232264510中文资料
- 格式:pdf
- 大小:47.29 KB
- 文档页数:2
6-Channel Audio Processor IC PT2322Fax: 886-2-29174598URL:DESCRIPTIONPT2322 is a 6-Channel Audio Processor IC utilizing CMOS Technology specially designed for audio applications. 6-channel individual input, 6-channel master volume control, 6-channel individual volume trim control, 3-band tone control (treble, middle, and bass), mute function, 3D effect function, tone defeat function are all built into a single chip having the highest performance and reliability with the least components. Furthermore, the pin assignments and application circuit are optimized for easy PCB Layout and cost saving benefits. Housed in 28 pins, DIP or SO Package, PT2322 is the ultimate answer to your every audio system needs.FEATURES•Very Low Power Consumption (DC=9V)•I 2C Bus Control•6-Channel Individual Input•6-Channel Master Volume Control: 0 to -79 dB (1 dB/step)•6-Channel Individual Output TRIM Volume Control: 0 to -15 dB (1dB/step)•3-Band Tone Control (Treble, Middle, Bass): + 14dB , 2dB/step •Mute Function •3D Effect Function •Tone Defeat Function •Low Noise•High Channel Separation •Low Harmonic Distortion •Least External Components •Easy to Use•Available in 28-pin, DIP or SO PackageAPPLICATIONS•Audio/Video System •Multi-Media Speakers •TV System •PC Audio•AC3 Amplifier System6-Channel Audio Processor ICPT2322Fax: 886-2-29174598URL:APPLICATION CIRCUITF R O N T F R O N T C E N T E S U R R O U N S U R R O U N S U B W O O F E F R O N T L F R O N T RC E N T E RS U B W O O F E RS U R R O U N D LS U R R O U N D R6-Channel Audio Processor IC PT2322Fax: 886-2-29174598URL:ORDER INFORMATIONO r d e r P a r t N u m b e rP a c k a g e T y p eT o p C o d e P T 232228 P i n s , D I P P a c k a g e (600 m i l )P T 2322P T 2322-S28 P i n s , S O P a c k a g e (330 m i l )P T 2322-S。
W25Q64BV出版日期:2010年7月8日- 1 - 版本E64M位与串行闪存双路和四路SPIW25Q64BV- 2 -目录1,一般DESCRIPTION (5)2。
FEATURES (5)3引脚配置SOIC208-MIL.......................................... .. (6)4,焊垫配置WSON8X6-MM.......................................... . (6)5,焊垫配置PDIP300-MIL.......................................... . (7)6引脚说明SOIC208密耳,PDIP300密耳和WSON8X6-MM................................ 7......7引脚配置SOIC300mil的.......................................... .. (8)8引脚SOIC封装说明300-MIL (8)8.1包装Types (9)8.2片选(/CS) (9)8.3串行数据输入,输出和IO(DI,DO和IO0,IO1,IO2,IO3)............................. 9.......8.4写保护(/WP) (9)8.5控股(/HOLD) (9)8.6串行时钟(CLK) (9)9座DIAGRAM (10)10功能DESCRIPTION (11)10.1 SPI OPERATIONS (11)10.1.1标准SPI Instructions (11)10.1.2双SPI Instructions (11)10.1.3四路SPI Instructions (11)10.1.4保持功能 (11)10.2写保护 (12)10.2.1写保护Features (12)11,控制和状态寄存器............................................ .. (13)11.1状态REGISTER (13)11.1.1 BUSY (13)11.1.2写使能锁存(WEL) (13)11.1.3块保护位(BP2,BP1,BP0)..................................... .. (13)11.1.4顶/底块保护(TB)....................................... .................................................. ..1311.1.5部门/块保护(SEC) (13)11.1.6状态寄存器保护(SRP,SRP0)....................................... . (14)11.1.7四路启用(QE) (14)11.1.8状态寄存器内存保护........................................... .. (16)11.2 INSTRUCTIONS (17)11.2.1制造商和设备标识........................................... .. (17)11.2.2指令集表1 (18)W25Q64BV11.2.3指令表2(阅读说明书)....................................... (19)出版日期:2010年7月8日- 3 - 修订版E11.2.4写使能(06h) (20)11.2.5写禁止(04h) (20)11.2.6读状态寄存器1(05H)和读状态寄存器2(35H).............................. (21)11.2.7写状态寄存器(01H)......................................... .................................................. .. (22)11.2.8读取数据(03h) (23)11.2.9快速阅读(0Bh) (24)11.2.10快速读双输出(3BH)........................................ .................................................. 0.25 11.2.11快速读四路输出(6BH)........................................ .. (26)11.2.12快速读双I / O (BBh) (27)11.2.13快速读取四I/ O (EBh) (29)11.2.14八进制字读取四I/ O(E3H)..................................... (31)11.2.15页编程(02h) (33)11.2.16四路输入页编程(32H)........................................ . (34)11.2.17扇区擦除(20H) (35)11.2.1832KB的块擦除(52H) (36)11.2.1964KB的块擦除(D8h) (37)20年2月11日芯片擦除(C7H/ 60h) (38)21年2月11日擦除挂起(75h) (39)22年2月11日擦除恢复(7Ah) (40)23年11月2日掉电(B9h) (41)24年2月11日高性能模式(A3H)......................................... (42)25年2月11日发布掉电或高性能模式/设备ID(ABH) (42)26年2月11日读制造商/设备ID(90H)....................................... . (44)27年2月11日阅读唯一的ID号(4BH)........................................ . (45)28年2月11日读JEDEC的ID (9Fh) (46)29年2月11日连续读取模式复位(FFH或FFFFH)...................................... .. (47)12,电气特性.............................................. (48)12.1绝对最大Ratings (48)12.2操作范围 (48)12.3上电时序和写抑制阈值......................................... (49)12.4直流电气Characteristics (50)12.5 AC测量条件.............................................. .. (51)12.6 AC电气Characteristics (52)12.7 AC电气特性(续)......................................... . (53)12.8串行输出Timing (54)12.9输入Timing (54)12.10持有Timing (54)13包装SPECIFICATION (55)W25Q64BV13.18引脚SOIC208密耳(包装代号SS)..................................... .. (55)- 4 -13.28引脚PDIP300密耳(封装代码DA)..................................... (56)13.38触点WSON8x6毫米(封装代码ZE)....................................... (57)13.416引脚SOIC300密耳(封装代码SF)..................................... . (58)14订货INFORMA TION (59)14.1有效的部件号和顶端标记.......................................... (60)15版本HISTORY (61)W25Q64BV出版日期:2010年7月8日- 5 - 修订版E1概述该W25Q64BV(64M位)串行Flash存储器提供了有限的系统存储解决方案空间,引脚和电源。
簡介PT2322為一專為滿足現代多聲道AV前置控制功能所設計的IC,備六聲道主音量控制,六聲道獨立音量輸出微調控制器,高、中、低音三段音調控制器,並整合了靜音功能、3D音效及音調控制啟動開關等功能於一體,可說是目前同類產品中功能最完整的設計,並且絕對能滿足嚴苛的功能及設計需求。
特色•採CMOS製程,DC 9V供電,耗電極低•採I2C控制介面•1組六聲道輸入•六聲道0~-79dB( 1dB Step )主音量控制器+六聲道獨立0~-15dB( 1dB Step )輸出音量微調控制器•高、中、低音三段音調控制器( 每段±14dB,2dB/Step )•含靜音開關及3D音效,音調控制啟動開關( Tone defeat )功能•低失真,低噪訊及高聲道分離度•外部需求元件極少,簡單易用•提供DIP及SO 28 pin包裝方塊圖腳位圖腳位敘述腳位名稱I/O 敘述腳位編號RCMID2_FR — 右聲道中音控制器外接電容2 1 RCMID1_FR — 右聲道中音控制器外接電容1 2右聲道高音控制器外接電容到地 3 CTRE_FR —右前聲道輸入端 4 IN_R1 I右後聲道輸入端 5 IN_SR I副低頻聲道輸入端 6 IN_SUB I1/2VCC參考電位7 VREF O接地端8 GND —中央聲道輸入端9 IN_CT I左後聲道輸入端10 IN_SL I左前聲道輸入端11 IN_FL I左聲道高音控制器外接電容到地12 CTRE_FL —RCMID1_FL — 左聲道中音控制器外接電容1 13 RCMID2_FL — 左聲道中音控制器外接電容2 14 RCBAS1_FL — 左聲道低音控制器外接電容1 15 RCBAS2_FL — 左聲道低音控制器外接電容2 16左前聲道輸出端17 OUT_FL O左後聲道輸出端18 OUT_SL O中央聲道輸出端19 OUT_CT O正電源輸入端20 VCC —副低頻聲道輸出端21 OUT_SUB O右後聲道輸出端22 OUT_SR O右前聲道輸出端23 OUT_FR OI2C控制介面CLOCK 24 SCL II2C控制介面DATA 25 SDA I接地端26 GND —RCBAS2_FR — 右聲道低音控制器外接電容2 27 RCBAS1_FR — 右聲道低音控制器外接電容1 28序列匯流排(I2C BUS)功能敘述序列匯流排介面(I2C BUS INTERFACE)藉由使用SDA和SCL匯流排,可使PT2322與微處理機間做資料的傳輸。
