直线与圆知识点总结及例题
- 格式:docx
- 大小:446.61 KB
- 文档页数:9
直线与圆◆知识点归纳 直线与方程 1.直线的倾斜角规定:当直线l 与x 轴平行或重合时,它的倾斜角为0 范围:直线的倾斜角α的取值范围为),0[π 2.斜率:)2(tan πα≠=a k ,R k ∈斜率公式:经过两点),(111y x P ,),(222y x P )(21x x ≠的直线的斜率公式为121221x x y y k P P --=3.直线方程的几种形式能力提升斜率应用例1.已知函数)1(log )(2+=x x f 且0>>>c b a ,则cc f b b f a a f )(,)(,)(的大小关系例2.已知实数y x ,满足)11(222≤≤-+-=x x x y ,试求23++x y 的最大值和最小值两直线位置关系 两条直线的位置关系设两直线的方程分别为:222111:b x k y l +=或0:22221111=++C y B x A l ;当21k k ≠或1221B A B A ≠时它们相交,交点坐标为方程组⎩⎨⎧+=+=2211b x k y b x k y 或⎩⎨⎧=++=++00222111C y B x A C y B x A直线间的夹角:①若θ为1l 到2l 的角,12121tan k k k k +-=θ或21211221tan B B A A B A B A +-=θ;②若θ为1l 和2l 的夹角,则12121tan k k k k +-=θ或21211221tan B B A A B A B A +-=θ;③当0121=+k k 或02121=+B B A A o直线1l 到2l 的角θ与1l 和2l 的夹角α:)2(πθθα≤=或)2(πθθπα>-=;距离问题1.平面上两点间的距离公式),(),,(222111y x P y x P 则 )()(121221y y x x P P -+-=2.点到直线距离公式点),(00y x P 到直线0:=++C By Ax l 的距离为:2200BA CBy Ax d +++=3.两平行线间的距离公式已知两条平行线直线1l 和2l 的一般式方程为1l :01=++C By Ax ,2l :02=++C By Ax ,则1l 与2l 的距离为2221BA C C d +-=4.直线系方程:若两条直线1l :0111=++C y B x A ,2l :0222=++C y B x A 有交点,则过1l 与2l 交点的直线系方程为)(111C y B x A +++0)(222=++C y B x A λ或)(222C y B x A +++0)(111=++C y B x A λ (λ为常数)对称问题1.中点坐标公式:已知点),(),,(2211y x B y x A ,则B A ,中点),(y x H 的坐标公式为⎪⎪⎩⎪⎪⎨⎧+=+=222121y y y x x x点),(00y x P 关于),(b a A 的对称点为)2,2(00y b x a Q --,直线关于点对称问题可以化为点关于点对称问题。
高中数学必修2直线与圆的位置关系【一】、圆的定义及其方程.(1)圆的定义:平面内与定点距离等于定长的点的集合(轨迹)叫做圆,定点叫做圆心,定长就是半径;(圆心是定位条件,半径是定型条件) (2)圆的标准方程: ;圆心),(b a圆的一般方程:)04(02222>-+=++++F E D F Ey Dx y x ;圆心 ,半径为 ;【二】、点与圆的位置关系(仅以标准方程为例,其他形式,则可化为标准式后按同样方法处理)设),(00y x P 与圆222)()(r b y a x =-+-;若P 到圆心之距为d ; ①P 在在圆C 外 ; ②P 在在圆C 内 ; ③P 在在圆C 【三】、直线与圆的位置关系:设直线0:=++C By Ax l 和圆222)()(:r b y a x C =-+-,圆心C 到直线l 之距为d ,由直线l 和圆C 联立方程组消去x (或y )后,所得一元二次方程的判别式为∆,则它们的位置关系如下:相离 ;相切 ;相交 ; 注意:这里用d 与r 的关系来判定,称为几何法,只有对圆才实用,也是最简便的方法;利用∆判定称为代数法,对讨论直线和二次曲线的位置关系都适应。
【四】、两圆的位置关系:(1)代数法:解两个圆的方程所组成的二元二次方程组;若方程组有两组不同的实数解,则两圆相交;若方程组有两组相同的实数解,则两圆相切;若无实数解,两圆相离。
(2)几何法:设圆1O 的半径为1r ,圆2O 的半径为2r①两圆外离 ; ②两圆外切 ; ③两圆相交 ; ④两圆内切 ⑤两圆内含 ;(五)已知圆C:(x-a)2+(y-b)2=r2(r>0),直线L:Ax+By+C=01.位置关系的判定:判定方法1:联立方程组得到关于x(或y)的方程(1)△>0相交;(2)△=0相切;(3)△<0相离。
判定方法2:若圆心(a,b)到直线L的距离为d(1)d<r相交;(2)d=r相切;(3)d>r相离。
圆的方程、直线和圆的位置关系【知识要点】一、 圆的定义:平面内与一定点距离等于定长的点的轨迹称为圆 (一)圆的标准方程222()()x a y b r -+-= 这个方程叫做圆的标准方程。
说 明:1、若圆心在坐标原点上,这时0a b ==,则圆的方程就是222x y r +=。
2、圆的标准方程的两个基本要素:圆心坐标和半径;圆心和半径分别确定了圆的位置和大小,从而确定了圆,所以,只要,,a b r 三个量确定了且r >0,圆的方程就给定了。
就是说要确定圆的方程,必须具备三个独立的条件确定,,a b r ,可以根据条件,利用待定系数法来解决。
(二)圆的一般方程将圆的标准方程222)()(r b y a x =-+-,展开可得02222222=-++--+r b a by ax y x 。
可见,任何一个圆的方程都可以写成 :220x y Dx Ey F ++++= 问题:形如220x y Dx Ey F ++++=的方程的曲线是不是圆? 将方程022=++++F Ey Dx y x 左边配方得:22224()()222D E D E Fx x +-+++=(1)当F E D 422-+>0时,方程(1)与标准方程比较,方程022=++++F Ey Dx y x 表示以(,)22D E--为圆 心,以2242D E F+-为半径的圆。
,(3)当F E D 422-+<0时,方程022=++++F Ey Dx y x 没有实数解,因而它不表示任何图形。
圆的一般方程的定义:当224D E F +->0时,方程220x y Dx Ey F ++++=称为圆的一般方程. 圆的一般方程的特点:(1)2x 和2y 的系数相同,不等于零; (2)没有xy 这样的二次项。
(三)直线与圆的位置关系 1、直线与圆位置关系的种类(1)相离---求距离; (2)相切---求切线; (3)相交---求焦点弦长。
2、直线与圆的位置关系判断方法: 几何方法主要步骤:(1)把直线方程化为一般式,利用圆的方程求出圆心和半径 (2)利用点到直线的距离公式求圆心到直线的距离(3)作判断: 当d>r 时,直线与圆相离;当d =r 时,直线与圆相切;当d<r 时,直线与圆相交。
直线与圆的方程知识点总结
直线与圆的方程是解析几何中的基本知识点,下面是关于直线与圆的方程的一些重要知识点总结:
直线方程知识点总结:
1. 直线的点斜式方程:y-y0=k(x-x0),其中 (x0, y0) 为直线上的一点,k 为直线的斜率。
2. 直线的斜截式方程:y=kx+b,其中 k 为直线的斜率,b 为 y 轴上的截距。
3. 直线的两点式方程:(y-y1)/(y2-y1)=(x-x1)/(x2-x1),其中 (x1, y1) 和
(x2, y2) 为直线上的两点。
4. 直线的截距式方程:x/a + y/b = 1,其中 a 和 b 分别为直线在 x 轴和 y 轴上的截距。
5. 直线的一般式方程:Ax + By + C = 0,其中 A、B、C 为常数,且 A 和
B 不为 0。
圆的方程知识点总结:
1. 圆的标准式方程:(x-h)^2 + (y-k)^2 = r^2,其中 (h, k) 为圆心坐标,r 为半径。
2. 圆的参数式方程:x=h+rcosθ, y=k+rsinθ,其中 (h, k) 为圆心坐标,r 为半径,θ 为参数。
3. 圆的极坐标式方程:ρ=r,其中 r 为半径,θ 为极角。
4. 圆的直径式方程:x^2 + y^2 + Dx + Ey + F = 0,其中 D、E、F 为常数。
5. 圆的一般式方程:x^2 + y^2 + Ax + By + C = 0,其中 A、B、C 为常数。
在直线与圆的方程中,还有一些重要的知识点和概念,如直线的法线式和参数式,圆的切线和割线等。
理解和掌握这些概念和公式对于解决几何问题非常重要。
直线与圆知识点以及经典例题总结
归纳
直线与圆的知识点以及经典例题总结归纳
一、直线与圆的概念
1.直线:是一条无限长的抽象线段,它有一定的方向,并由两个端点构成。
2.圆:一种特殊的曲线,它的轨迹是一个闭合的曲线,它的圆心和半径是固定的,每一点到圆心的距离都是半径的长度。
二、直线与圆的性质
1.直线的性质:
(1)直线穿过的任意两点之间的距离相等。
(2)任意一点到直线的距离是不变的,且与直线上任意一点到此直线的距离相等。
