【数学】2015-2016年山东省聊城市东阿县四校联考七年级上学期数学期中试卷和解析答案PDF
- 格式:pdf
- 大小:870.35 KB
- 文档页数:21
2015学年第一学期七年级期中考试数学试卷答案一、填空题(每小题2分,共30分)1、 +11a b ; 2、14 ; 3、 -6a ; 4、-2.4×610 ;5、54-a; 6、194 ; 7、 +--+-2232415732z x x y x y x y ;8、12 ; 9、-+2269x xy y ; 10、-22259y x ;11、5813+m n;12、19=-k ; 13、1352 ; 14、20 ; 15、222+m n二、选择题(每小题2分,共8分)16、B 17、A 18、A 19、 D三、简答题(每小题5分,共35分)20、当23a =-时原式= 221323⎛⎫-+ ⎪⎝⎭- ( 1分) =41923+- (1分) == 13923-(1分)= 136-(2分)21、原式=22(35)b c a -- 2分=222(93025)b bc c a -+- 2分= 22293025b bc c a -+- 1分22、原式= )32(2c b a -+= 222494612a b c ab ac bc +++-- 5分(其他计算方法酌情给分)23、原式=2222112()36643xy y x x y -+-⋅ 2分=22222222112363636643xy x y y x y x x y -+-⋅ 1分=3324426924x y x y x y -+- 2分24、原式=()()222x a a x -+⎡⎤⎣⎦ 1分= ()2224x a - 2分 = 4224168x a x a -+ 2分25、原式=333244184227a b a b a a b ⋅-⋅ 2分 = 64644427a b a b - 2分 = 6410427a b - 1分 26、2222(4263)33x x x x x x x +----+>- 1分 2222426333x x x x x x x +--++->- 1分 2236433x x x x -+>- 1分34x ->- 1分43x < 1分四.解答题(本题共4题, 27、28题每题6分,29题7分,30题8分,共27分))27、 ∵ A -2B =13-x∴ 2B=A-(3x-1) 1分22231x x x =-+-+ 1分=2243x x -+ 1分∴B= 2322x x -+ 1分 ∴B+A= 2322x x -++222+-x x 1分 = 27332x x -+ 1分 28、()4222222m n -=⨯,()323333nm +=⨯ 1分 422222m n +-=,32333n m ++= 2分 4222m n =,3533n m += 1分4m=2n, 3n=m+5 1分解得m=1,n=2 1分29、(1)444a b a b += 1分()()2222a b = 2分22m n = 1分(2)623a a a = 2分mp = 1分30、( 1 ) S=()()34b t a a t b --- 1分 =334bt ab at ab --+ 1分 =()3b a t ab -+(结果写成3bt at ab -+也可以) 1分(2) 30b a -= 1分3a b = 1分(3)227xa yb ab ++=222921xb yb b ++=()2921x y b ++ 1分 〖 ()921x y ++应该是完全平方数,x 、y 是正整数。
2015-2016第一学期期中考试七年级数学试题 (试卷满分:120分考试时间:100分钟,考试形式: 闭卷) 一、 选择题(10⨯3=30) 1.-3的倒数是……………………………………………………………………( ) A .-3; B .-31 ; C .3 ; D .±3; 2.某个地区,一天早晨的温度是-7℃,中午上升了13℃,则中午的温度是……………( ) A .-6℃ B .-18℃ C .6℃ D .18℃ 3.下列是无理数的是…………………………………………………………… ( ) A .-6.12 ; B .0.121415… ; C .322; D.0..5; 4. 数轴上的点A 表示的数是+2,那么与点A 相距5个单位长度的点表示的数是……( ) A.5 B. ±5 C. 7 D.7 或3- 5. 若32n x y 与5m x y -是同类项,则m ,n 的值为…………………………………( ) A.3,1m n ==-; B .3,1m n ==;C .3,1m n =-=-; D .3,1m n =-=; 6.下列各式中成立的是………………………………………………………………………( ) A. ()2323a b c d a b c d +-+-=++-; B. ()22343a b c d a b c d --+-=+-+ C.()223426a b c d a b c d --+-=++-; D.()2323a b c d a b c d --+-=+-+; 7.下列计算:①325a b ab +=; ②22523y y -=; ③277a a a +=; ④22422x y xy xy -=.其中正确的有……………………………( ) A .0个 B .1个 C .2个 D .3个 8. 设a 为最小的正整数,b 为最大的负整数,c 是绝对值最小的有理数,,则a -b+c 的值为………………………………………………………………………………… ( ) A .2 B .-2 C .2或 -2 D .以上都不对 9.如果()2210a b ++-=,那么代数式()2011a b +的值是………………………( ) A .-1 B .2011 C .-2011 D .1 10.已知整数a 1,a 2,a 3,a 4,…满足下列条件:a 1=0,a 2=-|a 1+1|,a 3=-|a 2+2|,a 4=-|a 3+3|,…,依次类推,则a 2015的值为( ) A .-1005B .-1006C .-1007D .-2014 学校___________ 班级_____________ 姓名___________ 准考证号___________ ………………………………密…………封…………线…………内…………不…………得…………答…………题………………………………二、填空题(6⨯3=18)11.用科学记数法表示 -13040000,应记作 ;12.代数式-852m n 的系数是__________,次数为_______; 13.对正有理数a ,b ,定义运算★如下:a ★b ab a b=+,则3★4= ; 14. 已知:23x y -=-,则代数式2(2)241y x x y --+-的值为_____________.15.一个多项式加上223x x -+-得到12-x ,这个多项式是________16.有一数值转换机,原理如图所示,若开始输入x 的值是7,可发现第1次输出的结果是12,第2次输出的结果是6,第3次输出的结果是______,依次继续下去…,第2015次输出的结果是____________.二、解答题(计72分)19.计算(每题5分,共20分)(1) 2111943+-+--; (2)()()35263005-⨯---÷⎡⎤⎣⎦;(3)36926521⨯⎪⎭⎫⎝⎛-- ; (4) ()285150.813-÷-⨯+-;20. 化简(每题5分,共15分)(1) ()43x x y --; (2) )4(4)25(2222b a b a --+(3)已知:22321A a ab a =+--,21B a ab =-+-, 求36A B +.21.化简求值(每题6分,共12分)(1)()22222322x y xy xy x y ⎡⎤-++⎣⎦,其中12x =,2y =-.(2)已知,4a b +=,2ab =-,求代数式()()4326a b ab a b ab -----的值.22.(6分)观察下列各式:1a =3×1-l=2,2a =3×2-l=5,3a =3×3-1=8,4a =3×4-1=11,……按此规律:(1)10a =_________________________________,100a =__________________________;(2)写出n a 的公式:n a =____________________;23.(6分)多项式()()271246m x k x n x +--+-是关于x 的三次三项式,并且二次项系数为1,求m n k +-的值.。
2015-2016学年七年级(上)期中数学试卷一一、选择题(本大题共6小题,每小题3分,共18分)1.若一个数的相反数是3,则这个数是()A.﹣B.C.﹣3 D.32.计算(﹣1)2+(﹣1)3=()A.﹣2 B.﹣1 C.0 D. 23.某地一天早晨的气温是﹣7℃,中午上升了11℃,午夜又下降了9℃,则午夜的气温是()A.5℃ B.﹣5℃ C.﹣3℃ D.﹣9℃4.当1<a<2时,代数式|a﹣2|+|1﹣a|的值是()A.﹣1 B.1 C.3 D.﹣35.比较的大小,结果正确的是()A.B.C.D.6.观察下列图形:它们是按一定规律排列的,依照此规律,第20个图形共有★个()A.63 B.57 C.68 D.60二、填空题(本大题共8小题,每小题3分,共24分)7.计算﹣2x2+3x2的结果为.8.数轴上两点A、B分别表示数﹣2和3,则A、B两点间的距离是.9.我国“钓鱼岛”周围海域面积约170000km2,该数用科学记数法可表示为.10.定义一种新运算:a⊗b=b2﹣ab,如:1⊗2=22﹣1×2=2,则(﹣1⊗2)⊗3=.11.已知2a﹣b=﹣1,则4a﹣2b+1的值为.12.已知﹣25a2m b与7b3﹣n a4的和是单项式,则m+n的值是.13.对单项式“5x”,我们可以这样解释:香蕉每千克5元,某人买了x千克,共付款5x元.请你对“5x”再给出另一个实际生活方面的合理解释:.(答案不唯一).14.开学初,小明到某商场购物,发现商场正在进行购物返券活动,活动规则如下:购物每满100元,返购物券50元,此购物券在本商场通用,且用购物券购买商品不再返券.小明只购买了单价分别为60元、80元和120元的书包、T恤、运动鞋,在使用购物券参与购买的情况下,他的实际花费为元.三、(本大题共3小题,第15、16小题各5分,第17小题6分,共16分)15.计算:﹣22÷(﹣1)3×(﹣5)16..17.下列代数式中:3+a;;0;﹣a;;;3x2﹣2x+1;a2﹣b2;a2b2.单项式:多项式:整式:.四、(本大题共2小题,每小题7分,共14分)18.求代数式2x3﹣5x2+x3+9x2﹣3x3﹣2的值,其中x=.19.已知:A=ax2+x﹣1,B=3x2﹣2x+1(a为常数)①若A与B的和中不含x2项,则a=;②在①的基础上化简:B﹣2A.五、(本大题共2个小题,每小题9分,共18分)20.10月25日,省运会在赣州隆重开幕,社会各界主动献出自己的力量,支持省运会.某一出租车这天上午以体育场为出发点在东西方向免费接送运动员,向东为正,向西为负,行车里程(单位:km)依先后次序记录如下:+9、﹣3、﹣5、+4、﹣8、+6、﹣3、﹣6、﹣4、+12.(1)将最后一名运动员送到目的地,出租车离体育场出发点多远?在体育场的什么方向?(2)若每千米耗油a升,那么这一天共耗油多少升?21.公安人员在破案时常常根据案发现场作案人员留下的脚印推断犯人的身高,如果用a表示脚印长度,b表示身高.关系类似满足于:b=7a﹣3.07.(1)某人脚印长度为24.5cm,则他的身高约为多少?(精确到1cm)(2)在某次案件中,抓获了两可疑人员,一个身高为1.87m,另一个身高1.82m,现场测量的脚印长度为26.3cm,请你帮助侦察一下,哪个可疑人员的可能性更大?六、(本大题共10分)22.(10分)(2014秋•赣县校级期中)小红爸爸上星期六买进某公司股票1000股,每股27元,下表为本周内每日该股票的涨跌情况.(单位:元)星期一二三四五六每股涨跌+4 +4.5 ﹣1 ﹣2.5 ﹣6 +2(1)通过上表你认为星期三收盘时,每股是多少?(2)本周内每股最高是多少?最低是多少元?(3)已知小红爸爸买进股票时付了1.5‰的手续费,卖出时还需付成交额,1.5‰的手续费和1‰的交易税,如果小红爸爸在星期六收盘时将全部股票卖出,你对他的收益情况怎样评价?2015-2016学年七年级(上)期中数学试卷参考答案与试题解析一、选择题(本大题共6小题,每小题3分,共18分)1.若一个数的相反数是3,则这个数是()A.﹣B.C.﹣3 D.3考点:相反数.分析:两数互为相反数,它们的和为0.解答:解:设3的相反数为x.则x+3=0,x=﹣3.故选:C.点评:本题考查的是相反数的概念,两数互为相反数,它们的和为0.2.计算(﹣1)2+(﹣1)3=()A.﹣2 B.﹣1 C.0 D. 2考点:有理数的混合运算;有理数的乘方.分析:此题比较简单.先算乘方,再算加法.解答:解:(﹣1)2+(﹣1)3=1﹣1=0.故选C.点评:此题主要考查了乘方运算,乘方的意义就是求几个相同因数积的运算.注意负数的奇数次幂是负数,负数的偶数次幂是正数;﹣1的奇数次幂是﹣1,﹣1的偶数次幂是1.3.某地一天早晨的气温是﹣7℃,中午上升了11℃,午夜又下降了9℃,则午夜的气温是()A.5℃ B.﹣5℃ C.﹣3℃ D.﹣9℃考点:有理数的加减混合运算.专题:应用题.分析:在列式时要注意上升是加法,下降是减法.解答:解:根据题意可列式﹣7+11﹣9=﹣5,所以温度是﹣5℃.故选B.点评:此题主要考查正负数在实际生活中的应用,所以学生在学这一部分时一定要联系实际,不能死学.4.当1<a<2时,代数式|a﹣2|+|1﹣a|的值是()A.﹣1 B.1 C.3 D.﹣3考点:代数式求值;绝对值.专题:计算题.分析:根据a的取值范围,先去绝对值符号,再计算求值.解答:解:当1<a<2时,|a﹣2|+|1﹣a|=2﹣a+a﹣1=1.故选:B.点评:此题考查的知识点是代数式求值及绝对值,关键是根据a的取值,先去绝对值符号.5.比较的大小,结果正确的是()A.B.C.D.考点:有理数大小比较.分析:根据有理数大小比较的方法即可求解.解答:解:∵﹣<0,﹣<0,>0,∴最大;又∵>,∴﹣<﹣;∴.故选A.点评:本题考查有理数比较大小的方法:①正数都大于0,负数都小于0,正数大于一切负数;②两个负数,绝对值大的反而小.6.观察下列图形:它们是按一定规律排列的,依照此规律,第20个图形共有★个()A.63 B.57 C.68 D.60考点:规律型:图形的变化类.专题:规律型.分析:本题是一道关于数字猜想的问题,关键是通过归纳与总结,得到其中的规律.解答:解:根据题意得,第1个图中,五角星有3个(3×1);第2个图中,有五角星6个(3×2);第3个图中,有五角星9个(3×3);第4个图中,有五角星12个(3×4);∴第n个图中有五角星3n个.∴第20个图中五角星有3×20=60个.故选:D.点评:本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.二、填空题(本大题共8小题,每小题3分,共24分)7.计算﹣2x2+3x2的结果为x2.考点:合并同类项.分析:根据合并同类项,系数相加字母和字母的指数不变,可得答案.解答:解:原式=(﹣2+3)x2=x2,故答案为:x2.点评:本题考查了合并同类项,合并同类项,系数相加字母和字母的指数不变.8.数轴上两点A、B分别表示数﹣2和3,则A、B两点间的距离是5.考点:数轴.分析:数轴上两点间的距离:数轴上两点对应的数的差的绝对值.解答:解:根据数轴上两点对应的数是﹣2,3,则两点间的距离是3﹣(﹣2)=5.点评:本题考查数轴上两点间距离的求法:右边点的坐标减去左边点的坐标;或两点坐标差的绝对值.9.我国“钓鱼岛”周围海域面积约170000km2,该数用科学记数法可表示为 1.7×105.考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将170000用科学记数法表示为:1.7×105.故答案为:1.7×105.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.10.定义一种新运算:a⊗b=b2﹣ab,如:1⊗2=22﹣1×2=2,则(﹣1⊗2)⊗3=﹣9.考点:有理数的混合运算.专题:新定义.分析:先根据新定义计算出﹣1⊗2=6,然后再根据新定义计算6⊗3即可.解答:解:﹣1⊗2=22﹣(﹣1)×2=6,6⊗3=32﹣6×3=﹣9.所以(﹣1⊗2)⊗3=﹣9.故答案为:﹣9.点评:本题考查了有理数混合运算:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.11.已知2a﹣b=﹣1,则4a﹣2b+1的值为﹣1.考点:代数式求值.专题:计算题.分析:原式变形后,将已知等式代入计算即可求出值.解答:解:∵2a﹣b=﹣1,∴原式=2(2a﹣b)+1=﹣2+1=﹣1,故答案为:﹣1点评:此题考查了代数式求值,熟练掌握运算法则是解本题的关键.12.已知﹣25a2m b与7b3﹣n a4的和是单项式,则m+n的值是4.考点:合并同类项.