Varistors2322 59. .....Vishay BCcomponentsFEATURES• Zinc oxide disc, epoxy coated • Straight leads• Straight leads with flange (2322 592 and 593 series only) •Kinked leads.APPLICATION• Suppression of transients.DESCRIPTIONThe varistors consist of a disc of low- β ceramic material with two tinned solid copper leads. They are coated with a layer of ochre coloured epoxy, which provides electrical, mechanical and climatic protection. The encapsulation is resistant to all cleaning solvents in accordance with “IEC 60068-2-45” .MOUNTINGThe varistors are suitable for processing on automatic insertion and cutting and bending equipment.Varistors with flanged leads provide better positioning on printed-circuit boards (PCB) and more accurate control over component height. This is important for hand mounting and automatic insertion techniques; see Outlines of flanged leads drawing. Soldering≤ 240 ° C ; duration ≤ 5 s .Resistance to heat ≤ 260 ° C; duration ≤ 5 s.MARKINGThe varistors are marked with the following information: • Maximum continuous RMS voltage• Series number (592, 593, 594, 595 or 596) • Manufacturers logo • Date of manufacture.INFLAMMABILITYThe varistors are non-flammable.ORDERING INFORMATIONThe varistors are available in a number of packaging options: • Bulk• On tape on reel• On tape in ammopack.The basic ordering code for each option is given in tables titled Varistors on Tape on Reel, Varistors on Tape in Ammopack and Varistors in Bulk. To complete the catalog number and to determine the required operating parameters,see Electrical Data and Ordering Information table.元器件交易网元器件交易网Varistors Vishay BCcomponents2322 59. .....Vishay BCcomponentsVaristors1.Lists with products certified according to UL (E98144), VDE (122380E), CSA (219883) and CECC (42201-001) are available at or on request.2.The sinusoidal voltage is assumed as the normal operating condition. If a non-sinusoidal voltage is present, type selection should be basedon multiplying the peak voltage by a factor of 0.707.3.The voltage measured at 1 mA meets the requirements of “paragraph 4.3 of CECC specification 42000” .The tolerance on the voltage at 1 mA is ± 10%.4.High energy surges are generally of longer duration. The maximum energy for one pulse of 10 × 1000 µs is given as a reference for longerduration pulses. This pulse can be characterised by peak current (I p ) and pulse width t 2 (virtual time of half I p value, following “IEC 60060-2, section 6” ). If V p is the clamping voltage corresponding to I p , the energy absorbed in the varistor is determined by the formula:where:a)K is dependent on the value of t 2 when the value of t 1 is between 8 µs and 10 µs; see Peak Current as a Function of Pulse Width drawing.5. A current wave of 8 × 20 µs (requirement of “paragraph B.2.10.1 of CECC specification 42000” ) is used as a standard for pulse current andclamping voltage ratings. The maximum non-repetitive transient current is given for one pulse applied during the life of the component.E K V p ×I p ×t 2×=元器件交易网2322 59. .....Varistors Vishay BCcomponents ELECTRICAL CHARACTERISTICSDERATING CURVE PEAK CURRENT AS A FUNCTION OFPULSE WIDTH元器件交易网2322 59. .....Vishay BCcomponents VaristorsNote1.Outline of the Ø20 mm differs from the other dimensions.DIMENSIONS in millimetersFor dimensions, see ComponentDimensions and catalog Numbers table.Ø20 mm only.Outline of component with straight leads.Outline of component with kinked leads.For dimensions, see ComponentDimensions and catalog Numbers table.Outline of component with flanged leads.For dimensions, see ComponentDimensions and catalog Numbers table.Outline of flanged leads.元器件交易网2322 59. ..... Varistors Vishay BCcomponents2322 59. .....Vishay BCcomponents Varistors PACKAGINGTAPED VERSION WITH STRAIGHT LEADS(only for 2322 592 and 2322 593 series).TAPED VERSION WITH STRAIGHT LEADS (only for 2322 594 and 2322 595 series).2322 59. .....VaristorsVishay BCcomponentsTAPED VERSION WITH KINKED LEADS (only for 2322 592 and 2322 593 series).For dimensions, see Taping data table.TAPED VERSION WITH KINKED LEADS (only for 2322 594 and 2322 595 series).For dimensions, see Taping data table.DIMENSIONS OF REELS in millimetersTAPED VERSION WITH FLANGED LEADS (only for 2322 592 and 2322 593 series).For dimensions, see Taping data table.2322 59. .....Vishay BCcomponents Varistors2322 59. .....VaristorsVishay BCcomponentsDIMENSIONS OF AMMOPACK in millimetersV/I CHARACTERISTICS, 14 V TO 40 V (RMS); 2322 592 series.V/I CHARACTERISTICS, 50V TO 460 V (RMS); 2322 592 series.V/I CHARACTERISTICS, 14V TO 40 V (RMS); 2322 593 series.V/I CHARACTERISTICS, 50V TO 460 V (RMS); 2322 593 series.V/I CHARACTERISTICS, 14V TO 40 V (RMS); 2322 594 series.V/I CHARACTERISTICS, 50V TO 550V (RMS); 2322 594 series.V/I CHARACTERISTICS, 14V TO 40V (RMS); 2322 595 series.V/I CHARACTERISTICS, 50V TO 550V (RMS); 2322 595 series.V/I CHARACTERISTICS, 60V TO 95V (RMS); 2322 596 series.V/I CHARACTERISTICS, 130V TO 175V (RMS); 2322 596 series.V/I CHARACTERISTICS, 230V TO 275V (RMS); 2322 596 series.V/I CHARACTERISTICS, 300V TO 385V (RMS); 2322 596 series.V/I CHARACTERISTICS, 420V TO 680V (RMS); 2322 596 series.MAXIMUM APPLICABLE TRANSIENT CURRENT AS A FUNCTION OF PULSEDURATION, 14V TO 40V (RMS); 2322 592 series.MAXIMUM APPLICABLE TRANSIENT CURRENT AS A FUNCTION OF PULSE DURATION, 50V TO 460V (RMS); 2322 592 series.MAXIMUM APPLICABLE TRANSIENT CURRENT AS A FUNCTION OF PULSEDURATION, 14V TO 40V (RMS); 2322 593 series.MAXIMUM APPLICABLE TRANSIENT