基于霍尔传感器的转速测量)
- 格式:doc
- 大小:6.98 MB
- 文档页数:23
实验九霍尔转速传感器测速实验一、实验目的了解霍尔转速传感器的应用。
二、基本原理根据霍尔效应表达示U H=K H IB,当K H I不变时,在转速圆盘上装上N只磁性体,并在磁钢上方安装一霍尔元件。
圆盘每转一周,表面的磁场B从无到有就变化N次,霍尔电势也相应变化N次。
此电势通过放大、整形和计数电路就可以测量被测旋转体的转速。
三、需用器件与单元霍尔转速传感器、转速测量控制仪。
四、实验步骤1、根据图9-1,将霍尔转速传感器装于转动源的传感器调节支架上,探头对准转盘内的磁钢。
图9-1 霍尔转速传感器安装示意图2、将+15V直流电源加于霍尔转速器的电源输入端,红(+)、绿( ),不要接错。
3、将霍尔传感器输出端(黄线)接示波器或者频率计。
4、调节电动转速电位器使转速变化,用示波器观察波形的变化(特别注意脉宽的变化),或用频率计观察输出频率的变化。
五、实验结果分析与处理1、记录频率计六组输出频率数值如下:由以上数据可得:最快转速对应的频率f1=152.83Hz,最慢转速对应频率f6=20.1Hz。
随着转速的减小,脉宽T1逐渐变大,但占空比基本保持不变,而且速度不能无限减小。
六、思考题1、利用霍尔元件测转速,在测量上是否有所限制?答:有,测量速度不能过慢,因为磁感应强度发生变化的周期过长,大于读取脉冲信号的电路的工作周期,就会导致计数错误。
2、本实验装置上用了二只磁钢,能否只用一只磁钢?答:如果霍尔是单极的,可以只用一只磁钢,但可靠性和精度会差一些;如果霍尔是双极的,那么必须要有一组分别为n/s极的磁钢去开启关断它,那么至少要两只磁钢。
1。
南京大学毕业论文摘要在工程实践中,经常碰到需要测量转速的场合,而单片机作为一款性价比很高的微控制器在测速系统有着广泛的应用。
首先,本文叙述了单片机测量转速的系统构成及转速测量的几种常用方法。
其次,介绍了一种基于89C51单片机的电动机测速系统,该系统利用霍尔传感器产生脉冲信号,通过定时算法程序,将转速结果实时显示出来。
最后,对测量指标进行了分析、比较并提出改进方案。
关键词:单片机;转速测量;霍尔传感器Abstract(外语专业的需要)In engineering practice, often need to measure the rotational speed, micro controller and microcontroller as a very high price is widely used in the velocity measurement system. Firstly, this paper describes several methods of measuring speed and speed measurement system. Secondly, introduces a kind of motor speed measurement system based on 89C51 MCU, the system by Holzer sensor generates a pulse signal, through the timing algorithm procedures, will speed results in real time display. Finally, analyzed the measurement indexes, and put forward the improvement scheme.Keywords: singlechip ; tachometric survey ;speed目录摘要 (I)ABSTRACT(外语专业的需要) (II)第一章绪论 (1)1.1课题的背景 (1)1.2课题的目的及意义 (1)1.3设计思路与内容 (1)第二章基于单片机的转速测量原理 (3)2.1转速的测量原理 (3)2.2转速的测量方法 (3)2.2.1测频法“M法” (3)2.2.2测周期法“T法” (4)2.2.3测频测周法M/T法 (5)2.3误差和精度分析 (5)2.3.1“M法”测量误差分析 (5)2.3.2“T法”测量误差分析 (6)2.3.3“M/T法”测量误差分析 (6)第三章霍尔传感器测转速系统的单元电路介绍 (8)3.1单片机的介绍 (8)3.2霍尔传感器选型 (10)3.3开关霍尔传感器的性能分析 (10)3.4系统显示电路介绍 (12)3.4.1 74HC595的介绍 (12)3.4.2 数码管介绍 (13)第四章电路的硬件设计 (15)4.1设计的方框图 (15)4.2程序流程图 (16)4.2单元电路的设计 (17)4.2.1单片机主控电路设计 (17)4.2.2脉冲产生电路设计 (18)4.2.3按键电路设计 (19)4.2.4数码管结构和显示原理 (20)4.3电路的整机原理图的设计(分析工作原理) (21)第五章软件设计 (23)5.1单片机转速程序设计思路及过程 (23)5.1.1单片机程序设计思路 (23)5.1.2单片机转速计算程序 (23)5.1.3二-十进制转换程序 (24)5.2程序设计 (26)第六章总结与展望 (27)致谢 (28)参考文献 (29)第一章绪论1.1课题的背景在直流电机的多年实际运行的过程中,机械测速电机不足之处日益明显,其主要表现为直流测速电机DG中的炭刷磨损及交流测速发电机TG中的轴承磨损,增加了设备的维护工作量,也随着增加了发生故障的可能性;同时机械测速电机在更换炭刷及轴承的检修作业过程中,需要将直流电动机停运,安装过程中需要调整机械测速电机轴与主电机轴的同轴度,延长了检修时间,影响了设备的长期平稳运行。
霍尔传感器测转速报告一、引言转速测量是许多工业应用中的重要环节,可以用于监控机械设备的状态、调整设备的运行参数以及判断设备是否正常工作。
为了实现转速测量,人们通常使用霍尔传感器这样的设备。
本文将介绍霍尔传感器的原理、测量转速的方法以及该方法的优势。
二、霍尔传感器的原理霍尔传感器是一种基于霍尔效应的传感器,通过测量磁场的变化来感知物体的位置、运动或者其他相关信息。
其工作原理如下:1.当电流通过霍尔元件时,会产生一个与电流方向垂直的磁场。
2.当磁场通过霍尔元件时,会在其两端产生电势差。
3.电势差的大小与磁场的强度成正比,可以被测量。
三、转速测量方法基于霍尔传感器的转速测量方法如下:1.将霍尔传感器安装在待测转动物体的表面上,使其与物体的运动轨迹保持一定的距离。
2.通过霍尔传感器采集到的电势差数据,可以计算出物体的转速。
3.可以通过采集连续的电势差数据,求取其平均值,从而提高测量精度。
4.如果转速过高,可以通过减小采样间隔或者使用更高精度的霍尔传感器来提高测量精度。
四、优势与其他传统的转速测量方法相比,基于霍尔传感器的转速测量具有以下优势:1.霍尔传感器可以非接触地测量转速,不会对待测物体产生摩擦和测量误差。
2.霍尔传感器体积小巧、重量轻,易于安装和使用。
3.霍尔传感器的响应速度快,可以实时获取转速数据。
4.霍尔传感器的测量范围广,可以适用于不同转速的测量需求。
五、总结霍尔传感器是一种基于霍尔效应的传感器,可以用于测量转速。
本文介绍了霍尔传感器的工作原理、转速测量方法以及其优势。
相比传统的转速测量方法,基于霍尔传感器的转速测量具有非接触、高精度和快速响应的特点,适用于许多工业应用中的转速监测和控制。
霍尔传感器测量电机转速一、背景随着单片机的不断推陈出新,特别是高性价比的单片机的涌现,转速测量控制普遍采用了以单片机为核心的数字化、智能化的系统。
本文介绍了一种由单片机C8051F060作为主控制器,使用霍尔传感器进行测量的直流电机转速测量系统。
二、工作原理1、转速测量原理转速的测量方法很多,根据脉冲计数来实现转速测量的方法主要有M法(测频法)、T法(测周期法)和MPT法(频率周期法),该系统采用了M法(测频法)。
由于转速是以单位时间内转数来衡量,在变换过程中多数是有规律的重复运动。
根据霍尔效应原理,将一块永久磁钢固定在电机转轴上的转盘边沿,转盘随测轴旋转,磁钢也将跟着同步旋转,在转盘下方安装一个霍尔器件,转盘随轴旋转时,受磁钢所产生的磁场的影响,霍尔器件输出脉冲信号,其频率和转速成正比。
脉冲信号的周期与电机的转速有以下关系:式中:n为电机转速;P为电机转一圈的脉冲数;T为输出方波信号周期根据式(1)即可计算出直流电机的转速。
霍尔器件是由半导体材料制成的一种薄片,在垂直于平面方向上施加外磁场B,在沿平面方向两端加外电场,则使电子在磁场中运动,结果在器件的2个侧面之间产生霍尔电势。
