有量不超过231.96万辆;另据估计,从2010年初起,该市此后每年报废的汽车数量是上年底汽车拥有量的10%.假定每年新增汽车数量相同,请你计算出该市从2010年初起每年新增汽车数量最多不能超过多少万辆. 三、(共10分)27.已知:如图,ABC △内接于O ,AB 为直径,弦CE AB ⊥于F ,C 是AD 的中点,连结BD 并延长交EC 的延长线于点G ,连结AD ,分别交CE 、BC 于点P 、Q . (1)求证:P 是ACQ △的外心;(2)若3tan 84ABC CF ∠==,,求CQ 的长; (3)求证:2()FP PQ FP FG +=.28.在平面直角坐标系xOy 中,抛物线2y ax bx c =++与x 轴交于A B 、两点(点A 在点B 的左侧),与y 轴交于点C ,点A 的坐标为(30)-,,若将经过A C 、两点的直线y kx b =+沿y 轴向下平移3个单位后恰好经过原点,且抛物线的对称轴是直线2x =-.(1)求直线AC 及抛物线的函数表达式;(2)如果P 是线段AC 上一点,设ABP △、BPC △的面积分别是ABP S △、BPC S △,且:2:3ABP BPC S S =△△,求点P 的坐标;(3)设Q 的半径为l ,圆心Q 在抛物线上运动,则在运动过程中是否存在Q 与坐标轴相切的情况?若存在,求出圆心Q 的坐标;若不存在,请说明理由.并探究:若设⊙Q 的半径为r ,圆心Q 在抛物线上运动,则当r 取何值时,⊙Q 与两坐轴同时相切?成都市二○一○年高中阶段教育学校统一招生考试试卷(含成都市初三毕业会考)数学参考答案及评分意见A 卷(共100分)第Ⅰ卷(共30分)一、选择题:(每小题3分,共30分)1.D ; 2.C ; 3.A ; 4.B ; 5.D ; 6.B ; 7.B ; 8.A ; 9.D ; 10.C .第Ⅱ卷(共70分)二、填空题:(每小题3分,共15分)11.四; 12.1; 13.100; 14.6; 15.3. 三、(第1小题7分,第2小题8分,共15分)16.(1)解:原式=6123⨯+- ……4分 =3. ……3分 (2)解:∵关于x 的一元二次方程2420x x k ++=有两个实数根,∴244121680k k ∆=-⨯⨯=-≥. ……3分解得2k ≤. ……2分 ∴k 的非负整数值为0,1,2. ……3分 四、(第17题8分,第18题10分,共18分) 17. 解:(1)由已知,24OC BC ==,. ……2分 在Rt OBC △中,由勾股定理,得OB == ……3分(2)在Rt OAC △中,∵2OA OB OC ===,∴sinOC A OA ===……3分18.解:(1)∵反比例函数ky x=的图象经过点(14)A k -+,, ∴41kk -+=,即4k k -+=. ∴2k =. ……1分∴(12)A ,. ……1分 ∵一次函数y x b =+的图象经过点(12)A ,, ∴21b =+∴1b =. ……1分 ∴反比例函数的表达式为2y x=, ……1分 一次函数的表达式为1y x =+. ……1分(2)由12y x y x =+⎧⎪⎨=⎪⎩消去y ,得220x x +-=. ……1分即(2)(1)0x x +-=.∴2x =-或1x =. ∴1y =-或2y =.∴21x y =-⎧⎨=-⎩,或12.x y =⎧⎨=⎩,∵点B 在第三象限,∴点B 的坐标为(21)--,. ……2分 由图象可知,当反比例函数的值大于一次函数的值时,x 的取值范围是2x <-或01x <<. ……2分五、(第19题10分,第20题12分,共22分) 19.解:(1)B 馆门票为50张,C 占15%. ……4分(2)画树状图:或用列表法:……2分共有16 种可能的结果,且每种结果的可能性相同,其中小明可能获得门票的结果有6种,分别是(2,1),(3,1),(3,2),(4,1),(4,2),(4,3).∴小明获得门票的概率163168P ==, ……2分 小华获得门票的概率235188P =-=. ……1分∵12P P <,∴这个规则对双方不公平. ……1分20.(1)证明:∵ABCD 为菱形,∴AD BC ∥. ∴OBP ODQ ∠=∠. ……1分∵O 是BD 的中点,∴OB OD =. ……1分在BOP △和DOQ △中,∵OBP ODQ ∠=∠,OB OD =,BOP DOQ ∠=∠,∴BOP △≌DOQ △.(ASA ) ……2分∴OP OQ =. ……1分(2)解:如图,过A 作AT BC ⊥,与CB 的延长线交于T . ……1分 ∵ABCD 是菱形,∠DCB =60,∴AB = AD =4,∠ABT =60. ∴sin6023AT AB ==cos602TB AB ==.∵10BS =,∴12TS TB BS =+=.∴AS ===. ……2分∵//AD BS ,∴AOD △∽SOB △. ∴42105AO AD OS SB ===. 则25AS OS OS -=,即215AS OS -=,75AS OS =.∵AS =,∴75OS AS ==. ……2分 同理可得ARD △∽SRC △.∴4263AR AD RS SC ===. 