分析:有题意可知,这两个式子是同类项,再根据同类项的定义可得:2m=4,3﹣n=1.解答:解:由题意可得,2m=4,3﹣n=1.解得,m=2,n=2,∴m+n=4.故答案为:4.点评:此题主要考查同类项的概念,所含字母相同,并且相同字母的指数也相同的项是同类项.13.对单项式“5x”,我们可以这样解释:香蕉每千克5元,某人买了x千克,共付款5x元.请你对“5x”再给出另一个实际生活方面的合理解释:某人以5千米/时的速度走了x小时,他走的路程是5x千米.(答案不唯一).考点:单项式.专题:开放型.分析:对单项式“5x”,是5与x的积,表示生活中的相乘计算.比如:某人以5千米/时的速度走了x小时,他走的路程是5x千米解答:解:某人以5千米/时的速度走了x小时,他走的路程是5x千米,答案不唯一.点评:本题考查了单项式在生活中的实际意义,只要计算结果为5x的都符合要求.14.开学初,小明到某商场购物,发现商场正在进行购物返券活动,活动规则如下:购物每满100元,返购物券50元,此购物券在本商场通用,且用购物券购买商品不再返券.小明只购买了单价分别为60元、80元和120元的书包、T恤、运动鞋,在使用购物券参与购买的情况下,他的实际花费为210或200元.考点:有理数的混合运算.专题:应用题;压轴题;分类讨论.分析:分四种情况讨论:①先付60元,80元,得到50元优惠券,再去买120元的运动鞋;②先付60元,120元,得到50元的优惠券,再去买80元的T恤;③先付120元,得到50元的优惠券,再去付60元,80元的书包和T恤;④先付120元,80元,得到100元的优惠券,再去付60元的书包;分别计算出实际花费即可.解答:解:①先付60元,80元,得到50元优惠券,再去买120元的运动鞋;实际花费为:60+80﹣50+120=210元;②先付60元,120元,得到50元的优惠券,再去买80元的T恤;实际花费为:60+120﹣50+80=210元;③先付120元,得到50元的优惠券,再去付60元,80元的书包和T恤;实际花费为:120﹣50+60+80=210元;④先付120元,80元,得到100元的优惠券,再去付60元的书包;实际花费为:120+80=200元;综上可得:他的实际花费为210元或200元.点评:本题旨在学生养成仔细读题的习惯.三、(本大题共3小题,第15、16小题各5分,第17小题6分,共16分)15.计算:﹣22÷(﹣1)3×(﹣5)考点:有理数的混合运算.分析:先算乘方,再从左到右依次计算除法、乘法.解答:解:原式=﹣4÷(﹣1)×(﹣5)=4×(﹣5)=﹣20.点评:有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.本题要特别注意运算顺序以及符号的处理,如﹣22=﹣4,而(﹣2)2=4.16..考点:有理数的混合运算.专题:常规题型.分析:按照有理数混合运算的顺序,先乘除后加减,有括号的先算括号里面的,并且在计算过程中注意正负符号的变化.解答:解:原式===0答:此题答案为0.点评:有理数的运算能力是很重要的一部分,要熟练掌握.17.下列代数式中:3+a;;0;﹣a;;;3x2﹣2x+1;a2﹣b2;a2b2.单项式:0;﹣a;;a2b2多项式:3+a;;3x2﹣2x+1;a2﹣b2整式:3+a;0;﹣a;;;3x2﹣2x+1;a2﹣b2;a2b2.考点:整式;单项式;多项式.分析:根据单项式、整式以及多项式进行填空.解答:解:单项式:0;﹣a;;a2b2;多项式:3+a;;3x2﹣2x+1;a2﹣b2;整式:3+a;0;﹣a;;;3x2﹣2x+1;a2﹣b2;a2b2.故答案是:0;﹣a;;a2b2;3+a;;3x2﹣2x+1;a2﹣b2;3+a;0;﹣a;;;3x2﹣2x+1;a2﹣b2;a2b2.点评:要考查了整式的有关概念.要能准确的分清什么是整式.整式是有理式的一部分,在有理式中可以包含加,减,乘,除四种运算,但在整式中除式不能含有字母.单项式和多项式统称为整式.单项式是字母和数的乘积,只有乘法,没有加减法.多项式是若干个单项式的和,有加减法.四、(本大题共2小题,每小题7分,共14分)18.求代数式2x3﹣5x2+x3+9x2﹣3x3﹣2的值,其中x=.考点:整式的加减—化简求值.分析:本题应先将原式合并同类项,再将x的值代入,即可解出本题.解答:解:原式=2x3+x3﹣3x3+9x2﹣5x2﹣2=4x2﹣2,当x=时,原式=1﹣2=﹣1.点评:本题考查了整式的化简.整式的加减运算实际上就是去括号、合并同类项,这是各地中考的常考点.19.已知:A=ax2+x﹣1,B=3x2﹣2x+1(a为常数)①若A与B的和中不含x2项,则a=﹣3;②在①的基础上化简:B﹣2A.考点:多项式.分析:①不含x2项,即x2项的系数为0,依此求得a的值;②先将表示A与B的式子代入B﹣2A,再去括号合并同类项.解答:解:①A+B=ax2+x﹣1+3x2﹣2x+1=(a+3)x2﹣x∵A与B的和中不含x2项,∴a+3=0,解得a=﹣3.②B﹣2A=3x2﹣2x+1﹣2×(﹣3x2+x﹣1)=3x2﹣2x+1+6x2﹣2x+2=9x2﹣4x+3.点评:多项式的加减实际上就是去括号和合并同类项.多项式加减的运算法则:一般地,几个多项式相加减,如果有括号就先去括号,然后再合并同类项.合并同类项的法则:把系数相加减,字母及字母的指数不变.本题注意不含x2项,即x2项的系数为0.五、(本大题共2个小题,每小题9分,共18分)20.10月25日,省运会在赣州隆重开幕,社会各界主动献出自己的力量,支持省运会.某一出租车这天上午以体育场为出发点在东西方向免费接送运动员,向东为正,向西为负,行车里程(单位:km)依先后次序记录如下:+9、﹣3、﹣5、+4、﹣8、+6、﹣3、﹣6、﹣4、+12.(1)将最后一名运动员送到目的地,出租车离体育场出发点多远?在体育场的什么方向?(2)若每千米耗油a升,那么这一天共耗油多少升?考点:正数和负数.分析:(1)根据有理数的加法,可得正负数,根据正数在东,负数在西,可得答案;(2)根据单位耗油量乘以行车距离,可得答案.解答:解:(1)+9﹣3﹣5+4﹣8+6﹣3﹣6﹣4+12=2km故出租车在体育场东边2 km处;(2)﹙|+9|+|﹣3|+|﹣5|+|+4|+|﹣8|+|+6|+|﹣3|+|﹣6|+|﹣4|+|+12|﹚•a=60a 升.答:这一天共耗油60a升点评:本题考查了正数和负数,利用有理数的加法运算是解题关键,注意求耗油量时要算每次行驶的绝对值.21.公安人员在破案时常常根据案发现场作案人员留下的脚印推断犯人的身高,如果用a表示脚印长度,b表示身高.关系类似满足于:b=7a﹣3.07.(1)某人脚印长度为24.5cm,则他的身高约为多少?(精确到1cm)(2)在某次案件中,抓获了两可疑人员,一个身高为1.87m,另一个身高1.82m,现场测量的脚印长度为26.3cm,请你帮助侦察一下,哪个可疑人员的可能性更大?考点:代数式求值.专题:应用题.分析:(1)将脚印长度为24.5cm代入关系式即可得;(2)借助关系式b=7a﹣3.07,求出身高,再根据概率知识推测谁的可能性大.解答:解:(1)已知如果用a表示脚印长度,b表示身高.关系类似满足于:b=7a﹣3.07.若某人脚印长度为24.5cm,即a=24.5,将其代入关系式可得,身高约为7×24.5﹣3.07=168.43≈168cm,即他的身高约为168cm;(2)根据现场测量的脚印长度为26.3cm,将这个数值代入b=7a﹣3.07中可得:罪犯身高为181.03cm≈1.81cm,比较可知:身高1.82m的可疑人员的可能性更大.点评:立意新颖,把数学知识融汇到案件侦破中,既考知识,又增加了学习的乐趣.六、(本大题共10分)22.(10分)(2014秋•赣县校级期中)小红爸爸上星期六买进某公司股票1000股,每股27元,下表为本周内每日该股票的涨跌情况.(单位:元)星期一二三四五六每股涨跌+4 +4.5 ﹣1 ﹣2.5 ﹣6 +2(1)通过上表你认为星期三收盘时,每股是多少?(2)本周内每股最高是多少?最低是多少元?(3)已知小红爸爸买进股票时付了1.5‰的手续费,卖出时还需付成交额,1.5‰的手续费和1‰的交易税,如果小红爸爸在星期六收盘时将全部股票卖出,你对他的收益情况怎样评价?考点:有理数的混合运算;正数和负数.专题:应用题.分析:(1)先根据表格中找出星期一,星期二及星期三所对应的涨跌情况,把这三个数字相加得到这三天的涨跌情况,与买进时每股的单价相加即可求出星期三收盘时每股的价钱;(2)根据表格中记录的正负数情况得到星期二涨幅最大,星期五跌幅最大,求出星期一与星期二两天的涨幅情况,与买进时每股的价钱相加即可得到每股的最高价;用星期一到星期五五天的涨跌情况,与买进时每股的价格相加即可求出每股的最低价;(3)根据买进时每股的单价与股数相乘,减去手续费即可得到买进时所花费的钱数,然后求出一星期七天的涨跌情况,与买进时每股的价钱相加即可求出卖出时每股的价钱,然后乘以股数,再减去手续费和交易费即可求出卖出时获得的总钱数,用获得的总钱数减去买入时花费的钱数,根据其差得正负情况即可计算出他得收益情况.解答:解:(1)(+4)+(+4.5)+(﹣1)=7.5,则星期三收盘时,每股是27+7.5=34.5元;(2)本周内最高价是27+4+4.5=35.5元;最低价是27+4+4.5﹣1﹣2.5﹣6=26元;(3)买入时,27×1000×(1+1.5‰)=27040.5元,卖出时每股:27+4+4.5﹣1﹣2.5﹣6+2=28元,所以卖出时的总钱数为28×1000×(1﹣1.5‰﹣1‰)=27930元,所以小红爸爸的收益为27930﹣27040.5=889.5元,故赚了889.5元.点评:此题考查了有理数的混合运算,以及正负数的意义.原题提供的是实际生活中常见的一个表格,它提供了多种信息,但关键是从中找出解题所需的有效信息,构造相应的数学模型,来解决问题.数学服务于生活,数学来源于生活.2015-2016学年七年级(上)期中数学试卷二一、选择题:本题有12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案的编号用铅笔涂在答题卡上.1.﹣3的相反数是()A.3 B.﹣3 C.D.﹣2.如图所示的图形绕虚线旋转一周,所形成的几何体是()A.B.C.D.3.代数式a2b和﹣3a2b y是同类项时,y的值为()A.0 B. 1 C. 2 D. 34.下面几何体中,截面图形不可能是圆()A.圆柱B.圆锥C.球D.正方体5.人类的遗传物质就是DNA,人类的DNA是很长的链,最短的22号染色体也长达30 000 000个核苷酸,30 000 000用科学记数法表示为()个.A.3×108 B.3×107 C.3×106 D.0.3×1086.若|a|=2,则a=()A.2 B.﹣2C. 2 或﹣2 D.以上答案都不对7.数a,b在数轴上的位置如图所示,则a+b是()A.正数B.零C.负数D.都有可能8.一个有理数的倒数是它本身,这个数是()A.0 B. 1 C.﹣1 D.1或﹣19.下列图形中,哪一个是正方体的展开图()A.B.C.D.10.下列说法不正确的是()A.0既不是正数,也不是负数B.1是绝对值最小的数C.一个有理数不是整数就是分数D.0的绝对值是011.比较﹣2,0,﹣(﹣2),﹣3的大小,下列正确的()A.0>﹣3>﹣(﹣2)>﹣2 B.﹣(﹣2)>﹣3>﹣2>0 C.﹣(﹣2)>0>﹣2>﹣3 D.﹣3>﹣(﹣2)>﹣2>012.一根绳子弯曲成如图1所示的形状.当用剪刀像图2那样沿虚线a把绳子剪断时,绳子被剪为5段;当用剪刀像图3那样沿虚线b(b∥a)把绳子再剪一次时,绳子就被剪为9段.若用剪刀在虚线a,b之间把绳子再剪(n﹣2)次(剪刀的方向与a平行),这样一共剪n次时绳子的段数是()A.4n+1 B.4n+2 C.4n+3 D.4n+5二、填空题:本题有4小题,每小题3分,共12分.把答案填在答题卡上.13.﹣a2b的系数是.14.如果水库的水位高于标准水位3米时,记作+3米,那么低于标准水位2米时,应记米.15.菜场上西红柿每千克a元,白菜每千克b元,学校食堂买30kg西红柿,50kg白菜共需元.16.“*”是规定的一种运算法则:a*b=a2﹣b,则5*(﹣1)的值是.三、解答题:本题有6小题,共52分,解答应写出文字说明或演算步骤.17.(16分)(2014秋•深圳校级期中)计算:(1)8﹣6+(﹣9)(2)﹣24×(﹣+)(3)(﹣0.1)÷×(﹣10)(4)16÷(﹣2)3﹣(﹣)×(﹣4)18.(10分)(2014秋•深圳校级期中)先化简,再求值(1)6a+2a2﹣3a+a2+1的值,其中a=﹣1.(2)x﹣2(x+2y)+3(y﹣2x),其中x=﹣2,y=1.19.画出如图几何体的三视图.20.某一矿井的示意图如图所示:以地面为准,A点的高度是+4米,B、C两点的高度分别是﹣15米与﹣30米.A点比B点高多少?比C点呢?21.学校需要到印刷厂印刷x份材料,甲印刷厂提出:每份材料收0.2元印刷费,另收500元制版费;乙印刷厂提出:每份材料收0.4元印刷费,不收制版费.(1)两印刷厂的收费各是多少元?(用含x的代数式表示)(2)学校要印刷2400份材料,若不考虑其他因素,选择哪家印刷厂比较合算?试说明理由.22.已知a,b互为相反数,m,n互为倒数,x的绝对值等于3.①由题目可得,a+b=;mn=;x=.②求代数式x2﹣(a+b+mn)x+(a+b)2008+(﹣mn)2008的值.2015-2016学年七年级(上)期中数学试卷参考答案与试题解析一、选择题:本题有12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案的编号用铅笔涂在答题卡上.1.﹣3的相反数是()A.3 B.﹣3 C.D.﹣考点:相反数.专题:常规题型.分析:根据相反数的概念解答即可.解答:解:﹣3的相反数是3,故选:A.点评:本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.2.如图所示的图形绕虚线旋转一周,所形成的几何体是()A.B.C.D.考点:点、线、面、体.分析:上面的直角三角形旋转一周后是一个圆锥,下面的长方形旋转一周后是一个圆柱.所以应是圆锥和圆柱的组合体.解答:解:根据以上分析应是圆锥和圆柱的组合体.故选:B.点评:本题考查的是点、线、面、体知识点,可把较复杂的图象进行分解旋转,然后再组合.3.代数式a2b和﹣3a2b y是同类项时,y的值为()A.0 B.1 C. 2 D. 3考点:同类项.专题:计算题.分析:根据同类项的定义计算即可:所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.解答:解:∵代数式a2b和﹣3a2b y是同类项,∴y=1,故选B.点评:本题考查了同类项的定义,解题时牢记定义是关键,此题比较简单,易于掌握.4.下面几何体中,截面图形不可能是圆()A.圆柱B.圆锥C.球D.正方体考点:截一个几何体.分析:根据圆柱、圆锥、球、正方体的形状特点判断即可.解答:解:本题中,用平面去截正方体,得的截面可能为三角形、四边形、五边形、六边形,无论如何,截面也不会有弧度不可能是圆,故选D.点评:本题考查几何体的截面,关键要理解面与面相交得到线.5.人类的遗传物质就是DNA,人类的DNA是很长的链,最短的22号染色体也长达30 000 000个核苷酸,30 000 000用科学记数法表示为()个.A.3×108 B.3×107 C.3×106 D.0.3×108考点:科学记数法—表示较大的数.专题:应用题.分析:科学记数法就是将一个数字表示成(a×10的n次幂的形式),其中1≤|a|<10,n表示整数.n为整数位数减1,即从左边第一位开始,在首位非零的后面加上小数点,再乘以10的n次幂.解答:解:30 000 000=3×107.故选B.点评:把一个数M记成a×10n(1≤|a|<10,n为整数)的形式,这种记数的方法叫做科学记数法.规律:(1)当|a|≥1时,n的值为a的整数位数减1;(2)当|a|<1时,n的值是第一个不是0的数字前0的个数,包括整数位上的0.6.若|a|=2,则a=()A.2 B.﹣2C. 2 或﹣2 D.以上答案都不对考点:绝对值.分析:直接利用“绝对值等于一个正数的数有两个,它们互为相反数”写出答案即可.解答:解:∵|a|=2,∴a=±2,故选C.点评:本题考查了绝对值的求法,属于基础题,比较简单.7.数a,b在数轴上的位置如图所示,则a+b是()A.正数B.零C.负数D.都有可能考点:数轴;有理数的加法.专题:数形结合.分析:首先根据数轴发现a,b异号,再进一步比较其绝对值的大小,然后根据有理数的加法运算法则确定结果的符号.异号两数相加,取绝对值较大的加数的符号.解答:解:由图,可知:a<0,b>0,|a|>|b|.则a+b<0.故选:C.点评:本题结合数轴,主要考查了有理数的加法法则,体现了数形结合的思想.8.一个有理数的倒数是它本身,这个数是()A.0 B. 1 C.﹣1 D.1或﹣1考点:倒数.专题:常规题型.分析:根据倒数的定义可知如果一个数的倒数等于它本身,则这个数是±1.解答:解:如果一个数的倒数等于它本身,则这个数是±1,故选:D.点评:此题考查了倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.要求掌握并熟练运用.尤其是±1这两个特殊的数字.9.下列图形中,哪一个是正方体的展开图()A.B.C.D.考点:几何体的展开图.分析:由平面图形的折叠及立体图形的表面展开图的特点解题.解答:解:折叠后,没有上下底面,故不能折成正方体;B、C折叠后第一行两个面无法折起来,而且下边没有面,不能折成正方体;故只有D是正方体的展开图.故选D.点评:只要有“田”字格的展开图都不是正方体的表面展开图.10.下列说法不正确的是()A.0既不是正数,也不是负数B.1是绝对值最小的数C.一个有理数不是整数就是分数D.0的绝对值是0考点:绝对值;有理数.专题:常规题型.分析:先根据:0既不是正数,也不是负数;整数和分数统称为有理数;0的绝对值是0;判断出A、C、D正确;再根据绝对值最小的数是0,得出B错误.解答:解:0既不是正数,也不是负数,A正确;绝对值最小的数是0,B错误;整数和分数统称为有理数,C正确;0的绝对值是0,D正确.故选:B.点评:本题主要考查正数的绝对值是正数,负数的绝对值是正数,0的绝对值是0,熟练掌握绝对值的性质是解题的关键.11.比较﹣2,0,﹣(﹣2),﹣3的大小,下列正确的()A.0>﹣3>﹣(﹣2)>﹣2 B.﹣(﹣2)>﹣3>﹣2>0 C.﹣(﹣2)>0>﹣2>﹣3 D.﹣3>﹣(﹣2)>﹣2>0考点:有理数大小比较.分析:先化简﹣(﹣2)=2,再根据正数都大于0;负数都小于0;两个负数,绝对值大的反而小求解.解答:解:化简﹣(﹣2)=2,所以﹣(﹣2)>0>﹣2>﹣3.故选C.点评:本题考查了有理数比较大小的方法:(1)正数都大于0;(2)负数都小于0;(3)正数大于一切负数;(4)两个负数,绝对值大的其值反而小.12.一根绳子弯曲成如图1所示的形状.当用剪刀像图2那样沿虚线a把绳子剪断时,绳子被剪为5段;当用剪刀像图3那样沿虚线b(b∥a)把绳子再剪一次时,绳子就被剪为9段.若用剪刀在虚线a,b之间把绳子再剪(n﹣2)次(剪刀的方向与a平行),这样一共剪n次时绳子的段数是()A.4n+1 B.4n+2 C.4n+3 D.4n+5考点:规律型:图形的变化类.专题:压轴题;规律型.分析:本题做为一道选择题,学生可把n=1,x=5;n=2,x=9代入选项中即可得出答案.而若作为常规题,学生则需要一一列出n=1,2,3…的能,再对x的取值进行归纳.解答:解:设段数为x则依题意得:n=0时,x=1,。