其大小和外磁场及电流大小成比例。
霍尔开关传感器由于其体积小、无触点、动态特性好、使用寿命长等特点,故在测量转动物体旋转速度领域得到了广泛应用。
在这里选用美国史普拉格公司(SPRAGUE)生产的3000系列霍尔开关传感器3013,它是一种硅单片集成电路,器件的内部含有稳压电路、霍尔电势发生器、放大器、史密特触发器和集电极开路输出电路,具有工作电压范围宽、可靠性高、外电路简单<输出电平可与各种数字电路兼容等特点。
2、转速控制原理直流电机的转速与施加于电机两端的电压大小有关,可以采用C8051F060片内的D/A转换器DAC0的输出控制直流电机的电压从而控制电机的转速。
在这里采用简单的比例调节器算法(简单的加一、减一法)。
简述霍尔式转速传感器的检测方法
霍尔式转速传感器是一种常用的转速传感器,通过检测霍尔效应
来实现对转速的测量。
以下是霍尔式转速传感器的检测方法:
1. 校准:霍尔式转速传感器需要经过校准才能准确测量转速。
校准方法一般为将传感器固定在一个已知转速的电机上,观察传感器输
出的脉冲数或电压值是否与电机转速相匹配,如果不匹配则需要进行
校准。
2. 测量输出电压:霍尔式转速传感器通常输出一个霍尔电压,这
个电压与电机转速成正比。
可以通过测量输出电压来估算电机转速。
3. 测量输出脉冲数:霍尔式转速传感器也输出一个脉冲数,这个
脉冲数与电机转速成反比。
可以通过测量输出脉冲数来估算电机转速。
4. 使用比较器:可以使用比较器来比较传感器输出脉冲数和电
机转速,从而估算电机转速。
需要注意的是,霍尔式转速传感器的输出精度受到霍尔元件本身
的影响,同时也受到机械损耗和电流误差等因素的影响,因此需要进
行校准和不断优化,以提高测量精度和稳定性。
霍尔传感器测量转速原理
霍尔传感器是一种基于霍尔效应原理的传感器,可以用于测量转速、位置、磁场等物
理量。
在测量转速时,霍尔传感器被安装在旋转物体的表面上,当旋转物体通过传感器时,会产生磁场变化,霍尔传感器可以测量出这种磁场变化,并从中计算出旋转物体的转速。
在霍尔传感器测量转速时,需要注意以下几个方面:
1.传感器的安装位置:传感器的位置应该尽可能靠近旋转轴心,保持与旋转轴心间的
距离尽量小,这样可以最大程度地提高测量的精度。
2.磁场变化的探测:传感器需要探测旋转物体所产生的磁场变化,因此需要使用磁铁
或者其他磁性材料来产生磁场。
磁铁应该与传感器保持一定的距离,以避免磁场过强影响
传感器的工作。
3.霍尔元件的特性:霍尔元件在磁场变化时会产生电压信号,这个信号的大小与磁场
变化的大小成正比。
不同的霍尔元件具有不同的灵敏度和线性度,因此需要选择合适的元件,以保证测量的精度和可靠性。
4.信号处理和计算:传感器采集到的信号需要进行放大、滤波、A/D转换等处理,最
终计算出旋转物体的转速。
为了提高测量精度和稳定性,可以采用多种信号处理技术,如
数字滤波、PID调节等。
基于霍尔传感器的电机转速测量系统设计作者:张玲娜毛敏来源:《山东工业技术》2015年第21期摘要:本文提出了基于MSP430为核心的最小化系统。
通过霍尔传感器实现了对电机的转速测量,通过放大与滤波电路后经过MSP430单片机数字量接口完成脉冲计数,经过换算成真实的转速值后实现LED显示及串口的发送的功能。
如果电机转速超速,则系统报警。
关键词:电机转速测量;霍尔传感器;MSP430单片机DOI:10.16640/ki.37-1222/t.2015.21.1300 引言在工厂车间与汽车、火车等交通工具中,人们经常遇到测量电极转动速度的问题,并且在此问题的基础上需要解决按照自己的目的设定电机转速的问题。
例如,在发电机、卷扬机、造纸机械中电机设备中要实现转速的控制,并且要连续时间内实施采集控制目标的速度值以保证系统的安全性。
或者分时的对目标检测并显示其转速。
这时,我们首先要求等过获取电机运行时的正确速度,即要求传感器的精确测量,并且保证系统能够实时性反应生产状况,所以要求传感器能够准确测量瞬时转速。
1 系统设计本系统设计了一个MSP430单片机整体系统,利用单片机的数量捕捉功能以及AD转换完成对外部数据的采集,利用PWM完成对外部电机的控制。