CURRENT AS A FUNCTION OF PULSE DURATION, 50V TO 460V (RMS); 2322 593 series.MAXIMUM APPLICABLE TRANSIENT CURRENT AS A FUNCTION OF PULSE DURATION, 14V TO 40V (RMS); 2322 594 series.MAXIMUM APPLICABLE TRANSIENT CURRENT AS A FUNCTION OF PULSE DURATION, 50V TO 320V (RMS); 2322 594 series.MAXIMUM APPLICABLE TRANSIENT CURRENT AS A FUNCTION OF PULSE DURATION, 385V TO 550V (RMS);2322 594 series.MAXIMUM APPLICABLE TRANSIENTCURRENT AS A FUNCTION OF PULSEDURATION, 14V TO 40V (RMS); 2322 595 series.MAXIMUM APPLICABLE TRANSIENTCURRENT AS A FUNCTION OF PULSEDURATION, 50V TO 320V (RMS);2322 595 series.MAXIMUM APPLICABLE TRANSIENT CURRENT AS A FUNCTION OF PULSE DURATION, 385V TO 550V (RMS); 2322 595 series.MAXIMUM APPLICABLE TRANSIENT CURRENT AS A FUNCTION OF PULSE DURATION, 60V TO 300V (RMS); 2322 596 series.MAXIMUM APPLICABLE TRANSIENT CURRENT AS A FUNCTION OF PULSE DURATION, 320V TO 680V (RMS);2322 596 series.。
NTC Thermistors, Accuracy Line2322 640 3/4/6....Vishay BCcomponents For technical questions contact: nlr.europe@Document Number: 29049FEATURES• Accuracy over a wide temperature range • High stability over a long life • Excellent price/performance ratioAPPLICATIONS• Temperature sensing and controlThese thermistors have a negative temperature coefficient.元器件交易网2322 640 3/4/6....NTC Thermistors, Accuracy Line Vishay BCcomponents Document Number: 29049For technical questions contact: nlr.europe@ DERATING AND TEMPERATURE TOLERANCESDIMENSIONS in millimeters PHYSICAL DIMENSIONS FOR RELEVANT TYPEMARKINGThe thermistors are marked with coloured bands; seedimensions drawing and “Electrical data and orderinginformation”.MOUNTINGBy soldering in any position.2322 640 6.338 to 6.474.CODENUMBER2322 640.....B max dH1H2maxL P T maxMIN.MAX.6.338 to6.2215.00.6±0.061.0 4.0 6.024±1.52.54 4.06.331 to6.4743.3±0.50.6±0.06− 2.0±1.06.024±1.52.543.0Notes1.Dependent upon R25-tolerance, the band IV is coloured as follows:a)for R25±2%, band IV is coloured redb)for R25±3%, band IV is coloured orangec)for R25±5%, band IV is coloured goldd)for R25±10%, band IV is coloured silver.20003528 K ±0.5%4202620232022202red black red22003977 K ±0.75%4222622232222222red red red27003977 K ±0.75%4272627232722272red violet red33003977 K ±0.75%4332633233322332orange orange red47003977 K ±0.75%4472647234722472yellow violet red68003977 K ±0.75%4682668236822682blue grey red100003977 K ±0.75%4103610331032103brown black orange120003740 K ±2%4123612331232123brown red orange150003740 K ±2%4153615331532153brown green orange220003740 K ±2%4223622332232223red red orange330004090 K ±1.5%4333633333332333orange orange orange470004090 K ±1.5%4473647334732473yellow violet orange680004190 K ±1.5%4683668336832683blue grey orange1000004190 K ±1.5%4104610431042104brown black yellow1500004370 K ±2.5%4154615431542154brown green yellow2200004370 K ±2.5%4224622432242224red red yellow3300004570 K ±1.5%4334633433342334orange orange yellow4700004570 K ±1.5%4474647434742474yellow violet yellowR25(Ω)B25/85-VALUECATALOG NUMBER 2322 640 6....COLOR CODE(see dimensionsdrawing and note 1)R25 ±2%R25±3%R25 ±5%R25±10%I II III元器件交易网2322 640 3/4/6....Vishay BCcomponentsNTC Thermistors, Accuracy Line For technical questions contact: nlr.europe@Document Number: 29049TEMPERATURE DEVIATION AS A FUNCTION OF THE AMBIENT TEMPERATURE.TEMPERATURE DEVIATION AS A FUNCTION OF THE AMBIENT TEMPERATURE.TEMPERATURE DEVIATION AS A FUNCTION OF THE AMBIENT TEMPERATURE.TEMPERATURE DEVIATION AS A FUNCTION OF THE AMBIENT TEMPERATURE.TEMPERATURE DEVIATION AS A FUNCTION OF THE AMBIENT TEMPERATURE.TEMPERATURE DEVIATION AS A FUNCTION OF THE AMBIENT TEMPERATURE.元器件交易网2322 640 3/4/6....NTC Thermistors, Accuracy Line Vishay BCcomponents Document Number: 29049For technical questions contact: nlr.europe@ R T VALUE AND TOLERANCEThese thermistors have a narrow tolerance on the B-value,the result of which provides a very small tolerance on thenominal resistance value over a wide temperature range. Forthis reason the usual graphs of R = f(T) are replaced byResistance Values at Intermediate Temperatures Tables,together with a formula to calculate the characteristics with ahigh precision.FORMULAE TO DETERMINE NOMINALRESISTANCE VALUESThe resistance values at intermediate temperatures, or theoperating temperature values, can be calculated using thefollowing interpolation laws(extended “Steinhart and Hart”):(1)(2)where:A, B, C, D, A1, B1, C1 and D1 are constant valuesdepending on the material concerned; see table below.R ref is the resistance value at a reference temperature (inthis event 25 °C).T is the temperature in K.Formulae numbered (1) and (2) are interchangeable with anerror of max. 0.005 °C in the range 25 °C to 125 °C andmax. 0.015 °C in the range−40 °C to +25 °C.DETERMINATION OF THERESISTANCE/TEMPERATURE DEVIATIONFROM NOMINAL VALUEThe total resistance deviation is obtained by combining the‘R25-tolerance’ and the ‘resistance deviation due toB-tolerance’.When:X = R25-toleranceY = resistance deviation due to B-toleranceZ = complete resistance deviation,then: or Z ≈ X + Y.When:TC = temperature coefficient∆T = temperature deviation,then:The temperature tolerances are plotted in the graphs on theprevious page.Example: at 0 °C, assume X = 5%, Y = 0.89% andTC = 5.08%/K (see T able ), then:A NTC with a R25-value of 10 kΩ has a value of 32.56 kΩbetween −1.17 and +1.17 °C.R (T)R=ref e×A B T⁄C T2⁄D T3⁄+++()T (R) = A1B1RR ref---------ln C1ln2RR ref---------D1ln3RR ref---------+++⎝⎠⎛⎞1–Z1X100---------+⎝⎠⎛⎞1Y100---------+⎝⎠⎛⎞1–×= 100×%∆T ZTC-------=Z15100---------+10.89100-----------+1–×⎩⎭⎨⎬⎧⎫100%×=1.05 1.0089 1–×{} 100% 5.9345% 5.93%≈()=×˙=∆T ZTC-------5.935.08----------- 1.167 °C 1.17≈°C)(===Notes1.Temperature < 25 °C.2.Temperature ≥25 °C.2322 640 3/4/6....Vishay BCcomponentsNTC Thermistors, Accuracy Line For technical questions contact: nlr.europe@Document Number: 290492322 640 3/4/6....NTC Thermistors, Accuracy Line Vishay BCcomponents Document