初一数学试卷一、选择题(每小题3分,共30分)1.﹣2的倒数是()A.2 B.﹣2 C.D.﹣2.我国以2010年11月1日零时为标准计时点,进行了第六次全国人口普查,查得全国总人口约为1370000000人,请将总人口用科学记数法表示为()×108×109 ×1010×1083.下列各组数中,互为相反数的是()A.2和﹣2 B.﹣2和C.﹣2和D.和24.下列各数中,比﹣1小的数是()A.0 B.1 C.﹣100 D.25.若3x n+5y与﹣x3y是同类项,则n=()A.2 B.﹣5 C.﹣2 D.56.化简a+2b﹣b,正确的结果是()A.a﹣b B.﹣2b C.a+b D.a+27.下列各题正确的是()A.3x+3y=6xy B.x+x=x2C.﹣9y2+6y2=﹣3 D.9a2b﹣9a2b=08.一个多项式与x2﹣2x+1的和是3x﹣2,则这个多项式为()A.x2﹣5x+3 B.﹣x2+x﹣1 C.﹣x2+5x﹣3 D.x2﹣5x﹣139.去括号正确的是()A.a2﹣(a﹣b+c)=a2﹣a﹣b+c B.5+a﹣2(3a﹣5)=5+a﹣6a+10C.3a﹣(3a2﹣2a)=3a﹣a2﹣ a D.a3﹣[a2﹣(﹣b)]=a3﹣a2+b10.已知实数m、n在数轴上的对应点的位置如图所示,则下列判断正确的是()A.m>0 B.n<0 C.mn<0 D.m﹣n>0二、填空题(每小题4分,共24分)11.计算:|﹣2|=.12.某种商品每袋4.8元,在一个月内的销售量是m袋,用式子表示在这个月内销售这种商品的收入.13.多项式2x2﹣3x+5是次项式.14.如果□×(﹣)=1,则□内应填的有理数是.15.体育委员带了500元钱去买体育用品,已知一个足球a元,一个篮球b元.则代数式500﹣3a﹣2b表示的数为.16.按下面程序计算:输入x=3,则输出的答案是.三、解答题(一)(每小题5分,共30分)17.计算:2×(﹣3)+(﹣40)÷8.(3a﹣b)﹣3(a+3b).(﹣1)4+(﹣)÷﹣|﹣3|18.化简:(1)(2x﹣3y)+(5x+4y)(2)(8a﹣7b)﹣(4a﹣5b).四、解答题(二)(每小题6分,共12分)19.先化简,再求值.x﹣2(x﹣y2)+(﹣x+y2),其中x=﹣2,y=.20.若A=x2﹣2x+1,B=3x﹣2,求A﹣B.五、解答题(三)(每小题8分,共24分)21.教师节当天,出租车司机小王在东西向的街道上免费接送教师,规定向东为正,向西为负,当天出租车的行程如下(单位:千米):+5,﹣4,﹣8,+10,+3,﹣6,+7,﹣11.(1)将最后一名老师送到目的地时,小王距出发地多少千米?方位如何?(2)若汽车耗油量为0.2升/千米,则当天耗油多少升?若汽油价格为6.20元/升,则小王共花费了多少元钱?22.观察下面三行数:﹣3,9,﹣27,81,﹣243,…①0,12,﹣24,84,﹣240,…;②3,﹣9,27,﹣81,243,….③(1)第①行数按什么规律排列?(2)第②③行数与第 ①行数分别有什么关系?(3)取每行数的第9个数,计算这三个数的和.23.小明用的练习本可以到甲、乙两家商店购买,已知两商店的标价都是每本1元,甲商店的优惠条件是购买10本以上,从第11本开始按标价的70%出售;乙商店的优惠条件是,从第一本起按标价的80%出售.(1)若小聪要购买20本练习本,则当小聪到甲商店购买时,须付款 元,当到乙商店购买时,须付款 元;(2)若设小明要购买x (x >10)本练习本,则当小明到甲商店购买时,须付款 元,当到乙商店购买时,须付款 元;(3)买多少本练习本时,两家商店付款相同?24. 有这样一道题,“计算)3()2()232(323323223y y x x y xy x xy y x x -+-++----的值,其中1,21-==y x ”,甲同学把“21=x 抄成了21-=x ,但计算结果是正确的,你说这是怎么回事。
山东省聊城市七年级上学期期中数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共8题;共16分)1. (2分) (2017七上·重庆期中) 如图,数轴上的两点A、B分别表示有理数a和b,则化简|a+b|+|a﹣b|的结果是()A . ﹣2aB . ﹣2bC . 2aD . 2b2. (2分) (2011七下·河南竞赛) a为有理数,下列说法中,正确的是()A . (a+1)2的值是正数B . -(a+1)2 的值是负数C . a2+1的值是正数D . -a2+1的值小于13. (2分)下列说法中正确的是()A . x的系数是0B . 24与42不是同类项C . y的次数是0D . 23xyz是三次单项式4. (2分) (2015七上·市北期末) 下面的算式:①﹣1﹣1=0;② ;③(﹣1)2004=2004;④﹣42=﹣16;⑤ ;⑥﹣5÷ ×3=﹣5,其中正确的算式的个数是()A . 1个B . 2个C . 3个D . 4个5. (2分)﹣8的相反数是()A . 8B . ﹣8C .D .6. (2分)(2017·双柏模拟) 第31届夏季奥运会将于2016年8月5日﹣21日在巴西举行,为纪念此次体育盛事发行的奥运会纪念币,在中国发行450000套,450000这个数用科学记数法表示为()A . 45×104B . 4.5×105C . 0.45×106D . 4.5×1067. (2分)若|a|=|b|,则a与b的关系是()A . a=bB . a=-bC . a=b=0D . a=b或a=-b8. (2分) (2018七上·滨海月考) 数轴上表示整数的点称为整点,某数轴的单位长度为1㎝,若在数轴上画出一条长2013㎝的线段AB,则AB盖住的整点个数是()A . 2013或2014B . 2012或2013C . 2014D . 2013二、填空题 (共8题;共10分)9. (3分)(2017七上·南宁期中) 化简:=________,=________,=________.10. (1分)我市某天最高气温是8℃,最低气温是-1℃,那么当天的最大温差是________ ℃.11. (1分)在,x+1,-2,-,0.72xy,,a中,________是单项式.12. (1分)若2xn+(m﹣1)x+1为三次二项式,则m2﹣n2=________.13. (1分)若单项式x5m+2n+2y3与﹣x6y3m﹣2n﹣1的和仍是一个单项式,则m+n=________14. (1分) (2016七上·大悟期中) 物体向右运动4m记作+4m,那么物体向左运动3m,应记作________ m.15. (1分)某日中午,北方某地气温由早晨的零下2℃上升了9℃,傍晚又下降了3℃,这天傍晚北方某地的气温是________ ℃.16. (1分) (2017八上·湛江期中) 如图,在图1中,互不重叠的三角形共有4个,在图2中,互不重叠的三角形共有7个,在图3中,互不重叠的三角形共有10个,…,则在第n个图形中,互不重叠的三角形共有个________(用含n的代数式表示)三、解答题 (共8题;共59分)17. (1分)计算:× =________.18. (5分) (2015七上·寻乌期末) 2(3ab2﹣a3b)﹣3(2ab2﹣a3b),其中a=﹣,b=4.19. (9分) (2019七上·秀英期中) 已知a、b互为相反数且a、b均不为0 , m、n互为倒数,x的绝对值为2,(1) a+b=________,________,mn=________,x2=________.(2)求的值.20. (5分) (2017七上·赣县期中) 把如图的直线补充成一条数轴,并表示下列各数:0,﹣(+4),3 ,﹣(﹣2),|﹣3|,+(﹣5),并用“<”号连接.21. (10分) (2016七上·义马期中) 计算:(1)(﹣1)4+ ÷(﹣2)×(﹣)(2)(﹣ +1 ﹣)×(﹣24)22. (9分)先观察下列等式,然后用你发现的规律解答问题.第1个等式:a1= = ×(1﹣);第2个等式:a2= = ×(﹣);第3个等式:a3= = ×(﹣);第4个等式:a4= = ×(﹣);…请回答下列问题:(1)按以上规律列出第5个等式:a5=________=________;(2)用含有n的代数式表示第n个等式:an=________=________(n为正整数);(3)求a1+a2+a3+a4+…+an的值.23. (10分) (2016九上·沙坪坝期中) 计算:(1)(x+1)2﹣x(1﹣x)﹣2x2(2)÷(﹣a﹣b)24. (10分)下表列出了国外几个城市与北京的时差(带正号的数表示同一时刻比北京的时间早的时数).现在的北京时间是上午8:00.时差/时纽约﹣13巴黎﹣7东京+1芝加哥﹣14(1)求现在纽约时间是多少?(2)斌斌现在想给远在巴黎的姑妈打电话,你认为合适吗?参考答案一、选择题 (共8题;共16分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、二、填空题 (共8题;共10分)9-1、10-1、11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共8题;共59分)17-1、18-1、19-1、19-2、20-1、21-1、21-2、22-1、22-2、22-3、23-1、23-2、24-1、24-2、。
山东省聊城市七年级上学期数学期中联考试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)(2019·南海模拟) ﹣2的倒数是()A . ﹣2B . 2C . ﹣D .2. (2分) (2017七下·江津期末) 小红家的冰箱冷藏室温度是℃,冷冻室的温度是℃,则她家的冰箱冷藏室比冷冻室温度高()A . 2℃B . -2℃C . 4℃D . -4℃3. (2分) a、b为两个有理数,若a+b<0,且ab>0,则有()A . a,b异号B . a、b异号,且负数的绝对值较大C . a<0 ,b<0D . a>0,b>04. (2分)(2018·防城港模拟) 神舟十号飞船是我国“神州”系列飞船之一,每小时飞行约28000公里,将28000用科学记数法表示应为()A . 2.8×103B . 28×103C . 2.8×104D . 0.28×1055. (2分) (2017七上·深圳期末) 下列说法错误的是()A . 倒数等于本身的数只有±1B . 的系数是,次数是 4C . 经过两点可以画无数条直线D . 两点之间线段最短6. (2分)下面计算正确的是()A . x3÷x3=0B . x3﹣x2=xC . x2•x3=x6D . x3÷x2=x7. (2分)(2017·陆良模拟) ﹣2017的相反数是()A . ﹣2017B . ﹣C .D . 20178. (2分)某粮食公司2013年生产大米总量为a万吨,比2012年大米生产总量增加了10%,那么2012年大米生产总量为()A . a(1+10%)万吨B . 万吨C . a(1﹣10%)万吨D . 万吨9. (2分)将分式方程 + =1去分母后得()A . 2-x=x-1B . 2-x=1C . 2+x=1-xD . 2+x=x-110. (2分) (2011七下·河南竞赛) 观察以下数组:(1),(3、5),(7、9、11),(13、15、17、19),…… ,问2005在第()组。
2015-2016学年山东省聊城市东阿县四校联考七年级(上)期中数学试卷一、选择题1.(3分)如图,数轴上A、B两点所表示的两数的()A.和为正数B.和为负数C.积为正数D.积为负数2.(3分)下列几何体属于柱体的个数是()A.3 B.4 C.5 D.63.(3分)如图,数轴上A点表示的数减去B点表示的数,结果是()A.8 B.﹣8 C.2 D.﹣24.(3分)一个数加上﹣12等于﹣5,则这个数是()A.17 B.7 C.﹣17 D.﹣75.(3分)下列说法中,正确的个数有()(1)射线AB和射线BA是同一条射线(2)延长射线MN到C(3)延长线段MN到A使NA=2MN (4)连接两点的线段叫做两点间的距离A.1 B.2 C.3 D.46.(3分)有理数a、b在数轴上的对应的位置如图所示,则()A.a+b<0 B.a+b>0 C.a﹣b=0 D.a﹣b>07.(3分)2002年我国发现首个世界级大气田,储量达6 000亿立方米,6 000亿立方米用科学记数法表示为()A.6×102亿立方米 B.6×103亿立方米C.6×104亿立方米 D.0.6×104亿立方米8.(3分)的相反数是()A.B.2 C.﹣2 D.9.(3分)下列说法中错误有()•①﹣是负分数②‚1.5不是整数③ƒ非负有理数不包括0④整数和分数统称为有理数⑤0是最小的有理数⑥﹣1是最小的负整数.A.1个 B.2个 C.3个 D.4个10.(3分)计算﹣2×32﹣(﹣2×3)2的值是()A.0 B.﹣54 C.﹣72 D.﹣1811.(3分)下列各图中,可以是一个正方体的平面展开图的是()A.B. C. D.12.(3分)一个正方体的每个面都写有一个汉字.其平面展开图如图所示,那么在该正方体中,和“您”相对的字是()A.新B.年C.愉D.快13.(3分)如果线段AB=5cm,BC=4cm,且A、B、C在同一条直线上,那么A、C两点的距离是()A.1cm B.9cmC.1cm或9cm D.以上答案都不正确14.(3分)在﹣(﹣2),﹣|﹣7|,(﹣3)2,﹣(+),﹣1中负数有()A.2个 B.3个 C.4个 D.5个15.(3分)下列各对数中,互为相反数的一对是()A.﹣23与32B.(﹣2)3与﹣23C.(﹣3)2与﹣32D.(﹣3×2)2与﹣3×22二、填空题16.(3分)计算:﹣5+|﹣3|=.17.(3分)若x的相反数是3,|y|=5,则x+y的值为.18.(3分)数轴上点P表示的数是﹣2,那么到P点的距离是3个单位长度的点表示的数是.19.(3分)的倒数是.20.(3分)若x2=9,则x=.21.(3分)如果a,b互为相反数,c,d互为倒数,m的绝对值为2,那么+m ﹣cd的值为.22.(3分)如图是一个正方体的侧面展开图,如果将它折叠成一个正方体后相对的面上的数相等,则图中x的值为.23.(3分)一点将一长为28cm的线段分成5:2的两段,该分点与原线段中点间的距离为cm.24.(3分)若|a﹣2|+(﹣b)2=0,则b a=.三、解答题25.(12分)计算下列各题:(1)(+4.3)﹣(﹣4)+(﹣2.3)﹣(+4);(2)(﹣48)÷(﹣2)3﹣(﹣25)×(﹣4)+(﹣2)2;(3)(﹣1.5)×3×(﹣)2﹣(﹣)×(﹣1.5)2(4)[(﹣)3×(﹣)2÷(﹣)﹣32﹣(﹣3)3]×(﹣14)26.(8分)如图,平面上有四个点A、B、C、D,根据下列语句画图(1)画直线AB;作射线BC;画线段CD;(2)连接AD,并将其反向延长至E,使DE=2AD;(3)找到一点F,使点F到A、B、C、D四点距离和最短.27.