2.圆的性质:
(1)圆的任意两点之间的距离都相等。
(2)任意一点到圆的距离都是固定的,且与圆心的距离相等,即为半径。
三、直线与圆的经典例题
1.已知圆O的半径为5,直线l与圆O相交于A、B两点,若∠BAO=60°,求直线l的斜率。
解:以O为原点,将坐标系原点平移至O,则AB 两点的坐标分别为(5,0),(-3.464,4.264),∴直线l的斜率为:k=4.264/3.464=1.237
2.已知圆O的半径为1,点P在圆O外,且P到圆O的距离为2,求直线OP的斜率。
解:以O为原点,将坐标系原点平移至O,则点P 的坐标为(2,0),∴直线OP的斜率为:k=0/2=0。
直线和圆知识点总结(总11页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除练习一(直线和圆部分)知识梳理1.直线的倾斜角α的范围是 ;求直线斜率的两种方法:①定义:k = ()2πα≠;②斜率公式:k =2121y y x x --12()x x ≠.答案)0,180︒︒⎡⎣ 2.直线方程的几种形式:①点斜式 ,适用范围:不含直线0x x =;特例:斜截式 ,适用范围:不含垂直于x 轴的直线;②两点式 ,适用范围:不含直线112()x x x x =≠和直线112()y y y y =≠;特例:截距式 ,适用范围:不含垂直于坐标轴和过原点的直线; ③一般式 ,适用范围:平面直角坐标系内的直线都适用.3.求过111(,)P x y ,222(,)P x y 的直线方程时:(1)若12x x =,且12y y ≠时,直线垂直于x 轴,方程为1x x =;(2)若12x x ≠,且12y y =时,直线垂直于y 轴,方程为1y y =;(3)若120x x ==,且12y y ≠时,直线即为y 轴,方程为0x =;(4)若12x x ≠,且120y y ==时,直线即为x 轴,方程为0y =。
4.已知直线1l :11y k x b =+,直线2l :22y k x b =+,则①1l 与2l 相交⇔ ; ②1l 与2l 平行⇔ ;③1l 与2l 重合⇔ ; ④1l 与2l 垂直⇔ .5.已知直线1l :1110A x B y C ++=,直线2l :2220A x B y C ++=,则 ①1l 与2l 相交⇔ ; ②1l 与2l 平行⇔ ;③1l 与2l 重合⇔ ; ④1l 与2l 垂直⇔ .6.两点111(,)P x y ,222(,)P x y 之间的距离12=PP ;点(,)P x y ︒︒到直线l :0Ax By C ++=的距离d = ;两平行直线1l :10Ax By C ++=与2l :20Ax By C ++=之间的距离d = .7.圆的标准方程为222()()(0)x a y b r r -+-=>,其中 为圆心, 为半径 ;圆的一般方程为220x y Dx Ey F ++++=表示圆的充要条件是2240D E F +->,其中圆心为 ,半径为 .8.点与圆的位置关系圆的标准方程为222()()x a y b r -+-=,点00(,)M x y ,(1)点在圆上:22200()()x a y b r -+-=;(2)点在圆外:22200()()x a y b r -+->;(3)点在圆内:22200()()x a y b r -+-<。
中职直线与圆的方程知识点总结一、直线的方程在二维平面上,直线可以由一元一次方程表示,其一般形式为:Ax + By + C = 0其中 A、B 和 C 是实数且 A 和 B 不同时为 0。
斜截式方程:斜率为 k,截距为 b 的直线方程可以表示为:y = kx + b其中 k 是斜率,b 是截距。
点斜式方程:已知直线上一点(x₁, y₁)和直线的斜率 k,可以使用以下点斜式方程表示直线:y - y₁ = k(x - x₁)二、圆的方程在二维平面上,圆可以由圆心的坐标 (h, k) 和半径 r 表示,其标准方程为:(x - h)² + (y - k)² = r²三、直线与圆的关系直线与圆有以下几种关系:1.直线与圆相切:当直线与圆只有一个交点时,即直线与圆相切。
相切的直线与圆的切线相切于圆的一点。
2.直线与圆相离:当直线与圆没有交点时,即直线与圆相离。
3.直线与圆相交:当直线与圆有两个交点时,即直线与圆相交。
相交的直线与圆会穿过圆的两个点。
4.直线在圆上:当直线经过圆心时,即直线在圆上。
四、直线与圆的方程求解1.判断直线与圆的位置关系:–将直线方程代入圆的标准方程,得到一个一元二次方程;–计算一元二次方程的判别式;–根据判别式的值得出直线与圆的位置关系。
2.求直线与圆的交点坐标:–将直线方程代入圆的标准方程,得到一个二元一次方程组;–解方程组,求得交点坐标。
五、举例例 1:判断直线与圆的位置关系,直线方程为 y = 2x + 1,圆的标准方程为 (x - 3)² + (y - 4)² = 9。
将直线方程代入圆的标准方程得到:(x - 3)² + (2x + 1 - 4)² = 9化简得:5x² - 14x + 9 = 0计算判别式 D = (-14)² - 4 * 5 * 9 = 4,判别式大于 0,因此直线与圆相交。
直线和圆一.直线1.斜率与倾斜角:tan k θ=,[0,)θπ∈(1)[0,2πθ∈时,0k ≥;(2)2πθ=时,k 不存在;(3)(,)2πθπ∈时,0k <(4)当倾斜角从0︒增加到90︒时,斜率从0增加到+∞;当倾斜角从90︒增加到180︒时,斜率从-∞增加到02.直线方程(1)点斜式:)(00x x k y y -=-(2)斜截式:y kx b =+(3)两点式:121121x x x x y y y y --=--(4)截距式:1x y a b +=(5)一般式:0C =++By Ax 3.距离公式(1)点111(,)P x y ,222(,)P x y 之间的距离:12PP =(2)点00(,)P x y 到直线0Ax By C ++=的距离:d =(3)平行线间的距离:10Ax By C ++=与20Ax By C ++=的距离:d =4.位置关系(1)截距式:y kx b =+形式重合:1212k k b b ==相交:12k k ≠平行:1212 k k b b =≠垂直:121k k ⋅=-(2)一般式:0Ax By C ++=形式重合:1221A B A B =且1221A C A C =且1212B C C B =平行:1221A B A B =且1221A C A C ≠且1212B C C B ≠垂直:12120A AB B +=相交:1221A B A B ≠5.直线系1112220A x B y C A x B y C λ++++=+()表示过两直线1111:0l A x B y C ++=和2222:0l A x B y C ++=交点的所有直线方程(不含2l )二.圆1.圆的方程(1)标准形式:222()()x a y b R -+-=(0R >)(2)一般式:220x y Dx Ey F ++++=(2240D E F +->)(3)参数方程:00cos sin x x r y y r θθ=+⎧⎨=+⎩(θ是参数)【注】题目中出现动点求量时,通常可采取参数方程转化为三角函数问题去解决.(4)以11(,)A x y ,22(,)B x y 为直径的圆的方程是:()()()()0A B A B x x x x y y y y --+--=2.位置关系(1)点00(,)P x y 和圆222()()x a y b R -+-=的位置关系:当22200()()x a y b R -+-<时,点00(,)P x y 在圆222()()x a y b R -+-=内部当22200()()x a y b R -+-=时,点00(,)P x y 在圆222()()x a y b R -+-=上当22200()()x a y b R -+->时,点00(,)P x y 在圆222()()x a y b R -+-=外(2)直线0Ax By C ++=和圆222()()x a y b R -+-=的位置关系:判断圆心(,)O a b 到直线0Ax By C ++=的距离d =R 的大小关系当d R <时,直线和圆相交(有两个交点);当d R =时,直线和圆相切(有且仅有一个交点);当d R <时,直线和圆相离(无交点);判断直线与圆的位置关系常见的方法(1)几何法:利用圆心到直线的距离d 和圆半径r 的大小关系.(2)代数法:联立直线与圆的方程消元后利用Δ判断.(3)点与圆的位置关系法:若直线恒过定点且定点在圆内可判断直线与圆相交.3.圆和圆的位置关系判断圆心距12d O O =与两圆半径之和12R R +,半径之差12R R -(12R R >)的大小关系当12d R R >+时,两圆相离,有4条公切线;当12d R R =+时,两圆外切,有3条公切线;当1212R R d R R -<<+时,两圆相交,有2条公切线;当12d R R =-时,两圆内切,有1条公切线;当120d R R ≤<-时,两圆内含,没有公切线;4.当两圆相交时,两圆相交直线方程等于两圆方程相减5.弦长公式:l =例题:例1若圆x 2+y 2=1与直线y =kx +2没有公共点,则实数k 的取值范围是________.