人教版高一下册物理 机械能守恒定律单元练习(Word版 含答案)
- 格式:doc
- 大小:662.00 KB
- 文档页数:17
一、第八章 机械能守恒定律易错题培优(难)1.如图所示,竖直墙上固定有光滑的小滑轮D ,质量相等的物体A 和B 用轻弹簧连接,物体B 放在地面上,用一根不可伸长的轻绳一端与物体A 连接,另一端跨过定滑轮与小环C 连接,小环C 穿过竖直固定的光滑均匀细杆,小环C 位于位置R 时,绳与细杆的夹角为θ,此时物体B 与地面刚好无压力。
图中SD 水平,位置R 和Q 关于S 对称。
现让小环从R 处由静止释放,环下落过程中绳始终处于拉直状态,且环到达Q 时速度最大。
下列关于小环C 下落过程中的描述正确的是( )A .小环C 、物体A 和轻弹簧组成的系统机械能不守恒B .小环C 下落到位置S 时,小环C 的机械能一定最大C .小环C 从位置R 运动到位置Q 的过程中,弹簧的弹性势能一定先减小后增大D .小环C 到达Q 点时,物体A 与小环C 的动能之比为cos 2θ 【答案】BD【解析】【分析】【详解】A .在小环下滑过程中,只有重力势能与动能、弹性势能相互转换,所以小环C 、物体A 和轻弹簧组成的系统机械能守恒,选项A 错误;B .小环C 下落到位置S 过程中,绳的拉力一直对小环做正功,所以小环的机械能一直在增大,往下绳的拉力对小环做负功,机械能减小,所以在S 时,小环的机械能最大,选项B 正确;C .小环在R 、Q 处时弹簧均为拉伸状态,且弹力大小等于B 的重力,当环运动到S 处,物体A 的位置最低,但弹簧是否处于拉伸状态,不能确定,因此弹簧的弹性势能不一定先减小后增大,选项C 错误;D .在Q 位置,环受重力、支持力和拉力,此时速度最大,说明所受合力为零,则有 cos C T m g θ=对A 、B 整体,根据平衡条件有2A T m g =故2cos C A m m θ=在Q 点将小环v速度分解可知cos A v v θ=根据动能212k E mv =可知,物体A 与小环C 的动能之比为 221cos 2122A AA k kQC m v E E m v θ== 选项D 正确。
一、第八章 机械能守恒定律易错题培优(难)1.如图所示,质量为1kg 的物块(可视为质点),由A 点以6m/s 的速度滑上正沿逆时针转动的水平传送带(不计两转轮半径的大小),传送带上A 、B 两点间的距离为8m ,已知传送带的速度大小为3m/s ,物块与传送带间的动摩擦因数为0.2,重力加速度为210m/s 。
下列说法正确的是( )A .物块在传送带上运动的时间为2sB .物块在传送带上运动的时间为4sC .整个运动过程中由于摩擦产生的热量为16JD .整个运动过程中由于摩擦产生的热量为28J 【答案】BD 【解析】 【分析】 【详解】AB .滑块先向右匀减速,根据牛顿第二定律有mg ma μ=解得22m/s a g μ==根据运动学公式有010v at =-解得13s t =匀减速运动的位移01063m 9m 8m 22v x t L +==⨯==> 物体向左匀加速过程,加速度大小仍为22m/s a =,根据运动学公式得物体速度增大至2m/s v =时通过的位移2212m 1m 222v x a ===⨯用时22s 1s 2v t a === 向左运动时最后3m 做匀速直线运动,有233=s 1s 3x t v == 即滑块在传送带上运动的总时间为1234s t t t t =++=物块滑离传送带时的速率为2m/s 。
选项A 错误,B 正确;C .向右减速过程和向左加速过程中,摩擦力为恒力,故摩擦力做功为110.211041J 6J f W f x x mg x x μ=--=--=-⨯⨯⨯-=-()()()选项C 错误;D .整个运动过程中由于摩擦产生的热量等于滑块与传送带之间的一对摩擦力做功的代数和,等于摩擦力与相对路程的乘积;物体向右减速过程,传送带向左移动的距离为114m l vt ==物体向左加速过程,传送带运动距离为222m l vt ==即121[]Q fS mg l x l x μ==++-()()代入数据解得28J Q =选项D 正确。
一、第八章 机械能守恒定律易错题培优(难)1.在机场和火车站对行李进行安全检查用的水平传送带如图所示,当行李放在匀速运动的传送带上后,传送带和行李之间的滑动摩擦力使行李开始运动,随后它们保持相对静止,行李随传送带一起匀速通过检测仪检查,设某机场的传送带匀速前进的速度为0.4 m/s ,某行李箱的质量为5 kg ,行李箱与传送带之间的动摩擦因数为0.2,当旅客把这个行李箱小心地放在传送带上的A 点,已知传送带AB 两点的距离为1.2 m ,那么在通过安全检查的过程中,g 取10 m/s 2,则 ( ).A .开始时行李箱的加速度为0.2 m/s 2B .行李箱从A 点到达B 点时间为3.1 sC .传送带对行李箱做的功为0.4 JD .传送带上将留下一段摩擦痕迹,该痕迹的长度是0.04 m 【答案】BCD 【解析】 【分析】 【详解】行李开始运动时由牛顿第二定律有:μmg=ma ,所以得:a="2" m/s 2,故A 错误;物体加速到与传送带共速的时间10.40.22v t s s a ===,此时物体的位移:110.042x vt m ==,则物体在剩下的x 2=1.2m-0.04m=1.96m 内做匀速运动,用时间22 2.9x t s v==,则行李箱从A 点到达B 点时间为t=t 1+t 2="3.1" s ,选项B 正确;行李最后和传送带最终一起匀速运动,根据动能定理知,传送带对行李做的功为:W=12mv 2="0.4" J ,故C 正确;在传送带上留下的痕迹长度为:0.04?22vt vts vt m =-==,故D 正确.故选BCD .2.质量是m 的物体(可视为质点),从高为h ,长为L 的斜面顶端,由静止开始匀加速下滑,滑到斜面底端时速度是v ,则( )A .到斜面底端时重力的瞬时功率为B .下滑过程中重力的平均功率为C.下滑过程中合力的平均功率为D.下滑过程中摩擦力的平均功率为【答案】AB【解析】试题分析:A、根据P=mgvcosα可知,滑到底端的重力的瞬时功率为为:P=mgvcosα=mgv.故A正确.B、物体运动的时间为:t==,则重力做功的平均功率为:P===.故B正确.C、物体做匀加速直线运动的加速度为:a=,则合力为:F合=ma=,合力做功为:W合=F合L=,则合力的平均功率为:.故C错误.D、根据动能定理得:mgh﹣W f=mv2,解得克服摩擦力做功为:W f=mgh﹣mv2,则摩擦力做功的平均功率为:=﹣.故D错误.考点:功率、平均功率和瞬时功率.3.一辆汽车在平直的公路上由静止启动,先保持加速度不变,达到额定功率后保持额定功率不变继续行驶。
一、第八章机械能守恒定律易错题培优(难)1.一足够长的水平传送带上放置质量为m=2kg小物块(物块与传送带之间动摩擦因数为0.2μ=),现让传送带从静止开始以恒定的加速度a=4m/s2开始运动,当其速度达到v=12m/s后,立即以相同大小的加速度做匀减速运动,经过一段时间后,传送带和小物块均静止不动。
下列说法正确的是()A.小物块0到4s内做匀加速直线运动,后做匀减速直线运动直至静止B.小物块0到3s内做匀加速直线运动,之后做匀减速直线运动直至静止C.物块在传送带上留下划痕长度为12mD.整个过程中小物块和传送带间因摩擦产生的热量为80J【答案】ACD【解析】【分析】【详解】物块和传送带的运动过程如图所示。