Number: 29049For technical questions contact: nlr.europe@ 5 2.0128 2.16−3.7120.1310 1.6767 1.59−3.6016.7715 1.4042 1.04−3.5014.0420 1.18210.51−3.3911.8225 1.00000.00−3.3010.00300.85000.50−3.208.50350.72590.98−3.117.26400.6226 1.44−3.03 6.23450.5363 1.89−2.94 5.36500.4639 2.33−2.86 4.64550.4029 2.75−2.78 4.03600.3512 3.16−2.71 3.51650.3073 3.56−2.64 3.07700.2698 3.95−2.57 2.70750.2377 4.32−2.50 2.38800.2101 4.69−2.43 2.10850.1864 5.04−2.37 1.86900.1658 5.38−2.31 1.66950.1479 5.72−2.25 1.481000.1323 6.05−2.20 1.321050.1187 6.36−2.14 1.191100.1068 6.67−2.09 1.071150.0964 6.98−2.040.961200.08717.27−1.990.871250.07907.56−1.940.791300.07177.84−1.900.721350.06538.11−1.850.651400.05968.37−1.810.601450.05458.63−1.770.551500.05008.89−1.730.50T oper(°C)R T/R25∆R DUE TOB-TOLERANCE(%)TC(%/K)R25(Ω)2322 640 .....; see note 1 at end of tables6.1092322 640 3/4/6....Vishay BCcomponentsNTC Thermistors, Accuracy Line For technical questions contact: nlr.europe@Document Number: 29049500.4470 2.37−3.00 6.70550.3856 2.80−2.92 5.78600.3339 3.21−2.84 5.01650.2903 3.62−2.76 4.35700.2533 4.01−2.69 3.80750.2218 4.39−2.62 3.33800.1948 4.77−2.56 2.92850.1717 5.13−2.50 2.58900.1518 5.48−2.44 2.28950.1346 5.82−2.38 2.021000.1196 6.15−2.32 1.791050.1067 6.47−2.27 1.601100.0954 6.79−2.22 1.431150.08557.09−2.17 1.281200.07687.39−2.12 1.151250.06917.69−2.07 1.041300.06247.97−2.030.941350.05658.25−1.980.851400.05128.52−1.940.771450.04658.78−1.900.701500.04239.04−.860.63T oper (°C)R T /R 25∆R DUE TO B-TOLERANCE(%)TC (%/K)R 25(Ω)2322 640 .....; see note 1 at end of tables6.1592322 640 3/4/6....NTC Thermistors, Accuracy Line Vishay BCcomponents Document Number: 29049For technical questions contact: nlr.europe@ 950.1346 6.00−2.38 2.961000.1196 6.34−2.32 2.631050.1067 6.68−2.27 2.351100.09547.00−2.22 2.101150.08557.32−2.17 1.881200.07687.62−2.12 1.691250.06917.93−2.07 1.521300.06248.22−2.03 1.371350.05658.50−1.98 1.241400.05128.78−1.94 1.131450.01659.06−1.90 1.021500.04239.32−1.860.93T oper(°C)R T/R25∆R DUE TOB-TOLERANCE(%)TC(%/K)R25(Ω)2322 640 .....; see note 1 at end of tables6.2292322 640 3/4/6....Vishay BCcomponentsNTC Thermistors, Accuracy Line For technical questions contact: nlr.europe@Document Number: 290491400.04079.49−2.07 1.34 1.91 2.771450.03689.79−2.02 1.21 1.73 2.501500.033310.08−1.981.101.562.26T oper (°C)R T /R 25∆R DUE TO B-TOLERANCE(%)TC (%/K)R 25(Ω)2322 640 .....; see note 1 at end of tables6.339 6.479 6.6892322 640 3/4/6....NTC Thermistors, Accuracy Line Vishay BCcomponents Document Number: 29049For technical questions contact: nlr.europe@ For technical questions contact: nlr.europe@Document Number: 29049−5 4.216 1.08 5.249.27511.3813.9119.8128.6742.160 3.2550.89 5.087.1628.79010.7415.3022.1432.565 2.5340.70 4.92 5.575 6.8428.36211.9117.2325.3410 1.9870.52 4.78 4.372 5.366 6.5589.34013.5119.8715 1.5700.34 4.64 3.454 4.239 5.1817.37810.6715.7020 1.2490.17 4.50 2.747 3.372 4.121 5.8698.49212.4925 1.0000.00 4.37 2.200 2.700 3.300 4.700 6.80010.00300.80590.16 4.25 1.773 2.176 2.660 3.788 5.4808.059350.65350.32 4.13 1.438 1.764 2.156 3.072 4.444 6.535400.53300.47 4.02 1.173 1.439 1.759 2.505 3.624 5.330450.43720.62 3.910.9618 1.180 1.443 2.055 2.972 4.372500.36050.77 3.800.79320.973 1.190 1.694 2.451 3.606550.29890.91 3.700.65750.8070.9863 1.405 2.032 2.989600.2490 1.05 3.600.54780.6720.8217 1.170 1.693 2.490650.2084 1.18 3.510.45860.5620.68790.9797 1.417 2.084700.1753 1.31 3.420.38570.4730.57850.8239 1.192 1.753750.1481 1.44 3.330.32580.3990.48870.6960 1.007 1.481800.1256 1.57 3.250.27640.3390.41460.59050.8544 1.256850.1070 1.69 3.160.23550.2890.35320.50310.7278 1.070900.09154 1.81 3.090.20140.2470.30210.43030.62250.9154950.07860 1.93 3.010.17290.2120.25940.36940.53450.78601000.06773 2.04 2.940.14900.1820.22350.31830.46070.67731050.05858 2.15 2.870.12890.1580.19330.27530.39830.58581100.05083 2.26 2.800.11180.1370.16770.23890.34570.50831150.04426 2.37 2.730.09740.11950.14610.20800.30100.44261200.03866 2.47 2.670.08510.10440.12760.18170.26290.38661250.03387 2.57 2.610.07450.09150.11180.15920.23030.33871300.02977 2.67 2.550.06550.08040.09820.13990.20240.29771350.02624 2.77 2.490.05770.07090.08660.12330.17840.26241400.02319 2.86 2.430.05100.06260.07650.10900.15770.23191450.02055 2.96 2.380.04520.05550.06780.09660.13980.20551500.018263.052.330.04020.04930.06030.08580.12420.1826T oper (°C)R T /R 25∆R DUE TO B-TOLERANCE(%)TC (%/K)R 25(k Ω)2322 640 .....; see note 1 at end of tables 6.222 6.272 6.332 6.472 6.682 6.103Document Number: 29049For technical questions contact: nlr.europe@350.67120.80 3.888.05410.0714.77400.5543 1.19 3.77 6.6528.31512.20450.4602 1.57 3.67 5.522 6.90310.12500.3839 1.94 3.57 4.607 5.7598.447550.3219 2.30 3.48 3.862 4.8287.081600.2710 2.65 3.39 3.252 4.067 5.963650.2293 2.99 3.30 2.751 3.439 5.044700.1947 3.33 3.22 2.337 2.921 4.284750.1661 3.66 3.14 1.993 2.492 3.654800.1422 3.98 3.06 1.707 2.134 3.129850.1223 4.29 2.99 1.467 1.834 2.690900.1055 4.60 2.92 1.266 1.583 2.321950.09135 4.90 2.85 1.096 1.370 2.0101000.07937 5.19 2.780.9524 1.190 1.7461050.06919 5.48 2.710.8302 1.038 1.5221100.06050 5.76 2.650.72600.9075 1.3311150.05307 6.04 2.590.63690.7961 1.1681200.04670 6.31 2.530.56040.7005 1.0271250.041216.572.470.49450.61810.9065T oper (°C)R T /R 25∆R DUE TO B-TOLERANCE(%)TC (%/K)R 25(k Ω)2322 640 .....; see note 1 at end of tables6.123 6.153 6.223 For technical questions contact: nlr.europe@Document Number: 290491050.05372 4.47 2.98 1.773 2.5251100.04635 4.70 2.92 1.530 2.1791150.04013 4.93 2.85 1.342 1.8861200.03485 5.15 2.79 1.150 1.6381250.03037 5.36 2.73 1.002 1.4271300.02654 5.57 2.670.8757 1.2471350.02326 5.78 2.610.7675 1.0931400.02044 5.98 2.550.67460.96081450.01802 6.18 2.500.59450.84681500.015926.372.440.52540.7483T oper (°C)R T /R 25∆R DUE TO B-TOLERANCE(%)TC (%/K)R 25(k Ω)2322 640 .....; see note 1 at end of tables 6.333 6.473Document Number: 29049For technical questions contact: nlr.europe@ For technical questions