则23AS SR RS -=,即213AS RS -=,53AS RS =.∴35RS AS == ……1分∴7535OR OS RS =-=-=. ……1分B 卷(共50分)一、填空题:(每小题4分,共20分)21.7; 22.3; 23.14; 24.(2)1n a n +; 25.1和1213.二、(共8分)26.解:(1)设该市汽车拥有量的年平均增长率为x . ……1分根据题意,得2150(1)216x +=. ……2分 解得120.220% 2.2x x ===-,(不合题意,舍去).答:该市汽车拥有量的年平均增长率为20%. ……1分 (2)设全市每年新增汽车数量为y 万辆.则2010年底全市汽车拥有量为21690%y ⨯+万辆,2011年底全市的汽车拥有量为(21690%)90%y y ⨯+⨯+万辆. ……2分根据题意,得(21690%)90%231.96y y ⨯+⨯+≤. ……1分 解得30y ≤.答:该市每年新增汽车数量最多不能超过30万辆. ……1分三、(共10分)27.(1)证明:∵C 是AD 的中点,∴AC CD =. ∴CAD ABC ∠=∠. ∵AB 是O 直径,∴90ACB ∠=.∴90CAD AQC ∠+∠=.又CE AB ⊥,∴90ABC PCQ ∠+∠=. ∴AQC PCQ ∠=∠.∴在PCQ △中,有PC PQ =. ……1分 ∵CE ⊥直径AB ,∴AC AE =. ∴AE CD =.∴CAD ACE ∠=∠.∴在APC △中,有PA PC =. ……1分 ∴PA PC PQ ==.∴P 是ACQ △的外心. ……1分 (2)解:∵CE ⊥直径AB 于F ,∴在Rt BCF △中,由3tan 84CF ABC CF BF ∠===,, 得44328333BF CF ==⨯=. ……1分∴由勾股定理,得403BC===.∵AB是O直径,∴在Rt ACB△中,由340tan43ACABC BCBC∠===,,得334010443AC BC==⨯=.……1分易知Rt ACB△∽Rt QCA△,∴2AC CQ BC=.∴2210154023ACCQBC===.……1分(3)证明:∵AB是O直径,∴90ACB∠=.∴90DAB ABD∠+∠=.又CF AB⊥,∴90ABG G∠+∠=.∴DAB G∠=∠.∴Rt AFP△∽Rt GFB△.∴AF FPFG BF=,即AF BF FP FG=.……1分易知Rt ACF△∽Rt CBF△,∴2FC AF BF=.(或由射影定理得)……1分∴2FC FP FG=.……1分由(1),知PC PQ=,∴FP PQ FP PC FC+=+=.∴2()FP PQ FP FG+=.……1分四、(共12分)28.解:(1)∵直线1y kx b=+沿y轴向下平移3个单位后恰好经过原点,∴13,(03)b C=,.将(30)A-,代入3y kx=+,得330k-+=.解得1k=.∴直线AC的函数表达式为3y x=+.……1分抛物线2y ax bx c=++过点A C、,且对称轴为2x=-,∴2(3)(3)0223a b c bac ⎧-+-+=⎪⎪-=-⎨⎪=⎪⎩,,.解得1,43a b c =⎧⎪=⎨⎪=⎩,.∴抛物线的函数表达式为243y x x =++. ……2分 (2)如图,过点B 作BD AC ⊥于点D .∵:2:3ABP BPC S S =△△, ∴11():()2:322AP BD PC BD =. ∴:2:3AP PC =. ……1分过点P 作PE x ⊥轴于点E .∵//PE CO ,∴APE △∽ACO △.∴25PE AP COAC==. ∴2655PE OC ==. ……1分 ∴635x =+.解得95x =-.∴点P 的坐标为96(,)55-. ……1分(3)(ⅰ)假设Q 在运动过程中,存在Q 与坐标轴相切的情况.设点Q 的坐标为(00,x y ).①当Q 与y 轴相切时,有01x =,即01x =±.当01x =-时,得20(1)4(1)30y =-+⨯-+=,∴1(10)Q -,. ……1分当01x =,得2014138y =+⨯+=,∴2(18)Q ,. ……1分②当Q 与x 轴相切时,有01y =,即01y =±.当01y =-时,得200143x x -=++,即200440x x ++=.解得02x =-. ∴3(21)Q --,. ……1分当01y =时,得200143x x=++,即200420x x ++=.解得02x =-.∴45(2)(2)Q Q --,. ……1分综上所述,存在符合条件Q ,其圆心Q 的坐标分别为:1(10)Q -,、2(18)Q ,、3(21)Q --,、4(2Q -、5(2Q -.(ⅱ)设点Q 的坐标为(00x y ,). 当Q 与两坐标轴同时相切时,有00y x =±.由00y x =,得200043x x x ++=,即200330x x ++=. ∵2341330∆=-⨯⨯=-<,∴此方程无解. ……1分 由00y x =-,得200043x x x ++=-,即200530x x ++=.解得052x -±=.∴当Q 的半径052r x ===时,Q 与两坐标轴同时相切. ……1分。