(10分)我们规定“*”是一种数学运算符号,两数A、B通过“*”运算得(A+2)×2﹣B,即A*B=(A+2)×2﹣B,例如,3*5=(3+2)×2﹣5=5(1)求6*7的值;(2)6*7的值与7*6的值相等吗?28.(8分)已知a的相反数为﹣2,b的倒数为,c的绝对值为2,求a+b+c2的值.29.(10分)出租车司机老王某天上午营运全是在东西走向的解放路上进行,如果规定向东为正,向西为负,他这天上午行车里程(单位:km)如下:+8,+4,﹣10,﹣3,+6,﹣5,﹣2,﹣7,+4,+6,﹣9,﹣11.(1)将最后一名乘客送到目的地时,老王距上午出发点多远?(2)若汽车耗油量为0.4L/km,这天上午老王耗油多少升?2015-2016学年山东省聊城市东阿县四校联考七年级(上)期中数学试卷参考答案与试题解析一、选择题1.(3分)如图,数轴上A、B两点所表示的两数的()A.和为正数B.和为负数C.积为正数D.积为负数【解答】解:由图可知,A、B表示的数分别为﹣3,3,∵﹣3+3=0,﹣3×3=﹣9,∴A、B两点所表示的两数的和为9,积为负数.故选:D.2.(3分)下列几何体属于柱体的个数是()A.3 B.4 C.5 D.6【解答】解:柱体分为圆柱和棱柱,所以柱体有(1)(3)(4)(5)(6)(8),共6个.故选:D.3.(3分)如图,数轴上A点表示的数减去B点表示的数,结果是()A.8 B.﹣8 C.2 D.﹣2【解答】解:﹣3﹣5=﹣8.故选:B.4.(3分)一个数加上﹣12等于﹣5,则这个数是()A.17 B.7 C.﹣17 D.﹣7【解答】解:设这个数为x,由题意可知x+(﹣12)=﹣5,解得x=7.所以这个数是7.故选:B.5.(3分)下列说法中,正确的个数有()(1)射线AB和射线BA是同一条射线(2)延长射线MN到C(3)延长线段MN到A使NA=2MN (4)连接两点的线段叫做两点间的距离A.1 B.2 C.3 D.4【解答】解:(1)射线AB与射线BA表示方向相反的两条射线,故本选项错误;(2)射线可沿一个方向无限延伸,故不能说延长射线,故本选项错误;(3)可以延长线段MN到A使NA=2MN,故本项正确;(4)连接两点的线段的长度叫做两点间的距离,故本选项错误;综上可得只有(3)正确.故选:A.6.(3分)有理数a、b在数轴上的对应的位置如图所示,则()A.a+b<0 B.a+b>0 C.a﹣b=0 D.a﹣b>0【解答】解:根据图形可得:a<﹣1,0<b<1,∴|a|>|b|,A、a+b<0,故A选项正确;B、a+b>0,故B选项错误;C、a﹣b<0,故C选项错误;D、a﹣b<0,故D选项错误.故选:A.7.(3分)2002年我国发现首个世界级大气田,储量达6 000亿立方米,6 000亿立方米用科学记数法表示为()A.6×102亿立方米 B.6×103亿立方米C.6×104亿立方米 D.0.6×104亿立方米【解答】解:6 000亿立方米=6×103亿立方米.故选B.8.(3分)的相反数是()A.B.2 C.﹣2 D.【解答】解:的相反数是:.故选:A.9.(3分)下列说法中错误有()•①﹣是负分数②‚1.5不是整数③ƒ非负有理数不包括0④整数和分数统称为有理数⑤0是最小的有理数⑥﹣1是最小的负整数.A.1个 B.2个 C.3个 D.4个【解答】解:•①﹣是负分数,故①正确;②‚1.5不是整数,故②正确;③ƒ非负有理数包括0,故③错误;④整数和分数统称为有理数,故④正确;⑤没有最小的有理数,故⑤错误;⑥﹣1是最大的负整数,故⑥错误;故选:C.10.(3分)计算﹣2×32﹣(﹣2×3)2的值是()A.0 B.﹣54 C.﹣72 D.﹣18【解答】解:﹣2×32﹣(﹣2×3)2,=﹣2×9﹣(﹣6)2,=﹣18﹣36,=﹣54.故选:B.11.(3分)下列各图中,可以是一个正方体的平面展开图的是()A.B. C. D.【解答】解:A、属于“田”字型,不是正方体的展开图,故选项错误;B、属于“7”字型,不是正方体的展开图,故选项错误;C、属于“1+4+1”字型,是正方体的展开图,故选项正确;D、属于“凹”字型,不是正方体的展开图,故选项错误.故选:C.12.(3分)一个正方体的每个面都写有一个汉字.其平面展开图如图所示,那么在该正方体中,和“您”相对的字是()A.新B.年C.愉D.快【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,∴“祝”与“愉”相对,“您”与“年”相对,“新”与“快”相对.故选:B.13.(3分)如果线段AB=5cm,BC=4cm,且A、B、C在同一条直线上,那么A、C两点的距离是()A.1cm B.9cmC.1cm或9cm D.以上答案都不正确【解答】解:当点C在AB之间时,AC=AB﹣BC=5﹣4=1(cm);当点C在点B的右侧时,AC=AB+BC=5+4=9(cm).故选:C.14.(3分)在﹣(﹣2),﹣|﹣7|,(﹣3)2,﹣(+),﹣1中负数有()A.2个 B.3个 C.4个 D.5个【解答】解:负数有:﹣|﹣7|,﹣(+),﹣1共有3个.故选:B.15.(3分)下列各对数中,互为相反数的一对是()A.﹣23与32B.(﹣2)3与﹣23C.(﹣3)2与﹣32D.(﹣3×2)2与﹣3×22【解答】解:符号不同,绝对值不同,故A错误;B、符号相同是同一个数,故B错误;C、只有符号不同的两个数互为相反数,故C正确;D、绝对值不同,故D错误;故选:C.二、填空题16.(3分)计算:﹣5+|﹣3|=﹣2.【解答】解:原式=﹣5+3=﹣2.故答案为:﹣2.17.(3分)若x的相反数是3,|y|=5,则x+y的值为2或﹣8.【解答】解:若x的相反数是3,则x=﹣3;|y|=5,则y=±5.x+y的值为2或﹣8.18.(3分)数轴上点P表示的数是﹣2,那么到P点的距离是3个单位长度的点表示的数是1或﹣5.【解答】解:根据数轴可以得到在数轴上与点A距离3个长度单位的点所表示的数是:﹣5或1.故答案为:﹣5或1.19.(3分)的倒数是2012.【解答】解:的倒数为2012.故答案为2012.20.(3分)若x2=9,则x=±3.【解答】解:∵x2=9∴x=±3.21.(3分)如果a,b互为相反数,c,d互为倒数,m的绝对值为2,那么+m ﹣cd的值为1或﹣3.【解答】解:∵a,b互为相反数,c,d互为倒数,m的绝对值为2,∴a+b=0,cd=1,m=±2,∴+m﹣cd=0+m﹣1=m﹣1,当m=2时,原式=2﹣1=1;当m=﹣2时,原式=﹣2﹣1=﹣3.故答案为1或﹣3.22.(3分)如图是一个正方体的侧面展开图,如果将它折叠成一个正方体后相对的面上的数相等,则图中x的值为7.【解答】解:正方体的平面展开图中,相对面的特点是中间必须间隔一个正方形,所以与“x”字相对的字是7,故x=7.23.(3分)一点将一长为28cm的线段分成5:2的两段,该分点与原线段中点间的距离为6cm.【解答】解:如图,AB=28cm,AC:BC=5:2,点D为AB的中点,设AC=5x,则BC=2x,∵AC+BC=AB,∴5x+2x=28,解得x=4,∴AC=5x=20,∵点D为AB的中点,∴AD=AB=14,∴CD=AC﹣AD=20﹣14=6(cm),即该分点与原线段中点间的距离为6cm.故答案为6.24.(3分)若|a﹣2|+(﹣b)2=0,则b a=.【解答】解:根据题意得:,解得:,则原式=.故答案是:.三、解答题25.(12分)计算下列各题:(1)(+4.3)﹣(﹣4)+(﹣2.3)﹣(+4);(2)(﹣48)÷(﹣2)3﹣(﹣25)×(﹣4)+(﹣2)2;(3)(﹣1.5)×3×(﹣)2﹣(﹣)×(﹣1.5)2(4)[(﹣)3×(﹣)2÷(﹣)﹣32﹣(﹣3)3]×(﹣14)【解答】解:(1)原式=4.3+4﹣2.3﹣4=2;(2)原式=(﹣48)÷(﹣8)﹣100+4=6﹣100+4=﹣90;(3)原式=(﹣1.5)×3×﹣(﹣)×2.25=﹣2+0.75=﹣1.25;(4)原式=[(﹣)××(﹣2)﹣9﹣(﹣27)]×(﹣1)=[12﹣9+27]×(﹣1)=﹣30.26.(8分)如图,平面上有四个点A、B、C、D,根据下列语句画图(1)画直线AB;作射线BC;画线段CD;(2)连接AD,并将其反向延长至E,使DE=2AD;(3)找到一点F,使点F到A、B、C、D四点距离和最短.【解答】解:(1)过AB作直线即可;以点B为端点,作过点C的射线即可得到射线BC;连接CD,即可得到线段CD.(2)连接AD,并将其反向延长至E,使DE=2AD即可;(3)连接AC、BD交于点F,则点F即为所求点.如图:27.(10分)我们规定“*”是一种数学运算符号,两数A、B通过“*”运算得(A+2)×2﹣B,即A*B=(A+2)×2﹣B,例如,3*5=(3+2)×2﹣5=5(1)求6*7的值;(2)6*7的值与7*6的值相等吗?【解答】解:(1)根据题中的新定义得:6*7=(6+2)×2﹣7=8×2﹣7=16﹣7=9;(2)根据题中的新定义得:原式=7*6=(7+2)×2﹣6=12,由此不相等.28.(8分)已知a的相反数为﹣2,b的倒数为,c的绝对值为2,求a+b+c2的值.【解答】解:∵a的相反数为﹣2,b的倒数为,c的绝对值为2,∴a=2,b=﹣2,c=±2,∴a+b+c2=2+(﹣2)+(±2)2=2﹣2+4=4.29.(10分)出租车司机老王某天上午营运全是在东西走向的解放路上进行,如果规定向东为正,向西为负,他这天上午行车里程(单位:km)如下:+8,+4,﹣10,﹣3,+6,﹣5,﹣2,﹣7,+4,+6,﹣9,﹣11.(1)将最后一名乘客送到目的地时,老王距上午出发点多远?(2)若汽车耗油量为0.4L/km,这天上午老王耗油多少升?【解答】解:(1)8+4﹣10﹣3+6﹣5﹣2﹣7+4+6﹣9﹣11=19(千米),答:将最后一名乘客送到目的地时,老王距上午出发点19千米;(2)|+8|+|+4|+|﹣10|+|﹣3|+|+6|+|﹣5|+|﹣2|+|﹣7|+|+4|+|+6|+|﹣9|+|﹣11|=75,75×0.4=30(升).答:这天上午老王耗油30升.赠送初中数学几何模型【模型五】垂直弦模型:图形特征:运用举例:1.已知A、B、C、D是⊙O上的四个点.(1)如图1,若∠ADC=∠BCD=90°,AD=CD,求证AC⊥BD;(2)如图2,若AC⊥BD,垂足为E,AB=2,DC=4,求⊙O的半径.2.如图,已知四边形ABCD 内接于⊙O ,对角线AC ⊥BD 于P ,设⊙O 的半径是2。
2015-2016学年七年级(上)期中数学试卷一、选择题(本题包括10小题,每小题3分,共30分)1.在1,0,﹣2,3这四个数中,比0小的数是()A.1 B.0 C.﹣2 D.32.下列化简,正确的是()A.﹣(﹣3)=﹣3 B.﹣[﹣(﹣10)]=﹣10 C.﹣(+5)=5 D.﹣[﹣(+8)]=﹣83.绝对值大于3且小于6的所有整数的和是()A.0 B.9 C. 6 D.184.下列各式2m+n,3ab,,,a,﹣8中,单项式的个数有()A.3个B.4个C.5个D.6个5.如图所示,则﹣a、﹣b的大小关系是()A.﹣a>﹣b B.﹣a<﹣b C.﹣a=﹣b D.都有可能6.下列各组是同类项的是()A.5x与xy B.﹣x2y与2xy2 C.3x2y3与﹣y3x2 D.a与b7.下列运算正确的是()A.2x+3y=5 B.4x2y﹣5xy2=﹣x2yC.a5+a6=a11 D.3ab2﹣b2a=2ab28.如果a2=(﹣3)2,那么a等于()A.3 B.﹣3 C.±3 D.99.已知代数式3x2﹣2x+6的值是8,则代数式x2﹣x+4的值是()A.1 B. 5 C. 3 D. 410.若4<a<5时,化简|a﹣4|+|a﹣5|=()A.2a﹣9 B.2a﹣1 C.1 D.9二、填空题(每题3分,共24分)11.如果水库的水位高于标准水位6m时,记作+6m,那么低于标准水位2m,应记作m.12.﹣|﹣3|的相反数是.13.近似数1.5万精确到位.14.若(2x+1)2+|y﹣|=0,则x2+y2=.15.若单项式3x4y n与﹣2x m y3的和仍是单项式,则m﹣n=.16.地球上的海洋面积约为361000000km2,则科学记数法可表示为km2.17.在数轴上到表示﹣2的点的距离为4的点所表示的数是.18.观察下列数据,按某种规律在横线上填上适当的数:1,﹣,,﹣,,,…三、解答题(共46分)19.画一根数轴,用数轴上的点把如下的有理数﹣2,﹣0.5,0,﹣4表示出来,并用“<”把它们连接起来.20.计算:(1)(﹣40)﹣(+28)﹣(﹣19)﹣(+32)(2)﹣10+8+(﹣2)3﹣(﹣40)×(﹣3)(3)(﹣3)2﹣(1)3×+|﹣|3.21.(10分)(2014秋•蓟县期中)先化简,再求值:(1)5(3x2y﹣xy2)﹣(xy2﹣3x2y),其中x=,y=﹣1.(2)2x2y+(2y2﹣x2)﹣(x2+2y2),其中x=1,y=﹣10.22.已知a,b互为相反数,c,d互为倒数,x的绝对值是1,求代数式(a+b)•cd+|x|的值.23.下表给出了某班6名同学身高情况(单位:cm)姓名A B C D E F身高165 167 172身高与班级平均身高的差值﹣2 +2 ﹣3 +4(1)完成表中空的部分;(2)他们的最高与最矮相差多少?(3)他们的平均身高是多少?24.一汽车在东西方向公路来回行驶,约定向东为正,向西为负,某天自A地出发到达B 地,行驶记录如下:(单位:km)+8,﹣9,+4,+7,﹣2,﹣10,+18,﹣3,+7,+5.回答下列问题:(1)B地在A地的哪个方向?两地距离多远?(2)汽车行驶的路程有多少千米?若每千米耗油0.3升,这一过程共耗油多少升?25.已知A=﹣3x2﹣2mx+3x+1,B=2x2+mx﹣1,且2A+3B的值与x无关,求m的值.2015-2016学年七年级(上)期中数学试卷参考答案与试题解析一、选择题(本题包括10小题,每小题3分,共30分)1.在1,0,﹣2,3这四个数中,比0小的数是()A.1 B.0 C.﹣2 D.3考点:有理数大小比较.分析:根据正数都大于0,负数都小于0即可得出结论.解答:解:∵1,3是正数,﹣2是负数,∴1>0,3>0,﹣2<0.故选C.点评:本题考查的是有理数的大小比较,熟知正数都大于0,负数都小于0,正数大于一切负数是解答此题的关键.2.下列化简,正确的是()A.﹣(﹣3)=﹣3 B.﹣[﹣(﹣10)]=﹣10 C.﹣(+5)=5 D.﹣[﹣(+8)]=﹣8考点:相反数.分析:在一个数前面放上“﹣”,就是该数的相反数,利用这个性质可化简.解答:解:A、∵﹣(﹣3)=3,∴错误;B、∵﹣[﹣(﹣10)]=﹣10,∴正确;C、∵﹣(+5)=﹣5,∴错误;D、∵﹣[﹣(+8)]=8,∴错误.故选B.点评:本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.3.绝对值大于3且小于6的所有整数的和是()A.0 B.9 C. 6 D.18考点:有理数的加法;绝对值.分析:大于3小于6的整数绝对值是4或5,因为互为相反数的两个数的绝对值相等,所以绝对值大于3且小于6的所有整数有±4,±5.解答:解:绝对值大于3小于6的所有整数是±4,±5.4+(﹣4)+5+(﹣5)=0+0=0.故选:A.点评:本题主要考查了绝对值的定义、有理数的加法法则,解题关键是掌握互为相反数的两个数的绝对值相等.4.下列各式2m+n,3ab,,,a,﹣8中,单项式的个数有()A.3个B.4个C.5个D.6个考点:单项式.分析:根据单项式的定义:数或字母的积组成的式子叫做单项式,单独的一个数或字母也是单项式,求解即可.解答:解:根据单项式的定义:3ab,a,﹣8,是单项式,共3个.故选:A.点评:本题考查了单项式的知识,解答本题的关键是掌握单项式的定义,属于基础题.5.如图所示,则﹣a、﹣b的大小关系是()A.﹣a>﹣b B.﹣a<﹣b C.﹣a=﹣b D.都有可能考点:有理数大小比较;数轴.专题:数形结合.分析:由数轴和相反数的定义可知﹣a、﹣b都表示正有理数,根据两个正数,绝对值大的其值就大比较大小.解答:解:观察数轴可知:a,b都表示负有理数,且|a|<|b|,∴﹣a、﹣b都表示正有理数,|﹣a|<|﹣b|,∴﹣a<﹣b.故选B.点评:本题考查了有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小;⑤两个正数,绝对值大的其值就大.6.下列各组是同类项的是()A.5x与xy B.﹣x2y与2xy2 C.3x2y3与﹣y3x2 D.a与b考点:同类项.分析:同类项的定义是所含有的字母相同,并且相同字母的指数也相同的项叫同类项,所以只要判断所含有的字母是否相同,相同字母的指数是否相同即可.解答:解:A、5x与xy中所含不相同字母的指数不同,不是同类项.故选项错误;B、﹣x2y与2xy2所含字母指数不同,不是同类项.故选项错误;C、3x2y3与﹣y3x2所含字母相同,指数也相同,所以是同类项.故选项正确;D、a与b不是同类项,故选项错误.故选:C.点评:本题考查了同类项的定义.判断两个项是不是同类项,只要两看,即一看所含有的字母是否相同,二看相同字母的指数是否相同.缺少其中任何一条,就不是同类项.注意所有常数项都是同类项.7.