AB.由于物块的加速度a1=µg=2m/s2小于传送带的加速度a2=4 m/s2,所以前面阶段两者相对滑动,时间12vta==3s,此时物块的速度v1=6 m/s,传送带的速度v2=12 m/s物块的位移x1=12a1t12=9m传送带的位移x2=12a2t12=18m两者相对位移为121x x x∆=-=9m此后传送带减速,但物块仍加速,B错误;当物块与传送带共速时,由匀变速直线运动规律得12- a2t2=6+ a1t2解得t 2=1s因此物块匀加速所用的时间为t 1+ t 2=4s两者相对位移为2x ∆= 3m ,所以A 正确。
C .物块开始减速的速度为v 3=6+ a 1t 2=8 m/s物块减速至静止所用时间为331v t a ==4s 传送带减速至静止所用时间为 342v t a ==2s 该过程物块的位移为x 3=12a 1t 32=16m 传送带的位移为x 2=12a 2t 42=8m 两者相对位移为 3x ∆=8m回滑不会增加划痕长度,所以划痕长为12x x x ∆=∆+∆=9m+3m=12mC 正确;D .全程相对路程为L =123x x x ∆+∆+∆=9m+3m+8m=20mQ =µmgL =80JD 正确;故选ACD 。
一、第八章 机械能守恒定律易错题培优(难)1.某实验研究小组为探究物体冲上粗糙斜面能达到的最大位移x 与斜面倾角θ的关系,使某一物体每次以不变的初速率v 0沿足够长的斜面向上运动,如图甲所示,调节斜面与水平面的夹角θ,实验测得x 与θ的关系如图乙所示,取g =10m/s 2。
则由图可知( )A .物体的初速率v 0=3m/sB .物体与斜面间的动摩擦因数µ=0.8C .图乙中x min =0.36mD .取初始位置所在水平面为重力势能参考平面,当θ=37°,物体上滑过程中动能与重力势能相等时,物体上滑的位移为0.1875m 【答案】AC 【解析】 【分析】 【详解】 A .当2πθ=时,物体做竖直上抛运动,不受摩擦力作用,根据202v gh =可得03m/s v =A 正确;B .当0θ=时,物体沿水平面做减速运动,根据动能定理2012mv mgx μ= 代入数据解得=0.75μB 错误;C .根据动能定理201cos sin 2mv mgx mgx μθθ=+ 整理得920(0.75cos sin )x θθ=+因此位移最小值min 20.36m 200.751x ==+C 正确;D .动能与重力势能相等的位置o 2o o 01sin 37(sin 37cos37)2mgx mv mgx mgx μ=-+ 整理得0.25m x =D 错误。
故选AC 。
2.如图所示,两质量都为m 的滑块a ,b (为质点)通过铰链用长度为L 的刚性轻杆相连接,a 套在竖直杆A 上,b 套在水平杆B 上两根足够长的细杆A 、B 两杆分离不接触,且两杆间的距离忽略不计。
将滑块a 从图示位置由静止释放(轻杆与B 杆夹角为30°),不计一切摩擦,已知重力加速度为g 。
在此后的运动过程中,下列说法中正确的是( )A .滑块a 和滑块b 所组成的系统机械能守恒B .滑块b 的速度为零时,滑块a 的加速度大小一定等于gC .滑块b 3gLD .滑块a 2gL【答案】AC 【解析】 【分析】 【详解】A .由于整个运动过程中没有摩擦阻力,因此机械能守恒,A 正确;B .初始位置时,滑块b 的速度为零时,而轻杆对滑块a 有斜向上的推力,因此滑块a 的加速度小于g ,B 错误;C .当滑块a 下降到最低点时,滑块a 的速度为零,滑块b 的速度最大,根据机械能守恒定律o 21(1sin 30)2b mgL mv +=解得3b v gL =C 正确;D .滑块a 最大速度的位置一定在两杆交叉点之下,设该位置杆与水平方向夹角为θ 根据机械能守恒定律o 2211(sin 30sin )22a b mgL mv mv θ+=+ 而两个物体沿杆方向速度相等cos sin b a v v θθ=两式联立,利用三角函数整理得212(sin )cos 2a v gL θθ=+利用特殊值,将o =30θ 代入上式可得.521a v gL gL =>因此最大值不是2gL ,D 错误。
一、第八章 机械能守恒定律易错题培优(难)1.如图所示,一根轻弹簧一端固定于O 点,另一端与可视为质点的小滑块连接,把滑块放在倾角为θ=30°的固定光滑斜面上的A 点,此时弹簧恰好水平。
将滑块从A 点由静止释放,经B 点到达位于O 点正下方的C 点。
当滑块运动到B 点时弹簧与斜面垂直,且此时弹簧恰好处于原长。
已知OB 的距离为L ,弹簧始终在弹性限度内,重力加速度为g ,则滑块由A 运动到C 的过程中( )A .滑块的加速度先减小后增大B .滑块的速度一直在增大C .滑块经过B gLD .滑块经过C 2gL 【答案】BC 【解析】 【分析】 【详解】AB .弹簧原长为L ,在A 点不离开斜面,则sin 3()sin c 3300os 0Lk mg L ︒≤-︒︒ 在C 点不离开斜面,则有()cos30cos30cos30Lk L mg -︒≤︒︒从A 点滑至C 点,设弹簧与斜面夹角为α(范围为30°≤α≤90°);从B 点滑至C 点,设弹簧与斜面的夹角为β,则2sin 30cos mg kx ma β︒-=可知下滑过程中加速度一直沿斜面向下且减小,选项A 错误,B 正确; C .从A 点滑到B 点,由机械能守恒可得21cos302p B mgL E mv ︒+=解得2cos30232p p B E E v gL g mg L L m︒+=+=>选项C 正确;D .从A 点滑到C 点,由机械能守恒可得21cos302P C L mgE mv '+=︒解得432222cos303p pCgLE ELv g gLm m'=+>+︒=选项D错误。
故选BC。
2.如图所示,两个质量均为m的小滑块P、Q通过铰链用长为L的刚性轻杆连接,P套在固定的竖直光滑杆上,Q放在光滑水平地面上,轻杆与竖直方向夹角α=30°.原长为2L的轻弹簧水平放置,右端与Q相连,左端固定在竖直杆O点上。
一、第八章 机械能守恒定律易错题培优(难)1.如图所示,质量为1kg 的物块(可视为质点),由A 点以6m/s 的速度滑上正沿逆时针转动的水平传送带(不计两转轮半径的大小),传送带上A 、B 两点间的距离为8m ,已知传送带的速度大小为3m/s ,物块与传送带间的动摩擦因数为0.2,重力加速度为210m/s 。
下列说法正确的是( )A .物块在传送带上运动的时间为2sB .物块在传送带上运动的时间为4sC .整个运动过程中由于摩擦产生的热量为16JD .整个运动过程中由于摩擦产生的热量为28J 【答案】BD 【解析】 【分析】 【详解】AB .滑块先向右匀减速,根据牛顿第二定律有mg ma μ=解得22m/s a g μ==根据运动学公式有010v at =-解得13s t =匀减速运动的位移01063m 9m 8m 22v x t L +==⨯==> 物体向左匀加速过程,加速度大小仍为22m/s a =,根据运动学公式得物体速度增大至2m/s v =时通过的位移2212m 1m 222v x a ===⨯用时22s 1s 2v t a === 向左运动时最后3m 做匀速直线运动,有233=s 1s 3x t v == 即滑块在传送带上运动的总时间为1234s t t t t =++=物块滑离传送带时的速率为2m/s 。
选项A 错误,B 正确;C .向右减速过程和向左加速过程中,摩擦力为恒力,故摩擦力做功为110.211041J 6J f W f x x mg x x μ=--=--=-⨯⨯⨯-=-()()()选项C 错误;D .整个运动过程中由于摩擦产生的热量等于滑块与传送带之间的一对摩擦力做功的代数和,等于摩擦力与相对路程的乘积;物体向右减速过程,传送带向左移动的距离为114m l vt ==物体向左加速过程,传送带运动距离为222m l vt ==即121[]Q fS mg l x l x μ==++-()()代入数据解得28J Q =选项D 正确。