例2已知两圆C 1:x 2+y 2-2x +10y -24=0,C 2:x 2+y 2+2x +2y -8=0,则两圆公共弦所在的直线方程是____________.例3设直线x -my -1=0与圆(x -1)2+(y -2)2=4相交于A 、B 两点,且弦AB 的长为23,则实数m 的值是________.例4若a ,b ,c 是直角三角形ABC 三边的长(c 为斜边),则圆C :x 2+y 2=4被直线l :ax +by +c =0所截得的弦长为________.例5已知⊙M :x 2+(y -2)2=1,Q 是x 轴上的动点,QA ,QB 分别切⊙M 于A ,B 两点.(1)若|AB |=423,求|MQ |及直线MQ 的方程;(2)求证:直线AB 恒过定点.例6过点(-1,-2)的直线l 被圆x 2+y 2-2x -2y +1=0截得的弦长为2,则直线l 的斜率为________.例7圆x 2-2x +y 2-3=0的圆心到直线x +3y -3=0的距离为________.例8圆心在原点且与直线x +y -2=0相切的圆的方程为____________________.例9已知圆C 经过A (5,1),B (1,3)两点,圆心在x 轴上,则圆C 的方程为________________.例10(1)与曲线C :x 2+y 2+2x +2y =0相内切,同时又与直线l :y =2-x 相切的半径最小的圆的半径是________.(2)已知实数x ,y 满足(x -2)2+(y +1)2=1则2x -y 的最大值为________,最小值为________.例11已知x ,y 满足x 2+y 2=1,则y -2x -1的最小值为________.例12已知两点A (-2,0),B (0,2),点C 是圆x 2+y 2-2x =0上任意一点,则△ABC 面积的最小值是________.例13平面直角坐标系xoy 中,直线10x y -+=截以原点O (1)求圆O 的方程;(2)若直线l 与圆O 切于第一象限,且与坐标轴交于D ,E ,当DE 长最小时,求直线l 的方程;(3)设M ,P 是圆O 上任意两点,点M 关于x 轴的对称点为N ,若直线MP 、NP 分别交于x 轴于点(m ,0)和(n ,0),问mn 是否为定值?若是,请求出该定值;若不是,请说明理由.例14圆x 2+y 2=8内一点P (-1,2),过点P 的直线l 的倾斜角为α,直线l 交圆于A 、B 两点.(1)当α=43π时,求AB 的长;(2)当弦AB 被点P 平分时,求直线l 的方程.例15已知半径为5的动圆C 的圆心在直线l :x -y +10=0上.(1)若动圆C 过点(-5,0),求圆C 的方程;(2)是否存在正实数r ,使得动圆C 中满足与圆O :x 2+y 2=r 2相外切的圆有且仅有一个,若存在,请求出来;若不存在,请说明理由.。
直线与圆的方程知识点总结一、直线的方程1.直线的定义:直线是由一切与它上面两点P、Q相应的全体点构成的集合。
在坐标平面中,直线可以由一般式方程、对称式方程、斜截式方程、截距式方程等多种形式表示。
2.一般式方程:Ax+By+C=0,其中A、B、C为常数,A和B不同时为0。
一般式方程表示直线的一种常用形式,它能够直观地反映直线的方向和位置。
3.对称式方程:(x-x1)/(x2-x1)=(y-y1)/(y2-y1),其中(x1,y1)和(x2,y2)为直线上的两个点。
对称式方程通过给出直线上两个点的坐标,从而确定直线的方程。
4. 斜截式方程:y = kx + b,其中k为直线的斜率,b为直线与y轴的截距。
斜截式方程将直线的方程转化为了y和x的关系,便于直观地理解直线的特征。
5.截距式方程:x/a+y/b=1,其中a和b为直线与x轴和y轴的截距。
截距式方程能够直观地表达直线与坐标轴的交点,并通过截距反映直线的位置和倾斜情况。
二、圆的方程1.圆的定义:圆是平面上所有到定点的距离等于定长的点的轨迹。
在坐标平面中,圆可以由一般式方程、截距式方程、标准方程等多种形式表示。
2.一般式方程:(x-a)²+(y-b)²=r²,其中(a,b)为圆心的坐标,r为半径的长度。
一般式方程为圆的一种常用形式,能够直观地描述圆的位置和形状。
3.截距式方程:(x-a)²+(y-b)²=r²,其中(a,b)为圆心的坐标,r为半径的长度。
截距式方程通过圆的截距反映了圆的位置和形状。
4.标准方程:x²+y²+Dx+Ey+F=0,其中D、E、F为常数。
通过圆的标准方程,可以直观地反映圆的位置、形状以及与坐标轴的交点等信息。
5. 圆的三角方程:由半径与直径、半径与斜边等关系来定义圆的方程,例如sinθ = r/l,其中θ为圆心角的弧度,l为圆弧的长度。
圆的三角方程常用于解决涉及圆的三角学问题。
直线与圆知识点总结1. 直线与圆的位置关系:- 直线与圆可能相交于两个点,这种情况称为相交。
- 直线与圆可能与圆外部割线相切于一点,这种情况称为相切。
- 直线可能与圆没有交点,这种情况称为相离。
2. 判断直线与圆的位置关系:- 使用勾股定理可以判断直线与圆是否相交。
设直线的方程为ax + by + c = 0,圆的方程为(x - h)² + (y - k)² = r²,其中(h, k)为圆心的坐标,r为半径。
将直线的方程代入圆的方程,计算方程的解。
若方程的解为实数,且解满足直线的方程,则直线与圆相交;若方程的解为实数,但解不满足直线的方程,则直线与圆相离;若方程的解为复数,则直线与圆相切。
- 使用两点式可以判断直线与圆的位置关系。
设直线上两点为(x₁, y₁)和(x₂, y₂),圆的方程为(x - h)² + (y - k)² = r²,其中(h, k)为圆心的坐标,r为半径。
计算直线的斜率m = (y₂ - y₁) / (x₂ - x₁),若直线的斜率存在且非零,则直线与圆相交或相离;若直线的斜率不存在或为0,则直线可能与圆相切或相离。
将直线的方程代入圆的方程,计算方程的解。
若方程的解为实数,且解满足直线的方程,则直线与圆相交;若方程的解为实数,但解不满足直线的方程,则直线与圆相离;若方程的解为复数,则直线与圆相切。
3. 求直线与圆的交点:- 设直线的方程为ax + by + c = 0,圆的方程为(x - h)² + (y - k)²= r²,其中(h, k)为圆心的坐标,r为半径。
将直线的方程代入圆的方程,得到一个关于x的二次方程。
解这个方程即可得到直线与圆的交点的x坐标。
将得到的x坐标代入直线的方程,可以求得对应的y坐标。
4. 求直线与圆的切点:- 设直线的方程为ax + by + c = 0,圆的方程为(x - h)² + (y - k)²= r²,其中(h, k)为圆心的坐标,r为半径。
圆的方程、直线和圆的位置关系【知识要点】 一、圆的定义:平面内与一定点距离等于定长的点的轨迹称为圆 (一) 圆的标准方程(x a)2 (y b)2『这个方程叫做圆的标准方程。
-____ 2 2 2说明:1、若圆心在坐标原点上,这时 a b 0,则圆的方程就是 x y r 。
2、圆的标准方程的两个基本要素:圆心坐标和半径;圆心和半径分别确定了圆的位置和大小,从而确定了 圆,所以,只要a ,b ,r 三个量确定了且r > 0,圆的方程就给定了。
就是说要确定圆的方程,必须具备三个独立的条件-确定a ,b ,r ,可以根据条件,利用待定系数法来解决。
(二) 圆的一般方程2 2 2 2 2 2 2 2将圆的标准方程(x a) (y b) r ,展开可得x y 2ax 2by a b r。
可见,任何一个2圆的方程都可以写成 :X2y Dx Ey F 02 2问题:形如xy DxEy F 0的方程的曲线是不是圆?2 2FD 2E 2 J D ‘ E 4F将方程X y Dx Ey左边配方得:2)2) 2D E0表示以 22为圆2 2(1)当 D E 4F >° 时,方程(1 )与标准方程比较,方程xyDx Ey FD 2E 2 4F心,以2为半径的圆。
DE DE⑵当DmE —4F=Q 时,方fc a +y a +Dx+Ey+F = OR 有实数解汁亍 厂亍 所以表示一个点(亍-計2 2(3)当D 2E 24F v 0时,方程x y Dx Ey F °没有实数解,因而它不表示任何图形。
圆的一般方程的定义:2 2当D 2 E 2 4F >°时,方程x y Dx Ey F °称为圆的一般方程. 圆的一般方程的特点:22(1) X 和y 的系数相同,不等于零;(2) 没有xy 这样的二次项。
(三) 直线与圆的位置关系 1、 直线与圆位置关系的种类 (1)相离---求距离; ⑵相切---求切线; (3)相交---求焦点弦长。
直线与圆的位置关系与性质知识点总结直线与圆是几何中常见的两种基本图形,它们的位置关系与性质对于解决几何问题非常重要。
在这篇文章中,我们将总结直线与圆的常见位置关系,并讨论它们的性质。
一、直线与圆的位置关系1. 直线与圆的相交关系当直线与圆有交点时,我们可以得出以下几种情况:- 直线与圆相交于两点:直线穿过圆的中心,此时直径是直线的特例。
- 直线与圆相交于一个点:直线与圆相切,切点称为切点。
- 直线位于圆的内部,没有交点。
- 直线位于圆的外部,也没有交点。
2. 直线与圆的位置关系特例- 切线:直线与圆相切的情况,称为切线。
