盾构土压力计算
- 格式:docx
- 大小:33.58 KB
- 文档页数:9
盾构过程中土压力的计算与控制土压平衡盾构机工作面土压力及计算在城市市区内进行地铁、上下水管道、电力、通信、输气、共同沟以及地下道路的隧道工程中,具有施工机械化程度高、对周围环境影响小、施工快速等优势的盾构施工技术近年来得到广泛应用。
盾构施工中,开挖面的稳定是通过压力舱的支护压力得以实现的,开挖面支护压力过大会造成地表隆起,而压力过小,容易导致地表沉陷甚至坍塌。
土压平衡盾构机工作面土压力及计算土压平衡式盾构机主要由盾体、刀盘、螺旋输送机、推进装置等构成。
施工过程中,推进液压缸驱动盾构机向前推进,刀盘切削下的泥土充满密封仓和螺旋输送机壳体内的全部空间,形成一定的土压来平衡开挖面土层的水土压力,以此来保持开挖面土层的稳定和防止地表变形,开挖下来的泥土通过螺旋输送机排出盾体。
一、土压力的控制和分类1.控制:土压平衡盾构利用开挖的泥土支撑挖掘面,通过调节盾构推进速度和螺旋机转速和出土量来控制土仓的土压。
使土仓中的土压力与地下水土压力相平衡,以防止开挖崩塌和将地表沉降限制在允许范围内。
2.分类:静止土压力、被动土压力、主动土压力。
(重点)2.1主动土压力:挡土结构物向离开土体的方向移动,致使侧压力逐渐减小至极限平衡状态时的土压力,它是侧压力的最小值。
2.2被动土压力:挡土结构物向土体推移,致使侧压力逐渐增大至被动极限平衡状态时的土压力,它是侧压力的最大值。
土压平衡盾构机工作面土压力及计算2.3 静止土压力:土体在天然状态时或挡土结构物不产生任何移动或转动时,土体作用于结构物的水平压应力二、土压力平衡主动土压力<土仓压力<被动土压力•盾尾注浆的分类:三、土压力的计算(重点)根据土力学原理,可以将盾构机的刀盘近似为挡土墙,然后根据挡土墙理论分析掘进工作面的压力分布特性。
如图l 所示,根据土力学理论,天然土体内垂直静止土压力为σz =γz (1)(1)式中σz 为垂直静止土压力,γ为土的容重,z 为埋置深度。
而垂直于侧面的法向应力为静止侧压力σx =k 0 γz (2)(2)式中σx 为水平静止土压力,k 。
盾构机推力和刀盘扭矩的地层适应性评价1、推力计算盾构的推力应包含以下几个部分:1)盾壳和土层的摩擦力 FM其中μ为盾壳和土体间的摩擦系数,根据经验值取0.25。
计算得:FM=8074KN2)盾构推进正时面推进阻力其中Di 为盾构机内径Ps 为设计掘削土压(kN/m2)设计掘削土压Ps=地下水压+土压+预压其中地下水压在粘土层处相对于隧道中部的水头最大约11.5m ,那么水压力为115kN/m 2;土压按静止土压力计算:Po=Ko γH上式中:Po—静止土压力H—覆土厚度Ko—静止土压系数Ko=1-sin φ式中:φ—有效内摩擦角经计算Po=127 kN/m2预压力一般取30 kN/m2Ps=115+127+30=272kN/m2M BA S NL F F F +F +F =+∑()[]4/11h h V V M P P P P L D F +++⨯⨯⨯=πμBA F 214BA i s F D p π==9109.3 KN3)盾尾密封的摩擦力(经验值,周向每米密封的摩擦力) (管片外径6.4m )4)拖拉后配套的力 FNL (经验值)5)总推力计算ΣF=17943.3KN在盾构上坡和转弯时盾构的推力按直线水平段的1.5倍考虑,盾构的实际推力应为:ΣF=17943.3×1.5=26914.95KN盾构机实际配备推力:S -488/S -698盾构机实际推力分别为34210KN 和50668KN 。
均能满足盾构的实际需要.2、扭矩计算1)刀具切削扭矩推进速度:刀盘转速: (根据类似工程选取经验值) 刀盘每转切深:岩土的抗压强度: ;刀盘直径: Dd=6.68mT 1=0.5x[100x0.0667x(6.68x0.5)2]=37.2KNm214BA i s F D p π=2S 'F i s F D π=S'10/F KN m=KN F NL 750=h m V /8.4max =rpm n 2.1=cm n V h 67.6/max ==100u q KPa =()[]2max 15.05.0⨯⨯⨯⨯=d u D h q T2)刀盘自重产生的主轴承旋转反力矩:其中:刀盘自重:主轴承滚动半径:滚动摩擦系数:3)刀盘推力荷载产生的旋转阻力矩 其中:推力载荷 ;刀盘不开口率: a=0.4;刀盘半径;P t =0.4x3.14x3.34x102=428KNT 3=428x1.3x0.004=2.23KN.m4)密封装置摩擦力矩式中:密封与钢之间的摩擦系数:;密封的推力:;密封数:密封的安装半径:5)刀盘前表面上的摩擦力矩; g R G T μ⨯⨯=12570G KN =m R 3.1=004.0=g μ2570 1.30.00429.6.T KN m=⨯⨯=g t R P T μ⨯⨯=3d t P R P ⨯⨯⨯=2παm R 14.32=()1/2102/d h h P P P KN m =+=2142m m m R n F T ⨯⨯⨯⨯=μπ2.0=m μKPa F m 5.1=3=n m R m 25.11=mKN T m .8.825.135.12.02214=⨯⨯⨯⨯=π()d p P R T ⨯⨯⨯⨯⨯=32532μπα其中土层和刀盘间的摩擦系数:;T5=2/3x(0.7x3.14x0.15x3.343x102)=835KN.m6)刀盘圆周的摩擦反力矩其中刀盘边缘宽度:;刀盘圆周土压力:T 6=2x3.14x6.68x0.45x205x0.15=580KN.m7)刀盘背面的摩擦力矩刀盘背面的摩擦力矩由土腔室内的压力所产生,假定土仓室内的土压力为Pd8)刀盘开口槽的剪切力矩其中土的抗剪应力:在切削腔内,由于碴土含有水,取C=15KPa ,内摩擦角为 T 8=2/3x3.14x23x3.343x(1-0.7)=538KN.m9)刀盘土仓内的搅动力矩T 9其中刀盘支撑柱直径:;刀盘支撑柱长度;支撑柱数量刀盘支撑柱外端半径:;刀盘支撑柱内端半径:所以,刀盘总扭矩15.0=p μp z d P B D T μπ⨯⨯⨯⨯=26m B 45.0=()11/4205z h h v v P P P P P KPa =+++=()3722722.94.3p d T R P KN m απμ=⨯⨯⨯⨯⨯=()απτ-⨯⨯⨯⨯=132328R C T 15102523d C C P tg tg KPa τφ=+=+⨯︒=︒=5φ()b d z b n r r P L T ⨯+⨯⨯⨯=2/219φm b 6.0=φm L z 1.1=4=b n m r 4.12=m r 7.01=()m KN T .5.44442/7.04.136.1601.16.09=⨯+⨯⨯⨯=,此为额定扭矩。