一、第八章 机械能守恒定律易错题培优(难)1.如图所示,一根轻弹簧一端固定于O 点,另一端与可视为质点的小滑块连接,把滑块放在倾角为θ=30°的固定光滑斜面上的A 点,此时弹簧恰好水平。
将滑块从A 点由静止释放,经B 点到达位于O 点正下方的C 点。
当滑块运动到B 点时弹簧与斜面垂直,且此时弹簧恰好处于原长。
已知OB 的距离为L ,弹簧始终在弹性限度内,重力加速度为g ,则滑块由A 运动到C 的过程中( )A .滑块的加速度先减小后增大B .滑块的速度一直在增大C .滑块经过B gLD .滑块经过C 2gL 【答案】BC 【解析】 【分析】 【详解】AB .弹簧原长为L ,在A 点不离开斜面,则sin 3()sin c 3300os 0Lk mg L ︒≤-︒︒ 在C 点不离开斜面,则有()cos30cos30cos30Lk L mg -︒≤︒︒从A 点滑至C 点,设弹簧与斜面夹角为α(范围为30°≤α≤90°);从B 点滑至C 点,设弹簧与斜面的夹角为β,则2sin 30cos mg kx ma β︒-=可知下滑过程中加速度一直沿斜面向下且减小,选项A 错误,B 正确; C .从A 点滑到B 点,由机械能守恒可得21cos302p B mgL E mv ︒+=解得2cos30232p p B E E v gL g mg L L m︒+=+=>选项C 正确;D .从A 点滑到C 点,由机械能守恒可得21cos302P C L mgE mv '+=︒解得432222cos303p pCgLE ELv g gLm m'=+>+︒=选项D错误。
故选BC。
2.如图所示,两质量都为m的滑块a,b(为质点)通过铰链用长度为L的刚性轻杆相连接,a套在竖直杆A上,b套在水平杆B上两根足够长的细杆A、B两杆分离不接触,且两杆间的距离忽略不计。
将滑块a从图示位置由静止释放(轻杆与B杆夹角为30°),不计一切摩擦,已知重力加速度为g。
一、第八章 机械能守恒定律易错题培优(难)1.某实验研究小组为探究物体冲上粗糙斜面能达到的最大位移x 与斜面倾角θ的关系,使某一物体每次以不变的初速率v 0沿足够长的斜面向上运动,如图甲所示,调节斜面与水平面的夹角θ,实验测得x 与θ的关系如图乙所示,取g =10m/s 2。
则由图可知( )A .物体的初速率v 0=3m/sB .物体与斜面间的动摩擦因数µ=0.8C .图乙中x min =0.36mD .取初始位置所在水平面为重力势能参考平面,当θ=37°,物体上滑过程中动能与重力势能相等时,物体上滑的位移为0.1875m【答案】AC【解析】【分析】 【详解】A .当2πθ=时,物体做竖直上抛运动,不受摩擦力作用,根据202v gh =可得03m/s v =A 正确;B .当0θ=时,物体沿水平面做减速运动,根据动能定理2012mv mgx μ= 代入数据解得=0.75μB 错误;C .根据动能定理201cos sin 2mv mgx mgx μθθ=+ 整理得920(0.75cos sin )x θθ=+ 因此位移最小值 min 20.36m 200.751x ==+C 正确;D .动能与重力势能相等的位置 o 2o o 01sin 37(sin 37cos37)2mgx mv mgx mgx μ=-+ 整理得 0.25m x =D 错误。
故选AC 。
2.如图所示,两质量都为m 的滑块a ,b (为质点)通过铰链用长度为L 的刚性轻杆相连接,a 套在竖直杆A 上,b 套在水平杆B 上两根足够长的细杆A 、B 两杆分离不接触,且两杆间的距离忽略不计。
将滑块a 从图示位置由静止释放(轻杆与B 杆夹角为30°),不计一切摩擦,已知重力加速度为g 。
在此后的运动过程中,下列说法中正确的是( )A .滑块a 和滑块b 所组成的系统机械能守恒B .滑块b 的速度为零时,滑块a 的加速度大小一定等于gC .滑块b 3gLD .滑块a 2gL【答案】AC【解析】【分析】【详解】A .由于整个运动过程中没有摩擦阻力,因此机械能守恒,A 正确;B .初始位置时,滑块b 的速度为零时,而轻杆对滑块a 有斜向上的推力,因此滑块a 的加速度小于g ,B 错误;C .当滑块a 下降到最低点时,滑块a 的速度为零,滑块b 的速度最大,根据机械能守恒定律o 21(1sin 30)2b mgL mv +=解得 3b v gL =C 正确;D .滑块a 最大速度的位置一定在两杆交叉点之下,设该位置杆与水平方向夹角为θ 根据机械能守恒定律o 2211(sin 30sin )22a b mgL mv mv θ+=+ 而两个物体沿杆方向速度相等 cos sin b a v v θθ=两式联立,利用三角函数整理得212(sin )cos 2a v gL θθ=+ 利用特殊值,将o =30θ 代入上式可得.521a v gL gL =>因此最大值不是2gL ,D 错误。
一、第八章机械能守恒定律易错题培优(难)1.一足够长的水平传送带上放置质量为m=2kg小物块(物块与传送带之间动摩擦因数为0.2μ=),现让传送带从静止开始以恒定的加速度a=4m/s2开始运动,当其速度达到v=12m/s后,立即以相同大小的加速度做匀减速运动,经过一段时间后,传送带和小物块均静止不动。
下列说法正确的是()A.小物块0到4s内做匀加速直线运动,后做匀减速直线运动直至静止B.小物块0到3s内做匀加速直线运动,之后做匀减速直线运动直至静止C.物块在传送带上留下划痕长度为12mD.整个过程中小物块和传送带间因摩擦产生的热量为80J【答案】ACD【解析】【分析】【详解】物块和传送带的运动过程如图所示。
AB.由于物块的加速度a1=µg=2m/s2小于传送带的加速度a2=4 m/s2,所以前面阶段两者相对滑动,时间12vta==3s,此时物块的速度v1=6 m/s,传送带的速度v2=12 m/s物块的位移x1=12a1t12=9m传送带的位移x2=12a2t12=18m两者相对位移为121x x x∆=-=9m此后传送带减速,但物块仍加速,B错误;当物块与传送带共速时,由匀变速直线运动规律得12- a2t2=6+ a1t2解得t 2=1s因此物块匀加速所用的时间为t 1+ t 2=4s两者相对位移为2x ∆= 3m ,所以A 正确。
C .物块开始减速的速度为v 3=6+ a 1t 2=8 m/s物块减速至静止所用时间为331v t a ==4s 传送带减速至静止所用时间为342v t a ==2s 该过程物块的位移为x 3=12a 1t 32=16m 传送带的位移为x 2=12a 2t 42=8m 两者相对位移为3x ∆=8m回滑不会增加划痕长度,所以划痕长为12x x x ∆=∆+∆=9m+3m=12mC 正确;D .全程相对路程为L =123x x x ∆+∆+∆=9m+3m+8m=20mQ =µmgL =80JD 正确; 故选ACD 。
一、第八章机械能守恒定律易错题培优(难)1.如图所示,两个质量均为m的小滑块P、Q通过铰链用长为L的刚性轻杆连接,P套在固定的竖直光滑杆上,Q放在光滑水平地面上,轻杆与竖直方向夹角α=30°.原长为2L的轻弹簧水平放置,右端与Q相连,左端固定在竖直杆O点上。
P由静止释放,下降到最低点时α变为60°.整个运动过程中,P、Q始终在同一竖直平面内,弹簧在弹性限度内,忽略一切摩擦,重力加速度为g。