选用适合电机测速的霍尔传感器,测量电机的速度,同时选择合理的LCD显示器件,实现与单片机引脚匹配并实现动态显示,显示过程中使系统具备实时显示的能力,如果转速超过设定值,则实现在调速系统中的声光报警功能。
单片机作为微控制器MCU,在不同工业现场的控制系统中,如适应性控制系统、数据的采集与处理系统中得到了充分的运用。
在控制领域中,主流上舍弃之前模拟式控制方法,改为通用嵌入式计算机实现控制功能。
大部分的控制系统都可以用以单片机为核心的系统或单片机加通用机系统来代替。
在单片机对电动机测量测量与控制系统中,其典型系统结构图如图1所示,整个系统由模拟信号采集过程、人机交互过程、信号显示设备、实时报警设备、实时存储设备、信号输出设备等功能来实现。
测试技术应用案例(霍尔传感器测量转速)
班级:
学号:
姓名:
霍尔传感器测量转速
一.霍尔传感器的优点
1.测量范围广:霍尔传感器可以测量任意波形的
电流和电压,如:直流、交流、脉冲波形等。
2.精度高:在工作温度区内精度优于1%,该精度
适合于任何波形的测
3.线性度好:优于
金属导体、半导
物理现象。
当电
的方向施加磁场,。
利用霍尔效应
差U H的基本关系
为:
U H=K H IB K H =1/nq(金属)
式中K H――霍尔系数;n――单位体积内载流子或自由电子的个数;q――电子电量;I――通过的电流;
B――垂直于I的磁感应强度;
利用霍尔效应表达式:U H=K H IB , 当被测物体上装上N只磁性体时,物体每转一周磁场就变化N次,霍尔电势相应变化N次,输出电势通过放大、整形和计数电路就可以测量被测旋转物的转速。
三.测量设备
本案例以实验室霍尔元件测量
实验设备:CSY2000系列传感器与
位半数显表。
(可调)
5V直流源、转速
转速显示部分。
电源输入端。
)插入数显单元
Fin端。
4.将转速调节中的2V-24V转速电源引入到台面上
转动单元中转动电源2-24VK插孔。
5.将数显单元上的转速/频率表波段开关拨到转
速档,此时数显表指示转速。
6.调节转速调节电压使转动速度变化。
观察数显
表转速显示的变化。
五.实验结果计算
磁体经过霍尔元件,霍尔元件就会发出就会发出一个信号,经放大整形得到脉冲信号,两个脉冲的间隔时间即为周期,通过周期就。
成绩评定:传感器技术课程设计题目基于霍尔传感器的转速测量摘要转速是发动机重要的工作参数之一,也是其它参数计算的重要依据。
针对工业上常见的发动机设计了以单片机STC89C51为控制核心的转速测量系统。
系统利用霍尔传感器作为转速检测元件,并利用设计的调理电路对霍尔转速传感器输出的信号进行滤波和整形,将得到的标准方波信号送给单片机进行处理。
实际测试表明,该系统能满足发动机转速测量要求。
关键词:转速测量,霍尔传感器,信号处理,数据处理目录一、设计目的------------------------- 1二、设计任务与要求--------------------- 12.1设计任务------------------------- 12.2设计要求------------------------- 1三、设计步骤及原理分析 ----------------- 13.1设计方法------------------------- 2 3.2设计步骤------------------------- 23.3设计原理分析--------------------- 16四、课程设计小结与体会 ---------------- 16五、参考文献------------------------- 16一、设计目的1.学习基本理论在实践中综合运用的初步禁言,掌握模拟电路的设计的基本方法,设计步骤,培养综合设计与实物调试能力。
2.学会霍尔传感器的设计方法和性能指标测试。
3.进一步了解霍尔传感器的组成框图和各个单元的工作原理以及相互之间的联系。
4.培养实践技能,提高分析和解决问题的能力。
5.提高自己对文献资料的搜索和信息处理能力。
二、设计任务与要求2.1设计任务1、查阅传感器有关方面的相关资料,了解此方面的发展状况。
2、掌握所用器件的特性。
3、采用合理的设计方案。
4、设计、实现该系统。
5、撰写设计报告。