下列运算正确的是()A.2x+3y=5 B.4x2y﹣5xy2=﹣x2yC.a5+a6=a11 D.3ab2﹣b2a=2ab2考点:合并同类项.分析:直接利用合并同类项法则分析求出即可.解答:解:A、2x+3y无法计算,故此选项错误;B、4x2y﹣5xy2无法计算,故此选项错误;C、a5+a6无法计算,故此选项错误;D、3ab2﹣b2a=2ab2,正确.故选:D.点评:此题主要考查了合并同类项,正确掌握运算法则是解题关键.8.如果a2=(﹣3)2,那么a等于()A.3 B.﹣3 C.±3 D.9考点:有理数的乘方.分析:先求出(﹣3)2的值,∵32=9,(﹣3)2=9,可求出a的值.解答:解:∵a2=(﹣3)2=9,且(±3)2=9,∴a=±3.故选C.点评:解决此类题目的关键是熟记平方数的特点,任何数的平方都是非负数,所以平方为正数的数有两个,且互为相反数.9.已知代数式3x2﹣2x+6的值是8,则代数式x2﹣x+4的值是()A.1 B. 5 C. 3 D. 4考点:代数式求值.分析:由代数式3x2﹣2x+6的值是8,得出3x2﹣2x=2,易得x2﹣x的值,再整体代入原式即可.解答:解;由题意得,3x2﹣2x+6=8,∴3x2﹣2x=2,∴x2﹣x=1,∴x2﹣x+4=1+4=5,故选B.点评:本题主要考查了代数式求值,先根据题意得出x2﹣x的值,再整体代入是解答此题的关键.10.若4<a<5时,化简|a﹣4|+|a﹣5|=()A.2a﹣9 B.2a﹣1 C.1 D.9考点:整式的加减;绝对值.分析:根据题意4<a<5,利用此条件先去掉绝对值,然后进行计算.解答:解:∵4<a<5,∴|a﹣4|=a﹣4,|a﹣5|=5﹣a,∴|a﹣4|+|a﹣5|=a﹣4+5﹣a=1.故选C.点评:本题考查了整式的加减以及绝对值的运算,根据绝对值的意义去掉绝对值符号是解题的关键.二、填空题(每题3分,共24分)11.如果水库的水位高于标准水位6m时,记作+6m,那么低于标准水位2m,应记作﹣2 m.考点:正数和负数.分析:在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.解答:解:“高”和“低”相对,若水库的水位高于标准水位6米时,记作+6米,则低于标准水位2米时,应记﹣2m.故答案为:﹣2.点评:本题主要考查的是正数和负数,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.12.﹣|﹣3|的相反数是3.考点:相反数;绝对值.专题:计算题.分析:首先把﹣|﹣3|化简,再根据相反数的定义;只有符号不同的两个数叫相反数,得到答案.解答:解:﹣|﹣3|=﹣3,﹣3的相反数是:3,故答案为:3.点评:此题主要考查了绝对值与相反数,关键是把握相反数和绝对值的定义.13.近似数1.5万精确到千位.考点:近似数和有效数字.分析:根据精确值的确定方法,首先得出原数据,再从原数据找出5后面0所在数据的位置,再确定精确到了多少位.解答:解:近似数1.5万=1500,5所在数据的千位,故答案为:千.点评:此题主要考查了精确值的确定方法,必须写出原数据,确定准最后一位所在的位置是解决问题的关键.14.若(2x+1)2+|y﹣|=0,则x2+y2=.考点:代数式求值;非负数的性质:绝对值;非负数的性质:偶次方.分析:利用非负数的性质得出x,y,代入即可.解答:解:∵(2x+1)2+|y﹣|=0,∴2x+1=0,y﹣=0,∴x=,y=,∴x2+y2==,故答案为:.点评:本题主要考查了代数式求值和非负数的性质,利用非负数的性质解的x,y是解答此题的关键.15.若单项式3x4y n与﹣2x m y3的和仍是单项式,则m﹣n=1.考点:合并同类项.分析:直接利用合并同类项法则得出x,y的次数相同,进而得出答案.解答:解:∵单项式3x4y n与﹣2x m y3的和仍是单项式,∴m=4,n=3,则m﹣n=4﹣3=1.故答案为:1.点评:此题主要考查了合并同类项,正确掌握运算法则是解题关键.16.地球上的海洋面积约为361000000km2,则科学记数法可表示为 3.61×108km2.考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将361 000 000用科学记数法表示为3.61×108.故答案为3.61×108.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.17.在数轴上到表示﹣2的点的距离为4的点所表示的数是﹣6或2.考点:数轴.专题:常规题型.分析:根据数轴的特点,数轴上与表示﹣2的点的距离为4的点有两个:一个在数轴的左边,一个在数轴的右边,分两种情况讨论即可求出答案.解答:解:该点可能在﹣2的左侧,则为﹣2﹣4=﹣6;也可能在﹣2的右侧,即为﹣2+4=2.故答案为:﹣6或2.点评:此题主要考查了实数与数轴之间的对应关系,解题应该会根据距离和已知的一点的坐标确定另一点的坐标方法:左减右加.18.观察下列数据,按某种规律在横线上填上适当的数:1,﹣,,﹣,,﹣,…考点:规律型:数字的变化类.分析:分子是从1开始的连续奇数,分母是从1开始连续自然数的平方,奇数位置为正,偶数位置为负,第n个数为(﹣1)n+1,由此代入求得答案即可.解答:解:数列为:1,﹣,,﹣,,﹣,.故答案为:,﹣,.点评:此题考查数字的变化规律,找出数字之间的运算规律,利用规律解决问题.三、解答题(共46分)19.画一根数轴,用数轴上的点把如下的有理数﹣2,﹣0.5,0,﹣4表示出来,并用“<”把它们连接起来.考点:有理数大小比较;数轴.专题:计算题.分析:先利用数轴表示四个数,然后根据负数小于零;负数的绝对值越大,这个数反而越小即可得到它们的大小关系.解答:解:用数轴表示为:它们的大小关系为﹣4<﹣2<﹣0.5<0.点评:本题考查了有理数的大小比较:正数大于零,负数小于零;负数的绝对值越大,这个数反而越小.也考查了数轴.20.计算:(1)(﹣40)﹣(+28)﹣(﹣19)﹣(+32)(2)﹣10+8+(﹣2)3﹣(﹣40)×(﹣3)(3)(﹣3)2﹣(1)3×+|﹣|3.考点:有理数的混合运算.分析:(1)先化简,再计算加减法;(2)(3)按照有理数混合运算的顺序,先乘方后乘除最后算加减,有括号的先算括号里面的.解答:解:(1)(﹣40)﹣(+28)﹣(﹣19)﹣(+32)=﹣40﹣28+19﹣32=﹣81(2)﹣10+8+(﹣2)3﹣(﹣40)×(﹣3)=﹣10+8﹣8﹣120=﹣130;(3)(﹣3)2﹣(1)3×+|﹣|3.=9﹣×+=9﹣+=9.点评:本题考查的是有理数的运算能力.注意:(1)要正确掌握运算顺序,在混合运算中要特别注意运算顺序:先三级,后二级,再一级;有括号的先算括号里面的;同级运算按从左到右的顺序;(2)去括号法则:﹣﹣得+,﹣+得﹣,++得+,+﹣得﹣.21.(10分)(2014秋•蓟县期中)先化简,再求值:(1)5(3x2y﹣xy2)﹣(xy2﹣3x2y),其中x=,y=﹣1.(2)2x2y+(2y2﹣x2)﹣(x2+2y2),其中x=1,y=﹣10.考点:整式的加减—化简求值.专题:计算题.分析:(1)原式去括号合并得到最简结果,把x与y的值代入计算即可求出值;(2)原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.解答:解:(1)原式=15x2y﹣5xy2﹣xy2+3x2y=12x2y﹣6xy2,当x=,y=﹣1时,原式=﹣3﹣3=﹣6;(2)原式=2x2y+2y2﹣x2﹣x2﹣2y2=2x2y﹣2x2,当x=1,y=﹣10时,原式=﹣20﹣2=﹣22.点评:此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.22.已知a,b互为相反数,c,d互为倒数,x的绝对值是1,求代数式(a+b)•cd+|x|的值.考点:代数式求值;相反数;绝对值;倒数.分析:首先根据相反数和倒数的定义得a+b=0,cd=1,再由x的绝对值是1,代入原式即可.解答:解:∵a,b互为相反数∴a+b=0,∵c,d互为倒数∴cd=1,∵x的绝对值是1,∴原式=0×1+1=1.点评:本题主要考查了代数式求值,利用相反数和倒数的定义得出a+b=0,cd=1,然后代入是解答此题的关键.23.下表给出了某班6名同学身高情况(单位:cm)姓名A B C D E F身高165 169167 164171172身高与班级平均身高的差值﹣2 +2 0﹣3 +4 +5(1)完成表中空的部分;(2)他们的最高与最矮相差多少?(3)他们的平均身高是多少?考点:有理数的加减混合运算.专题:计算题.分析:(1)根据表格中的数据得出标准身高为167,得出空白处的数字即可;(2)找出最高的与最矮的之差即可;(3)根据表格中的数据求出他们的平均身高即可.解答:解:(1)下表给出了某班6名同学身高情况(单位:cm)姓名A B C D E F身高165 169 167 164 171 172身高与班级平均身高的差值﹣2 +2 0 ﹣3 +4 +5故答案为:169,164,171,0,+5;(2)根据题意得:172﹣164=8(cm),则他们的最高与最矮相差8cm;(3)他们的平均身高为×(﹣2+2+0﹣3+4+5)+167=1+167=168(cm).点评:此题考查了有理数的加减混合运算,熟练掌握运算法则是解本题的关键.24.一汽车在东西方向公路来回行驶,约定向东为正,向西为负,某天自A地出发到达B 地,行驶记录如下:(单位:km)+8,﹣9,+4,+7,﹣2,﹣10,+18,﹣3,+7,+5.回答下列问题:(1)B地在A地的哪个方向?两地距离多远?(2)汽车行驶的路程有多少千米?若每千米耗油0.3升,这一过程共耗油多少升?考点:正数和负数.分析:(1)把当天记录相加,然后根据正数和负数的规定解答即可;(2)先求出行驶记录的绝对值的和,再乘以0.3计算即可得解.解答:解:(1)(+8)+(﹣9)+(+4)+(+7)+(﹣2)+(﹣10)+(+18)+(﹣3)+(+7)+(+5)=25km所以B地在A地的东边25km处;(2)8+9+4+7+2+10+18+3+7+5=73km,(8+9+4+7+2+10+18+3+7+5)×0.3=21.9升.点评:此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.25.已知A=﹣3x2﹣2mx+3x+1,B=2x2+mx﹣1,且2A+3B的值与x无关,求m的值.考点:整式的加减.分析:把A与B代入2A+3B中,去括号合并得到最简结果,由结果与x无关,求出m的值即可.解答:解:把A=﹣3x2﹣2mx+3x+1,B=2x2+mx﹣1代入得:2A+3B=2(﹣3x2﹣2mx+3x+1)+3(2x2+mx﹣1)=(﹣m+6)x﹣1,由结果与x无关,得到﹣m+6=0,解得:m=6.点评:此题考查了整式的加减,熟练掌握运算法则是解本题的关键.。
本文仅代表作者个人观点,与文库无关2015-2016学年山东省聊城四中初一上学期期末数学试卷一、选择题:每小题3分,共36分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.1.(3分)﹣2016的倒数的绝对值为()A.﹣2016 B.C.2016 D.2.(3分)如图所示的正方体沿某些棱展开后,能得到的平面图形是()A.B. C.D.3.(3分)表示“a与b的两数和的平方”的代数式是()A.a2+b2B.a+b2 C.a2+b D.(a+b)24.(3分)下列各组单项式中,为同类项的是()A.﹣4x2y与yx2B.2x与2x2C.2x2y与﹣xy2 D.x3y4与﹣x3z45.(3分)下列四个生活、生产现象:①用两个钉子就可以把木条固定在墙上;②植树时,只要定出两棵树的位置,就能确定同一行树所在的直线;③从A地到B地架设电线,总是尽可能沿着线段AB架设;④把弯曲的公路改直,就能缩短路程,其中可用公理“两点之间,线段最短”来解释的现象有()A.①②B.①③C.②④D.③④6.(3分)以下等式变形不正确的是()A.由x=y,得到x+2=y+2 B.由2a﹣3=b﹣3,得到2a=bC.由m=n,得到2am=2an D.由am=an,得到m=n7.(3分)下列各数互为相反数的是()A.32与﹣23B.32与(﹣3)2C.32与﹣32D.﹣32与﹣(﹣3)28.(3分)多项式1+xy﹣xy2的次数及最高次项的系数分别是()A.2,1 B.2,﹣1 C.3,﹣1 D.5,﹣19.(3分)为了估计一片牧场里老鼠的数量,从牧场中捕获60只老鼠,做上记号,然后放回牧场,几天后再捕获第二批老鼠100只,发现其中带有标记的老鼠5只,估计这片牧场中约有老鼠的只数为()A.1000 B.1200 C.1500 D.80010.(3分)解方程时,去分母正确的是()A.2x+1﹣(10x+1)=1 B.4x+1﹣10x+1=6C.4x+2﹣10x﹣1=6 D.2(2x+1)﹣(10x+1)=111.(3分)某校为了了解七年级800名学生期中数学考试情况,从中抽取了100名学生的数学成绩进行了统计.下面5个判断中正确的有()①这种调查方式是抽样调查;②800名学生是总体;③每名学生的数学成绩是个体;④100名学生是总体的一个样本;⑤100名学生是样本容量.A.①②B.①②④C.①③D.①③④⑤12.(3分)如图是一个运算程序的示意图,若开始输入的x值为81,我们看到第一次输出的结果为27,第二次输出的结果为9,…,第2016次输出的结果为()A.3 B.27 C.9 D.1二、填空题:每小题4分,共20分.13.(4分)计算﹣2的结果是.14.(4分)世界文化遗产长城总长约为6700000m,将6700000用科学记数法表示应为.15.(4分)AB=4cm,BC=3cm,如果O是线段AC的中点.线段OB的长度为.16.(4分)上海磁悬浮列车的设计载客量每列为1000人,每小时单向可运行12列,若双向运行x(时),最大载客量为y(人),那么y与x之间的关系式可以写为.17.(4分)用你发现的规律解答下列问题.=1﹣,=﹣,=﹣…探究+++…+=.(用含有n的式子表示)三、解答题:共64分.解答应写出不要的文字说明、推理过程或演算步骤.18.(8分)计算:(1)﹣12015+24÷(﹣2)3﹣32×()2(2)[﹣42﹣(﹣1)3×(﹣2)3]÷2×(﹣)2.19.(8分)解方程:(1)4(x﹣1)+5=3(x+2);(2)﹣=1﹣.20.(8分)如图所示,已知BC=AB=CD,点E,F分别是AB,CD的中点,且EF=60厘米,求AB,CD的长.21.(12分)化简求值:(1)(3a2﹣a﹣1)﹣2(3﹣a+2a2),其中a2﹣a=2.(2)x2+(2xy﹣3y2)﹣2(x2+yx﹣2y2),其中x=﹣1,y=2.22.(8分)如图,学校的草坪上有两纵一横三条小路.用代数式表示除小路外的草坪的面积,并计算当x=2米,a=50米,b=20米时草坪的面积.23.(10分)广安市积极开展“阳光体育进校园”活动,各校学生坚持每天锻炼一小时.某校根据实际,决定主要开设A:乒乓球,B:篮球,C:跑步,D:跳绳四种运动项目.为了解学生最喜欢哪一种项目,随机抽取了部分学生进行调查,并将调查结果绘制成如下统计图.请你结合图中信息解答下列问题.(1)样本中最喜欢B项目的人数百分比是,其所在扇形图中的圆心角的度数是;(2)请把统计图补充完整;(3)已知该校有1200人,请根据样本估计全校最喜欢乒乓球的人数是多少?24.(10分)某公司生产一种产品,每件成本价是400元,销售价为510元,本季度销售了5万件,为进一步扩大市场,企业决定降低生产成本,经过市场调研,预计下一季度这种商品每件售价会降低4%,销售量将提高10%,问:(1)下一季度每件产品的销售价和销售量各是多少?(2)要使销售利润(销售利润=销售价﹣成本价)保持不变,该商品每件的成本应降低多少元?2015-2016学年山东省聊城四中初一上学期期末数学试卷参考答案与试题解析一、选择题:每小题3分,共36分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.1.(3分)﹣2016的倒数的绝对值为()A.﹣2016 B.C.2016 D.【解答】解:﹣2016的倒数为﹣,﹣的绝对值为.故选:D.2.(3分)如图所示的正方体沿某些棱展开后,能得到的平面图形是()A.B. C.D.【解答】解:由正方体展开图的特征及正方形上的三种图形相邻,可得正方体沿某些棱展开后,能得到的平面图形是B.故选:B.3.(3分)表示“a与b的两数和的平方”的代数式是()A.a2+b2B.a+b2 C.a2+b D.(a+b)2【解答】解:由分析可得:a与b的两数和的平方所求的是和的平方,可得结果为(a+b)2.故选:D.4.(3分)下列各组单项式中,为同类项的是()A.﹣4x2y与yx2B.2x与2x2C.2x2y与﹣xy2 D.x3y4与﹣x3z4【解答】解:∵﹣4x2y与yx2是同类项,故A正确,故选:A.5.(3分)下列四个生活、生产现象:①用两个钉子就可以把木条固定在墙上;②植树时,只要定出两棵树的位置,就能确定同一行树所在的直线;③从A地到B地架设电线,总是尽可能沿着线段AB架设;④把弯曲的公路改直,就能缩短路程,其中可用公理“两点之间,线段最短”来解释的现象有()A.