则P下降过程中()A.P、Q组成的系统机械能守恒B.P、Q的速度大小始终相等C31-mgLD.P达到最大动能时,Q受到地面的支持力大小为2mg【答案】CD【解析】【分析】【详解】A.根据能量守恒知,P、Q、弹簧组成的系统机械能守恒,而P、Q组成的系统机械能不守恒,选项A错误;B.在下滑过程中,根据速度的合成与分解可知cos sinP Qv vαα=解得tanPQvvα=由于α变化,故P、Q的速度大小不相同,选项B错误;C.根据系统机械能守恒可得(cos30cos60)PE mgL=︒-︒弹性势能的最大值为312PE mgL=选项C正确;D.P由静止释放,P开始向下做加速度逐渐减小的加速运动,当加速度为零时,P的速度达到最大,此时动能最大,对P、Q和弹簧组成的整体受力分析,在竖直方向,根据牛顿第二定律可得200N F mg m m -=⨯+⨯解得F N =2mg选项D 正确。
故选CD 。
2.如图所示,两质量都为m 的滑块a ,b (为质点)通过铰链用长度为L 的刚性轻杆相连接,a 套在竖直杆A 上,b 套在水平杆B 上两根足够长的细杆A 、B 两杆分离不接触,且两杆间的距离忽略不计。
将滑块a 从图示位置由静止释放(轻杆与B 杆夹角为30°),不计一切摩擦,已知重力加速度为g 。
在此后的运动过程中,下列说法中正确的是( )A .滑块a 和滑块b 所组成的系统机械能守恒B .滑块b 的速度为零时,滑块a 的加速度大小一定等于gC .滑块b 3gLD .滑块a 2gL【答案】AC【解析】【分析】【详解】A .由于整个运动过程中没有摩擦阻力,因此机械能守恒,A 正确;B .初始位置时,滑块b 的速度为零时,而轻杆对滑块a 有斜向上的推力,因此滑块a 的加速度小于g ,B 错误;C .当滑块a 下降到最低点时,滑块a 的速度为零,滑块b 的速度最大,根据机械能守恒定律 o 21(1sin 30)2b mgL mv +=解得 3b v gL =C 正确;D .滑块a 最大速度的位置一定在两杆交叉点之下,设该位置杆与水平方向夹角为θ 根据机械能守恒定律o 2211(sin 30sin )22a b mgL mv mv θ+=+ 而两个物体沿杆方向速度相等 cos sin b a v v θθ=两式联立,利用三角函数整理得212(sin )cos 2a v gL θθ=+ 利用特殊值,将o =30θ 代入上式可得.521a v gL gL =>因此最大值不是2gL ,D 错误。
一、第八章 机械能守恒定律易错题培优(难)1.如图所示,竖直墙上固定有光滑的小滑轮D ,质量相等的物体A 和B 用轻弹簧连接,物体B 放在地面上,用一根不可伸长的轻绳一端与物体A 连接,另一端跨过定滑轮与小环C 连接,小环C 穿过竖直固定的光滑均匀细杆,小环C 位于位置R 时,绳与细杆的夹角为θ,此时物体B 与地面刚好无压力。
图中SD 水平,位置R 和Q 关于S 对称。
现让小环从R 处由静止释放,环下落过程中绳始终处于拉直状态,且环到达Q 时速度最大。
下列关于小环C 下落过程中的描述正确的是( )A .小环C 、物体A 和轻弹簧组成的系统机械能不守恒B .小环C 下落到位置S 时,小环C 的机械能一定最大C .小环C 从位置R 运动到位置Q 的过程中,弹簧的弹性势能一定先减小后增大D .小环C 到达Q 点时,物体A 与小环C 的动能之比为cos 2θ 【答案】BD【解析】【分析】【详解】A .在小环下滑过程中,只有重力势能与动能、弹性势能相互转换,所以小环C 、物体A 和轻弹簧组成的系统机械能守恒,选项A 错误;B .小环C 下落到位置S 过程中,绳的拉力一直对小环做正功,所以小环的机械能一直在增大,往下绳的拉力对小环做负功,机械能减小,所以在S 时,小环的机械能最大,选项B 正确;C .小环在R 、Q 处时弹簧均为拉伸状态,且弹力大小等于B 的重力,当环运动到S 处,物体A 的位置最低,但弹簧是否处于拉伸状态,不能确定,因此弹簧的弹性势能不一定先减小后增大,选项C 错误;D .在Q 位置,环受重力、支持力和拉力,此时速度最大,说明所受合力为零,则有 cos C T m g θ=对A 、B 整体,根据平衡条件有2A T m g =故2cos C A m m θ=在Q点将小环v速度分解可知cosAv vθ=根据动能212kE mv=可知,物体A与小环C的动能之比为221cos2122AAAkkQCm vEE m vθ==选项D正确。
一、第八章机械能守恒定律易错题培优(难)1.如图所示,一根轻质弹簧放在光滑斜面上,其下端与斜面底端的固定挡板相连,弹簧处于自然伸长状态。
第一次让甲物块从斜面上的A点由静止释放,第二次让乙物块从斜面上的B点由静止释放,两物块压缩弹簧使弹簧获得的最大弹性势能相同,两物块均可看作质点,则下列说法正确的是()A.甲物块的质量比乙物块的质量大B.甲物块与弹簧刚接触时的动能大于乙物块与弹簧刚接触时的动能C.乙物块动能最大的位置在甲物块动能最大的位置下方D.将两物块释放的位置上移,两物块向下运动的过程中,动能最大的位置会下移【答案】BC【解析】【分析】【详解】A.由于两物块使弹簧获得的最大弹性势能相同,即两物块向下运动最低点的位置相同,根据机械能守恒可知,两物块减少的最大重力势能相同,由此可以判断甲物块的质量比乙物块的质量小,选项A错误;B.从两物块与弹簧相接触到弹簧被压缩到最短的过程中,乙物块的质量大,则乙物块减小的重力势能大,所以其动能减小的少,选项B正确;C.动能最大的位置是合外力为零的时候,由力的平衡可知,乙物块动能最大的位置在甲物块动能最大位置的下方,选项C正确;D.由力的平衡可知,改变两物块释放的位置,两物块向下运动的过程中,动能最大的位置不会变,选项D错误。
故选BC。
2.如图所示,竖直平面内固定两根足够长的细杆L1、L2,两杆分离不接触,且两杆间的距离忽略不计.两个小球a、b(视为质点)质量均为m,a球套在竖直杆L1上,b杆套在水平杆L2上,a、b通过铰链用长度为L的刚性轻杆连接,将a球从图示位置由静止释放(轻杆与L2杆夹角为45°),不计一切摩擦,已知重力加速度为g.在此后的运动过程中,下列说法中正确的是A .a 球和b 球所组成的系统机械能守恒B .b 球的速度为零时,a 球的加速度大小一定等于gC .b 22gL +()D .a 2gL【答案】AC 【解析】 【详解】A .a 球和b 球组成的系统没有外力做功,只有a 球和b 球的动能和重力势能相互转换,因此a 球和b 球的机械能守恒,故A 正确;B .当再次回到初始位置向下加速时,b 球此时刻速度为零,但a 球的加速度小于g ,故B 错误;C .当杆L 和杆L 1平行成竖直状态,球a 运动到最下方,球b 运动到L 1和L 2交点的位置的时候球b 的速度达到最大,此时由运动的关联可知a 球的速度为0,因此由系统机械能守恒有:2212b mg L L mv ⎫+=⎪⎪⎝⎭得:()2+2b v gL =故C 正确;D .当轻杆L 向下运动到杆L 1和杆L 2的交点的位置时,此时杆L 和杆L 2平行,由运动的关联可知此时b 球的速度为零,有系统机械能守恒有:2212aL mv ⋅= 得:2a v gL =此时a 球具有向下的加速度g ,因此此时a 球的速度不是最大,a 球将继续向下运动到加速度为0时速度达到最大,故D 错误.3.质量是m 的物体(可视为质点),从高为h ,长为L 的斜面顶端,由静止开始匀加速下滑,滑到斜面底端时速度是v,则()A.到斜面底端时重力的瞬时功率为B.下滑过程中重力的平均功率为C.下滑过程中合力的平均功率为D.下滑过程中摩擦力的平均功率为【答案】AB【解析】试题分析:A、根据P=mgvcosα可知,滑到底端的重力的瞬时功率为为:P=mgvcosα=mgv.故A正确.B、物体运动的时间为:t==,则重力做功的平均功率为:P===.故B正确.C、物体做匀加速直线运动的加速度为:a=,则合力为:F合=ma=,合力做功为:W合=F合L=,则合力的平均功率为:.