contact: nlr.europe@Document Number: 2904925 1.0000.00 4.95330.0470.0300.78250.37 4.82258.2367.8350.61630.74 4.70203.4289.6400.4883 1.09 4.59161.1229.5450.3892 1.44 4.47128.4182.9500.3120 1.77 4.36103.0146.7550.2515 2.10 4.2683.00118.2600.2038 2.43 4.1567.2695.80650.1660 2.74 4.0654.7978.03700.1359 3.05 3.9644.8663.88750.1118 3.35 3.8736.9052.55800.09240 3.64 3.7830.4943.43850.07670 3.93 3.6925.3136.05900.06395 4.21 3.6121.1030.06950.05354 4.48 3.5317.6725.161000.04501 4.75 3.4514.8521.151050.03798 5.01 3.3712.5317.851100.03218 5.27 3.3010.7015.121150.02736 5.52 3.239.02912.861200.02335 5.77 3.167.70410.971250.019996.013.096.5979.396T oper (°C)R T /R 25∆R DUE TO B-TOLERANCE(%)TC (%/K)R 25(k Ω)2322 640 .....; see note 1 at end of tables 6.334 6.474Document Number: 29049For technical questions contact: nlr.europe@900.08042 3.85 3.28 5.4698.042950.06837 4.10 3.21 4.649 6.8371000.05835 4.35 3.13 3.968 5.8351050.04998 4.59 3.06 3.399 4.9981100.04296 4.82 2.99 2.921 4.2961150.03705 5.05 2.92 2.519 3.7051200.03206 5.28 2.86 2.180 3.2061250.027835.502.801.8922.783T amb (°C)R T /R 25∆R DUE TO B-TOLERANCE(%)TC (%/K)R 25(k Ω)2322 640 .....; see note 1 at end of tables 6.683 6.104Note to Resistance Values At Intermediate Temperature Tables1.Replace dot in last 5 digits of catalog number by a number according to the following details and depending on tolerance onrequired R 25-value: 4 for a tolerance of ±2%; 6 for a tolerance of ±3%; 3 for a tolerance of ±5%; 2 for a tolerance of ±10%.PACKAGINGTAPE SPECIFICATIONSNote1.Taped products with H= 45±1, are available on request.2. D ≤5 max for 6404.338 to 221. For technical questions contact: nlr.europe@ Document Number: 29049Note1. D ≤5 max for 640 3. 338 to 640 4. 221.2.T ≤4 max for 6403. 338 to 6404. 221.Document Number: 29049For technical questions contact: nlr.europe@ Notes1.For R25≥ 100 kΩ the drift requirement is ∆R/R < 5%.2.For R25 from 2.2 kΩ to 10 kΩ, requirement is ±2% max. For technical questions contact: nlr.europe@ Document Number: 29049。
PTC Thermistors, Overload ProtectionFor Telecommunication2322 66. 9....Vishay BCcomponentsFEATURES• Wide resistance range in telecom area 4... to 70 Ω• Fast protection against power contact faults • Withstand high overload currents of up to 10 A• High voltage withstanding capabilities for the larger sized thermistors• Good tracking over a wide temperature range for all matched or binned types• UL1434 approved types available (XGPU2) • Excellent stability over extended time•All telecom PTCs are coated with a high temperature silicon lacquer (UL94V0) to protect them from any harsh environments and to improve their lifetime. APPLICATIONS• Main Distribution Frame (MDF) • Central Office Switching (C.O.)• Subscriber Terminal Equipment (T.E.) •Set-top box (S.B.).MARKINGClear marking on a grey coated body.BC and R25 value.DESCRIPTIONAdvanced developments in telephony equipment in recent years have radically altered the protection requirements for both exchange and subscriber equipment. The Vishay BCcomponents range of Positive Temperature Coefficient (PTC) thermistors includes devices specially designed to provide overcurrent protection.Typical telephone line showing where PTC thermistors can be used for overcurrent protection.1.MDF: Main Distribution Frame; C.O.: Central Office Switching; T.E.: Subscriber Terminal Equipment; S.B.: Set-top Box.2.UL 1434 approved types.元器件交易网2322 66. 9....Vishay BCcomponentsPTC Thermistors, Overload ProtectionFor TelecommunicationDIMENSIONSin millimeters COMPONENT OUTLINEFor dimensions see Specific Physical Dimentions and Packaging table.Lead pitch F = 5 mm +0.6/-0.1.Lead thickness d = 0.6 mm ±10%.OVERCURRENT PROTECTION OF TELECOMMUNICATION LINESThe PTC thermistor must protect the telephone line circuit against overcurrent which may be caused by the following examples:• Surges due to lightning strikes on or near to the line plant. • Short-term induction of alternating voltages from adjacent power lines or railway systems, usually caused when these lines or systems develop faults.• Direct contact between telephone lines and power lines.To provide good protection under such conditions a PTC thermistor is connected in series with each line, usually as secondary protection; see Typical Telephone Line drawing on page 1. H owever, even with primary line protection (usually a gas discharge tube), the PTC thermistor must fulfil severe requirements.Surge pulses of up to 2 kV can occur and in order to withstand short-term power induction the PTC thermistor must withstand high voltages. If the line has primary protection a 220 V to 300 V PTC thermistor is adequate.Without primary protection, however, a 600 V PTC device is necessary. Vishay BCcomponents manufacturers a range of PTC thermistors (see Electrical Data and Ordering Information Table ) covering both requirements.In the case of direct contact between the telephone line and a power line, the PTC thermistor must withstand very highinrush power at normal mains voltage. Under such conditions, overload currents of up to 10 A on a 230 V mains could occur for up to several hours. To handle this power, the resistance/temperature characteristic of the thermistor must have a very steep slope and the ceramic must be extremely homogeneous.In case of overcurrent due to short-term induction of alternating voltages, currents of several AMPs with voltages as high as 650 V RMS can be present for several seconds For standard high voltage applications, resistance values from 25 to 50 Ω are available. H owever, ISDN networks which carry high-frequency sound and vision, need lower line impedance.Telecommunication designers are therefore demanding high voltage thermistors with much lower R 25 values, which places even greater demands on the manufacture of PTC thermistors. For these applications PTC thermistors which have a R 25 value of 10 Ω with voltages in the 300 to 600 V RMS range are available.In a typical telephone line application, two PTC thermistors are used, one each for the tip and ring (or A and B) wire together with their series resistors. For good line balance it is important that the thermistor and resistor pairs are matched.On request, Vishay BCcomponents can supply matched or binned PTC thermistors with R 25 values matched to as close as 0.5 Ω .