①②B.①③C.②④D.③④【解答】解:①②现象可以用两点可以确定一条直线来解释;③④现象可以用两点之间,线段最短来解释.故选:D.6.(3分)以下等式变形不正确的是()A.由x=y,得到x+2=y+2 B.由2a﹣3=b﹣3,得到2a=bC.由m=n,得到2am=2an D.由am=an,得到m=n【解答】解:A、两边都加2,故A正确;B、两边都加3,故B正确;C、两边都乘以2a,故C正确;D、当a=0时,无意义,故D错误;故选:D.7.(3分)下列各数互为相反数的是()A.32与﹣23B.32与(﹣3)2C.32与﹣32D.﹣32与﹣(﹣3)2【解答】解:A、32=9,﹣23=﹣8,不是相反数,故A选项错误;B、32=(﹣3)2,不是相反数,故B选项错误;C、32的相反数是﹣32,故C选项正确;D、﹣32=﹣(﹣3)2=﹣9,不是相反数,故D选项错误.故选:C.8.(3分)多项式1+xy﹣xy2的次数及最高次项的系数分别是()A.2,1 B.2,﹣1 C.3,﹣1 D.5,﹣1【解答】解:多项式1+xy﹣xy2的次数及最高次项的系数分别是3,﹣1.故选:C.9.(3分)为了估计一片牧场里老鼠的数量,从牧场中捕获60只老鼠,做上记号,然后放回牧场,几天后再捕获第二批老鼠100只,发现其中带有标记的老鼠5只,估计这片牧场中约有老鼠的只数为()A.1000 B.1200 C.1500 D.800【解答】解:设这片牧场中约有老鼠的只数为x,根据题意得:60:5=x:100,解得:x=1200,答:这片牧场中约有老鼠的只数为1200只;故选:B.10.(3分)解方程时,去分母正确的是()A.2x+1﹣(10x+1)=1 B.4x+1﹣10x+1=6C.4x+2﹣10x﹣1=6 D.2(2x+1)﹣(10x+1)=1【解答】解:方程两边同时乘以6得:4x+2﹣(10x+1)=6,去括号得:4x+2﹣10x﹣1=6.故选:C.11.(3分)某校为了了解七年级800名学生期中数学考试情况,从中抽取了100名学生的数学成绩进行了统计.下面5个判断中正确的有()①这种调查方式是抽样调查;②800名学生是总体;③每名学生的数学成绩是个体;④100名学生是总体的一个样本;⑤100名学生是样本容量.A.①②B.①②④C.①③D.①③④⑤【解答】解:①这种调查方式是抽样调查故①正确;②800名学生期中数学考试情况是总体,故②错误;③每名学生的数学成绩是个体,故③正确;④100名学生期中数学考试情况是总体的一个样本故④错误;⑤100是样本容量,故⑤错误;故选:C.12.(3分)如图是一个运算程序的示意图,若开始输入的x值为81,我们看到第一次输出的结果为27,第二次输出的结果为9,…,第2016次输出的结果为()A.3 B.27 C.9 D.1【解答】解:第1次输出的结果为27,第2次输出的结果为9,第3次输出的结果为:×9=3,第4次输出的结果为:×3=1,第5次输出的结果为:1+2=3,第6次输出的结果为:×3=1,…,从第3次开始,输出的结果每2个数一个循环:3、1,∵(2016﹣2)÷2=2014÷2=1007∴第2016次输出的结果为1.故选:D.二、填空题:每小题4分,共20分.13.(4分)计算﹣2的结果是﹣.【解答】解:﹣2=﹣.故答案为:﹣.14.(4分)世界文化遗产长城总长约为6700000m,将6700000用科学记数法表示应为 6.7×106.【解答】解:6 700 000=6.7×106,故答案为:6.7×106.15.(4分)AB=4cm,BC=3cm,如果O是线段AC的中点.线段OB的长度为0.5cm.【解答】解:∵AB=4cm,BC=3cm,如果O是线段AC的中点,∴OC=(AB+BC)=×(4+3)=,∴OB=OC﹣BC=3﹣=0.5cm.故答案为:0.5cm.16.(4分)上海磁悬浮列车的设计载客量每列为1000人,每小时单向可运行12列,若双向运行x(时),最大载客量为y(人),那么y与x之间的关系式可以写为y=24000x.【解答】解:根据题意,可得:y=1000×12×2x=24000x,故答案为:y=24000x.17.(4分)用你发现的规律解答下列问题.=1﹣,=﹣,=﹣…探究+++…+=.(用含有n的式子表示)【解答】解:通过找规律可知,第n项为:﹣,那么究+++…+=1﹣=.三、解答题:共64分.解答应写出不要的文字说明、推理过程或演算步骤.18.(8分)计算:(1)﹣12015+24÷(﹣2)3﹣32×()2(2)[﹣42﹣(﹣1)3×(﹣2)3]÷2×(﹣)2.【解答】解:(1)原式=﹣1﹣3﹣1=﹣5;(2)原式=(﹣16﹣8)××=﹣.19.(8分)解方程:(1)4(x﹣1)+5=3(x+2);(2)﹣=1﹣.【解答】解:(1)去括号得:4x﹣4+5=3x+6,移项合并得:x=5;(2)去分母得:4(5x﹣2)﹣3(x﹣3)=12﹣x﹣1,去括号得:20x﹣8﹣3x+9=12﹣x﹣1,移项合并得:9x=5,解得:x=.20.(8分)如图所示,已知BC=AB=CD,点E,F分别是AB,CD的中点,且EF=60厘米,求AB,CD的长.【解答】解:设BC=x厘米,由题意得:AB=3x,CD=4x∵E,F分别是AB,CD的中点∴BE=AB=x,CF=CD=2x∴EF=BE+CF﹣BC=x+2x﹣x即x+2x﹣x=60,解得x=24∴AB=3x=72(厘米),CD=4x=96(厘米).答:线段AB长为72厘米,线段CD长为96厘米.21.(12分)化简求值:(1)(3a2﹣a﹣1)﹣2(3﹣a+2a2),其中a2﹣a=2.(2)x2+(2xy﹣3y2)﹣2(x2+yx﹣2y2),其中x=﹣1,y=2.【解答】解:(1)原式=3a2﹣a﹣1﹣6+2a﹣4a2=﹣(a2﹣a)﹣7,当a2﹣a=2时,原式=﹣2﹣7=﹣9;(2)原式=x2+2xy﹣3y2﹣2x2﹣2xy+4y2=﹣x2+y2,当x=﹣1,y=2时,原式=﹣1+4=3.22.(8分)如图,学校的草坪上有两纵一横三条小路.用代数式表示除小路外的草坪的面积,并计算当x=2米,a=50米,b=20米时草坪的面积.【解答】解:除小路外的草坪的面积为:ab﹣ax﹣2bx﹣bx+2x2+x2=ab﹣ax﹣3bx+3x2,当x=2,a=50,b=20时,原式=50×20﹣50×2﹣3×20×2+3×22=792(平方米),答:除小路外的草坪的面积为792平方米.23.(10分)广安市积极开展“阳光体育进校园”活动,各校学生坚持每天锻炼一小时.某校根据实际,决定主要开设A:乒乓球,B:篮球,C:跑步,D:跳绳四种运动项目.为了解学生最喜欢哪一种项目,随机抽取了部分学生进行调查,并将调查结果绘制成如下统计图.请你结合图中信息解答下列问题.(1)样本中最喜欢B项目的人数百分比是20%,其所在扇形图中的圆心角的度数是72°;(2)请把统计图补充完整;(3)已知该校有1200人,请根据样本估计全校最喜欢乒乓球的人数是多少?【解答】解:(1)样本中最喜欢B项目的人数百分比是1﹣44%﹣8%﹣28%=20%,其所在扇形图中的圆心角的度数是360°×20%=72°.(2)B组人数44÷44%×20%=20人,画图如下:(3)1200×44%=528人,全校最喜欢乒乓球的人数大约是528人.故答案为:20%,72°.24.(10分)某公司生产一种产品,每件成本价是400元,销售价为510元,本季度销售了5万件,为进一步扩大市场,企业决定降低生产成本,经过市场调研,预计下一季度这种商品每件售价会降低4%,销售量将提高10%,问:(1)下一季度每件产品的销售价和销售量各是多少?(2)要使销售利润(销售利润=销售价﹣成本价)保持不变,该商品每件的成本应降低多少元?【解答】解:(1)下一季度每件产品销售价为:510(1﹣4%)=489.6(元).销售量为(1+10%)×50000=55000(件);(2)设该产品每件的成本价应降低x元,则根据题意得[489.6﹣(400﹣x)]×55000=(510﹣400)×50000,解这个方程得x=10.4.答:该产品每件的成本价应降低10.4元.本文仅代表作者个人观点,与文库无关。
2015—2016学年度第一学期七年级数学期中试卷注意事项:全卷满分100分,考试时间100分钟.考生答题全部答在答题卡上,答在本试卷上无效.请认真核对监考教师在答题卡上所粘贴条形码的姓名、考试证号是否与本人相符合,再将自己的姓名、准考证号用0.5毫米黑色墨水签字笔填写在答题卡及本试卷上.答选择题必须用2B 钢笔将答题卡上对应的答案标号涂黑,如需改动,请用橡皮擦干净后,再选涂其他答案.答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡上的指定地,在其他位置答题一律无效. 作图必须用2B 钢笔作答,并请加黑加粗,描写清楚.一、选择题(本大题共6小题,每小题2分,共12分,在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置.......上) 1.2-的相反数是( )A .12 B .2 C .12- D .2- 2.2008年我国的国民生产总值约130800亿元,那么130800用科学记数法表示正确的是( ) A .51.30810⨯ B .413.0810⨯ C .41.30810⨯D .21.30810⨯3.下列各组是同类项的一组是( ) A .5xy 与2xyzB .2与7-C .22x y -与25y xD .3ac 与7bc4.下列各组数中,数值相等的是( ) A .23和32B .23-和()23-C .()32-和32-D .()2--和2--5.单项式222x yz -的系数和次数分别是( )A .2-,2B .2-,5C .12-,2D .12-,56.以下各正方形的边长是无理数的是( ) A .面积为3的正方形 B .面积为1.44的正方形 C .面积为25的正方形 D .面积为16的正方形二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答.题卡相应位置......上) 7.112-的倒数是__________;()20151-=__________. 8.比较大小:234⎛⎫- ⎪⎝⎭__________12-)(填“<”、“=”、“>”).9.在数轴上将点A 向右移动7个单位,再向左移动4个单位,终点恰好是原点,则点A 表示的数是__________.10.多项式232x x -+-的次数为__________,项数为__________.11.钢笔每支2元,钢笔每支0.5元,n 支钢笔和m 支钢笔共__________元. 12.有理数a 、b 、c 在数轴上的位置如图,化简a b c b +--的结果为__________.13.如图所示的阴影部分面积用代数式表示为__________.14.长方形的周长为53a b +,其中一边长为2a b -,则这个长方形的另一边长为__________.(写出化简后的结果)15.已知2235x x -+的值为9,则代数式2468x x -+的值为__________.16.观察下列图形,它们是按一定规律排列的,依照此规律,第n 个图形有__________个太阳.(图4)(图3)(图2)(图1)三、解答题(本大题共8小题,共68分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤) 17.(4分)画出数轴并标出表示下列各数的点,并用“<”把下列各数连接起来.132-,4,2.5,1,7,5- 18.计算:((1)(2)每题4分,(3)(4)每题5分,共18分) (1)24+(-14)+(-16)+8;(2)()142722449-÷⨯÷-;(3)()357124468⎛⎫-+-⨯- ⎪⎝⎭;(4)()()341110.5243⎡⎤---÷⨯--⎣⎦.19.计算:(第(1)题4分,第(2)(3)题5分,共14分)(1)3257x y x y -+--(2)()()5322a a b a b +---(3)()()22222222x y xy x y x xy y +---- 20.(6分)先化简再求值:222214332332x y xy xy x y xy xy ⎡⎤⎛⎫---++ ⎪⎢⎥⎝⎭⎣⎦,其中34x =,1y =-.21.(6分)出租车司机小王某天下午营运全是东西走向的玄武大道进行的,如果规定向东为正,向西为负,他这天下午的行驶记录如下:(单位:千米)(1)将最后一名乘客送到目的地时,小王距下午出车地点的距离是多少千米? (2)若汽车耗油量为a 升/千米,这天下午汽车共耗油多少升?(3)出租车油箱内原有5升油,请问:当0.05a =时,小王途中是否需要加油?若需要加油,至少需要加多少升油?若不需要加油,说明理由. 22.(5分)如图,两摞规格完全相同的课本整齐叠放在讲台上,请根据图中所给出的数据信息,解答下列问题:(1)每本课本的厚度为__________cm ;(2)若有一摞上述规格的课本x 本,整齐叠放在讲台上,请用含x 的代数式表示出这一摞数学课本的顶部距离地面的高度;(3)当56x =时,若从中取走14本,求余下的课本的顶部距离地面的高度.23.(5分)从2开始的连续偶数相加,它们和的情况如下表:(1)根据表中的规律,直接写出24681012+++++=__________.(2)根据表中的规律猜想:24682S n =+++++=__________(用n 的代数式表示) (3)利用上题中的公式计算102104106200++++的值(要求写出计算过程). 24.(10分) 【概念学习】规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方,如222÷÷,()()()()3333-÷-÷-÷-等.类比有理数的乘方,我们把222÷÷记作2③,读作“2的圈3次方”,()()()()3333-÷-÷-÷-记作()3-④,读作“3-的圈4次方”,一般地,把n aa a a a ÷÷÷÷个(0a ≠)记作n a ,读作“a 的圈n 次方”. 【初步探究】(1)直接写出计算结果:2=█__________,12⎛⎫-= ⎪⎝⎭█__________.(2)关于除方,下列说法错误的是( ) A .任何非零数的圈2次方都等于1B .对于任何正整数n ,1=1█C .3=4██D .负数的圈奇数次方结果是负数,负数的圈子偶数次方结果是正数 【深入思考】我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?=(12)2=2×122④=2÷2÷2÷2除方(1)试一试:依照上面的算式,将下列运算结果直接写成幂.的形式. ()3=-█__________; 5=█__________;1=2⎛⎫- ⎪⎝⎭█__________. (2)想一想:将一个非零有理数a 的圈n 次方写成幂的形式等于__________; (3)算一算:23111123423⎛⎫⎛⎫⎛⎫÷-⨯---÷ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭███.。