故C错误.D、根据动能定理得:mgh﹣W f=mv2,解得克服摩擦力做功为:W f=mgh﹣mv2,则摩擦力做功的平均功率为:=﹣.故D错误.考点:功率、平均功率和瞬时功率.4.如图所示,将质量为2m的重物悬挂在轻绳的一端,轻绳的另一端系一质量为m的环,环套在竖直固定的光滑直杆上,光滑的轻小定滑轮与直杆的距离为d,杆上的A点与定滑轮等高,杆上的B点在A点下方距离为d处.现将环从A处由静止释放,不计一切摩擦阻力,下列说法正确的是()A.环到达B处时,重物上升的高度h=d/2B .小环在B 处的速度时,环的速度为(322)gd -C .环从A 到B ,环沿着杆下落的速度大小小于重物上升的速度大小D .环能下降的最大高度为4d /3 【答案】BD 【解析】 【分析】 【详解】A 、根据几何关系有,环从A 下滑至B 点时,重物上升的高度2h d d =-,故A 错误;B 、C 、对B 的速度沿绳子方向和垂直于绳子方向分解,在沿绳子方向上的分速度等于重物的速度,有:v 环cos45°=v 物,根据系统机械能守恒定律可得22112+222mgd mgh mv mv -=⋅环物,解得:环的速度=(322)v gd -环,故B 正确.故C 错误.D 、设环下滑到最大高度为H 时环和重物的速度均为0,此时重物上升的最大高度为22H d d +-,根据机械能守恒有222()mgH mg H d d =+-,解得:43H d =,故D 正确.故选BD . 【点睛】解决本题的关键要掌握系统机械能守恒,知道环沿绳子方向的分速度的等于重物的速度.5.如图所示,轻质弹簧一端固定在水平面上O 点的转轴上,另一端与一质量为m 、套在粗糙固定直杆A 处的小球(可视为质点)相连,直杆的倾角为30°,OA =OC ,B 为AC 的中点,OB 等于弹簧原长.小球从A 处由静止开始下滑,初始加速度大小为a A ,第一次经过B 处的速度为v ,运动到C 处速度为0,后又以大小为a C 的初始加速度由静止开始向上滑行.设最大静摩擦力等于滑动摩擦力.下列说法正确的是A .小球可以返回到出发点A 处B .弹簧具有的最大弹性势能为22mvC .撤去弹簧,小球可以静止在直杆上任意位置D .a A -a C =g 【答案】BD 【解析】 【分析】 【详解】AB.设小球从A 运动到B 的过程克服摩擦力做功为f W ,AB 间的竖直高度为h ,小球的质量为m ,弹簧具有的最大弹性势能为p E .根据能量守恒定律,对于小球A 到B 的过程有: 212p f mgh E mv W +=+A 到C 的过程有:22p f p mgh E W E +=+解得:212f p W mgh E mv ==, 小球从C 点向上运动时,假设能返回到A 点,由能量守恒定律得:22p f p E W mgh E =++该式违反了能量守恒定律,可知小球不能返回到出发点A 处.故A 错误,B 正确. C.设从A 运动到C 摩擦力的平均值为f ,AB =s ,由:f W mgh =得:sin 30f s mgs =解得:sin 30f mg =在B 点,摩擦力cos30f mg μ=,由于弹簧对小球有拉力(除B 点外),小球对杆的压力大于cos30mg μ,所以:cos30f mg μ>可得:sin 30cos30mg mg μ>因此撤去弹簧,小球不能在直杆上处于静止.故C 错误. D.根据牛顿第二定律得,在A 点有:cos30sin 30A F mg f ma +-=在C 点有:cos30sin 30C F f mg ma --=两式相减得:A C a a g -=故D 正确.6.如图所示,竖直固定的光滑直杆上套有一个质量为m 的滑块,初始时静置于a 点.一原长为l 的轻质弹簧左端固定在O 点,右端与滑块相连.直杆上还有b 、c 、d 三点,且b 与O 在同一水平线上,Ob =l ,Oa 、Oc 与Ob 夹角均为37°,Od 与Ob 夹角为53°.现由静止释放小滑块,在小滑块从a 下滑到d 过程中,弹簧始终处于弹性限度内,sin37°=0.6,则下列说法正确的是A .滑块在b 点时速度最大,加速度为gB .从a 下滑到c 点的过程中,滑块的机械能守恒C .滑块在c 3gLD .滑块在d 处的机械能小于在a 处的机械能 【答案】CD 【解析】 【分析】 【详解】A 、从a 到b,弹簧对滑块有沿弹簧向下的拉力,滑块的速度不断增大.从b 到c,弹簧对滑块沿弹簧向上的拉力,开始时拉力沿杆向上的分力小于滑块的重力,滑块仍在加速,所以滑块在b 点时速度不是最大,此时滑块的合力为mg,则加速度为g.故A 错误.B 、从a 下滑到c 点的过程中,因为弹簧的弹力对滑块做功,因此滑块的机械能不守恒.故B 错误.C 、对于滑块与弹簧组成的系统,只有重力和弹力做功,系统的机械能守恒,由机械能守恒定律得212sin 372c mg l mv ⨯=,解得3c v gL =,故C 对; D 、弹簧在d 处的弹性势能大于在a 处的弹性势能,由系统的机械能守恒可以知道,滑块在d 处的机械能小于在a 处的机械能,故D 对; 故选CD 【点睛】滑块的速度根据其受力情况,分析速度的变化情况确定.加速度由牛顿第二定律分析.对于滑块与弹簧组成的系统,只有重力和弹力做功,系统的机械能守恒,但滑块的机械能不守恒.根据系统的机械能守恒求滑块在c 点的速度.7.如图1所示,遥控小车在平直路面上做直线运动,所受恒定阻力f =4N ,经过A 点时,小车受到的牵引力F A =2N ,运动到B 点时小车正好匀速,且速度v B =2m/s ;图2是小车从A 点运动到B 点牵引力F 与速度v 的反比例函数关系图像。
一、第八章 机械能守恒定律易错题培优(难)1.如图所示,质量为1kg 的物块(可视为质点),由A 点以6m/s 的速度滑上正沿逆时针转动的水平传送带(不计两转轮半径的大小),传送带上A 、B 两点间的距离为8m ,已知传送带的速度大小为3m/s ,物块与传送带间的动摩擦因数为0.2,重力加速度为210m/s 。
下列说法正确的是( )A .物块在传送带上运动的时间为2sB .物块在传送带上运动的时间为4sC .整个运动过程中由于摩擦产生的热量为16JD .整个运动过程中由于摩擦产生的热量为28J【答案】BD【解析】【分析】【详解】AB .滑块先向右匀减速,根据牛顿第二定律有mg ma μ=解得22m/s a g μ==根据运动学公式有010v at =-解得13s t = 匀减速运动的位移01063m 9m 8m 22v x t L +==⨯==> 物体向左匀加速过程,加速度大小仍为22m/s a =,根据运动学公式得物体速度增大至2m/s v =时通过的位移2212m 1m 222v x a ===⨯ 用时22s 1s 2v t a === 向左运动时最后3m 做匀速直线运动,有233=s 1s 3x t v == 即滑块在传送带上运动的总时间为 1234s t t t t =++=物块滑离传送带时的速率为2m/s 。
选项A 错误,B 正确;C .向右减速过程和向左加速过程中,摩擦力为恒力,故摩擦力做功为110.211041J 6J f W f x x mg x x μ=--=--=-⨯⨯⨯-=-()()()选项C 错误;D .整个运动过程中由于摩擦产生的热量等于滑块与传送带之间的一对摩擦力做功的代数和,等于摩擦力与相对路程的乘积;物体向右减速过程,传送带向左移动的距离为114m l vt ==物体向左加速过程,传送带运动距离为222m l vt ==即121[]Q fS mg l x l x μ==++-()()代入数据解得28J Q =选项D 正确。