与圆相切的直线垂直于半径,切点在直线上的法线与从切点到圆心的半径垂直。
- 弦:直线穿过圆,但不过圆心的情况,称为弦。
通过圆心的弦称为直径,且直径是弦中最长的一条线段。
二、直线与圆的性质1. 切线定理定理一:若一条直线与圆相切于切点A,则以切点A为顶点的两条锐角与此直线所夹的圆弧相等。
定理二:若从圆外一点作直线与圆相切于切点A,则此直线与以此点为端点的弦相交处的两个锐角是一对互补角。
2. 弦长定理定理三:若两条弦相交于切点A,则两条弦分割的圆周上的弧长乘积相等。
3. 直径定理定理四:直径是穿过圆心的弦,正好是弦分割的两条弧的半径之和。
4. 割线定理定理五:若两条割线相交于切点A,则此割线与此切点所在的直线上的弦分割的互补角是一对互补角。
三、直线与圆的应用1. 问题一:判断直线是否与圆相交或相切当我们需要解决直线与圆的位置关系问题时,可以利用以下方法:- 使用坐标系和方程:设定坐标系,写出直线和圆的方程并求解交点。
- 使用定理:利用判断圆内点的方法,或使用切线定理判断直线与圆是否相切。
2. 问题二:求解直线与圆的交点坐标当直线与圆相交于两点时,我们可以利用以下方法求解交点坐标:- 使用坐标系和方程:设定坐标系,写出直线和圆的方程,联立方程并求解交点坐标。
3. 问题三:判断两条直线是否为切线或相交于切点当我们需要判断两条直线是否为切线或相交于切点时,可以利用以下方法:- 使用切线定理:若两条直线与圆相切于同一切点,则可判断它们为切线或相交于切点。
中职数学基础模块知识点、典型题目系列---直线与圆的方程(适合打印,经典第八章直线与圆的方程第一节两点间的距离与线段中点的坐标一、两点间的距离及线段中点的坐标:设点P1(x1.y1)和点P2(x2.y2),则点P1P2的距离为√[(x2-x1)²+(y2-y1)²]。
线段中点P(x,y)的坐标为x=(x1+x2)/2,y=(y1+y2)/2.题】1.已知点A(28,10)和点B(12,22),求线段AB的长度。
2.已知三角形的顶点分别为A(2,6),B(-4,3),C(0,3),求三角形ABC的三条边长。
3.已知点A(1,4),点B(5,1),点C(1,1),证明三角形ABC为直角三角形。
题】1.已知点M(-1,-3)和点N(-1,5),求线段MN的长度,并求线段MN的中点坐标。
2.已知三角形ABC的三个顶点为A(1,0)、B(-2,1)、C(0,3),求BC边上的中线AD的长度。
第二节直线的倾斜角与斜率一、直线的倾斜角与斜率直线的倾斜角α:直线向上的方向与x轴正方向所夹的最小正角。
范围:0≤α<180.直线的斜率k:k=tanα=(y2-y1)/(x2-x1)。
注:①当直线平行于x轴或重合时,斜率k不存在。
②当直线垂直于x轴时,斜率k=0.③斜率k与两点的位置无关。
题】1.已知直线的倾斜角,求斜率。
(1)α=π/6 (2)α=135° (3)α=90°2.已知直线的斜率,求倾斜角。
(1)k=3 (2)k=-3 (3)k=1/33.求经过下列两点的直线的斜率与倾斜角。
(1)A(-2,-1)和B(1,3) (2)M(1,4)和N(3,2)4.证明三点A(1,-1),B(3,1),C(-3,-3)在同一条直线上。
作业布置:1.已知点P1(4,2)、点P2(-5,y),且过点P1、P2的直线的斜率为1/3,求y的值。
2.已知三角形ABC的三个顶点为A(2,1)、B(8,3)、C(1,-1),分别求三角形ABC三条边所在的直线的斜率。
1.直线与圆的位置关系设圆O的半径为r(r>0),圆心到直线l的距离为d,则直线与圆的位置关系可用下表表示:位置关系相离相切相交图形方程观点Δ0 Δ0 Δ0 量化几何观点d r d r d r2.圆与圆的位置关系设圆O1,O2的半径分别为R,r(R>r),两圆圆心间的距离为d,则两圆的位置关系可用下表表示: 位置关系外离外切相交内切内含图形数量的关系例1已知直线l:(m2+m+1)x+(3-2m)y-2m2-5=0,圆C:x2+y2-2x=0,则直线l与圆C的位置关系是()A.相离B.相切C.相交D.不确定例2已知直线l过点A(a,0)且斜率为1,若圆x2+y2=4上恰有3个点到l的距离为1,则实数a 的值为()A.3√2B.±3√2C.±2D.±√2例3设点A(-2,3),B(0,a),直线AB关于直线y=a的对称直线为l,已知l与圆C:(x+3)2+(y+2)2=1有公共点,则a的取值范围为.总结反思判断直线与圆的位置关系的常用方法:(1)若易求出圆心到直线的距离d,则用几何法,利用d与半径r的大小关系判断.(2)若方程中含有参数,或圆心到直线的距离的表达式较复杂,则用代数法,联立方程后利用Δ判断,能用几何法求解的,尽量不用代数法.例4 已知直线l:ax+by-r2=0(r>0)与圆C:x2+y2=r2,点A(a,b),则下列说法正确的是()A.若点A在圆C上,则直线l与圆C相切B.若点A在圆C内,则直线l与圆C相离C.若点A在圆C外,则直线l与圆C相离D.若点A在直线l上,则直线l与圆C相切例5已知直线y=mx与曲线y=√-x2+8x-12+1有两个交点,则实数m的取值范围为()A.[12,1)B.[12,45)C.(√13-26,12]D.[12,2+√136)例6 “-√2<b<√2”是“圆C:x2+y2=9上有四个不同的点到直线l:y=x-b的距离等于1”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件。
直线与圆位置关系一.课标要求1.能根据给定直线、圆的方程,判断直线与圆的位置关系;2.能用直线和圆的方程解决一些简单的问题;3.在平面解析几何初步的学习过程中,体会用代数方法处理几何问题的思想。
二.知识框架相离 几何法弦长 直线与圆的位置关系相交 代数法切割线定理相切直线与圆 代数法求切线的方法几何法圆的切线方程过圆上一点的切线方程圆的切线方程 切点弦过圆外一点的切线方程 方程三.直线与圆的位置关系及其判定方法1.利用圆心0),(=++C By Ax b a O 到直线的距离22B A CBb Aa d +++=与半径r 的大小来判定。
(1)⇔<r d 直线与圆相交(2)⇔=r d 直线与圆相切(3)⇔>r d 直线与圆相离2.联立直线与圆的方程组成方程组,消去其中一个未知量,得到关于另外一个未知量的一元二次方程,通过解的个数来判定。
(1)有两个公共解(交点),即⇔>∆0直线与圆相交(2)有且仅有一个解(交点),也称之为有两个相同实根,即0=∆⇔直线与圆相切(3)无解(交点),即⇔<∆0直线与圆相离3.等价关系相交0>∆⇔<⇔r d相切0=∆⇔=⇔r d相离0<∆⇔>⇔r d练习(位置关系)1.已知动直线5:+=kx y l 和圆1)1(:22=+-y x C ,试问k 为何值时,直线与圆相切、相离、相交?(位置关系)2.已知点),(b a M 在圆1:22=+y x O 外,则直线1=+by ax 与圆O 的位置关系是()A.相切B.相交C.相离D.不确定(最值问题)3.已知实数x 、y 满足方程01422=+-+x y x ,(1)求x y 和21+-+x y x 的最大值和最小值; (2)求y x -的最大值和最小值;(3)求22y x +的最大值和最小值。
〖分析〗考查与圆有关的最值问题,解题的关键是依据题目条件将其转化为对应的几何问题求解,运用数形结合的方法,直观的理解。
直线和圆知识点总结1、直线的倾斜角:1定义:在平面直角坐标系中,对于一条与x 轴相交的直线l ,如果把x 轴绕着交点按逆时针方向转到和直线l 重合时所转的最小正角记为α,那么α就叫做直线的倾斜角.当直线l 与x 轴重合或平行时,规定倾斜角为0;2倾斜角的范围[)π,0.如1直线023cos =-+y x θ的倾斜角的范围是____答:5[0][)66,,πππ; 倾斜角的取值范围是0°≤α<180°.倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率,常用k 表示.倾斜角是90°的直线没有斜率.2过点),0(),1,3(m Q P -的直线的倾斜角的范围m 那么],32,3[ππα∈值的范围是______答:42≥-≤m m 或2、直线的斜率:1定义:倾斜角不是90°的直线,它的倾斜角的正切值叫这条直线的斜率k ,即k =tan αα≠90°;倾斜角为90°的直线没有斜率;2斜率公式:经过两点111(,)P x y 、222(,)P x y 的直线的斜率为()212121x x x x y y k ≠--=;3直线的方向向量(1,)a k =,直线的方向向量与直线的斜率有何关系4应用:证明三点共线: AB BC k k =.如1 两条直线钭率相等是这两条直线平行的____________条件答:既不充分也不必要;2实数,x y满足3250x y --= 31≤≤x ,则x y 的最大值、最小值分别为______答:2,13-3、直线的方程:1点斜式:已知直线过点00(,)x y 斜率为k ,则直线方程为00()y y k x x -=-,它不包括垂直于x 轴的直线.直线的斜率0=k 时,直线方程为1y y =;当直线的斜率k 不存在时,不能用点斜式求它的方程,这时的直线方程为1x x =.2斜截式:已知直线在y 轴上的截距为b 和斜率k ,则直线方程为y kx b =+,它不包括垂直于x 轴的直线.3两点式:已知直线经过111(,)P x y 、222(,)P x y 两点,则直线方程为121121x x x x y y y y --=--,它不包括垂直于坐标轴的直线.