盾构施工中相关计算土仓压力的计算出土量的计算每环注浆量的计算注浆速度的计算对土压平衡式盾构而言,一个重要的因素就是要使密封仓的土压力和开挖面的水土压力保持动态平衡。
如果密封仓的土压力大于开挖面的水土压力,地表将发生隆起;反之,如果密封仓的土压力小于开挖面的水土压力,地表将发生沉陷,通过最近的学习和资料的收集,对现有的地仓压力计算作一下结合。
已便结合以后施工提供数据,将理论与实践结合,得到适合地区的土仓压力计算模型。
1.土仓压力设定的原则在盾构施工过程中,掘进时土压力设定的通用原则:在选择掘进土压力时主要考虑地层土压力、地下水压力(孔隙水压力),并考虑预备压力;土仓的土压力可以维持刀盘前方的围岩稳定,不致于因土压偏低造成土体坍塌、地下水流失;为了降低掘进扭矩、推力,提高掘进速度,减少土体对刀具的磨损,土仓的土压力应尽可能得低,以使掘进成本最低。
总体而言,土仓压力控制如下图所示:土压平衡盾构正面推进力可表示为:()i z w N P P P =-+式中: i P — 密封舱土压力,kPa;z P — 开挖面侧向静止土压力,kPa; w P — 开挖面水压力,kPao为使开挖面保持稳定,理论上应尽量满足0N =。
2.土仓压力计算通常在设定土仓压力时主要考虑地层土压力、地下水压以及预先考虑的预备压力。
地层土压力的计算:地层土压力的计算是最为复杂,采用不同的计算模型就会有不同的结果,根据高等土力学中的知识,可以选择以下三种计算方法:静止土压力在静止的弹性平衡状态下天然土体的土压力,在深度z 处,其竖直面的应力,即静止土压力为:0z k z σγ=式中: γ— 土的有效重度,3/kN m ;z — 埋深,m ;0k — 土的静止侧压力系数静止侧压力系数0k 的数值可通过室的或原位的静止侧压力试验测定,在施工岩土勘察报告中均会给出。
0k 也可按经验确定:砂0.34-0.45;硬粘土、压密砂性土0.5-0.7;极软粘土、松散砂性土0.5--0.7。
成都地铁10号线土建三标华兴站~区间风井盾构区间隧道开挖面水土压力计算书一、工程概况成都地铁10号线土建三标华兴站~区间风井盾构区间,左线里程ZDK4+363.446~ZDK5+554.255,全长1188.249m,ZDK4+997.440=ZDK5+000.000,短链 2.56m,左线设两个平曲线,半径分别为700m、690m;右线里程YDK4+293.046~YDK5+538.242,全长1245.196m,右线设两个平曲线,半径分别为700m、650m。
本区间设两个联络通道,1号联络通道兼泵房里程为ZDK4+701.805(YDK4+694.929),2号联络通道里程为ZDK5+189.928(YDK5+180.029)。
根据《岩土工程勘察报告》可知,本盾构区间主要地层自上而下依次为杂填土、粉质粘土、卵石土(夹粉细砂)、泥岩,盾构隧道穿越地层主要为卵石土(夹粉细砂),在YDK4+598.1~YDK4+743.8(长度145.7m)段,隧道中下部为强风化泥岩,强风化泥岩侵入隧道断面最大值约4m。
隧道底部埋深平均值为20m,其中粉质粘土(含杂填土)厚度为4m,卵石土厚度为16m。
粉质粘土容重为1.92t/m3,侧压力系数为0.46;卵石土容重为2.2t/m3,侧压力系数为0.36。
静止水位在地面以下5m处。
本区间采用盾构法施工,盾构机刀盘开挖面直径为6.28m。
二、水土压力计算因为同等条件下静止土压力大于主动土压力,所以按静止土压力计算更为安全。
首先把4m厚的粉质粘土(含杂填土)按匀布荷载考虑,均匀作用在卵石土层上,把4m厚的粉质粘土(含杂填土)换算成当量的卵石土厚度,然后与其下部的卵石土厚度16m相加来计算卵石土的土压力。
4m厚的粉质粘土(含杂填土)换算成当量的卵石土厚度为:h换石===3.49m式中h换石—粉质粘土(含杂填土)换算成当量的卵石土厚度(m)h土—粉质粘土(含杂填土)厚度(m),h土=4mγ土—粉质粘土容重,γ土=1.92t/m3γ石—卵石土容重,γ石=2.2t/m31、隧道开挖面上部水土压力(1)土压力б石=k石(h换石+h石)γ石=0.36×[3.49m+(16m-6.28m)]×2.2t/m3=10.46232t/m2=104.6232KN/m2=104.6232KPa=0.105MPa=1.05bar式中б石—土压力(bar)k石—卵石土侧压力系数,k石=0.36h石—卵石土顶面至隧道开挖面上部的卵石土厚度(m),h石=16m-盾构机刀盘开挖面直径6.28m(2)水压力б水=h水γ水=(20m-5m-6.28m)×1t/m3=8.72t/m2=87.2KN/m2=87.2 KPa=0.0872MPa=0.87bar式中б水—水压力(bar)h水—静止水位至隧道开挖面上部的含水层厚度(m)γ水—水的容重,γ水=1t/m3所以隧道开挖面上部水土压力б水土=б石+б水=1.05bar+0.87bar=1.92bar2、隧道开挖面中部水土压力(1)土压力б石=k石(h换石+h石)γ石=0.36×[3.49m+(16m-3.14m)]×2.2t/m3=12.9492t/m2=129.492KN/m2=129.492KPa=0.129MPa=1.29bar式中б石—土压力(bar)k石—卵石土侧压力系数,k石=0.36h石—卵石土顶面至隧道开挖面中部的卵石土厚度(m)(2)水压力б水=h水γ水=(20m-5m-3.14m)×1t/m3=11.86t/m2=118.6KN/m2=118.6 