一、第八章 机械能守恒定律易错题培优(难)1.如图所示,竖直墙上固定有光滑的小滑轮D ,质量相等的物体A 和B 用轻弹簧连接,物体B 放在地面上,用一根不可伸长的轻绳一端与物体A 连接,另一端跨过定滑轮与小环C 连接,小环C 穿过竖直固定的光滑均匀细杆,小环C 位于位置R 时,绳与细杆的夹角为θ,此时物体B 与地面刚好无压力。
图中SD 水平,位置R 和Q 关于S 对称。
现让小环从R 处由静止释放,环下落过程中绳始终处于拉直状态,且环到达Q 时速度最大。
下列关于小环C 下落过程中的描述正确的是( )A .小环C 、物体A 和轻弹簧组成的系统机械能不守恒B .小环C 下落到位置S 时,小环C 的机械能一定最大C .小环C 从位置R 运动到位置Q 的过程中,弹簧的弹性势能一定先减小后增大D .小环C 到达Q 点时,物体A 与小环C 的动能之比为cos 2θ【答案】BD 【解析】 【分析】 【详解】A .在小环下滑过程中,只有重力势能与动能、弹性势能相互转换,所以小环C 、物体A 和轻弹簧组成的系统机械能守恒,选项A 错误;B .小环C 下落到位置S 过程中,绳的拉力一直对小环做正功,所以小环的机械能一直在增大,往下绳的拉力对小环做负功,机械能减小,所以在S 时,小环的机械能最大,选项B 正确;C .小环在R 、Q 处时弹簧均为拉伸状态,且弹力大小等于B 的重力,当环运动到S 处,物体A 的位置最低,但弹簧是否处于拉伸状态,不能确定,因此弹簧的弹性势能不一定先减小后增大,选项C 错误;D .在Q 位置,环受重力、支持力和拉力,此时速度最大,说明所受合力为零,则有cos C T m g θ=对A 、B 整体,根据平衡条件有2A T m g =故2cos C A m m θ=在Q 点将小环v速度分解可知cos A v v θ=根据动能212k E mv =可知,物体A 与小环C 的动能之比为 221cos 2122A A Ak kQC m v E E m v θ== 选项D 正确。
一、第八章 机械能守恒定律易错题培优(难)1.如图所示,质量为1kg 的物块(可视为质点),由A 点以6m/s 的速度滑上正沿逆时针转动的水平传送带(不计两转轮半径的大小),传送带上A 、B 两点间的距离为8m ,已知传送带的速度大小为3m/s ,物块与传送带间的动摩擦因数为0.2,重力加速度为210m/s 。
下列说法正确的是( )A .物块在传送带上运动的时间为2sB .物块在传送带上运动的时间为4sC .整个运动过程中由于摩擦产生的热量为16JD .整个运动过程中由于摩擦产生的热量为28J 【答案】BD 【解析】 【分析】 【详解】AB .滑块先向右匀减速,根据牛顿第二定律有mg ma μ=解得22m/s a g μ==根据运动学公式有010v at =-解得13s t =匀减速运动的位移01063m 9m 8m 22v x t L +==⨯==> 物体向左匀加速过程,加速度大小仍为22m/s a =,根据运动学公式得物体速度增大至2m/s v =时通过的位移2212m 1m 222v x a ===⨯用时22s 1s 2v t a === 向左运动时最后3m 做匀速直线运动,有233=s 1s 3x t v == 即滑块在传送带上运动的总时间为1234s t t t t =++=物块滑离传送带时的速率为2m/s 。
选项A 错误,B 正确;C .向右减速过程和向左加速过程中,摩擦力为恒力,故摩擦力做功为110.211041J 6J f W f x x mg x x μ=--=--=-⨯⨯⨯-=-()()()选项C 错误;D .整个运动过程中由于摩擦产生的热量等于滑块与传送带之间的一对摩擦力做功的代数和,等于摩擦力与相对路程的乘积;物体向右减速过程,传送带向左移动的距离为114m l vt ==物体向左加速过程,传送带运动距离为222m l vt ==即121[]Q fS mg l x l x μ==++-()()代入数据解得28J Q =选项D 正确。
一、第八章机械能守恒定律易错题培优(难)1.一足够长的水平传送带上放置质量为m=2kg小物块(物块与传送带之间动摩擦因数为0.2μ=),现让传送带从静止开始以恒定的加速度a=4m/s2开始运动,当其速度达到v=12m/s后,立即以相同大小的加速度做匀减速运动,经过一段时间后,传送带和小物块均静止不动。
下列说法正确的是()A.小物块0到4s内做匀加速直线运动,后做匀减速直线运动直至静止B.小物块0到3s内做匀加速直线运动,之后做匀减速直线运动直至静止C.物块在传送带上留下划痕长度为12mD.整个过程中小物块和传送带间因摩擦产生的热量为80J【答案】ACD【解析】【分析】【详解】物块和传送带的运动过程如图所示。
AB.由于物块的加速度a1=µg=2m/s2小于传送带的加速度a2=4 m/s2,所以前面阶段两者相对滑动,时间12vta==3s,此时物块的速度v1=6 m/s,传送带的速度v2=12 m/s物块的位移x1=12a1t12=9m传送带的位移x2=12a2t12=18m两者相对位移为121x x x∆=-=9m此后传送带减速,但物块仍加速,B错误;当物块与传送带共速时,由匀变速直线运动规律得12- a2t2=6+ a1t2解得t2=1s因此物块匀加速所用的时间为t 1+ t 2=4s两者相对位移为2x ∆= 3m ,所以A 正确。
C .物块开始减速的速度为v 3=6+ a 1t 2=8 m/s物块减速至静止所用时间为331v t a ==4s 传送带减速至静止所用时间为342v t a ==2s 该过程物块的位移为x 3=12a 1t 32=16m 传送带的位移为x 2=12a 2t 42=8m 两者相对位移为3x ∆=8m回滑不会增加划痕长度,所以划痕长为12x x x ∆=∆+∆=9m+3m=12mC 正确;D .全程相对路程为L =123x x x ∆+∆+∆=9m+3m+8m=20mQ =µmgL =80JD 正确; 故选ACD 。
一、第八章 机械能守恒定律易错题培优(难)1.如图所示,一根轻弹簧一端固定于O 点,另一端与可视为质点的小滑块连接,把滑块放在倾角为θ=30°的固定光滑斜面上的A 点,此时弹簧恰好水平。
将滑块从A 点由静止释放,经B 点到达位于O 点正下方的C 点。
当滑块运动到B 点时弹簧与斜面垂直,且此时弹簧恰好处于原长。
已知OB 的距离为L ,弹簧始终在弹性限度内,重力加速度为g ,则滑块由A 运动到C 的过程中( )A .滑块的加速度先减小后增大B .滑块的速度一直在增大C .滑块经过B gLD .滑块经过C 2gL 【答案】BC 【解析】 【分析】 【详解】AB .弹簧原长为L ,在A 点不离开斜面,则sin 3()sin c 3300os 0Lk mg L ︒≤-︒︒ 在C 点不离开斜面,则有()cos30cos30cos30Lk L mg -︒≤︒︒从A 点滑至C 点,设弹簧与斜面夹角为α(范围为30°≤α≤90°);从B 点滑至C 点,设弹簧与斜面的夹角为β,则2sin 30cos mg kx ma β︒-=可知下滑过程中加速度一直沿斜面向下且减小,选项A 错误,B 正确; C .从A 点滑到B 点,由机械能守恒可得21cos302p B mgL E mv ︒+=解得2cos30232p p B E E v gL g mg L L m︒+=+=>选项C 正确;D .从A 点滑到C 点,由机械能守恒可得21cos302P C L mgE mv '+=︒解得432222cos303p pCgLE ELv g gLm m'=+>+︒=选项D错误。
故选BC。
2.如图所示,竖直墙上固定有光滑的小滑轮D,质量相等的物体A和B用轻弹簧连接,物体B放在地面上,用一根不可伸长的轻绳一端与物体A连接,另一端跨过定滑轮与小环C 连接,小环C穿过竖直固定的光滑均匀细杆,小环C位于位置R时,绳与细杆的夹角为θ,此时物体B与地面刚好无压力。