若要包含倾斜角为00或090的直线,两点式应变为))(())((121121y y x x x x y y --=--的形式.4截距式:已知直线在x 轴和y 轴上的截距为,a b ,则直线方程为1=+by a x,它不包括垂直于坐标轴的直线和过原点的直线.5一般式:任何直线均可写成0Ax By C ++=A,B 不同时为0的形式.如1经过点2,1且方向向量为v=-1,3的直线的点斜式方程是___________答:12)y x -=-;2直线(2)(21)(34)0m x m y m +----=,不管m 怎样变化恒过点______答:(1,2)--;3若曲线||y a x =与(0)y x a a =+>有两个公共点,则a 的取值范围是_______答:1a > 提醒:1直线方程的各种形式都有局限性.如点斜式不适用于斜率不存在的直线,还有截距式呢;2直线在坐标轴上的截距可正、可负、也可为0.直线两截距相等⇔直线的斜率为-1或直线过原点;直线两截距互为相反数⇔直线的斜率为1或直线过原点;直线两截距绝对值相等⇔直线的斜率为1±或直线过原点.如过点(1,4)A ,且纵横截距的绝对值相等的直线共有___条答:34.设直线方程的一些常用技巧:1知直线纵截距b ,常设其方程为y kx b =+;2知直线横截距0x ,常设其方程为0x my x =+它不适用于斜率为0的直线;3知直线过点00(,)x y ,当斜率k 存在时,常设其方程为00()y k x x y =-+,当斜率k 不存在时,则其方程为0x x =;4与直线:0l Ax By C ++=平行的直线可表示为10Ax By C ++=;5与直线:0l Ax By C ++=垂直的直线可表示为10Bx Ay C -+=.提醒:求直线方程的基本思想和方法是恰当选择方程的形式,利用待定系数法求解.5、点到直线的距离及两平行直线间的距离:1点00(,)P x y 到直线0Ax By C ++=的距离d =;2两平行线1122:0,:0l Ax By C l Ax By C ++=++=间的距离为d =6、直线1111:0l A x B y C ++=与直线2222:0l A x B y C ++=的位置关系:1平行⇔12210A B A B -=斜率且12210B C B C -≠在y 轴上截距;2相交⇔12210A B A B -≠;3重合⇔12210A B A B -=且12210B C B C -=.提醒:1 111222A B C A B C =≠、1122A B A B ≠、111222A B C A B C ==仅是两直线平行、相交、重合的充分不必要条件 为什么2在解析几何中,研究两条直线的位置关系时,有可能这两条直线重合,而在立体几何中提到的两条直线都是指不重合的两条直线;3直线1111:0l A x B y C ++=与直线2222:0l A x B y C ++=垂直⇔12120A A B B +=.如1设直线1:60l x my ++=和2:(2)320l m x y m -++=,当m =_______时1l ∥2l ;当m =________时1l ⊥2l ;当m _________时1l 与2l 相交;当m =_________时1l 与2l 重合答:-1;12;31且m m ≠≠-;3;2已知直线l 的方程为34120x y +-=,则与l 平行,且过点—1,3的直线方程是______答:3490x y +-=;3两条直线40ax y +-=与20x y --=相交于第一象限,则实数a 的取值范围是____答:12a -<<;4设,,a b c 分别是△ABC 中∠A 、∠B 、∠C 所对边的边长,则直线sin 0A x ay c ++=与sin sin 0bx B y C -+=的位置关系是____答:垂直;5已知点111(,)P x y 是直线:(,)0l f x y =上一点,222(,)P x y 是直线l 外一点,则方程1122(,)(,)(,)f x y f x y f x y ++=0所表示的直线与l 的关系是____答:平行;6直线l 过点1,0,且被两平行直线360x y +-=和330x y ++=所截得的线段长为9,则直线l 的方程是________答:43401x y x +-==和7、特殊情况下的两直线平行与垂直:当两条直线中有一条直线没有斜率时:1当另一条直线的斜率也不存在时,两直线的倾斜角都为90°,互相平行;2当另一条直线的斜率为0时,一条直线的倾斜角为90°,另一条直线的倾斜角为0°,两直线互相垂直.8、对称中心对称和轴对称问题——代入法:如1已知点(,)M a b 与点N x轴对称,点P 与点N y 轴对称,点Q 与点P 直线0x y +=对称,则点Q 的坐标为_______答:(,)b a ;3点A4,5直线l 的对称点为B-2,7,则l 的方程是_________答:3y=3x +;4已知一束光线通过点A-3,5,经直线l :3x -4y+4=0反射.如果反射光线通过点B2,15,则反射光线所在直线的方程是_________答:18x 510y -=+;5已知ΔABC 顶点A3,-1,AB边上的中线所在直线的方程为6x+10y -59=0,∠B 的平分线所在的方程为x -4y+10=0,求BC边所在的直线方程答:29650x y +-=;6直线2x ―y ―4=0上有一点P,它与两定点A4,-1、B3,4的距离之差最大,则P的坐标是______答:5,6;7已知A x ∈轴,:B l y x ∈=,C2,1,ABC 周长的最小值为______答:提醒:在解几中遇到角平分线、光线反射等条件常利用对称求解.9.1直线过定点.如直线3m+4x+5-2my+7m-6=0,不论m 取 何值恒过定点-1,22直线系方程1与已知直线Ax+By+C=0平行的直线的设法: Ax+By+m=0 m ≠C2 与已知直线Ax+By+C=0垂直的直线的设法:Bx-Ay+m=03经过直线1l ∶1A x+1B y+1C =0,2l ∶2A x+2B y+2C =0交点的直线设法:1A x+1B y+1C +λ2A x+2B y+2C =0λ为参数,不包括2l3对称 1点点对称中点坐标公式2线点对称转化为点点对称,或代入法,两条直线平行3点线对称点和对称点的连线被线垂直平分,中点在对称轴上、kk’=-1二个方程4线线对称求交点,转化为点线对称10、圆的方程:⑴圆的标准方程:()()222x a y b r -+-=.⑵圆的一般方程:22220(D E 4F 0)+-x y Dx Ey F ++++=>,特别提醒:只有当22D E 4F 0+->时,方程220x y Dx Ey F ++++=才表示圆心为(,)22D E --,半径为的圆二元二次方程220Ax Bxy Cy Dx Ey F +++++=表示圆的充要条件是什么 0,A C =≠且0B =且2240D E AF +->;⑶圆的参数方程:{cos sin x a r y b r θθ=+=+θ为参数,其中圆心为(,)a b ,半径为r .圆的参数方程的主要应用是三角换元:222cos ,sin x y r x r y r θθ+=→==;22x y t +≤cos ,sin (0x r y r r θθ→==≤≤.⑷()()1122A ,,,x y B x y 为直径端点的圆方程()()()()12120x x x x y y y y --+--=如1圆C 与圆22(1)1x y -+=直线y x =-对称,则圆C 的方程为____________答:22(1)1x y ++=;2圆心在直线32=-y x 上,且与两坐标轴均相切的圆的标准方程是__________答:9)3()3(22=-+-y x 或1)1()1(22=++-y x ;3已知(P -是圆{cos sin x r y r θθ==θ为参数,02)θπ≤<上的点,则圆的普通方程为________,P 点对应的θ值为_______,过P 点的圆的切线方程是___________答:224x y +=;23π;40x -+=;4如果直线l 将圆:x 2+y 2-2x-4y=0平分,且不过第四象限,那么l 的斜率的取值范围是____答:0,2;5方程x 2+y 2-x+y+k=0表示一个圆,则实数k 的取值范围为____答:21<k ;6若{3cos {(,)|3sin x M x y y θθ===θ为参数,0)}θπ<<,{}b x y y x N +==|),(,若φ≠N M ,则b 的取值范围是_________答:(-11、点与圆的位置关系:已知点()00M ,x y 及圆()()()222C 0:x-a y b r r +-=>,1点M 在圆C 外()()22200CM r x a y b r ⇔>⇔-+->;2点M 在圆C 内⇔ ()()22200CM r x a y b r <⇔-+-<;3点M 在圆C 上()20CM r x a ⇔=⇔-()220y b r +-=.