2015-2016学年度第一学期七年级期中试卷数学一、选择题:(共8小题,每小题3分,共24分) 1.6-的绝对值是( )A 6-B 6C 16D 16-2.如果30+m 表示向东走30m ,那么向西走40m 表示为( ) A 40+m B 40-m C 30+m D 30-m3.国家提倡“低碳减排”,某公司计划在海边建风能发电站,电站年均发电量约为213000000度,若将数据213000000用科学记数法表示为( )A 610213⨯B 71013.2⨯C 81013.2⨯D 91013.2⨯ 4.多项式2123xy xy +-的次数及最高次项的系数分别是( ) A 3,3- B 3,2- C 3,5- D 3,25.根据《国家中长期教育改革和发展规划纲要》,教育经费投入应占当年GDP 的4%.若设2012年GDP 的总值为n 亿元,则2012年教育经费投入可表示为( )亿元. A n %4 B ()n %41+ C ()n %41- D n +%4 6.把方程2113332x x x -++=-去分母正确的是( ) A ()()131812218+-=-+x x x B ()()13123+-=-+x x x C ()()1181218+-=-+x x x D ()()1331223+-=-+x x x7.如图,淇淇和嘉嘉做数学游戏:假设嘉嘉抽到牌的点数为x ,淇淇猜中的结果应为y ,则y =( ) A 2 B 3 C 6 D 3x +8.已知关于x 的方程540x a -+=无解,430x b -+=有两个解,320x c -+=只有一个解,则化简a c c b a b -+---的结果是( )A 2aB 2bC 2cD 0二.填空题:(共4小题,每小题3分,共12分)9.圆周率 3.1415926π= ,取近似值3.142,是精确到 位. 10.如果单项式13a x y +与32b x y 是同类项,那么b a = .11.若2x =是关于x 的方程2310x m +-=的解,则m 的值等于 .12.下面是按一定规律排列的一列数:14,37,512,719,928…,那么第n 个数是 .三.解答题:(共10小题,其中13、14题每题12分,其余每题5分,共64分) 13.计算题:(每小题3分) (1)()234-⨯⨯- (2)()()232524-⨯--÷(3)()()32233103104b b a b b a +-+- (4)⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛---22232153x x x x14.解下列方程:(每小题3分) (1)x x 312-=+- (2)0.50.7 6.5 1.3x x -=-(3)()1236365x x -=- (4)1231337x x -+=-15.先化简,再求值:()()4231x y x y --++,其中1x =,13y =-.16.某巡警骑摩托车在一条南北大道上来回巡逻,一天早晨,他从岗亭出发,中午停留在A 处,规定向北方向为正,当天上午连续行驶情况记录如下(单位:千米):+5,﹣4,+3,﹣7,+4,﹣8,+2,﹣1.(1)A 处在岗亭何方?距离岗亭多远?(2)若摩托车每行驶1千米耗油a 升,这一天上午共耗油多少升?17.根据下图的数值转换器,当输入的x 与y 满足21102x y ⎛⎫++-= ⎪⎝⎭时,请列式求出输出的结果.18.已知:21A ax x =+-,2321B x x =-+(a 为常数) (1)若A 与B 的和中不含2x 项,求a 的值; (2)在(1)的条件下化简:2B A -.19.我们定义一种新的运算“⊗”,并且规定:22a b a b ⊗=-.例如:2232232⊗=-⨯=-,()()222242a a a ⊗-=--=+.(1)()32-⊗= ;(2)若()37x ⊗-=,求x 的值;(3)若()()()2242x x -⊗⊗=⊗,求x 的值.20.已知关于x 的方程123x m x -=+与21622x x +=-的解互为倒数,求m 的值.21.(1)比较下列各式的大小:23-+ 23-+;35-+- ()()35-+-;05+-()05+-;…(2)通过(1)的比较,请你分析,归纳出当a ,b 为有理数时,a b +与a b +的大小关系. (3)根据(2)中你得出的结论,求当55x x +=-时,x 的取值范围.22.图1是由若干个小圆圈堆成的一个形如正三角形的图案,最上面一层有一个圆圈,以下各层均比上一层多一个圆圈,一共堆了n 层.将图1倒置后与原图1拼成图2的形状,这样我们可以算出图1中所有圆圈的个数为1+2+3+¼+n =n n +1()2.如果图3、图4中的圆圈共有12层,(1)我们自上往下,在每个圆圈中都按图3的方式填上一串连续的正整数1,2,3,4,…,则最底层最左边这个圆圈中的数是 ;(2)我们自上往下,在每个圆圈中都按图4的方式填上一串连续的整数23-,22-,21-,…,求图4中所有圆圈中各数的绝对值之和.附加题:(每小题4分,共20分)1.对任意有理数,,,a b c d ,规定一种新运算:bc ad d c b a -=,已知2132=-x ,则x = .2.若,,a b c 为整数,且1=-+-a c b a ,则=-+-+-a c c b b a .3.如图,化简=--++---+b a c c b a c b a .b a 0 c4.是否存在整数k ,使关于x 的方程()4615k x x -+=-有整数解?若存在,请求出k 的值,并求出此方程的解;若不存在,请说明理由.5. 将1,2,…,2014这2014个正整数任意分成1007组,每组两个数,分别记作a 1,b 1{},a 2,b 2{},a 3,b 3{},¼,a 1007,b 1007{}.若()1111112c a b a b =-++,()2222212c a b a b =-++,()3333312c a b a b =-++…, ()1007100710071007200721b a b ac ++-=.设1231007S c c c c =++++…,求S 的最大值和最小值,并给出相应的分组方案.2015-2016学年度第一学期七年级期中数学试卷答案 一、 选择题: BBCAABAD 二、 填空题:9. 0.001(或千分位) 10. 8 11. 1- 12. 2213n n -+三、解答题:13.(1)24 (2)22 (3)32243a b a b - (4)2932x x --14.(1)1x =- (2)4x = (3)20x =- (4)6723x =15.原式=126126113-=---+=x y ⎛⎫-+⨯ ⎪⎝⎭16.(1)A 处在岗亭南方6km (2)34a 升17.()()2213212121222x y ⎡⎤++÷=-+⨯+÷=⎢⎥⎣⎦18.(1)3a =- (2)2943x x -+ 19.(1)5 (2)1x =- (3)52x =20.83m =-21.(1),,>==(2)≥a b a b ++ 当0≥ab 时,a b a b +=+(3)0≤x22.(1)67 (2)1761 附加题:1. 8-2. 23.3a b c --+4.当6k =-时,1x =;当4k =时,1x =-;当2k =-时,5x =;当0k =时,5x =-5.()max100820141007100810091010201415215772…S +⨯=++++==此时的分组为{}{}{}{}{}1,1008,2,1009,3,10101006,20131007,2014…,()min 2201410072462012201410150562…S +⨯=+++++==此时的分组为{}{}{}{}{}1,2,3,4,5,62011,20122013,2014…,。
聊城市七年级上学期期中数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2018七上·长兴月考) 若关于的方程 2 -3 =4与-2=0的解相同,则的值为()A . -10B . 10C . -5D . 52. (2分)(2017·岳阳) 已知点A在函数y1=﹣(x>0)的图象上,点B在直线y2=kx+1+k(k为常数,且k≥0)上.若A,B两点关于原点对称,则称点A,B为函数y1 , y2图象上的一对“友好点”.请问这两个函数图象上的“友好点”对数的情况为()A . 有1对或2对B . 只有1对C . 只有2对D . 有2对或3对3. (2分) (2016七上·东营期中) 下图中,由AB∥CD,能得到∠1=∠2的是()A .B .C .D .4. (2分) (2016七上·东营期中) 某人在广场上练习驾驶汽车,两次拐弯后,行驶方向与原来相同,这两次拐弯的角度可能是()A . 第一次左拐30°,第二次右拐30°B . 第一次右拐50°,第二次左拐130°C . 第一次右拐50°,第二次右拐130°D . 第一次向左拐50°,第二次向左拐120°5. (2分) (2016七上·东营期中) 在解方程时,方程两边同时乘以6,去分母后,正确的是()A . 2x﹣1+6x=3(3x+1)B . 2(x﹣1)+6x=3(3x+1)C . 2(x﹣1)+x=3(3x+1)D . (x﹣1)+x=3(x+1)6. (2分)若A、B、C是直线l上的三点,P是直线l外一点,且PA=6cm,PB=5cm,PC=4cm,则点P到直线l的距离()A . 等于4cmB . 大于4cm而小于5cmC . 不大于4cmD . 小于4cm7. (2分) (2016七上·东营期中) 已知∠α的补角为125°12′,则它的余角为()A . 35°12′B . 35°48′C . 55°12′D . 55°48′8. (2分)(2017·连云港模拟) 如图,把一块直角三角板的直角顶点放在直尺的一边上,若∠1=35°,则∠2等于()A . 35°B . 45°C . 55°D . 65°9. (2分) (2016七上·东营期中) 小李在解方程5a﹣x=13(x为未知数)时,误将﹣x看作+x,得方程的解为x=﹣2,那么原方程的解为()A . x=﹣3B . x=0C . x=2D . x=110. (2分) (2016七上·东营期中) 足球比赛的记分规则是:胜一场得3分,平一场得1分,负一场得0分,若一个队打了14场比赛得17分,其中负了5场,那么这个队胜了()场.A . 3B . 4C . 5D . 6二、填空题 (共6题;共6分)11. (1分) (2017九下·武冈期中) 不等式组的解集为________.12. (1分) (2016七上·东营期中) 如图,折叠宽度相等的长方形纸条,若∠1=63°,则∠2=________度.13. (1分) (2016七上·东营期中) 如图,小明将自己用的一副三角板摆成如图形状,如果∠AOB=155°,那么∠COD=________.14. (1分) (2016七上·东营期中) 如图,在一块长为12cm,宽为6cm的矩形草地上,有一条弯曲的柏油小路(小路任何地方的水平宽度都是2cm),则空白部分表示的草地面积是________.15. (1分) (2016七上·东营期中) 若方程2(2x﹣1)=3x+1与方程m=x﹣1的解相同,则m的值为________.16. (1分) (2016七上·东营期中) 已知点A,B,C在同一直线上,AB=4cm,AC=3cm,则B,C两点之间的距离是________ cm.三、解答题 (共7题;共58分)17. (15分) (2016七上·江阴期中) 已知数轴上两点A、B对应的数分别为﹣1、3,点P为数轴上一动点,其对应的数为x.(1)若点P到点A、点B的距离相等,求点P对应的数;(2)数轴上是否存在点P,使点P到点A、点B的距离之和为8?若存在,请求出x的值;若不存在,说明理由;(3)现在点A、点B分别以2个单位长度/秒和0.5个单位长度/秒的速度同时向右运动,点P以6个单位长度/秒的速度同时从O点向左运动.当点A与点B之间的距离为3个单位长度时,求点P所对应的数是多少?18. (5分) (2016七上·东营期中) 一个角的补角是它的余角的4倍,求这个角.19. (9分) (2016七上·东营期中) 按图填空,并注明理由.(1)完成正确的证明:如图(1),已知AB∥CD,求证:∠BED=∠B+∠D证明:过E点作EF∥AB(经过直线外一点有且只有一条直线与这条直线平行)∴∠1=________(________)∵AB∥CD(已知)∴EF∥CD(如果两条直线与同一直线平行,那么它们也平行)∴∠2=________(________)又∠BED=∠1+∠2∴∠BED=∠B+∠D (等量代换).(2)如图(2),在△ABC中,EF∥AD,∠1=∠2,∠BAC=70°.将求∠AGD的过程填写完整.解:因为EF∥AD(已知)所以∠2=∠3.(________)又因为∠1=∠2,所以∠1=∠3.(等量代换)所以AB∥________(________)所以∠BAC+________=180° (________).又因为∠BAC=70°,所以∠AGD=110°.20. (5分) (2016七上·东营期中) 如图,D是AB的中点,E是BC的中点,BE= AC=3cm,求线段DE的长.21. (10分) (2016七上·东营期中) 如图,AB交CD于O,OE⊥AB.(1)若∠EOD=20°,求∠AOC的度数;(2)若∠AOC:∠BOC=1:2,求∠EOD的度数.22. (5分)如图,AB∥CD,AE平分∠BAD,CD与AE相交于F,∠CFE=∠E.求证:AD∥BC.23. (9分) (2016七上·东营期中) 如图是2015年12月月历.日一二三四五六12345678910111213141516171819202122232425262728293031(1)如图,用一正方形框在表中任意框住4个数,记左上角的一个数为x,则另三个数用含x的式子表示出来,从小到大依次是________,________,________.(2)在表中框住四个数之和最小记为a1 ,和最大记为a2 ,则a1+a2=________.(3)当(1)中被框住的4个数之和等于76时,x的值为多少?参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共6分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共7题;共58分)17-1、17-2、17-3、18-1、19-1、19-2、20-1、21-1、21-2、22-1、23-1、23-2、23-3、。
2015-2016学年度第一学期七年级期中试卷数学一、选择题:(共8小题,每小题3分,共24分) 1.6-的绝对值是( )A 6-B 6C 16D 16-2.如果30+m 表示向东走30m ,那么向西走40m 表示为( ) A 40+m B 40-m C 30+m D 30-m3.国家提倡“低碳减排”,某公司计划在海边建风能发电站,电站年均发电量约为213000000度,若将数据213000000用科学记数法表示为( )A 610213⨯B 71013.2⨯C 81013.2⨯D 91013.2⨯ 4.多项式2123xy xy +-的次数及最高次项的系数分别是( ) A 3,3- B 3,2- C 3,5- D 3,25.根据《国家中长期教育改革和发展规划纲要》,教育经费投入应占当年GDP 的4%.若设2012年GDP 的总值为n 亿元,则2012年教育经费投入可表示为( )亿元. A n %4 B ()n %41+ C ()n %41- D n +%4 6.把方程2113332x x x -++=-去分母正确的是( ) A ()()131812218+-=-+x x x B ()()13123+-=-+x x x C ()()1181218+-=-+x x x D ()()1331223+-=-+x x x7.如图,淇淇和嘉嘉做数学游戏:假设嘉嘉抽到牌的点数为x ,淇淇猜中的结果应为y ,则y =( )A 2B 3C 6D 3x +8.已知关于x 的方程540x a -+=无解,430x b -+=有两个解,320x c -+=只有一个解,则化简a c c b a b -+---的结果是( )A 2aB 2bC 2cD 0二.填空题:(共4小题,每小题3分,共12分)9.圆周率 3.1415926π=,取近似值3.142,是精确到 位. 10.如果单项式13a x y +与32b x y 是同类项,那么b a = .11.若2x =是关于x 的方程2310x m +-=的解,则m 的值等于 .12.下面是按一定规律排列的一列数:14,37,512,719,928…,那么第n 个数是 .三.解答题:(共10小题,其中13、14题每题12分,其余每题5分,共64分) 13.计算题:(每小题3分) (1)()234-⨯⨯- (2)()()232524-⨯--÷(3)()()32233103104b b a b b a +-+- (4)⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛---22232153x x x x14.解下列方程:(每小题3分)(1)x x 312-=+- (2)0.50.7 6.5 1.3x x -=- (3)()1236365x x -=- (4)1231337x x -+=-15.先化简,再求值:()()4231x y x y --++,其中1x =,13y =-.16.某巡警骑摩托车在一条南北大道上来回巡逻,一天早晨,他从岗亭出发,中午停留在A 处,规定向北方向为正,当天上午连续行驶情况记录如下(单位:千米):+5,﹣4,+3,﹣7,+4,﹣8,+2,﹣1.(1)A 处在岗亭何方?距离岗亭多远?(2)若摩托车每行驶1千米耗油a 升,这一天上午共耗油多少升?17.根据下图的数值转换器,当输入的x 与y 满足21102x y ⎛⎫++-= ⎪⎝⎭时,请列式求出输出的结果.18.已知:21A ax x =+-,2321B x x =-+(a 为常数) (1)若A 与B 的和中不含2x 项,求a 的值; (2)在(1)的条件下化简:2B A -.19.我们定义一种新的运算“⊗”,并且规定:22a b a b ⊗=-.例如:2232232⊗=-⨯=-,()()222242a a a ⊗-=--=+.(1)()32-⊗= ;(2)若()37x ⊗-=,求x 的值;(3)若()()()2242x x -⊗⊗=⊗,求x 的值.20.已知关于x 的方程123x m x -=+与21622x x +=-的解互为倒数,求m 的值.21.(1)比较下列各式的大小:23-+23+;35-+-)()35-+-;05+-()5+-;…(2)通过(1)的比较,请你分析,归纳出当a ,b 为有理数时,a b +与a b +的大小关系. (3)根据(2)中你得出的结论,求当55x x +=-时,x 的取值范围.22.图1是由若干个小圆圈堆成的一个形如正三角形的图案,最上面一层有一个圆圈,以下各层均比上一层多一个圆圈,一共堆了n 层.将图1倒置后与原图1拼成图2的形状,这样我们可以算出图1中所有圆圈的个数为1+2+3+¼+n =n n +1()2.如果图3、图4中的圆圈共有12层,(1)我们自上往下,在每个圆圈中都按图3的方式填上一串连续的正整数1,2,3,4,…,则最底层最左边这个圆圈中的数是 ;(2)我们自上往下,在每个圆圈中都按图4的方式填上一串连续的整数23-,22-,21-,…,求图4中所有圆圈中各数的绝对值之和.附加题:(每小题4分,共20分) 1.对任意有理数,,,a b c d ,规定一种新运算:bc ad dc b a -=,已知2132=-x ,则x = .2.若,,a b c 为整数,且1=-+-a c b a ,则=-+-+-a c c b b a .3.如图,化简=--++---+b a c c b a c b a .b a 0 c4.是否存在整数k ,使关于x 的方程()4615k x x -+=-有整数解?若存在,请求出k 的值,并求出此方程的解;若不存在,请说明理由.5. 将1,2,…,2014这2014个正整数任意分成1007组,每组两个数,分别记作a 1,b 1{},a 2,b 2{},a 3,b 3{},¼,a 1007,b 1007{}.2015-2016学年度第一学期七年级期中数学试卷答案 一、 选择题: BBCAABAD 二、 填空题:9. 0.001(或千分位) 10. 8 11. 1- 12. 2213n n -+三、解答题:13.(1)24 (2)22 (3)32243a b a b - (4)2932x x --14.(1)1x =- (2)4x = (3)20x =- (4)6723x =15.原式=126126113-=---+=x y ⎛⎫-+⨯ ⎪⎝⎭16.(1)A 处在岗亭南方6km (2)34a 升17.()()2213212121222x y ⎡⎤++÷=-+⨯+÷=⎢⎥⎣⎦18.(1)3a =- (2)2943x x -+ 19.(1)5 (2)1x =- (3)52x =20.83m =-21.(1),,>== (2)≥a b a b ++ 当0≥ab 时,a b a b +=+(3)0≤x22.(1)67 (2)1761 附加题:1. 8-2. 23.3a b c --+4.当6k =-时,1x =;当4k =时,1x =-;当2k =-时,5x =;当0k =时,5x =-5.()max 100820141007100810091010201415215772…S +⨯=++++==此时的分组为{}{}{}{}{}1,1008,2,1009,3,10101006,20131007,2014…,()min 2201410072462012201410150562…S +⨯=+++++==此时的分组为{}{}{}{}{}1,2,3,4,5,62011,20122013,2014…,。