元器件交易网2322 66. 9....PTC Thermistors, Overload ProtectionFor TelecommunicationVishay BCcomponentsNotes1.Taped in accordance with “IEC 60286-2”; standard packaging: 1500 units/reel.2.Naked disc ceramic for substrate mounting, available on request.3.Insulated version is also available.7.0 4.0 2.5 ±0.5−10.0taped H0 = 16 mm661 931218.5 4.0 2.5 ±0.5 4.1 ±0.511.5bulk661 931248.5 4.0 2.5 ±0.5−11.5taped H0 = 16 mm661 931468.5 4.0 2.5 ±0.5 4.1 ±0.511.5bulk661 931358.0 5.0 2.5 ±0.5−11.0taped H0 = 16 mm661 930568.5 4.0 2.0 ±0.5−11.0taped H0 = 16 mm661 9313910.5 5.0 2.0 ±0.5−12.6taped H0 = 16 mm662 9312913 5.5 4.0 ±1.020 min.18.0bulk662 9311413 5.5 4.0 ±1.020 min.18.0bulk662 93131DMAX.TMAX.H2L1H3MAX.PACKAGING(1)(2)CATALOGNUMBER2322 ... .....PACKAGINGAll tape and reel specifications are in accordance with “IEC 60286-3”. Basic dimensions are given in the drawing below, theDimensions of the Reel drawing, and tape and other Devices and Reel Dimensions tables.TAPE SPECIFICATIONS元器件交易网2322 66. 9....Vishay BCcomponents PTC Thermistors, Overload ProtectionFor TelecommunicationF lead to lead distance 5+0.6 to −0.1guaranteed between component and tape∆h component alignment0±2W tape width18+1 to −0.5W 0hold down tape width≥12.3−W 1hole position9±0.5W 2hold down tape position ≤3.0−H 1component heightsee Specific Physical Dimensions tableH 2component body to seating plane 4±1H 3component top to seating planesee Specific Physical Dimensions tableH 0lead-wire clinch height 16±0.5D 0feed hole diameter 4±0.2t total tape thickness ≤0.9−with cardboard tape 0.5 ±0.1 mmLlength of snipped lead≤11−SYMBOLPARAMETER DIMENSIONS TOLERANCEREMARKS元器件交易网。
Preliminary Data Sheet, May 2001FOA2322A3.2Gbit/s Laser Driver IC for Telecom and Datacom ApplicationsICs for CommunicationsEdition 2001-05Published by Infineon Technologies AG,St.-Martin-Strasse 53,D-81541 München, Germany© Infineon Technologies AG 2001.All Rights Reserved.Attention please!The information herein is given to describe certain components and shall not be considered as warranted characteristics.Terms of delivery and rights to technical change reserved.We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein.Infineon Technologies is an approved CECC manufacturer.InformationFor further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office in Germany or our Infineon Technologies Representatives worldwide.WarningsDue to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office.Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.Preliminary Data Sheet, May 2001FOA2322A3.2Gbit/s Laser Driver IC for Telecom and Datacom ApplicationsICs for CommunicationsFor questions on technology, delivery and prices please contact the Infineon Technologies Offices in G ermany or the Infineon Technologies Companies and Representatives worldwide: see our webpage at FOA2322ARevision History:2001-05Previous Version:PageSubjects (major changes since last revision)FOA2322ATable of Contents Page 1Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.1Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3Technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.4General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2General Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.3Characteristics and Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.4Typical Characteristics of Temperature Compensation (Mode 1) . . . . . . . 14 2.4.1Modulation Current Swing versus R MOD, R TC,Junction Temperature and Supply Voltage / High Current Drive . . . . . . 14 2.4.2Modulation Current Swing versus R MOD, R TC,Junction Temperature and Supply Voltage / Low Current Drive . . . . . . 16 2.5Principle of Modulation Current Control by Using a Pilot Signal (Mode 2) 18 2.6Data / Clock Input Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.7Timing of Clock and Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.8Laser and V CC Supervising Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.9Input Signal Monitoring and Hardware Alarm(Consideration in absence of Laser Fault) . . . . . . . . . . . . . . . . . . . . . . . . . 21 3Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.1Pad Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 4Application Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28FOA2322A 3.2Gbit/s Laser Driver IC for Telecom and DatacomApplicationsFOA2322A1Overview1.1Features•Data rate up to 3.2Gbit/s•Supply range from +3.0V to +5.5V•Modulation current adjustable up to 75mA•Bias current adjustable up to 80mA•Choice between temperature compensation and integrated Two-Loop-Control of bias and modulation current•Integrated laser supervisor•Monitor output for optical output power1.2Applications•Fiber optics telecom and data communication systems•SDH / SONET, Fiber Channel, Gigabit Ethernet1.3Technology•Bicmos B6HFC1.4GeneralThis document defines the ratings and characteristics of a laser driver circuit dedicated for applications within telecom and datacom modules with respect to various transmission standards and laser safety requirements. A block diagram of this circuit is shown in Figure1.Modulation Control / Modulator / Input StageThe modulator is capable of driving modulation currents up to 75mA. There are two modes for adjusting the modulation current:Mode 1: The modulation current is adjusted by an external resistor (R MOD). The IC has an internal temperature compensation circuit for compensating the temperature characteristic of laser diode slope efficiency. With the external resistor (R TC) the modulation current temperature coefficient