如点P5a+1,12a 在圆x -12+y 2=1的内部,则a 的取值范围是______答:131||<a12、直线与圆的位置关系:直线:0l Ax By C ++=和圆()()222C :x a y b r -+-= ()0r >有相交、相离、相切.可从代数和几何两个方面来判断:1代数方法判断直线与圆方程联立所得方程组的解的情况:0∆>⇔相交;0∆<⇔相离;0∆=⇔相切;2几何方法比较圆心到直线的距离与半径的大小:设圆心到直线的距离为d ,则d r <⇔相交;d r >⇔相离;d r =⇔相切.提醒:判断直线与圆的位置关系一般用几何方法较简捷.如1圆12222=+y x 与直线sin 10(,2x y R πθθθ+-=∈≠k π+,)k z ∈的位置关系为____答:相离;2若直线30ax by +-=与圆22410x y x ++-=切于点(1,2)P -,则ab 的值____答:2;3直线20x y +=被曲线2262x y x y +--150-=所截得的弦长等于 答:4一束光线从点A -1,1出发经x 轴反射到圆C:x-22+y-32=1上的最短路程是 答:4;5已知(,)(0)M a b ab ≠是圆222:O x y r +=内一点,现有以M 为中点的弦所在直线m 和直线2:l ax by r +=,则A .//m l ,且l 与圆相交 B .l m ⊥,且l 与圆相交C .//m l ,且l 与圆相离D .l m ⊥,且l 与圆相离答:C ;6已知圆C :22(1)5x y +-=,直线L :10mx y m -+-=.①求证:对m R ∈,直线L 与圆C总有两个不同的交点;②设L 与圆C 交于A 、B 两点,若AB =求L 的倾斜角;③求直线L 中,截圆所得的弦最长及最短时的直线方程. 答:②60或120 ③最长:1y =,最短:1x =13、圆与圆的位置关系用两圆的圆心距与半径之间的关系判断:已知两圆的圆心分别为12O O ,,半径分别为12,r r ,则1当1212|O O r r |>+时,两圆外离;2当1212|O O r r |=+时,两圆外切;3当121212<|O O r r r r -|<+时,两圆相交;4当1212|O O |r r |=|-时,两圆内切;5当12120|O O |r r ≤|<|-时,两圆内含.如双曲线22221x y a b-=的左焦点为F 1,顶点为A 1、A 2,P 是双曲线右支上任意一点,则分别以线段PF 1、A 1A 2为直径的两圆位置关系为 答:内切14、圆的切线与弦长:1切线:①过圆222x y R +=上一点00(,)P x y 圆的切线方程是:200xx yy R +=,过圆222()()x a y b R -+-=上一点00(,)P x y 圆的切线方程是:200()()()()x a x a y a y a R --+--=,一般地,如何求圆的切线方程抓住圆心到直线的距离等于半径;②从圆外一点引圆的切线一定有两条,可先设切线方程,再根据相切的条件,运用几何方法抓住圆心到直线的距离等于半径来求;③过两切点的直线即“切点弦”方程的求法:先求出以已知圆的圆心和这点为直径端点的圆,该圆与已知圆的公共弦就是过两切点的直线方程;③切线长:过圆220x y Dx Ey F ++++=222()()x a y b R -+-=外一点00(,)P x y 所引圆的切线的长为如设A 为圆1)1(22=+-y x 上动点,PA 是圆的切线,且|PA|=1,则P 点的轨迹方程为__________答:22(1)2x y -+=;2弦长问题:①圆的弦长的计算:垂径定理常用弦心距d ,半弦长12a及圆的半径r 所构成的直角三角形来解:2221()2r d a =+;②过两圆1:(,)0C f x y =、2:(,)0C g x y =交点的圆公共弦系为(,)(,)0f x y g x y λ+=,当1λ=-时,方程(,)(,)0f x y g x y λ+=为两圆公共弦所在直线方程..15.解决直线与圆的关系问题时,要充分发挥圆的平面几何性质的作用如半径、半弦长、弦心距构成直角三角形,切线长定理、割线定理、弦切角定理等等16. 圆的切线和圆系方程1.过圆上一点的切线方程:圆222r y x =+,圆上一点为00,y x ,则过此点的切线方程为0x x+ 0y y= 2r 课本命题.圆222r y x =+,圆外一点为00,y x ,则过此点的两条切线与圆相切,切点弦方程为200r y y x x =+.2.圆系方程:①设圆C1∶011122=++++F y E x D y x 和圆C2∶022222=++++F y E x D y x .若两圆相交,则过交点的圆系方程为11122F y E x D y x +++++λ22222F y E x D y x ++++=0λ为参数,圆系中不包括圆C2,λ=-1为两圆的公共弦所在直线方程.②设圆C ∶022=++++F Ey Dx y x 与直线l :Ax+By+C=0,若直线与圆相交,则过交点的圆系方程为F Ey Dx y x ++++22+λAx+By+C=0λ为参数.例题 1经过点P 2,m 和Q 2m ,5的直线的斜率等于12,则m 的值是 BA .4B .3C .1或3D .1或4变:的取值范围的斜率的直线求经过点 )1,cos (),sin ,2( k l B A θθ--2. 已知直线l 过P -1,2,且与以A -2,-3、B3,0为端点的线段相交,求直线l 的斜率的取值范围.点评:要用运动的观点,研究斜率与倾斜角之间的关系 答案: ⎝⎛⎦⎥⎤-∞,-12∪5,+∞ 3.已知坐标平面内三点A (-1,1),B (1,1),C (2,3+1),若D 为△ABC 的边AB 上一动CD 斜率k 的变化范围.答案:⎝⎛⎦⎥⎤-∞,-12∪5,+∞ 1.求a 为何值时,直线l 1:a +2x +1-ay -1=0与直线l 2:a -1x +2a +3y +2=0互相垂直答案:a=-12.求过点P 1,-1,且与直线l 2:2x +3y +1=0垂直的直线方程.答案:3x -2y -5=0.例2.求过定点P 2,3且在两坐标轴上的截距相等的直线方程.例3.已知△ABC 的顶点A 1,-1,线段BC 的中点为D 3,23.1求BC 边上的中线所在直线的方程;2若边BC 所在直线在两坐标轴上的截距和是9,求BC 所在直线的方程. 例4.方程m 2-2m -3x +2m 2+m -1y =2m -6满足下列条件,请根据条件分别确定实数m 的值.1方程能够表示一条直线;答案:m 1-≠2方程表示一条斜率为-1的直线.答案:m 2-=例5.直线l 的方程为a -2y =3a -1x -1a ∈R .1求证:直线l 必过定点;答案:15,352若直线l 在两坐标轴上的截距相等,求l 的方程;答案:5x +5y -4=0 3若直线l 不过第二象限,求实数a 的取值范围.答案:分斜率存在与不存在例1:求点A-2,3到直线 l :3x+4y+3=0的距离 d= . 例2:已知点a,2到直线l: x-y+1=0的距离为2,则a= . a <0例3:求直线 y=2x+3直线l : y=x+1对称的直线方程.类型一:圆的方程例1 求过两点)4,1(A 、)2,3(B 且圆心在直线0=y 上的圆的标准方程并判断点)4,2(P 与圆的关系.变式1:求过两点)4,1(A 、)2,3(B 且被直线0=y 平分的圆的标准方程. 变式2:求过两点)4,1(A 、)2,3(B 且圆上所有的点均直线0=y 对称的圆的标准方程.类型二:切线方程、切点弦方程、公共弦方程例4 已知圆422=+y x O :,求过点()42,P 与圆O 相切的切线. 解:∵点()42,P 不在圆O 上,∴切线PT 的直线方程可设为()42+-=x k y根据r d =∴21422=++-k k .解得43=k ,所以()4243+-=x y ,即01043=+-y x 因为过圆外一点作圆得切线应该有两条,可见另一条直线的斜率不存在.易求另一条切线为2=x .类型三:弦长、弧问题例7、求直线063:=--y x l 被圆042:22=--+y x y x C 截得的弦AB 的长. 例8、直线0323=-+y x 截圆422=+y x 得的劣弧所对的圆心角为 解:依题意得,弦心距3=d ,故弦长2222=-=d r AB ,从而△OAB 是等边三角形,故截得的劣弧所对的圆心角为3π=∠AOB . 例9、求两圆0222=-+-+y x y x 和522=+y x 的公共弦长类型四:直线与圆的位置关系例10、已知直线0323=-+y x 和圆422=+y x ,判断此直线与已知圆的位置关系.类型五:圆与圆的位置关系 例13、判断圆02662:221=--++y x y x C 与圆0424:222=++-+y x y x C 的位置关系,例14:圆0222=-+x y x 和圆0422=++y y x 的公切线共有 条. 类型六:圆中的最值问题例15:圆0104422=---+y x y x 上的点到直线014=-+y x 的最大距离与最小距离的差是例16 1已知圆1)4()3(221=-+-y x O :,),(y x P 为圆O 上的动点,求22y x d +=的最大、最小值.2已知圆1)2(222=++y x O :,),(y x P 为圆上任一点.求12--x y 的最大、最小值,求y x 2-的最大、最小值.例17:已知)0,2(-A ,)0,2(B ,点P 在圆4)4()3(22=-+-y x 上运动,则22PB PA +的最小值是 . 解:设),(y x P ,则828)(2)2()2(222222222+=++=+-+++=+OP y x y x y x PB PA .设圆心为)4,3(C ,则325min =-=-=r OC OP ,∴22PB PA +的最小值为268322=+⨯.。