2015-2016学年山东省聊城市东阿县四校联考七年级(上)期中数学试卷一、选择题1.(3分)如图,数轴上A、B两点所表示的两数的()A.和为正数B.和为负数C.积为正数D.积为负数2.(3分)下列几何体属于柱体的个数是()A.3 B.4 C.5 D.63.(3分)如图,数轴上A点表示的数减去B点表示的数,结果是()A.8 B.﹣8 C.2 D.﹣24.(3分)一个数加上﹣12等于﹣5,则这个数是()A.17 B.7 C.﹣17 D.﹣75.(3分)下列说法中,正确的个数有()(1)射线AB和射线BA是同一条射线(2)延长射线MN到C(3)延长线段MN到A使NA=2MN (4)连接两点的线段叫做两点间的距离A.1 B.2 C.3 D.46.(3分)有理数a、b在数轴上的对应的位置如图所示,则()A.a+b<0 B.a+b>0 C.a﹣b=0 D.a﹣b>07.(3分)2002年我国发现首个世界级大气田,储量达6 000亿立方米,6 000亿立方米用科学记数法表示为()A.6×102亿立方米 B.6×103亿立方米C.6×104亿立方米 D.0.6×104亿立方米8.(3分)的相反数是()A.B.2 C.﹣2 D.9.(3分)下列说法中错误有()•①﹣是负分数②‚1.5不是整数③ƒ非负有理数不包括0④整数和分数统称为有理数⑤0是最小的有理数⑥﹣1是最小的负整数.A.1个 B.2个 C.3个 D.4个10.(3分)计算﹣2×32﹣(﹣2×3)2的值是()A.0 B.﹣54 C.﹣72 D.﹣1811.(3分)下列各图中,可以是一个正方体的平面展开图的是()A.B. C. D.12.(3分)一个正方体的每个面都写有一个汉字.其平面展开图如图所示,那么在该正方体中,和“您”相对的字是()A.新B.年C.愉D.快13.(3分)如果线段AB=5cm,BC=4cm,且A、B、C在同一条直线上,那么A、C两点的距离是()A.1cm B.9cmC.1cm或9cm D.以上答案都不正确14.(3分)在﹣(﹣2),﹣|﹣7|,(﹣3)2,﹣(+),﹣1中负数有()A.2个 B.3个 C.4个 D.5个15.(3分)下列各对数中,互为相反数的一对是()A.﹣23与32B.(﹣2)3与﹣23C.(﹣3)2与﹣32D.(﹣3×2)2与﹣3×22二、填空题16.(3分)计算:﹣5+|﹣3|=.17.(3分)若x的相反数是3,|y|=5,则x+y的值为.18.(3分)数轴上点P表示的数是﹣2,那么到P点的距离是3个单位长度的点表示的数是.19.(3分)的倒数是.20.(3分)若x2=9,则x=.21.(3分)如果a,b互为相反数,c,d互为倒数,m的绝对值为2,那么+m ﹣cd的值为.22.(3分)如图是一个正方体的侧面展开图,如果将它折叠成一个正方体后相对的面上的数相等,则图中x的值为.23.(3分)一点将一长为28cm的线段分成5:2的两段,该分点与原线段中点间的距离为cm.24.(3分)若|a﹣2|+(﹣b)2=0,则b a=.三、解答题25.(12分)计算下列各题:(1)(+4.3)﹣(﹣4)+(﹣2.3)﹣(+4);(2)(﹣48)÷(﹣2)3﹣(﹣25)×(﹣4)+(﹣2)2;(3)(﹣1.5)×3×(﹣)2﹣(﹣)×(﹣1.5)2(4)[(﹣)3×(﹣)2÷(﹣)﹣32﹣(﹣3)3]×(﹣14)26.(8分)如图,平面上有四个点A、B、C、D,根据下列语句画图(1)画直线AB;作射线BC;画线段CD;(2)连接AD,并将其反向延长至E,使DE=2AD;(3)找到一点F,使点F到A、B、C、D四点距离和最短.27.(10分)我们规定“*”是一种数学运算符号,两数A、B通过“*”运算得(A+2)×2﹣B,即A*B=(A+2)×2﹣B,例如,3*5=(3+2)×2﹣5=5(1)求6*7的值;(2)6*7的值与7*6的值相等吗?28.(8分)已知a的相反数为﹣2,b的倒数为,c的绝对值为2,求a+b+c2的值.29.(10分)出租车司机老王某天上午营运全是在东西走向的解放路上进行,如果规定向东为正,向西为负,他这天上午行车里程(单位:km)如下:+8,+4,﹣10,﹣3,+6,﹣5,﹣2,﹣7,+4,+6,﹣9,﹣11.(1)将最后一名乘客送到目的地时,老王距上午出发点多远?(2)若汽车耗油量为0.4L/km,这天上午老王耗油多少升?2015-2016学年山东省聊城市东阿县四校联考七年级(上)期中数学试卷参考答案与试题解析一、选择题1.(3分)如图,数轴上A、B两点所表示的两数的()A.和为正数B.和为负数C.积为正数D.积为负数【解答】解:由图可知,A、B表示的数分别为﹣3,3,∵﹣3+3=0,﹣3×3=﹣9,∴A、B两点所表示的两数的和为9,积为负数.故选:D.2.(3分)下列几何体属于柱体的个数是()A.3 B.4 C.5 D.6【解答】解:柱体分为圆柱和棱柱,所以柱体有(1)(3)(4)(5)(6)(8),共6个.故选:D.3.(3分)如图,数轴上A点表示的数减去B点表示的数,结果是()A.8 B.﹣8 C.2 D.﹣2【解答】解:﹣3﹣5=﹣8.故选:B.4.(3分)一个数加上﹣12等于﹣5,则这个数是()A.17 B.7 C.﹣17 D.﹣7【解答】解:设这个数为x,由题意可知x+(﹣12)=﹣5,解得x=7.所以这个数是7.故选:B.5.(3分)下列说法中,正确的个数有()(1)射线AB和射线BA是同一条射线(2)延长射线MN到C(3)延长线段MN到A使NA=2MN (4)连接两点的线段叫做两点间的距离A.1 B.2 C.3 D.4【解答】解:(1)射线AB与射线BA表示方向相反的两条射线,故本选项错误;(2)射线可沿一个方向无限延伸,故不能说延长射线,故本选项错误;(3)可以延长线段MN到A使NA=2MN,故本项正确;(4)连接两点的线段的长度叫做两点间的距离,故本选项错误;综上可得只有(3)正确.故选:A.6.(3分)有理数a、b在数轴上的对应的位置如图所示,则()A.a+b<0 B.a+b>0 C.a﹣b=0 D.a﹣b>0【解答】解:根据图形可得:a<﹣1,0<b<1,∴|a|>|b|,A、a+b<0,故A选项正确;B、a+b>0,故B选项错误;C、a﹣b<0,故C选项错误;D、a﹣b<0,故D选项错误.故选:A.7.(3分)2002年我国发现首个世界级大气田,储量达6 000亿立方米,6 000亿立方米用科学记数法表示为()A.6×102亿立方米 B.6×103亿立方米C.6×104亿立方米 D.0.6×104亿立方米【解答】解:6 000亿立方米=6×103亿立方米.故选B.8.(3分)的相反数是()A.B.2 C.﹣2 D.【解答】解:的相反数是:.故选:A.9.(3分)下列说法中错误有()•①﹣是负分数②‚1.5不是整数③ƒ非负有理数不包括0④整数和分数统称为有理数⑤0是最小的有理数⑥﹣1是最小的负整数.A.1个 B.2个 C.3个 D.4个【解答】解:•①﹣是负分数,故①正确;②‚1.5不是整数,故②正确;③ƒ非负有理数包括0,故③错误;④整数和分数统称为有理数,故④正确;⑤没有最小的有理数,故⑤错误;⑥﹣1是最大的负整数,故⑥错误;故选:C.10.(3分)计算﹣2×32﹣(﹣2×3)2的值是()A.0 B.﹣54 C.﹣72 D.﹣18【解答】解:﹣2×32﹣(﹣2×3)2,=﹣2×9﹣(﹣6)2,=﹣18﹣36,=﹣54.故选:B.11.(3分)下列各图中,可以是一个正方体的平面展开图的是()A.B. C. D.【解答】解:A、属于“田”字型,不是正方体的展开图,故选项错误;B、属于“7”字型,不是正方体的展开图,故选项错误;C、属于“1+4+1”字型,是正方体的展开图,故选项正确;D、属于“凹”字型,不是正方体的展开图,故选项错误.故选:C.12.(3分)一个正方体的每个面都写有一个汉字.其平面展开图如图所示,那么在该正方体中,和“您”相对的字是()A.新B.年C.愉D.快【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,∴“祝”与“愉”相对,“您”与“年”相对,“新”与“快”相对.故选:B.13.(3分)如果线段AB=5cm,BC=4cm,且A、B、C在同一条直线上,那么A、C两点的距离是()A.1cm B.9cmC.1cm或9cm D.以上答案都不正确【解答】解:当点C在AB之间时,AC=AB﹣BC=5﹣4=1(cm);当点C在点B的右侧时,AC=AB+BC=5+4=9(cm).故选:C.14.(3分)在﹣(﹣2),﹣|﹣7|,(﹣3)2,﹣(+),﹣1中负数有()A.2个 B.3个 C.4个 D.5个【解答】解:负数有:﹣|﹣7|,﹣(+),﹣1共有3个.故选:B.15.(3分)下列各对数中,互为相反数的一对是()A.﹣23与32B.(﹣2)3与﹣23C.(﹣3)2与﹣32D.(﹣3×2)2与﹣3×22【解答】解:符号不同,绝对值不同,故A错误;B、符号相同是同一个数,故B错误;C、只有符号不同的两个数互为相反数,故C正确;D、绝对值不同,故D错误;故选:C.二、填空题16.(3分)计算:﹣5+|﹣3|=﹣2.【解答】解:原式=﹣5+3=﹣2.故答案为:﹣2.17.(3分)若x的相反数是3,|y|=5,则x+y的值为2或﹣8.【解答】解:若x的相反数是3,则x=﹣3;|y|=5,则y=±5.x+y的值为2或﹣8.18.(3分)数轴上点P表示的数是﹣2,那么到P点的距离是3个单位长度的点表示的数是1或﹣5.【解答】解:根据数轴可以得到在数轴上与点A距离3个长度单位的点所表示的数是:﹣5或1.故答案为:﹣5或1.19.(3分)的倒数是2012.【解答】解:的倒数为2012.故答案为2012.20.(3分)若x2=9,则x=±3.【解答】解:∵x2=9∴x=±3.21.(3分)如果a,b互为相反数,c,d互为倒数,m的绝对值为2,那么+m ﹣cd的值为1或﹣3.【解答】解:∵a,b互为相反数,c,d互为倒数,m的绝对值为2,∴a+b=0,cd=1,m=±2,∴+m﹣cd=0+m﹣1=m﹣1,当m=2时,原式=2﹣1=1;当m=﹣2时,原式=﹣2﹣1=﹣3.故答案为1或﹣3.22.(3分)如图是一个正方体的侧面展开图,如果将它折叠成一个正方体后相对的面上的数相等,则图中x的值为7.【解答】解:正方体的平面展开图中,相对面的特点是中间必须间隔一个正方形,所以与“x”字相对的字是7,故x=7.23.(3分)一点将一长为28cm的线段分成5:2的两段,该分点与原线段中点间的距离为6cm.【解答】解:如图,AB=28cm,AC:BC=5:2,点D为AB的中点,设AC=5x,则BC=2x,∵AC+BC=AB,∴5x+2x=28,解得x=4,∴AC=5x=20,∵点D为AB的中点,∴AD=AB=14,∴CD=AC﹣AD=20﹣14=6(cm),即该分点与原线段中点间的距离为6cm.故答案为6.24.(3分)若|a﹣2|+(﹣b)2=0,则b a=.【解答】解:根据题意得:,解得:,则原式=.故答案是:.三、解答题25.(12分)计算下列各题:(1)(+4.3)﹣(﹣4)+(﹣2.3)﹣(+4);(2)(﹣48)÷(﹣2)3﹣(﹣25)×(﹣4)+(﹣2)2;(3)(﹣1.5)×3×(﹣)2﹣(﹣)×(﹣1.5)2(4)[(﹣)3×(﹣)2÷(﹣)﹣32﹣(﹣3)3]×(﹣14)【解答】解:(1)原式=4.3+4﹣2.3﹣4=2;(2)原式=(﹣48)÷(﹣8)﹣100+4=6﹣100+4=﹣90;(3)原式=(﹣1.5)×3×﹣(﹣)×2.25=﹣2+0.75=﹣1.25;(4)原式=[(﹣)××(﹣2)﹣9﹣(﹣27)]×(﹣1)=[12﹣9+27]×(﹣1)=﹣30.26.(8分)如图,平面上有四个点A、B、C、D,根据下列语句画图(1)画直线AB;作射线BC;画线段CD;(2)连接AD,并将其反向延长至E,使DE=2AD;(3)找到一点F,使点F到A、B、C、D四点距离和最短.【解答】解:(1)过AB作直线即可;以点B为端点,作过点C的射线即可得到射线BC;连接CD,即可得到线段CD.(2)连接AD,并将其反向延长至E,使DE=2AD即可;(3)连接AC、BD交于点F,则点F即为所求点.如图:27.(10分)我们规定“*”是一种数学运算符号,两数A、B通过“*”运算得(A+2)×2﹣B,即A*B=(A+2)×2﹣B,例如,3*5=(3+2)×2﹣5=5(1)求6*7的值;(2)6*7的值与7*6的值相等吗?【解答】解:(1)根据题中的新定义得:6*7=(6+2)×2﹣7=8×2﹣7=16﹣7=9;(2)根据题中的新定义得:原式=7*6=(7+2)×2﹣6=12,由此不相等.28.(8分)已知a的相反数为﹣2,b的倒数为,c的绝对值为2,求a+b+c2的值.【解答】解:∵a的相反数为﹣2,b的倒数为,c的绝对值为2,∴a=2,b=﹣2,c=±2,∴a+b+c2=2+(﹣2)+(±2)2=2﹣2+4=4.29.(10分)出租车司机老王某天上午营运全是在东西走向的解放路上进行,如果规定向东为正,向西为负,他这天上午行车里程(单位:km)如下:+8,+4,﹣10,﹣3,+6,﹣5,﹣2,﹣7,+4,+6,﹣9,﹣11.(1)将最后一名乘客送到目的地时,老王距上午出发点多远?(2)若汽车耗油量为0.4L/km,这天上午老王耗油多少升?【解答】解:(1)8+4﹣10﹣3+6﹣5﹣2﹣7+4+6﹣9﹣11=19(千米),答:将最后一名乘客送到目的地时,老王距上午出发点19千米;(2)|+8|+|+4|+|﹣10|+|﹣3|+|+6|+|﹣5|+|﹣2|+|﹣7|+|+4|+|+6|+|﹣9|+|﹣11|=75,75×0.4=30(升).答:这天上午老王耗油30升.赠送初中数学几何模型【模型一】“一线三等角”模型: 图形特征:60°60°60°45°45°45°运用举例:1.如图,若点B 在x 轴正半轴上,点A (4,4)、C (1,-1),且AB =BC ,AB ⊥BC ,求点B 的坐标;xyB CAO2.如图,在直线l 上依次摆放着七个正方形(如图所示),已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是1S 、2S 、3S 、4S ,则14S S += .ls 4s 3s 2s 13213. 如图,Rt △ABC 中,∠BAC =90°,AB =AC =2,点D 在BC 上运动(不与点B ,C 重合),过D 作∠ADE =45°,DE 交AC 于E .(1)求证:△ABD∽△DCE;(2)设BD=x,AE=y,求y关于x的函数关系式,并写出自变量x的取值范围;(3)当△ADE是等腰三角形时,求AE的长.EB4.如图,已知直线112y x=+与y轴交于点A,与x轴交于点D,抛物线212y x bx c=++与直线交于A、E两点,与x轴交于B、C两点,且B点坐标为(1,0)。