is adjustable. The temperature input itself is derived from chip junction temperature.Mode 2: The modulation current is controlled by using a low frequency pilot signal. The controller cutoff frequency is adjustable by external capacitor (C MOD). Mode 2 is suitable for data rates 1.25Gbit/s (depending on laser diode).There is an option for using data input latch.Input Signal MonitorAn input signal monitor circuit delivers a logic signal HWA and an internal signal which is used for laser disabling if data input is constantly high or low.Bias Control / Bias GeneratorThe bias controller controls the LD optical output power by adjusting the bias current. The controller cutoff frequency is adjustable by external capacitor (C BIAS). A min. cutoff frequency is integrated. The laser bias current will start at < 500µA after laser enable. Laser Supervisor / V CC SupervisorThe laser supervisor circuit monitors the laser output power by the means of monitor diode feedback. The voltage generated by monitor diode circuit is compared to a reference. If the input voltage deviates more than ±2dB (optical power ±1dB) from this reference the laser diode is switched off and a fault indication is generated. The V CC supervisor monitors the circuit power supply and switches off the laser if the V CC level is below the reset threshold. It is keeping the laser output down for the adjusted delay time (power on delay) after V CC has risen above the V CC reset threshold.Figure1General Circuit Block Diagram –Number of pins: 42–IC available as die2Electrical Characteristics2.1Absolute Maximum RatingsAbsolute Maximum Ratings which may not be exceeded to the device without causing permanent damage or degradation. Exposure to these values for extended periods may effect device reliability. If the device is operated beyond the range of Operating Conditions and Characteristics functionality is not guaranteed. All voltages given within this data sheet are referred to V EE if not otherwise mentioned.Table1Absolute Maximum RatingsParameter Sym-bolLimit Values Unit Condi-tions min.max.Supply Voltage-0.36V–Output Voltage at O, ON V CC - 2.6V CC + 0.3V1) Output Voltage at MPOUT-0.3V CC + 0.3V1)2) Output Voltage at Logic Output LF, HWA-0.3V CC + 0.3V1) Output Voltage at IBIAS-0.3V CC + 0.3V1)2) Input Voltage at Logic Inputs LEN, RST,RSTN, CSELN-0.3V CC + 0.3V1)Differential Data Input Voltage|V D - V DN|– 2.5V–Differential Data Input Voltage|V CLK - V CLKN|– 2.5V–Sink Current at Logic Output LF, HWA–5mA–Source Current at LDOFF-4–mA–Source Current at RPOUT-2–mA–Modulation Current at O, ON(both Outputs)–80mA–Bias Current at IBIAS–95mA–Modulation Control Sink Current at VMOD(Input Current for Current Mirror 1:10)–9.6mA–Bias Control Sink Current at VBIAS(Input Current for Current Mirror 1:25)– 4.8mA–Modulation Current Adjust Resistor R MOD800–Ω–Note:Stresses above the ones listed here may cause permanent damage to thedevice. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.2.2General Operating ConditionsUnder the below defined operating conditions all specified characteristics will be met unless otherwise noted.Modulation Temperature Coefficient Resistor R TC50–Ω–Junction Temperature -40125°C –Storage Temperature-55150°C –Relative Humidity (non-condensing)–95%–Electrostatic Discharge Voltage Capability–1kV–1)Maximum voltage is 6V.2)For applications with V CC +5V (please refer to Figure 13).Table 2General Operating ConditionsParameterSym-bol Limit ValuesUnit Condi-tionsmin.max.Environmental Junction Temperature-40125°C1)1)For modulation current I OH ≤ 50mA-401102)2)For modulation current 50mA < I OH ≤ 75mA Relative Humidity (non-condensing)–95%–Supply VoltageV CC Range3 5.5V3)3)Valid for V CCA and V CCD ; V CCA ≥ V CCDTable 1Absolute Maximum Ratings (cont ’d)ParameterSym-bol Limit ValuesUnit Condi-tions min.max.2.3Characteristics and Operating Conditions Table3Characteristics and Operating ConditionsSP Parameter Sym-bolLimit Values Unit Condi-tion min.typ.max.Modulator / Modulation Control1Data Transmission Rate DR0– 2.5Gbit/s1) 2Supply Current I CC–3063mA2)3)3Modulation Current High at O/ONfor V CC=3.3Vfor V CC=5V I OH -I OL55––6575mA4)5)4Modulation Current Low at O/ON I OL0–2mA6)Offset5Modulation Current atLaser Shut DownI OSD0–200µA7)6O, ON Output Voltage Rangefor V CC=3.3Vfor V CC=5V V O,V ONV CC-1.65VV CC-2.0V––V CCV CCV8)7Modulation Current AdjustResistor Range(MOD-Resistor)R MOD800–Open InputΩ9)10)8Modulation TemperatureCoefficient ResistorRangeR TC50–Open InputΩ9)11)Serial Data/Clock Input9Data Input Voltage High V IHD––V CCD V–10Data Input Voltage Lowfor V CCD=3.3Vfor V CCD=5V V ILD1.02.2––––V–11Data Input Voltage Swing|V D -V DN|250–1600mV–12Clock Input Voltage High V IHCLK––V CCD - 0.65V–13Clock Input Voltage Lowfor V CCD=3.3Vfor V CCD=5V V ILCLK1.02––––V–14Clock Input Voltage Swing |V CLK -V CLKN|250–1100mV–15Bias Voltage at D/DN V BBD–V CCD - 1.0–V12) 16Bias Voltage atCLK/CLKNV BBC–V CCD - 1.3–V12)17Differential Data/ClockInput TerminationR IN80100120Ω12)13)19Input CapacitanceD/DN/CLK/CLKNC IN––0.6pF–20Setup Time (Data/Clock)t SETUP–20–ps–21Hold Time (Data/Clock)t HOLD–20–ps–22Eye Opening at2.5Gbit/s (w. Latch)t EO–360–ps–Input Signal Monitor (ISM)23Internal ISM cutofffrequencyf ISM165238372kHz14)24Cutoff frequency of ISM with external C ISM f ISM(6.1µs+84kΩ×C ISM)-1(4.2µs+70kΩ×C ISM)-1(2.7µs+56kΩ×C ISM)-114)15)25Internal ILM cutofffrequencyf ILM–160–kHz14)26Cutoff frequency of ILMwith external C ILM=1nFf ILM–73–kHz14)15)27Duty Cycle for laserenable25–75%–28Duty Cycle for laser disable 0–5%Inputlow29Duty Cycle for laser disable 95–100%InputhighTable3Characteristics and Operating Conditions (cont’d)SP Parameter Sym-bolLimit Values Unit Condi-tion min.typ.max.Laser Power Control30Bias Current I IBIASmax0–80mA–31Start Bias Current I IBIASmin––500µA–32Bias Current at LaserShut DownI IBIASSD––500µA–33Output Voltage RangeIBIASV IBIAS0.5–V CC V–34Power