4.2 直线、圆的位置关系(2)基础知识梳理1. 判断直线与圆的位置关系的方法有两种①设圆心到直线的距离为d ,圆的半径为r ,若d <r ,直线与圆相交;若r d =,直线与圆相切;若d >r ,直线与圆相离。
②直线与圆的方程组成方程组,若方程组有两个解,则直线与圆相交;若只有一个解,则直线与圆相切;若无解,则直线与圆相离.2.判断圆与圆的位置关系有两种方法,一是代数法,两圆的方程组成的方程组若有两解,则两圆相交;若有一解,则两圆相切,但不能判断是内切还是外切;若无解则两圆相离,但不能判断是外离还是内含。
二是设两圆的半径分别为21,r r ,两圆的圆心距为d ,则21r r d +>时,两圆外离;21r r d +=时,两圆外切;2121r r d r r +<<-时,两圆相交;21r r d -=时,两圆内切;21r r d -<时,两圆内含.习题巩固一、选择题1.点2(,5)P m 与圆2224x y +=的位置关系是( )A .在圆外B .在圆内C .在圆上D .不确定2.以点(5,4)A -为圆心,且与x 轴相切的圆的方程是( )A .22(5)(4)16x y ++-=B .22(5)(4)16x y -++=C .22(5)(4)25x y ++-=D .22(5)(4)25x y -++=3.方程2||11(1)x y -=--所表示的曲线是( )A .一个圆B .两个圆C .半个圆D .两个半圆4.若圆心坐标为(2,1)-的圆被直线10x y --=截得的弦长为22,则圆的方程为( )A .22(2)(1)4x y -++=B .22(2)(1)2x y -++=C .22(2)(1)8x y -++=D .22(2)(1)16x y -++=5.两圆(x +3)2+(y -2)2=4和(x -3)2+(y +6)2=64的位置关系是( )A .外切B .内切C .相交D .相离6.两圆x 2+y 2-4x +2y +1=0与x 2+y 2+4x -4y -1=0的公切线有( )A .1条B .2条C .3条D .4条7.圆x 2+y 2-4x +6y =0和圆x 2+y 2-6x =0交于A 、B 两点,则AB 的垂直平分线的方程是( )A .x +y +3=0B .2x -y -5=0C .3x -y -9=0D .4x -3y +7=08.圆C 1:(x -m )2+(y +2)2=9与圆C 2:(x +1)2+(y -m )2=4外切,则m 的值为( )A .2B .-5C .2或-5D .不确定9.实数x ,y 满足方程x +y -4=0,则x 2+y 2的最小值为( )A .4B .6C .8D .1210.若直线ax +by =1与圆x 2+y 2=1相交,则点P (a ,b )的位置是( )A .在圆上B .在圆外C .在圆内D .都有可能11.如果实数满足(x +2)2+y 2=3,则y x的最大值为( ) A . 3 B .- 3 C .33 D .-3312.一辆卡车宽2.7米,要经过一个半径为4.5米的半圆形隧道(双车道,不得违章),则这辆卡车的平顶车篷篷顶距离地面的高度不得超过( )A .1.4米B .3.0米C .3.6米D .4.5米二、填空题13.两圆x 2+y 2=1和(x +4)2+(y -a )2=25相切,则实数a 的值为________.14.两圆交于A (1,3)及B (m ,-1),两圆的圆心均在直线x -y +n =0上,则m +n 的值为________.15.两圆x 2+y 2-x +y -2=0和x 2+y 2=5的公共弦长为____________.16.在平面直角坐标系xoy 中,已知圆x 2+y 2=4上有且只有四个点到直线12x -5y +c =0的距离为1,则实数c 的取值范围是________.17.两圆222x y +=与22240x y x y +--=的公共弦所在直线方程为____________.18.两圆224210x y x y +-++=与224410x y x y ++--=的公切线有 条.19.若直线340x y k ++=与圆22650x y x +-+=相切,则k =____________.三、解答题20.求过点A (0,6)且与圆C :x 2+y 2+10x +10y =0切于原点的圆的方程.21.点M 在圆心为C 1的方程x 2+y 2+6x -2y +1=0上,点N 在圆心为C 2的方程x 2+y 2+2x +4y +1=0上,求|MN |的最大值.22.自点A (-3,3)发出的光线l 射到x 轴上,被x 轴反射,其反射光线所在直线与圆x 2+y 2-4x -4y +7=0相切,求光线l 所在直线的方程.。
直线与圆的位置关系知识点总结直线与圆的位置关系是几何学中一个重要的概念,涉及到直线和圆的交点、相切等不同情况。
本文将对直线与圆的位置关系进行总结,包括直线与圆的相交、相切以及不相交三种情况。
一、直线与圆的相交关系1. 直线与圆相交于两个交点:当直线与圆的位置关系是相交时,直线将穿过圆的两个交点。
这种情况通常出现在直线与圆的直径、弦或切线相交的情况下。
2. 直线与圆相交于一个交点:当直线与圆的位置关系是相切时,直线与圆仅有一个交点。
这种情况通常出现在直线是圆的切线的情况下。
二、直线与圆的相切关系1. 切线:当直线与圆的位置关系是相切时,直线与圆仅有一个交点,并且直线与圆的切点处的切线垂直于半径。
切线是圆上某一点的切线,它与半径的长度相等。
2. 外切线:当一条直线与圆的位置关系为外切时,直线与圆仅有一个交点,并且切点处的切线垂直于半径。
外切线的一个特点是切点处的切线与直线的延长线垂直。
3. 内切线:当一条直线与圆的位置关系为内切时,直线与圆仅有一个交点,并且切点处的切线垂直于半径。
内切线的一个特点是切点处的切线与直线的延长线垂直。
三、直线与圆的不相交关系当直线与圆的位置关系不相交时,即直线与圆没有交点。
总结:直线与圆的位置关系可以分为相交、相切以及不相交三种情况。
在相交的情况下,直线与圆相交于两个交点或一个交点。
在相切的情况下,直线与圆仅有一个交点,并且切点处的切线垂直于半径。
而不相交的情况下,直线与圆没有交点。
以上是对直线与圆的位置关系知识点的总结。
了解并掌握这些知识点对于解决相关几何问题非常重要。
希望本文能够帮助您更好地理解和应用直线与圆的位置关系。
直线和圆知识点总结1、直线的倾斜角:(1)定义:在平面直角坐标系中,对于一条与x 轴相交的直线l ,如果把x 轴绕着交点按逆时针方向转到和直线l 重合时所转的最小正角记为α,那么α就叫做直线的倾斜角。
当直线l 与x 轴重合或平行时,规定倾斜角为0;(2)倾斜角的范围[)π,0。
如(1)直线023cos =-+y x θ的倾斜角的范围是____(答:5[0][)66,,πππ); 倾斜角的取值范围是0°≤α<180°.倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率,常用k 表示.倾斜角是90°的直线没有斜率.(2)过点),0(),1,3(m Q P -的直线的倾斜角的范围m 那么],32,3[ππα∈值的范围是______(答:42≥-≤m m 或)2、直线的斜率:(1)定义:倾斜角不是90°的直线,它的倾斜角的正切值叫这条直线的斜率k ,即k =tan α(α≠90°);倾斜角为90°的直线没有斜率;(2)斜率公式:经过两点111(,)P x y 、222(,)P x y 的直线的斜率为()212121x x x x y y k ≠--=;(3)直线的方向向量(1,)a k =,直线的方向向量与直线的斜率有何关系?(4)应用:证明三点共线: AB BC k k =。
如(1) 两条直线钭率相等是这两条直线平行的____________条件(答:既不充分也不必要);(2)实数,x y 满足3250x y --= (31≤≤x ),则xy 的最大值、最小值分别为______(答:2,13-) 3、直线的方程:(1)点斜式:已知直线过点00(,)x y 斜率为k ,则直线方程为00()y y k x x -=-,它不包括垂直于x 轴的直线。
直线的斜率0=k 时,直线方程为1y y =;当直线的斜率k 不存在时,不能用点斜式求它的方程,这时的直线方程为1x x =.(2)斜截式:已知直线在y 轴上的截距为b 和斜率k ,则直线方程为y kx b =+,它不包括垂直于x 轴的直线。
(3)两点式:已知直线经过111(,)P x y 、222(,)P x y 两点,则直线方程为121121x x x x y y y y --=--,它不包括垂直于坐标轴的直线。
若要包含倾斜角为00或090的直线,两点式应变为))(())((121121y y x x x x y y --=--的形式.(4)截距式:已知直线在x 轴和y 轴上的截距为,a b ,则直线方程为1=+by a x,它不包括垂直于坐标轴的直线和过原点的直线。