KPa=0.1186MPa=1.19bar式中б水—水压力(bar)h水—静止水位至隧道开挖面中部的含水层厚度(m)γ水—水的容重,γ水=1t/m3所以隧道开挖面中部水土压力б水土=б石+б水=1.29bar+1.19bar=2.48bar3、隧道开挖面下部水土压力(1)土压力б石=k石(h换石+h石)γ石=0.36×(3.49m+16m)×2.2t/m3=15.43608t/m2=154.3608KN/m2=154.3608KPa=0.154MPa=1.54bar式中б石—土压力(bar)k石—卵石土侧压力系数,k石=0.36h石—卵石土顶面至隧道开挖面下部的卵石土厚度(m)(2)水压力б水=h水γ水=(20m-5m)×1t/m3=15t/m2=150KN/m2=150KPa=0.15MPa=1.5bar 式中б水—水压力(bar)h水—静止水位至隧道开挖面下部的含水层厚度(m)γ水—水的容重,γ水=1t/m3所以隧道开挖面下部水土压力б水土=б石+б水=1.54bar+1.50bar=3.04bar二〇一五年五月十七日。
盾构土压力计算范文首先,盾构土压力的计算需考虑到多种因素,包括土体类型、土体密度、盾构施工的深度等。
在进行计算前,需要明确以下几个基本概念:1.盾构土压力:指盾构施工中土体对盾构壁面施加的压力。
2.盾构机推力:指盾构机在施工中向前推进所需的推力。
3.土重:指单位体积土体的重量,在计算中一般采用土体干容重来表示。
根据经验公式,可以计算出盾构土压力的近似值。
一般情况下,盾构土压力可以由以下公式计算得出:P=Kp*δ*H其中,P表示盾构土压力,Kp为压力系数,δ为土体干容重,H为盾构掘进深度。
在公式中,压力系数Kp的取值与土体类型有关。
一般来说,Kp的取值范围在0.6-1.0之间,具体数值需要根据实际情况进行确定。
土体干容重δ可以通过室内试验获得,或者通过经验值进行估算。
例如,当土体类型为黏土时,一般可以取δ=18.5kN/m3;当土体类型为砂土时,可以取δ=16.5kN/m3盾构掘进深度H即为盾构壁面与地面的垂直距离,为施工中一个重要的参数。
通过以上公式的计算,我们可以得到盾构土压力的近似值。
然而,在实际工程中,由于实际情况相对复杂,单纯依靠公式得出的结果可能存在一定的误差。
因此,在实际工程中,一般会进行更为精确的计算,考虑更多的因素。
这包括盾构机的推力、推进速度、土体的变形特性等等。
在计算中可能涉及到更复杂的力学理论,需要进行更为详细的工程力学分析。
总之,盾构土压力的计算对于盾构施工过程中的安全性和效率起着至关重要的作用。
通过明确计算公式、考虑各种因素并进行精确计算,可以更加准确地估计盾构土压力,为盾构工程的顺利进行提供重要参考。
盾构施工中相关计算土仓压力的计算出土量的计算每环注浆量的计算注浆速度的计算对土压平衡式盾构而言,一个重要的因素就是要使密封仓内的土压力和开挖面的水土压力保持动态平衡。
如果密封仓内的土压力大于开挖面的水土压力,地表将发生隆起;反之,如果密封仓内的土压力小于开挖面的水土压力,地表将发生沉陷,通过最近的学习和资料的收集,对现有的地仓压力计算作一下结合。
已便结合以后施工提供数据,将理论与实践结合,得到适合西安地区的土仓压力计算模型。
1.土仓压力设定的原则在盾构施工过程中,掘进时土压力设定的通用原则:在选择掘进土压力时主要考虑地层土压力、地下水压力(孔隙水压力),并考虑预备压力;土仓内的土压力可以维持刀盘前方的围岩稳定,不致于因土压偏低造成土体坍塌、地下水流失;为了降低掘进扭矩、推力,提高掘进速度,减少土体对刀具的磨损,土仓内的土压力应尽可能得低,以使掘进成本最低。
总体而言,土仓压力控制如下图所示:土压平衡盾构正面推进力可表示为:()i z w N P P P =-+式中: i P — 密封舱土压力,kPa;z P — 开挖面侧向静止土压力,kPa;w P — 开挖面水压力,kPao为使开挖面保持稳定,理论上应尽量满足0N =。
2.土仓压力计算通常在设定土仓压力时主要考虑地层土压力、地下水压以及预先考虑的预备压力。
地层土压力的计算:地层土压力的计算是最为复杂,采用不同的计算模型就会有不同的结果,根据高等土力学中的知识,可以选择以下三种计算方法:静止土压力在静止的弹性平衡状态下天然土体的土压力,在深度z 处,其竖直面的应力,即静止土压力为:0z k z σγ=式中: γ— 土的有效重度,3/kN m ;z — 埋深,m ;0k — 土的静止侧压力系数静止侧压力系数0k 的数值可通过室内的或原位的静止侧压力试验测定,在施工岩土勘察报告中均会给出。
0k 也可按经验确定:砂0.34-0.45;硬粘土、压密砂性土0.5-0.7;极软粘土、松散砂性土0.5--0.7。
内力图-地铁盾构计算书(总11页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--1. 设计荷载计算1.1 结构尺寸及地层示意图ϕ=7.2ϕ=8.92q=20kN/m图1-1 结构尺寸及地层示意图如图,按照要求,对灰色淤泥质粉质粘土上层厚度进行调整:mm 43800 50*849+1350h ==灰。
按照课程设计题目,以下只进行基本使用阶段的荷载计算。
1.2 隧道外围荷载标准值计算(1) 自重 2/75.835.025m kN g h =⨯==δγ (2)竖向土压 若按一般公式:21/95.44688.485.37.80.11.90.185.018q m KN h ni i i =⨯+⨯+⨯+⨯+⨯==∑=γ 由于h=+++=>D=,属深埋隧道。