一、第八章 机械能守恒定律易错题培优(难)1.如图所示,质量为1kg 的物块(可视为质点),由A 点以6m/s 的速度滑上正沿逆时针转动的水平传送带(不计两转轮半径的大小),传送带上A 、B 两点间的距离为8m ,已知传送带的速度大小为3m/s ,物块与传送带间的动摩擦因数为0.2,重力加速度为210m/s 。
下列说法正确的是( )A .物块在传送带上运动的时间为2sB .物块在传送带上运动的时间为4sC .整个运动过程中由于摩擦产生的热量为16JD .整个运动过程中由于摩擦产生的热量为28J 【答案】BD 【解析】 【分析】 【详解】AB .滑块先向右匀减速,根据牛顿第二定律有mg ma μ=解得22m/s a g μ==根据运动学公式有010v at =-解得13s t =匀减速运动的位移01063m 9m 8m 22v x t L +==⨯==> 物体向左匀加速过程,加速度大小仍为22m/s a =,根据运动学公式得物体速度增大至2m/s v =时通过的位移2212m 1m 222v x a ===⨯用时22s 1s 2v t a === 向左运动时最后3m 做匀速直线运动,有233=s 1s 3x t v == 即滑块在传送带上运动的总时间为1234s t t t t =++=物块滑离传送带时的速率为2m/s 。
选项A 错误,B 正确;C .向右减速过程和向左加速过程中,摩擦力为恒力,故摩擦力做功为110.211041J 6J f W f x x mg x x μ=--=--=-⨯⨯⨯-=-()()()选项C 错误;D .整个运动过程中由于摩擦产生的热量等于滑块与传送带之间的一对摩擦力做功的代数和,等于摩擦力与相对路程的乘积;物体向右减速过程,传送带向左移动的距离为114m l vt ==物体向左加速过程,传送带运动距离为222m l vt ==即121[]Q fS mg l x l x μ==++-()()代入数据解得28J Q =选项D 正确。
一、第八章机械能守恒定律易错题培优(难)1.一足够长的水平传送带上放置质量为m=2kg小物块(物块与传送带之间动摩擦因数为0.2μ=),现让传送带从静止开始以恒定的加速度a=4m/s2开始运动,当其速度达到v=12m/s后,立即以相同大小的加速度做匀减速运动,经过一段时间后,传送带和小物块均静止不动。
下列说法正确的是()A.小物块0到4s内做匀加速直线运动,后做匀减速直线运动直至静止B.小物块0到3s内做匀加速直线运动,之后做匀减速直线运动直至静止C.物块在传送带上留下划痕长度为12mD.整个过程中小物块和传送带间因摩擦产生的热量为80J【答案】ACD【解析】【分析】【详解】物块和传送带的运动过程如图所示。
AB.由于物块的加速度a1=µg=2m/s2小于传送带的加速度a2=4 m/s2,所以前面阶段两者相对滑动,时间12vta==3s,此时物块的速度v1=6 m/s,传送带的速度v2=12 m/s物块的位移x1=12a1t12=9m传送带的位移x2=12a2t12=18m两者相对位移为121x x x∆=-=9m此后传送带减速,但物块仍加速,B错误;当物块与传送带共速时,由匀变速直线运动规律得12- a2t2=6+ a1t2解得t 2=1s因此物块匀加速所用的时间为t 1+ t 2=4s两者相对位移为2x ∆= 3m ,所以A 正确。
C .物块开始减速的速度为v 3=6+ a 1t 2=8 m/s物块减速至静止所用时间为331v t a ==4s 传送带减速至静止所用时间为 342v t a ==2s 该过程物块的位移为x 3=12a 1t 32=16m 传送带的位移为x 2=12a 2t 42=8m 两者相对位移为 3x ∆=8m回滑不会增加划痕长度,所以划痕长为12x x x ∆=∆+∆=9m+3m=12mC 正确;D .全程相对路程为L =123x x x ∆+∆+∆=9m+3m+8m=20mQ =µmgL =80JD 正确;故选ACD 。
一、第八章机械能守恒定律易错题培优(难)1.一足够长的水平传送带上放置质量为m=2kg小物块(物块与传送带之间动摩擦因数为0.2μ=),现让传送带从静止开始以恒定的加速度a=4m/s2开始运动,当其速度达到v=12m/s后,立即以相同大小的加速度做匀减速运动,经过一段时间后,传送带和小物块均静止不动。
下列说法正确的是()A.小物块0到4s内做匀加速直线运动,后做匀减速直线运动直至静止B.小物块0到3s内做匀加速直线运动,之后做匀减速直线运动直至静止C.物块在传送带上留下划痕长度为12mD.整个过程中小物块和传送带间因摩擦产生的热量为80J【答案】ACD【解析】【分析】【详解】物块和传送带的运动过程如图所示。
AB.由于物块的加速度a1=µg=2m/s2小于传送带的加速度a2=4 m/s2,所以前面阶段两者相对滑动,时间12vta==3s,此时物块的速度v1=6 m/s,传送带的速度v2=12 m/s物块的位移x1=12a1t12=9m传送带的位移x2=12a2t12=18m两者相对位移为121x x x∆=-=9m此后传送带减速,但物块仍加速,B错误;当物块与传送带共速时,由匀变速直线运动规律得12- a2t2=6+ a1t2解得t2=1s因此物块匀加速所用的时间为t 1+ t 2=4s两者相对位移为2x ∆= 3m ,所以A 正确。
C .物块开始减速的速度为v 3=6+ a 1t 2=8 m/s物块减速至静止所用时间为331v t a ==4s 传送带减速至静止所用时间为 342v t a ==2s 该过程物块的位移为x 3=12a 1t 32=16m 传送带的位移为x 2=12a 2t 42=8m 两者相对位移为 3x ∆=8m回滑不会增加划痕长度,所以划痕长为12x x x ∆=∆+∆=9m+3m=12mC 正确;D .全程相对路程为L =123x x x ∆+∆+∆=9m+3m+8m=20mQ =µmgL =80JD 正确;故选ACD 。
2.如图所示,一根轻弹簧一端固定于O 点,另一端与可视为质点的小滑块连接,把滑块放在倾角为θ=30°的固定光滑斜面上的A 点,此时弹簧恰好水平。
将滑块从A 点由静止释放,经B 点到达位于O 点正下方的C 点。
当滑块运动到B 点时弹簧与斜面垂直,且此时弹簧恰好处于原长。
已知OB 的距离为L ,弹簧始终在弹性限度内,重力加速度为g ,则滑块由A 运动到C 的过程中( )A .滑块的加速度先减小后增大B .滑块的速度一直在增大C .滑块经过BD .滑块经过C【答案】BC【解析】【分析】【详解】AB .弹簧原长为L ,在A 点不离开斜面,则 sin 3()sin c 3300os 0L k mg L ︒≤-︒︒ 在C 点不离开斜面,则有 ()cos30cos30cos30L k L mg -︒≤︒︒从A 点滑至C 点,设弹簧与斜面夹角为α(范围为30°≤α≤90°);从B 点滑至C 点,设弹簧与斜面的夹角为β,则2sin 30cos mg kx ma β︒-=可知下滑过程中加速度一直沿斜面向下且减小,选项A 错误,B 正确;C .从A 点滑到B 点,由机械能守恒可得21cos302p B mgL E mv ︒+=解得B v ==>选项C 正确;D .从A 点滑到C 点,由机械能守恒可得 21cos302P C L mgE mv '+=︒ 解得C v =>=选项D 错误。
故选BC 。
3.如图所示,竖直墙上固定有光滑的小滑轮D ,质量相等的物体A 和B 用轻弹簧连接,物体B 放在地面上,用一根不可伸长的轻绳一端与物体A 连接,另一端跨过定滑轮与小环C 连接,小环C 穿过竖直固定的光滑均匀细杆,小环C 位于位置R 时,绳与细杆的夹角为θ,此时物体B 与地面刚好无压力。