(5)一般式:任何直线均可写成0Ax By C ++=(A,B 不同时为0)的形式。
如(1)经过点(2,1)且方向向量为v =(-1,3)的直线的点斜式方程是___________(答:12)y x -=-);(2)直线(2)(21)(34)0m x m y m +----=,不管m 怎样变化恒过点______(答:(1,2)--);(3)若曲线||y a x =与(0)y x a a =+>有两个公共点,则a 的取值范围是_______(答:1a >)提醒:(1)直线方程的各种形式都有局限性.(如点斜式不适用于斜率不存在的直线,还有截距式呢?);(2)直线在坐标轴上的截距可正、可负、也可为0.直线两截距相等⇔直线的斜率为-1或直线过原点;直线两截距互为相反数⇔直线的斜率为1或直线过原点;直线两截距绝对值相等⇔直线的斜率为1±或直线过原点。
如过点(1,4)A ,且纵横截距的绝对值相等的直线共有___条(答:3)4.设直线方程的一些常用技巧:(1)知直线纵截距b ,常设其方程为y kx b =+;(2)知直线横截距0x ,常设其方程为0x my x =+(它不适用于斜率为0的直线);(3)知直线过点00(,)x y ,当斜率k 存在时,常设其方程为00()y k x x y =-+,当斜率k 不存在时,则其方程为0x x =;(4)与直线:0l Ax By C ++=平行的直线可表示为10Ax By C ++=;(5)与直线:0l Ax By C ++=垂直的直线可表示为10Bx Ay C -+=.提醒:求直线方程的基本思想和方法是恰当选择方程的形式,利用待定系数法求解。
5、点到直线的距离及两平行直线间的距离:(1)点00(,)P x y 到直线0Ax By C ++=的距离d =;(2)两平行线1122:0,:0l Ax By C l Ax By C ++=++=间的距离为d =。
6、直线1111:0l A x B y C ++=与直线2222:0l A x B y C ++=的位置关系:(1)平行⇔12210A B A B -=(斜率)且12210B C B C -≠(在y 轴上截距);(2)相交⇔12210A B A B -≠;(3)重合⇔12210A B A B -=且12210B C B C -=。
提醒:(1) 111222A B C A B C =≠、1122A B A B ≠、111222A B C A B C ==仅是两直线平行、相交、重合的充分不必要条件!为什么?(2)在解析几何中,研究两条直线的位置关系时,有可能这两条直线重合,而在立体几何中提到的两条直线都是指不重合的两条直线;(3)直线1111:0l A x B y C ++=与直线2222:0l A x B y C ++=垂直⇔12120A A B B +=。
如(1)设直线1:60l x my ++=和2:(2)320l m x y m -++=,当m =_______时1l ∥2l ;当m =________时1l ⊥2l ;当m _________时1l 与2l 相交;当m =_________时1l 与2l 重合(答:-1;12;31且m m ≠≠-;3);(2)已知直线l 的方程为34120x y +-=,则与l 平行,且过点(—1,3)的直线方程是______(答:3490x y +-=);(3)两条直线40ax y +-=与20x y --=相交于第一象限,则实数a 的取值范围是____(答:12a -<<);(4)设,,a b c 分别是△ABC 中∠A 、∠B 、∠C 所对边的边长,则直线sin 0A x ay c ++=与sin sin 0bx B y C -+=的位置关系是____(答:垂直);(5)已知点111(,)P x y 是直线:(,)0l f x y =上一点,222(,)P x y 是直线l 外一点,则方程1122(,)(,)(,)f x y f x y f x y ++=0所表示的直线与l 的关系是____(答:平行);(6)直线l 过点(1,0),且被两平行直线360x y +-=和330x y ++=所截得的线段长为9,则直线l 的方程是________(答:43401x y x +-==和)7、特殊情况下的两直线平行与垂直:当两条直线中有一条直线没有斜率时:(1)当另一条直线的斜率也不存在时,两直线的倾斜角都为90°,互相平行;(2)当另一条直线的斜率为0时,一条直线的倾斜角为90°,另一条直线的倾斜角为0°,两直线互相垂直.8、对称(中心对称和轴对称)问题——代入法:如(1)已知点(,)M a b 与点N 关于x 轴对称,点P 与点N 关于y 轴对称,点Q 与点P 关于直线0x y +=对称,则点Q 的坐标为_______(答:(,)b a );(3)点A(4,5)关于直线l 的对称点为B(-2,7),则l 的方程是_________(答:3y=3x +);(4)已知一束光线通过点A(-3,5),经直线l :3x -4y+4=0反射。
如果反射光线通过点B(2,15),则反射光线所在直线的方程是_________(答:18x 510y -=+);(5)已知ΔABC 顶点A(3,-1),AB边上的中线所在直线的方程为6x+10y -59=0,∠B 的平分线所在的方程为x -4y+10=0,求BC边所在的直线方程(答:29650x y +-=);(6)直线2x ―y ―4=0上有一点P,它与两定点A(4,-1)、B(3,4)的距离之差最大,则P的坐标是______(答:(5,6));(7)已知A x ∈轴,:B l y x ∈=,C (2,1),ABC周长的最小值为______(答:。
提醒:在解几中遇到角平分线、光线反射等条件常利用对称求解。
9.(1)直线过定点。
如直线(3m+4)x+(5-2m)y+7m-6=0,不论m 取 何值恒过定点(-1,2)(2)直线系方程(1)与已知直线Ax+By+C=0平行的直线的设法: Ax+By+m=0 (m≠C)( 2 ) 与已知直线Ax+By+C=0垂直的直线的设法: Bx-Ay+m=0(3)经过直线1l ∶1A x+1B y+1C =0,2l ∶2A x+2B y+2C =0交点的直线设法:1A x+1B y+1C +λ(2A x+2B y+2C )=0(λ为参数,不包括2l )(3)关于对称 (1)点关于点对称(中点坐标公式)(2)线关于点对称(转化为点关于点对称,或代入法,两条直线平行)(3)点关于线对称(点和对称点的连线被线垂直平分,中点在对称轴上、kk’= -1二个方程)(4)线关于线对称(求交点,转化为点关于线对称)10、圆的方程:⑴圆的标准方程:()()222x a y b r -+-=。
⑵圆的一般方程:22220(D E 4F 0)+-x y Dx Ey F ++++=>,特别提醒:只有当22D E 4F 0+->时,方程220x y Dx Ey F ++++=才表示圆心为(,)22D E --,半径为的圆(二元二次方程220Ax Bxy Cy Dx Ey F +++++=表示圆的充要条件是什么? (0,A C =≠且0B =且2240D E AF +->));⑶圆的参数方程:{cos sin x a r y b r θθ=+=+(θ为参数),其中圆心为(,)a b ,半径为r 。
圆的参数方程的主要应用是三角换元:222cos ,sin x y r x r y r θθ+=→==;22x y t +≤cos ,sin (0x r y r r θθ→==≤≤。
⑷()()1122A ,,,x y B x y 为直径端点的圆方程()()()()12120x x x x y y y y --+--=如(1)圆C 与圆22(1)1x y -+=关于直线y x =-对称,则圆C 的方程为____________(答:22(1)1x y ++=);(2)圆心在直线32=-y x 上,且与两坐标轴均相切的圆的标准方程是__________(答:9)3()3(22=-+-y x 或1)1()1(22=++-y x );(3)已知(P -是圆{cos sin x r y r θθ==(θ为参数,02)θπ≤<上的点,则圆的普通方程为________,P 点对应的θ值为_______,过P 点的圆的切线方程是___________(答:224x y +=;23π;40x +=);(4)如果直线l 将圆:x 2+y 2-2x-4y=0平分,且不过第四象限,那么l 的斜率的取值范围是____(答:[0,2]);(5)方程x 2+y 2-x+y+k=0表示一个圆,则实数k 的取值范围为____(答:21<k );(6)若{3cos {(,)|3sin x M x y y θθ===(θ为参数,0)}θπ<<,{}b x y y x N +==|),(,若φ≠N M ,则b 的取值范围是_________(答:(-)11、点与圆的位置关系:已知点()00M ,x y 及圆()()()222C 0:x-a y b r r +-=>,(1)点M 在圆C 外()()22200CM r x a y b r ⇔>⇔-+->;(2)点M 在圆C 内⇔()()22200CM r x a y b r <⇔-+-<;(3)点M 在圆C 上()20CM r x a ⇔=⇔- ()220y b r +-=。