应按照太沙基公式或普氏公式计算竖向土压:a 太沙基公式:)tan ()tan (0010]1[tan )/(p ϕϕϕγB hB he q e B c B --⋅+--=其中:m R B c 83.6)4/7.75.22tan(/1.3)4/5.22tan(/0000=+=+=ϕ (加权平均值0007.785.5205.42.7645.19.8=⨯+⨯=ϕ)则:2)9.8tan 83.68.48()9.8tan 83.68.48(11/02.18920]1[9.8tan )83.6/2.128(83.6p m KN e e =⋅+--=-- b 普氏公式:20012/73.2699.8tan 92.7832tan 32p m KN B =⨯⨯==ϕγ 取竖向土压为太沙基公式计算值,即:21/02.189p m KN e =。
(3) 拱背土压 mkN R c /72.286.7925.2)41(2)41(2G 22=⨯⨯-⨯=⋅-=πγπ。
其中:3/6.728.1645.11.728.10.8645.1m KN =+⨯+⨯=γ。
盾构机的关键参数计算方法1.1.1.1盾构机总推力计算根据隧道工程条件,盾构主要参数计算按盾构在最大土压和水压位置进行计算。
根据招标文件和地质堪察报告按盾顶埋深22m,地下水位埋深按2m,盾构穿越地层按粉质粘土地层进行核定。
1、计算参数管片内径:Φ5500mm管片外径:Φ6200mm管片厚度:350mm管片宽度:1500mm覆土厚度:20m水头压力:200kPa土容重:粘土γ=19.1kN/m3,粉土γ=19.9kN/m3土的侧压力系数:0.5盾构机重量:331.7t盾构机盾壳长度:9.55m管片外径:Φg=6200mm盾构尾部的外径为:Φ6390mm盾体直径为:D 0=6410mm钢与土的摩擦系数μ1=0.3车轮与钢轨之间的摩擦系数μ2=0.2每一先行刀的容许负荷pr=150kN后配套系统G1=160t最大推力F:42,000kN额定扭矩:5316 kNm脱困扭矩:6934 kNm2、盾构荷载计算松动圈土压,见图2.1.6-1。
按覆土厚度H0=22m计算,H1=1m,H2=12m.H3=9m①Pe1=(γ-10)H2+(γ-10)H3 +γ*H1=219.3kPa ②Pe2=Pe1-64.5=153.8kPa③④ ⑤⑥ ⑦ ⑧ ⑨图2.1.6-1 荷载计算简图3、盾构机总推力计算盾构的总推进力必须大于各种推进阻力的总和,否则盾构无法向前推进。
包括盾构外围与土的摩擦力、盾构推进阻力(正面阻力)、由先行刀挤压阻力、管片与盾尾的密封阻力、后方台车的牵引阻力。
1.1.1.2盾壳与土体的摩擦力(1)、盾构外围与土的摩擦力)4()(221101011w q p q p LD w Lp D F e e e e w ++++=+=πμπμkN 6.11047)331742.1481048.1533.21955.9*41.6*14.3(3.0==++++kPa p q e e 1045.0*208*11===λkPa Pe q e 2.1485.0*2195.0*45.6*12*)145.6*)10((2=+=+-=λγkPaL D G p g 02.62)0.8*45.6/(10*320*/0===11e e q qf =22e e q qf =kpa qf w 2101=kpa qf w 2752=(2)、盾构推进阻力(正面阻力)kNqf qf qf qf D F w e w e 1383922752108.1533.219*40881.41*14.32*42211202=+++=+++π=(3)、由先行刀挤压产生的阻力kN n p F r 2700150*18*3=== (4)、管片与盾尾的密封阻力kN W M F S C 8.1418.92.51.55.5)5.5-6.22.6(41416.323.04=⨯⨯⨯⨯⨯⨯÷⨯⨯=⨯=MC -管件与钢板刷之间的摩擦阻力,取0.3 WS-压在盾尾内部2环管片的自重 (5)、后方台车的牵引阻力kN G F 3201600*2.0*=125==μ 所需最大推力kN F F F F F F 4.280483208.1412700138396.1104754321max =++++=++++=安全系数5.14.28048/42000/=max ==F F α 根据分项计算推力的安全系数达到1.5,可以满足掘进的需要。
-K 0φH B e ·у0+B H -K 0φ·B 1·уC1-eφ盾构施工关键参数的计算1)计算依据盾构掘进机选型主要性能参数的计算,根据工程和水文地质情况、盾构机厂商提供的结构和性能参数,参考有关资料进行。
2)计算内容盾构机的主要参数计算主要为土压平衡工况下盾构机推力和扭矩的计算。
⑴在软土中推进时,盾构机所需推力的计算地质参数选取:岩土容重 γ=2.0t/m 3岩土内摩擦角 φ=27°土的粘聚力 C=30Kpa=3.0t/m 2覆盖层厚度 最大:H max =20.3m ;最小H min =10.0m 地面上置荷载 Po=2t/m 2水平侧压力系数 λ=0.62盾构掘进机外径 D=6.39m盾构掘进机总长 L=7.755m盾构掘进机总重 W=300t管片每环的重量 W g =19.29t水平垂直土压之比 K o =1由于隧道沿线的埋深差别不大,最大处为20.3m ,最小为10.0m ,因此,计算最大埋深处的松动土压和两倍盾构掘进机直径的全土柱高产生的土压,并取其中的较大值作为作用于盾构掘进机上的土压计算:松动高度计算:1×tg27° 0-1×tg27°× 5.71 )(20.32.002+ e 20.3( )5.71-1×tg27°× ×1-e 3.05.71×2.0.5.71 (1- ) h = =7.08m )(.式中:松动土压P SP S =γh 0=2×7.08=14.16t/m 2两倍盾构掘进机直径的全土柱土压:P q =γh 0式中:h 0=2D=2×6.39=12.78mP q =γh 0=2×12.78=25.56t/m 2由于P q >P S所以,取P q 计算。