2.2设计要求1.掌握霍尔传感器的使用方法2.熟悉使用单片机测量转速三、设计步骤及原理分析3.1设计方法系统由传感器、信号预处理电路、处理器、显示器和系统软件等部分组成。
传感器部分采用霍尔传感器,负责将电机的转速转化为脉冲信号。
信号预处理电路包含待测信号放大、波形变换、波形整形电路等部分,其中放大器实现对待测信号的放大,降低对待测信号的幅度要求,实现对小信号的测量;波形变换和波形整形电路实现把正负交变的信号波形变换成可被单片机接受的TTL/CMOS兼容信号。
处理器采用STC89C51单片机,显示器采用8位LED数码管动态显示。
系统原理框图如图1所示:图1系统软件主要包括测量初始化模块、信号频率测量模块、浮点数算术运算模块、浮点数到BCD码转换模块、显示模块、按键功能模块、定时器中断服务模块。
系统软件框图如图2所示。
图23.2设计步骤1 单片机主控电路设计系统选用 STC89C51 作为转速信号的处理核心。
STC89C51 包含2 个16位定时/计数器、4K×8 位片内 FLASH 程序存储器、4个8位并行I/O口。
16 位定时/计数器用于实现待测信号的频率测量。
8位并行口P0、P2用于把测量结果送到显示电路。
4K×8 位片内FLASH程序存储器用于放置系统软件。
STC89C51与具有更大程序存储器的芯片管脚兼容,如:89C52(8K×8 位)或 89C55(32K×8 位),为系统软件升级打下坚实的物质基础。
STC89C51最大的优点是:可直接通过计算机串口线下载程序,而无需专用下载线和编程器。
STC89C51单片机是在一块芯片中集成了CPU、RAM、ROM、定时器/计数器和多功能I/O口等一台计算机所需要的基本功能部件。
其基本结构框图如图3.1,包括:·一个8位CPU;·4KB ROM;·128字节RAM数据存储器;·21个特殊功能寄存器SFR;· 4个8位并行I/O口,其中P0、P2为地址/数据线,可寻址64KB ROM或64KB RAM;·一个可编程全双工串行口;·具有5个中断源,两个优先级,嵌套中断结构;·两个16位定时器/计数器;·一个片内震荡器及时钟电路;计数脉冲输入T0 T1中断输入图3 STC89C51单片机结构框图STC89C51系列单片机中HMOS工艺制造的芯片采用双列直插(DIP)方式封装,有40个引脚。
STC89C51单片机40条引脚说明如下:正常运行和编程校验(8051/8751)时为5V电(1)电源引脚。
VCC为接地端。
源,VSS(2)I/O总线。
P0.0- P7.0(P0口),P0.1- P7.1(P1口),P0.2- P7.2(P2口),P0.3- P7.3(P3口)为输入/输出引线。
(3)时钟。
XTAL1:片内震荡器反相放大器的输入端。
XTAL2:片内震荡器反相放器的输出端,也是内部时钟发生器的输入端。
(4)控制总线。
由P3口的第二功能状态和4根独立控制线RESET、EA、ALE、PSEN组成。
值得强调的是,P3口的每一条引脚均可独立定义为第一功能的输入图4单片机的片外总线结构:①地址总线(AB):地址总线宽为16位,因此,其外部存储器直接寻址为64K字节,16位地址总线由P0口经地址锁存器提供8位地址(A0至A7);P2口直接提供8位地址(A8至A15)。
②数据总线(DB):数据总线宽度为8位,由P0提供。
③控制总线(CB):由P3口的第二功能状态和4根独立控制线RESET、EA、ALE、PSEN组成。
2 脉冲产生电路设计LM358内部包括有两个独立的、高增益、内部频率补偿的双运算放大器,适合于电源电压范围很宽的单电源使用,也适用于双电源工作模式,在推荐的工作条件下,电源电流与电源电压无关。
它的使用范围包括传感放大器、直流增益模块和其他所有可用单电源供电的使用运算放大器的场合。
LM358的封装形式有塑封8引线双列直插式和贴片式。
特性:∙内部频率补偿∙直流电压增益高(约100dB)∙单位增益频带宽(约1MHz)∙电源电压范围宽:单电源(3—30V)∙双电源(±1.5一±15V)∙低功耗电流,适合于电池供电∙低输入偏流∙低输入失调电压和失调电流∙共模输入电压范围宽,包括接地∙差模输入电压范围宽,等于电源电压范围∙输出电压摆幅大(0至Vcc-1.5V)如图5所示,信号预处理电路为系统的前级电路,其中霍尔传感元件b,d为两电源端,d接正极,b接负极;a,c两端为输出端,安装时霍尔传感器对准转盘上的磁钢,当转盘旋转时,从霍尔传感器的输出端获得与转速率成正比的脉冲信号,传感器内置电路对该信号进行放大、整形,输出良好的矩形脉冲信号,图中LM358部分为过零整形电路使输入的交变信号更精确的变换成规则稳定的矩形脉冲,便于单片机对其进行计数。