图中SD 水平,位置R 和Q 关于S 对称。
现让小环从R 处由静止释放,环下落过程中绳始终处于拉直状态,且环到达Q 时速度最大。
下列关于小环C 下落过程中的描述正确的是( )A .小环C 、物体A 和轻弹簧组成的系统机械能不守恒B .小环C 下落到位置S 时,小环C 的机械能一定最大C .小环C 从位置R 运动到位置Q 的过程中,弹簧的弹性势能一定先减小后增大D .小环C 到达Q 点时,物体A 与小环C 的动能之比为cos 2θ 【答案】BD【解析】【分析】【详解】A .在小环下滑过程中,只有重力势能与动能、弹性势能相互转换,所以小环C 、物体A 和轻弹簧组成的系统机械能守恒,选项A 错误;B .小环C 下落到位置S 过程中,绳的拉力一直对小环做正功,所以小环的机械能一直在增大,往下绳的拉力对小环做负功,机械能减小,所以在S 时,小环的机械能最大,选项B 正确;C .小环在R 、Q 处时弹簧均为拉伸状态,且弹力大小等于B 的重力,当环运动到S 处,物体A 的位置最低,但弹簧是否处于拉伸状态,不能确定,因此弹簧的弹性势能不一定先减小后增大,选项C 错误;D .在Q 位置,环受重力、支持力和拉力,此时速度最大,说明所受合力为零,则有 cos C T m g θ=对A 、B 整体,根据平衡条件有2A T m g =故2cos C A m m θ=在Q 点将小环v 速度分解可知 cos Av v θ=根据动能212k E mv =可知,物体A 与小环C 的动能之比为 221cos 2122A AA k kQC m v E E m v θ== 选项D 正确。
故选BD 。
4.如图所示,一根轻质弹簧放在光滑斜面上,其下端与斜面底端的固定挡板相连,弹簧处于自然伸长状态。
第一次让甲物块从斜面上的A 点由静止释放,第二次让乙物块从斜面上的B 点由静止释放,两物块压缩弹簧使弹簧获得的最大弹性势能相同,两物块均可看作质点,则下列说法正确的是( )A .甲物块的质量比乙物块的质量大B .甲物块与弹簧刚接触时的动能大于乙物块与弹簧刚接触时的动能C .乙物块动能最大的位置在甲物块动能最大的位置下方D .将两物块释放的位置上移,两物块向下运动的过程中,动能最大的位置会下移【答案】BC【解析】【分析】【详解】A .由于两物块使弹簧获得的最大弹性势能相同,即两物块向下运动最低点的位置相同,根据机械能守恒可知,两物块减少的最大重力势能相同,由此可以判断甲物块的质量比乙物块的质量小,选项A 错误;B .从两物块与弹簧相接触到弹簧被压缩到最短的过程中,乙物块的质量大,则乙物块减小的重力势能大,所以其动能减小的少,选项B 正确;C .动能最大的位置是合外力为零的时候,由力的平衡可知,乙物块动能最大的位置在甲物块动能最大位置的下方,选项C 正确;D .由力的平衡可知,改变两物块释放的位置,两物块向下运动的过程中,动能最大的位置不会变,选项D 错误。
故选BC 。
5.如图所示,一个半径和质量不计的定滑轮O 固定在天花板上,物块B 和A 通过轻弹簧栓接在一起,竖直放置在水平地面上保持静止后,再用不可伸长的轻绳绕过滑轮连接物块A 和C ,物块C 穿在竖直固定的细杆上,OA 竖直,OC 间距l =3m 且水平,此时A 、C 间轻绳刚好拉直而无作用力。
已知物块A 、B 、C 质量均力2 kg 。
不计一切阻力和摩擦,g 取10m/s 2。
现将物块C 由静止释放,下滑h =4m 时物块B 刚好被提起,下列说法正确的是A .弹簧的劲度系数为20 N/mB .此过程中绳子对物块A 做的功为60JC .此时物块A 速度的大小为10m/s 41D .绳子对物块C 做功的大小等于物块A 动能的增加量【答案】AC【解析】【详解】A .初始时弹簧处于压缩状态,弹力等于A 的重力。
B 刚好被提起时,弹簧处于伸长状态,弹簧的弹力等于B 的重力。
由几何关系得,弹簧共伸长了2m 。
物块B 刚好被提起时弹簧的的形变量为:25m 3m x =-kx mg =解得弹簧的劲度系数为:20N/m k = 故A 正确。
BC .物块C 沿杆下滑的速度分解在沿绳子的方向和垂直的方向,当物块B 刚好被提起时:cos37A o C v v =B 的速度为零,弹簧由压缩变为伸长,形变量不变,储存的弹性势能始末两个状态相等,由整个系统动能定理得:2211222A C mgh mg x mv mv -=+ 解得: A 108m/s 41v = 所以C 正确。
对于A 物体,由动能定理得: 2122A W mg x mv -=解得: 640(40)41W J =+故B 错误。
D .对C 由动能定理得: 212T C mgh W mv -=解得绳子对C 做的功为: 2110002280(80)24141T C W mgh mv J J =-=-= 物块A 动能的增加量:21640241KA A E mv J ∆== 所以绳子对物块C 做功的大小不等于物块A 动能的增加量。
故D 错误。
6.如图,滑块a 、b 的质量均为m ,a 套在固定竖直杆上,与光滑水平地面相距,b 放在地面上.a 、b 通过铰链用刚性轻杆连接,由静止开始运动,不计摩擦,a 、b 可视为质点,重力加速度大小为,则A .a 减少的重力势能等于b 增加的动能B .轻杆对b 一直做正功,b 的速度一直增大C .当a 运动到与竖直墙面夹角为θ时,a 、b 的瞬时速度之比为tanθD .a 落地前,当a 的机械能最小时,b 对地面的压力大小为mg【答案】CD【解析】【分析】【详解】ab 构成的系统机械能守恒,a 减少的重力势能大于b 增加的动能.当a 落到地面时,b 的速度为零,故b 先加速后减速.轻杆对b 先做正功,后做负功.由于沿杆方向的速度大小相等,则cos sin a b v v θθ=故tan a bv v θ=当a 的机械能最小时,b 动能最大,此时杆对b 作用力为零,故b 对地面的压力大小为mg .综上分析,CD 正确,AB 错误;故选CD .7.如图所示,一个半径和质量不计的定滑轮O 固定在天花板上,物块B 和A 通过轻弹簧栓接在一起,竖直放置在水平地面上保持静止后,再用不可伸长的轻绳绕过滑轮连接物块A 和C ,物块C 穿在竖直固定细杆上,OA 竖直,OC 间距3m l =且水平,此时A 、C 间轻绳恰好拉直而无张力作用。
已知物块A 、B 、C 质量均为2kg 。
不计一切摩擦,g 取10m/s 2.现将物块C 由静止释放,下滑h =4m 时物块B 刚好被提起,下列说法正确的是( )A .弹簧劲度系数为20N/mB .此过程中A 、C 组成的系统机械能总和一直不变C .此时物块C 的速度大小为108m/s 41D .此时物块A 的速度大小为108m/s 41 【答案】AD【解析】【分析】【详解】A .初态时,弹簧的压缩量1mg x k= 根据勾股定理可知,C 下降h =4m 时,A 物体上升了2m ,根据题意可知2kx mg =122x x +=整理可得121m x x ==,20N/m k =A 正确;B .物体C 开始下降时,弹簧处于压缩状态,弹力对物体A 做正功,系统机械能增加,后来弹簧处于伸长状态,弹力对物体A 做负功,系统的机械能减小,B 错误;CD .由于弹簧的伸长量与压缩量相等,整个过程弹簧对A 物体做功等于零,因此A 、C 组成的系统,初态的机械能与末态的机械能相等22A C 1211()22mgh mv mv mg x x =+++ 设绳子与竖直方向夹角为θ ,由于A 、C 沿着绳的速度相等C A cos v v θ= 且4cos 5h l θ==整理得C 1010m/s 41v =,A 108m/s 41v = C 错误,D 正确。