P o = P q +2=25.56+2=27.56 t/m 2P o1= P o +W/(D ·L )=27.56+300/(6.39×7.755)=33.61t/m 2 侧压力计算:P 1 =P o1λ=33.61×0.62=20.84 t/m 2P 2 = (P o +γD )λ =(27.56+2.0×6.39)×0.62=25.01 t/m 2 盾构掘进机的推力由盾构掘进机的外壳与土体之间的摩擦阻力F 1、刀盘承受的主动水平压力引起的推力F 2、土的粘接力引起的刀盘推力F3以及盾尾与管片之间的摩擦阻力F4几部分组成。
盾构掘进压力计算的选择一、工程概况220kV码头变送电(热双线单线开断环入码头变)工程盾构式电缆隧道工程2#盾构式电缆隧道工程,位于南京市下关区,盾构隧道起止里程为K1+322.193~K1+023.432,长298.761米、内径2.44米,隧道下穿三汊河。
其中南岸堤防顶标高为11.08m、隧道顶标高-6.52m、隧道埋深17.600米,北岸堤防顶标高为8.55m、隧道顶标高-5.805m、隧道埋深14.355米。
隧道主要穿越素填土、(淤泥质)粉质粘土,其主要性能参数如下:盾构穿越三汊河堤防基本在软弱地层中推进,因地质和盾构法施工的特定条件,掘进过程中引起的一定量的地层损失,以及盾构隧道周围受扰动或受剪切破坏的重塑土再固结,会不可避免地导致地面沉降。
三汊河堤防工程等级属于一等Ⅰ级堤防,该段地质条件较差,盾构掘进时需采取控制,严格控制堤防地表沉降在+10~-30mm内。
本次盾构掘进土压力的计算与选择均以南岸堤防为依据。
二、浅、深埋隧道判断深、浅埋隧道的判定原则一般以隧道顶部覆盖层能否形成“自然拱”为原则。
深埋隧道围岩松动压力值是根据施工坍方平均高度(等效荷载高度)确定的。
根据经验,深、浅埋隧道分界深度通常为2~2.5倍的施工坍方平均高度,即Hp=(2~2.5)hq式中:Hp--深、浅埋隧道分界的深度hq--施工坍方平均高度,hq=0.45×26-SωS—围岩类别,如Ⅲ类围岩,则S=3ω—宽度影响系数,且ω=1+i(B-5)B—隧道净宽度,单位以m计。
i—以B=5m为基准,B每增减1m时的围岩压力增减率。
当B<5m时,取i=0.2,B>5m,取i=0.1。
Hp=2×hq=2×0.45×26-Sω=2×0.45×26-1×(1+0.2×(3.2-5))=18.432m因南岸堤防处盾构隧道埋深为17.60m(小于18.432m),即本工程盾构隧道属于浅埋隧道。
地层参数按《岩土勘察报告》选取,由于岩土体中基本无水,所以水压力的计算按水土合算考虑。
选取可能出现的最不利受力情况埋深断面进行计算。
根据洞门的纵剖面图,及埋深不大,在确定盾构机拱顶处的均布围岩竖向压力Pe 时,可直接取全部上覆土体自重作为上覆土地层压力。
盾构机所受压力:Pe =γh+ P0P01= Pe + G/DLP1=Pe ×λP2=(P+γ.D) λ h 为上覆土厚度,γ为土容重,γ=1.97 t/m3G 为盾构机重,G=360 tD 为盾构机外径,D=6.45 m ; L 为盾构机长度,L=8.0m ; P0为地面上置荷载,P0=2 t/m2; P01为盾构机底部的均布压力;P1为盾构机拱顶处的侧向水土压力;P2为盾构机底部的侧向水土压力;Pe=1.97×6.65+2=15.1t/m2P01=15.1+360/(6.45×8.0)=22.1t/m2 P1=15.1×0.47=7.1t/m2P2 =(15.1+1.97×6.45)×0.47=13.1t/m2盾构的推力主要由以下五部分组成:54321F F F F F F ++++=式中:F1为盾构外壳与土体之间的摩擦力 ;F2为刀盘上的水平推力引起的推力F3为切土所需要的推力;F4为盾尾与管片之间的摩阻力F5为后方台车的阻力3.0=μμ数,计算时取:土与钢之间的摩擦系式中:t F 5.6973.00.845.61.131.71.221.15411=⨯⨯⨯+++⨯=π)()(d P D F 224π=为水平土压力式中:d P ,)(2D h P d +=λγm D h 875.9245.665.62=+=+ 2/1.9875.997.147.0m t P d =⨯⨯=t F 2971.945.64/22=⨯=)(π )(C D F 234/π=式中:C 为土的粘结力,C=4.5t/m2t F 1475.445.6423=⨯⨯=)(πc c W F μ=4式中:WC 、μC 为两环管片的重量(计算时假定有两环管片的重量作用在盾尾内,当管片容重为2.5t/m3,管片宽度按1.2m 计时,每环管片的重量为19.3t ),两环管片的重量为38.6t 考虑。
盾构关键参数的计算1.1 说明盾构工作过程的力学参数计算是一个非常复杂的问题,由于地质因素、土层改良方法、掘进参数等一系列因素的影响,在盾构参数计算方法上存在很多不确定因素。
至今应用的盾构参数计算方法在很大程度上只是处于研究、探索阶段,甚至很大程度上是一些经验性的计算方法。
以下的计算在参考盾构生产厂家提供的有关计算资料及其它相关文献资料的基础上,根据南京地铁三号线地质勘察报告,结合我单位南京地铁二号线盾构施工经验,按照盾构厂商提供的设计方案来进行关键参数的校核计算。
1.2 推力计算1.2.1 盾构外荷载的确定由于盾构工程沿线的隧道埋深差别很大,在埋深最深处的隧道顶部的覆土厚度约为33m ,而在较浅处的隧道顶部距地面约为9.3m 。
根据常用算法,盾构的外部荷载将按照最大埋深处的松动土压和两倍盾构直径的全土柱高产生的土压计算,并取两者中的最大值作为盾构计算的外部荷载。
在新庄站—市政府站区间最大埋深位置在K19+342处,此处隧道处于全断面岩层中,上部覆土为②-1b2-3、②-1c2-3、②-2b4、③-1h1-2、③-2b2、③-3e1、③-3a1-2地层,埋深约33m ,所以对盾构计算取此断面埋深为最大埋深值。