图63.4 数据显示电路设计3.4.1 数码管结构和显示原理图8为数码管的引脚接线图,实验板上以P0口作输出口,经74LS244驱动,接8只共阳数码管S0-S7。
表7为驱动LED数码管的段代码表为低电平有效,1-代表对应的笔段不亮,0-代表对应的笔段亮。
若需要在最右边(S0)显示“5”,只要将从表中查得的段代码64H写入P0口,再将P2.0置高,P2.1-P2.7置低即可。
设计中采用动态显示,所以其亮度只有一个LED数码管静态显示亮度的八分之一。
图8数码管的引脚接线这里设计的系统先用 6 位LED数码管动态显示小型直流电机的转速。
当转速高于六位所能显示的值(999999)时就会自动向上进位显示。
3.4.2 缓冲器74LS244系统总线中的地址总线和控制总线是单向的,因此驱动器可以选用单向的,如74LS244。
74LS244还带有三态控制,能实现总线缓冲和隔离,74LS244是一种三态输出的八缓冲器和线驱动器,该芯片的逻辑电路图和引脚图如图3.5所示。
从图可见,该缓冲器有8个输入端,分为两路——1A1~1A4,2A1~2A4。
同时8个输出端也分为两路——1Y1~1Y4,2Y1~2Y4,分别由2个门控信号1G和2G控制,/1G, /2G三态允许端(低电平有效)。
当1G为低电平时,1Y1~1Y4的电平与1A1~1A4的电平相同,即输出反映输入电平的高低;同样,当2G为低电平时,2Y1~2Y4的电平与2A1~2A4的电平相同。
而当1G(或2G)为高电平时,输出1Y1~1Y4(或2Y1~2Y4)为高阻态。
经74LS244缓冲后,输入信号被驱动,输出信号的驱动能力加大了。
74LS244缓冲器主要用于三态输出的存储地址驱动器、时钟驱动器和总线定向接收器和定向发送器等。
常用的缓冲器还有74LS240,241等。
图9 74LS244逻辑电路图74LS244的极限参数如下:电源电压 (7V)输入电压………………………………………………5.5V输出高阻态时高电平电压……………………………5.5V利用上述器件设计的显示电路如图3.6所示。
8个共阳的LED 数码管(S0-S7)同名的引脚连接在一起,由单片机P0口通过74LS244驱动(段控制),R12-R19 为限流电阻。
单片机P2口的8个引脚分别通过三极管Q0-Q7控制8个LED 数码管的公共端(位控制)。
单片机的主时钟为12MHz 。
P0口 和 P2口都是准双向口,输出时需要接上拉电阻。
P0内部没有上拉电阻,P2口内部有弱上拉。
所以P0口外围电路设计为低电平有效,高电平无效。
要使数码管S0-S7的其中一个亮,其对应的P2端口要置高,P2的其余端口置低。
如要让S0数码管亮,则要将P2.0置高,P2.1-P2.7置低即可。
系统将定时把显示缓冲区的数据送出,在数码管LED 上显示。
3.5 稳压电源设计如图3.7所示为5-12V 连续可调稳压电源,采用L4960芯片制作的输出电流可达10A ,输出电压在5-12V 间连续可调,是一个实用的开关型稳压电源。
其工作原理为:220V 交流电源经变压器T1降压,桥堆VD1整流,C1、C2滤波后得到一直流电压。
IC 第①、②脚为直流电压输入端,其最高输入电压为+40V 。
该直流电压经IC 内部的振荡器调制为200kHz 左右的高频开关电压,振荡器的开关频率由外接振荡电容器C4决定。
当C4的值取为3300pF 时,电源的开关频率约为200kHz ;R3、C6为环路调节放大器的频率补偿网络,由第7脚输入。
IC 第④脚为抑制输入端,其闭锁电压的阈值为0.7V ,输出电压经取样电阻R2反馈至第④脚后与R1比较,当阈值电压大于0.7V 时,输出关闭,起到短路过流保护作用。
第6脚为输出电压调节控制端,由电位器RP1及电阻R4将输出电压分压后得到调节电压检测值,调节电位器RP1可控制输出电压的大小,输出电压值可由公式:VO=Vref (){}4/1R R R L h ++进行估算。