软土计算中地质参数均按照此断面的③-3a1-2号地层选取如下:岩土容重:3/9.18m KN =γ 岩土的内摩擦角:φ=17.60土的粘结力: c=47KN/m2覆盖层厚度: mH 33max =地面荷载:2020/P KN m =水平侧压力系数:45.0=λ盾构外径:m D 4.6= 盾构主机长度: m L 38.7= 盾构主机重量: W=350t 经验土压力系数:01K =松动土压(泰沙基公式)计算:()()()()1010/0/0111/B H tg K B H tg K s e P e tg K B c B P φφφγ--⨯+-⨯⨯-⨯=其中B1=R ×ctg[(45°+φ/2)/2] =3.2×ctg[(45°+17.6°/2)/2] =6.3m代入上式得 P5=︒⨯.617)3.6/319.18(3.6tg -×[1-e -1×tg17.6°×(33/6.3)]+20×e -1×tg17.6°×(33/6.3)=228.7(KN/m 2)计算两倍掘进机直径的全土柱土压: Pq=γ×2×D=18.9×2×6.4=242(KN/m2)q sP P >qP ∴取作为计算的数据。
盾构关键参数的计算1.1 说明盾构工作过程的力学参数计算是一个非常复杂的问题,由于地质因素、土层改良方法、掘进参数等一系列因素的影响,在盾构参数计算方法上存在很多不确定因素。
至今应用的盾构参数计算方法在很大程度上只是处于研究、探索阶段,甚至很大程度上是一些经验性的计算方法。
以下的计算在参考盾构生产厂家提供的有关计算资料及其它相关文献资料的基础上,根据南京地铁三号线地质勘察报告,结合我单位南京地铁二号线盾构施工经验,按照盾构厂商提供的设计方案来进行关键参数的校核计算。
1.2 推力计算1.2.1 盾构外荷载的确定由于盾构工程沿线的隧道埋深差别很大,在埋深最深处的隧道顶部的覆土厚度约为33m ,而在较浅处的隧道顶部距地面约为9.3m 。
根据常用算法,盾构的外部荷载将按照最大埋深处的松动土压和两倍盾构直径的全土柱高产生的土压计算,并取两者中的最大值作为盾构计算的外部荷载。
在新庄站—市政府站区间最大埋深位置在K19+342处,此处隧道处于全断面岩层中,上部覆土为②-1b2-3、②-1c2-3、②-2b4、③-1h1-2、③-2b2、③-3e1、③-3a1-2地层,埋深约33m ,所以对盾构计算取此断面埋深为最大埋深值。
软土计算中地质参数均按照此断面的③-3a1-2号地层选取如下:岩土容重:3/9.18m KN =γ 岩土的内摩擦角:φ=17.60土的粘结力: c=47KN/m2覆盖层厚度: mH 33max =地面荷载:2020/P KN m =水平侧压力系数:45.0=λ盾构外径:m D 4.6= 盾构主机长度: m L 38.7= 盾构主机重量: W=350t 经验土压力系数:01K =松动土压(泰沙基公式)计算:()()()()1010/0/0111/B H tg K B H tg K s e P e tg K B c B P φφφγ--⨯+-⨯⨯-⨯=其中B1=R ×ctg[(45°+φ/2)/2] =3.2×ctg[(45°+17.6°/2)/2] =6.3m代入上式得 P5=︒⨯.617)3.6/319.18(3.6tg -×[1-e -1×tg17.6°×(33/6.3)]+20×e -1×tg17.6°×(33/6.3)=228.7(KN/m 2)计算两倍掘进机直径的全土柱土压: Pq=γ×2×D=18.9×2×6.4=242(KN/m2)q sP P >qP ∴取作为计算的数据。
1.总体思路:在我国铁路隧道设计规范中,根据大量的施工经验,在太沙基土压力理论的基础上,提出以岩体综合物性指标为基础的岩体综合分类法,根据隧道的埋资深度不同,将隧道分为深埋隧道和浅埋隧道。
再根据隧道的具体情况采用不同的计算方式进行施工土压计算。
2.工程概况隧顶中等风化基岩厚6.4~31m。
围岩基本分级为IV级,地下水为基岩裂隙水,正常涌水量约1.37L、10m·min,地下水状态为I级,考虑地下水状态,围岩级别建议按IV级考虑。
里程K32+012.200~K32+167段、K32+209~K32+557段、K32+624~K33+745.779段隧顶中等风化基岩厚度大于2.5倍围岩压力拱高度(9.90m),为深埋隧道。
K32+167~K32+209段(42m)、K32+557~K32+624(67m)段隧顶中等风化基岩厚度小于2.5倍围岩压力拱高度(9.90m),为浅埋隧道。
3.深埋隧道与浅埋隧道的确定深、浅埋隧道的判定原则一般以隧道顶部覆盖层能否形成“自然拱”为原则。
深埋隧道围岩松动压力值是根据施工坍方平均高度(等效荷载高度)确定的。
根据经验,深、浅埋隧道分界深度通常为2~2.5倍的施工坍方平均高度,即式中:Hp--深、浅埋隧道分界的深度hq--施工坍方平均高度,hq=0.45×26-SωS—围岩类别,如Ⅲ类围岩,则S=3ω—宽度影响系数,且ω=1+i(B-5)B—隧道净宽度,单位以m计。
i—以B=5m为基准,B每增减1m时的围岩压力增减率。
当B<5m时,取i=0.2,B>5m,取i=0.1。
根据第二次初步设计送审稿中机场第二跑道的地质详细情况来看,地层为砂质泥岩地层,厚度达到14.191m,符合深埋隧道要求,故按深埋隧道计算压力。
4.深埋隧道的土压计算J2S-S m在深埋隧道中,按照太沙基土压力理论计算公式以及日本村山理论,可以较为准确的计算出盾构前方的松动土压力。
目录1、纵坡................................................. 2..2 、土压平衡盾构施工土压力的设置方法 (3)2.1 深埋隧道土压计算................................... 4.2.2 浅埋隧道的土压计算................................. 5.2.2.1 主动土压力与被动土压力 ........................ 5.2.2.2 主动土压力与被动土压力计算: (5)2.3 地下水压力计算..................................... 6..2.4 案例题............................................. 8..2.4.1 施工实例1 ................................................................ 8.2.4.2 施工实例2 ............................................................ 1. 13 、盾构推力计算 (12)4 、盾构的扭矩计算 (13)1、纵坡隧道纵坡:隧道底板两点间数值距离除以水平距离n eooxco LOO.IIDOO5CO.CG2 3如图所示:隧道纵坡二(200-100 )/500=2 %。
注:规范要求长达隧道最小纵坡>=0.3%,最大纵坡=<3.0%2、土压平衡盾构施工土压力的设置方法根据上述对地层土压力、水压力的计算原理分析,笔者总结出在土压平衡盾构的施工过程中,土仓内的土压力设置方法为:a、根据隧道所处的位置以及隧道的埋深情况,对隧道进行分类,判断出隧道是属于深埋隧道还是浅埋隧道(一般来说埋深在2倍洞径以下时,算作是浅埋段,2倍以上算深埋);b、根据判断的隧道类型初步计算出地层的竖向压力;c、根据隧道所处的地层以及隧道周边地地表环境状况的复杂程度,计算水平侧向力;d、根据隧道所处的地层以及施工状态,确定地层水压力;e、根据不同的施工环境、施工条件及施工经验,考虑0.010〜0.020Mpa的压力值作为调整值来修正施工土压力;f、根据确定的水平侧向力、地层的水压力以及施工土压力调整值得出初步的盾构施工土仓压力设定值为:0初步设定=0水平侧向力+ c水压力+彷调整式中,0初步设定一初步确定的盾构土仓土压力;0水平侧向力—水平侧向力;0水压力—地层水压力;0调整修正施工土压力。
城市地铁盾构施工土压力选择随着北京2008年申奥成功,我国的城市地铁施工必将走向了一个崭新的一页。
城市地铁盾构施工具有快速、安全、对地面建筑物影响小等诸多优点,已经被越来越多的人们所认可。
在城市地铁盾构施工中,如何设置合理的土压,对于控制地表沉降有着至关重要的意义。
一、土压平衡复合式盾构机三种工况的简要介绍土压平衡复合式盾构有三种工况,即敞开式、半敞开式、土压平衡三种掘进模式。
地层围岩条件较好时,螺旋输送机伸入土仓,螺旋输送机的卸料口完全打开,土仓内不保持土压,维持刀盘、土仓、螺旋输送机之间的完全敞开,实现敞开式模式掘进。
当围岩稳定性变坏,工作面有坍塌时或有坍塌的可能,或地下涌水不能得到有效控制时,缩回螺旋输送机,关闭螺旋输送机的卸料口,压入压缩空气,土仓会被压力封闭,控制地下水的涌出,防止坍塌的进一步发生,即可实现半敞开式掘进模式;若水压力大或工作面不能达到稳定状态,则先停止螺旋输送机的出碴,切削下来的碴土充满土仓。
与此同时,用螺旋输送机排土机构,进行与盾构推进量相应的排土作业,掘进过程中,始终维持开挖土量与排土量的平衡来维持仓内碴土的土压力。
以土仓内的碴土压力抗衡工作面的土体压力和水压力,以保持工作面的土体的稳定,防止工作面的坍塌和地下水的涌出,从而使盾构机在不松动的围岩中掘进,确保不产生地层损失,实现土压平衡掘进模式。
二、掘进土压力的设定在选择掘进土压力时主要考虑地层土压,地下水压(孔隙水压),预先考虑的预备压力。
地层施工土压在我国铁路隧道设计规范中,根据大量的施工经验,在太沙基土压力理论的基础上,提出以岩体综合物性指标为基础的岩体综合分类法,根据隧道的埋资深度不同,将隧道分为深埋隧道和浅埋隧道。
再根据隧道的具体情况采用不同的计算方式进行施工土压计算。
深埋隧道与浅埋隧道的确定深、浅埋隧道的判定原则一般以隧道顶部覆盖层能否形成“自然拱”为原则。
深埋隧道围岩松动压力值是根据施工坍方平均高度(等效荷载高度)确定的。
根据经验,深、浅埋隧道分界深度通常为2~倍的施工坍方平均高度,即Hp=(2~)hq式中:Hp--深、浅埋隧道分界的深度hq--施工坍方平均高度,hq=×26-SωS—围岩类别,如Ⅲ类围岩,则S=3ω—宽度影响系数,且ω=1+i(B-5)B—隧道净宽度,单位以m计。
i—以B=5m为基准,B每增减1m时的围岩压力增减率。
当B<5m时,取i=,B>5m,取i=。
深埋隧道的土压计算在深埋隧道中,按照太沙基土压力理论计算公式以及日本村山理论,可以较为准确的计算出盾构前方的松动土压力。
但在实际施工工程之中,可以根据隧道围岩分类和隧道结构参数,按照我国现行的《铁路隧道设计规范》中推荐的计算围岩竖直分布松动压力q的计算公式:q=×26-Sγωγ—围岩容重地层在产生竖向压力的同时,也产生侧向压力,侧向水平松动压力σa 由经验公式可得:σa =E a × σZ E a 计算公式见下表静止土压为原状的天然土体中,土处于静止的弹性平衡状态,这时的土压力为静止土压力。
在任一深度h 处,土的铅垂方向的自重应力σz =γh 为最大主应力,而水平应力σx =为最小主应力(如图所示),其间存在如下关系:σx =k 。
.σz =k 。
. γh式中: k 。
为侧向土压力系数, k 。
=υ/1-υυ为岩体的泊松比。
计算地面以下深度为z 处的地层自重应力σz ,等于该处单位面积上土柱的质量。
如下图所示:σz =γ1h 1+γ2h 2+γ3h 3+…+γn h n =Σγi h i式中:γi ——第i 层土的天然容重(地下水位以下一般采用浮容重),kN/m 3。
h i ——第i 层土的厚度,m 。
n —从地面到深度z 处的土层数。
静止侧向土压力系数k 。
,即土的侧压力系数确定 (1)经验值: 砂: k 。
=~。
粘土 k 。
=~。
(2)半经验公式,(目前一般在设计中采用雅基公式)(Jaky )(砂层)K= 1-sinφBrooker公式(粘性土层)=φ’K式中,K:静止土压力系数。
φ、φ’为土的有效内摩擦角。
(3)日本规范日本《建筑基础结构设计规范》建议,不分土的种类,k均为。
在浅埋隧道的施工过程中,由于施工的扰动,改变了原状的天然土体的静止的弹性平衡状态,从而使刀盘前方土体产生主动或被动土压力。
在盾构机推进时,由于推力(土压力)设置偏低,工作面前方的土体向盾构机刀盘方向发生一个微小的移动或滑动,土体出现向下滑动的趋势或,为了抗拒土体向下滑动的趋势的产生,土体中的抗剪力逐渐增大。
当土体中的侧向应力减小到一定的程度,使土体中的抗剪强度得到充分发挥,此时土体中的侧向土压力减小到最小值,土体处于极限平衡状态,即主动极限平衡状态。
与此相应的土压力称为主动土压力Ea。
如下图所示:在盾构机推进时,由于推力(土压力)设置偏高,刀盘对土体的侧向应力逐渐增大,刀盘前部的土体出现向上滑动的趋势,为了抗拒土体向上滑动的趋势的产生,土体中的抗剪力逐渐增大。
土体处于另一极限平衡状态,即被动极限平衡状态。
与此相应的土压力称为被动土压力Ep。
如下图所示:根据盾构机的特点及盾构机施工的原理,结合我国铁路隧道设计施工的具体经验,施工采用朗金理论计算主动土压力与被动土压力。
当盾构机推力偏小,土体处于向下滑动的极限平衡状态,具体如下图所示:此时土体内的竖直应力σz 相当于大主应力σ1,水平应力σa 相当于小主应力σa。
水平应力σa 为维持刀盘前方的土体不向下滑移需要的最小土压力,即土体的主动土压力。
画出土体的应力圆,此时水平轴上σ3处的E 点与应力圆在抗剪强度线切点M 的连线和竖直线间的夹角β为破裂角。
由图可知:β=1/2∠ENM=1/2(90-φ)=45°-φ/2σa =σa =σz tan 2(45o -φ/2)-2ctan (45o -φ/2)式中,σz :深度为z 处的地层自重应力,c :土的粘着力,z :地层深度,φ:地层内部摩擦角当盾构机的推力偏大,土体处于向上滑动的极限平衡状态,具体如下图所示: 此时刀盘前方的土压力σp 相当于大主应力σ1,而竖向应力σz 相当于小主应力σa 。
画出土体的应力圆,当应力圆与抗剪强度线相切时,刀盘前方的土体被破坏,向前滑移。
此时作用在刀盘上的土压力σp 即土体的被动土压力。
破裂角β’由图可知:β’ =1/2∠ENM=1/2(90+φ)=45°+φ/2 σp =σ1 =σz tan 2(45o +φ/2)+2ctan (45o +φ/2)式中,σz :深度为z 处的地层自重应力,c :土的粘着力,z :地层深度,φ:地层内部摩擦角地下水压力计算与控制当地下水位高于隧道顶部,由于地层中孔隙的存在,从而形成侧向地下水压。
地下水压力的大小与水力梯度、渗透系数、渗透速度以及渗透时间有关。
在计算水压力时,由于地下水在流经土体时,受到土体的阻力,引起水头损失。
作用在刀盘上的水压力一般小于该地层处的理论水头压力。
在掘进过程中,由于刀盘并非完全开口,而是中间有70~80%的支挡结构,随着刀盘的不断往前推进,土仓内的压力介于原始的土压力值附近。
加上水在土中的微细孔中流动时的阻力。
故在掘进时地层中的水压力可以根据地层的渗透系数进行酌情考虑。
当盾构机因故停机时,由于地层中压力水头差的存在,地下水必然会不断的向土仓内流动,直至将地层中压力水头差消除为止。
此时的水压力为:σw =q ×γhq --根据土的渗透系数确定的一个经验数值。
砂土中q =~,粘性土中q =~。
γ-水的容重h -地下水位距离刀盘顶部的高度。
在实际施工中,由于管片顶部的注浆可能会不密实,故地下水可能会沿着隧道衬砌外部的空隙形成过水通道,当盾构长时间停机时,必将形成一定的压力水头。
―σw1=q 砂浆 ×γh Wq 砂浆--根据砂浆的渗透系数和注浆的饱满程度确定的一个经验数值,一般取q =~。
γ-水的容重h W -补强注浆处和刀盘顶部的的高差。
在计算水压力时,刀盘后部的水压力与刀盘前方的水压力取大值进行考虑。
预备压力由于施工存在许多不可遇见的因素,致使施工土压力小于原状土体中的静止土压力。
按照施工经验,在对沉降要求比较严格的地段计算土压力时,通常在理论计算的基础之上再考虑10~20kg/m2(~cm2)的压力作为预备压力。
三、施工实例广州地铁二号线【越~三区间隧道】盾构工程位于广州市越秀区和白云区,该工程全长米。
隧道上覆土厚度最大约28米,最小约9米。
隧道通过的地层软硬不均、复合交互、变化频繁。
区间隧道穿越地层大部分是中风化岩〈8〉、强风化岩〈7〉和微风化岩〈9〉,其次为全风化岩〈6〉和残积土层〈5-2〉。
整个区间隧道的地下水位较高,高出隧道顶部8~27米。
该工程穿越铁路车站轨道,对地表沉陷控制要求特别严格。
以下为前一段时间工地土压力理论计算值与实际土压值和掘进产生的沉降对应值。
四、几点体会通过以上分析可知,由于刀盘对土体的推力不同,在土仓内产生的土压力不同,土体中的侧向土压力的方向与大小也在不断的发生着变化。
被动土压力和主动土压力是侧向土压力的最大和最小的极限值。
而静止土压力介于两者之间,即Ep>Eo>Ea。
当盾构机刀盘前方的土压力大于Ep,土体被向盾构机移动,地面隆起。
当盾构机刀盘前方的土压力小于Ea时,土体向下滑动,可能引起地层和地面的沉降。
如下图:土压力管理与控制一般给出一个适当的范围。
根据施工所处的地段、地层、施工环境给出一个土压上限值,以及一个土压下限值。
地层地质状况良好、稳定性好,土压力低。
地层变化大,沉降要求高等条件下,土压力高。
(上限值)Pmax=地下水压+(静止土压或被动土压)+预备压力(下限值)Pmin=地下水压+主动土压在施工中,深埋隧道按照铁路隧道设计规范来考虑施工土压力时,一般得出的土压力都偏大。
如果地层地质状况良好,考虑盾构机外径1~2倍以内的土压力较为合适。
在浅埋隧道施工时,为了使工作面前方的土体保持稳定的状态,不致因盾构掘进发生变形或产生移位的趋势,应以静止土压力为主要依据。
当隧道埋深不大或围岩极不稳定时时,可以用朗金理论计算主、被动土压力,从而来确定盾构施工的土压力值。
按照朗金理论计算的主动土压是考虑开挖面的稳定由土体本身强度来维持,是基于允许开挖面有一定的变形或移动,所以对于自稳性较差的地层、软弱或变形系数较大、容易失水的地层,以此理论考虑主动土压是偏小的,也是比较危险的。
从施工来看,如果推进土压力小于主动土压力,当隧道埋深不大时,岩体会向下移动或坍塌。
从而导致地表沉陷,形成一个塌陷区域。
如图所示:在沉降要求较为严格的部位,尽量使盾构机的推进压力大于静止土压力,从而使土体产生向刀盘前方变形的趋势或位移,以达到减小地层沉降的目的。