Monitor Current I MPOUT0V MDR POUT1mA16)35Output Voltage Range MPOUT V MPOUT V RPOUT +0.5–V CC V–36Resistor Range RPOUT R POUT 2.4–Open Input kΩ–37Output Voltage RangeRPOUTV RPOUT0V MD V CC - 1.2V–38Internal cutoff frequencyof bias controllerf BIAS233762kHz17)39Cutoff frequency of bias controller with externalC BIAS f BIAS(44µs+306kΩ×C BIAS)-1(27µs+204kΩ×C BIAS)-1(16µs+131kΩ×C BIAS)-115)17)40Conversion gain of biasgeneratorG BIAS–100–mA/V–Laser Supervising Circuit41MD Failure Voltage High–V MDnom+1.5dB V MDnom+2dB18)42MD Failure Voltage Low V MDnom-2dB V MDnom-1.55dB–18)43MD Range without Failure Recognition V MDnom-1.2dB–V MDnom+1.2dBV19)44Internal FailureRecognition Timet FDEL386086µs17)20)45Additional FailureRecognition Time byexternal C FDEL t FDEL C FDEL×0.7µs/pFC FDEL×1.0µs/pFC FDEL×1.3µs/pF15)17)20)Table3Characteristics and Operating Conditions (cont’d)SP Parameter Sym-bolLimit Values Unit Condi-tion min.typ.max.46Shut Off Time after LFtransition or Laser Disablet LDdis0–3µs21)47V CC Reset Threshold forLaser Enable/Disable2.5 2.75 2.99V22) 48Internal Power On Delay t PDEL213333480µs23)49Additional Power On Delay by external C OSC t PDEL64 ×C OSC×138kΩ64 ×C OSC×173kΩ64 ×C OSC×208kΩ15)23)50LDOFF low Output Current 1.5–4mA sinkcurrent51LDOFF high Output Current ––2µA sinkcurrent52LDOFF high OutputVoltageV CC-0.1––V–53LDOFF low Output Voltage V CC-2.0–V CC-1.2V withoutexternalloadReference Voltage54MD Reference Value V MDR 1.12– 1.32V24)55V MDR Drift overTemperature Range |∆V MDR/V MDR|––5%–56V MDR Drift over Supply Voltage Range3V…5.5V |∆V MDR/V MDR|––10%–57V MDR Drift overTemperature Range atSupply Voltage Range3V…3.6V |∆V MDR/V MDR|––5%–58V MDR Drift overTemperature Range atSupply Voltage Range4.7V…5.3V |∆V MDR/V MDR|––5%–Table3Characteristics and Operating Conditions (cont’d)SP Parameter Sym-bolLimit Values Unit Condi-tion min.typ.max.Logic Inputs RSTN, RST, LEN59Input Voltage High V IHLOGIC 2.0–V CC V25) 60Input Voltage Low V ILLOGIC0–0.8V25) 61Input Current High I IHLOGIC––5µA–62Input Current Low I ILLOGIC-5––µA–Logic Inputs CSELN63Input Voltage High fordisabling data input latch(nonclocked mode) or letCSELN openV IHLOGIC 2.2–V CC V–64Input Voltage Low forenabling data input latch(clocked mode)V ILLOGIC0–0.8V–65Internal Pull-Up-Resistor R CSELN81012kΩ–Logic Outputs LF, HWA66Output Voltage Low V OLLOGIC––0.4V–67Output Current High (Leakage Current)I OHLOGIC––100µA opencollector68Output Current Low I OLLOGIC2––mA sinkcurrent Modulation Control (Mode2)69Mode 1 select V MODE V CC-0.8–V CC V–70Mode 2 select V MODE0–0.8V–71Internal pilot frequency f PILOT7.71217.3kHz–72Pilot frequency with external C OSC f PILOT(130µs+16 ×C OSC× 208kΩ)-1(83µs+16 ×C OSC× 173kΩ)-1(58µs+16 ×C OSC× 138kΩ)-115)73Effective pilot currentamplitude on modulationcurrent high level (default)am PILOT– 3.5–%26)Table3Characteristics and Operating Conditions (cont’d)SP Parameter Sym-bolLimit Values Unit Condi-tion min.typ.max.74Pilot current amplitude on bias current (default)ab PILOT– 5.05–%26)75Cutoff frequency of modulation controller with external C MODf MOD(306k Ω×C MOD )-1(204k Ω×C MOD )-1(131k Ω×C MOD )-115)17)1)Measured into 25 Ω.2)The bias-, modulation-, the LF-, HWA- and MPOUT- output currents are not included.3)The typical supply current is defined for driving a laser with about 20mA bias current and about 20mA modulation current and a IC junction temperature of about 50°C and a V CC of 5V. The maximum supply current is defined for driving the upper limits of bias current and modulation current with worst case junction temperature and with a V CC of 5.5V (V CC =V CCA =V CCD ).4)This describes the AC modulation current (the DC component is the overall offset current). AC modulation current is drawn by O at V D > V DN , it is drawn by ON at V D < V DN . I OH refers to drawn modulation current (AC +DC). I OL refers to an inactive current output (DC current only).5)See Table 2 for operating conditions junction temperature.6)Inactive current output (see also 4)).7)Modulation current when the laser diode is disabled.8)Valid for V CC =V CCA =V CCD =5V. It is possible to increase the output voltage range for the V CC range of 5V ±0.5V of about 0.85V by using the Pad V CCD2 instead of V CCD (see Figure 14). The specified limits for data and clock inputs are valid for V CCD .9)Adjustment of programmable parameter by resistor value within this range (see Chapter 2.4).10)Adjusting the modulation current by R MOD notice that the decreasing of R MOD will increase the modulation current. R MOD in combination with R TC has to be adjusted that the modulation current is smaller than 50mA or 75mA respectively over specified temperature range. If R MOD -Pad is not connected (open input) there will be no modulation current at the output O/ON.11)Modulation current adaptation within junction temperature range. Low junction temperature represents a low additional modulation current. High junction temperature represents a high additional modulation current. If R TC -Pad is not connected there will be no noteworthy modulation current adaptation.12)Data/clock inputs are internally connected to V BBD /V BBC by resistor R 1/R 2 with a differential termination by R IN .See data input stage description (see Figure 9).13)The resistance is guaranteed for junction temperature 25°C.Table 3Characteristics and Operating Conditions (cont ’d)SP ParameterSym-bolLimit ValuesUnit Condi-tionmin.typ.max.14)If data input duty cycle falls below lower limit or exceeds upper limit the laser will be disabled by ISM circuit.On the other hand, the laser will be enabled whenever the data input duty cycle goes back to the allowed range.Data input duty cycle refers to the quotient given by number of ones divided by number of zeros within serial data stream. The ISM-circuit evaluates the mean value of the duty cycle (integrator). The cutoff frequency of ISM f ISM is defined for data pattern 1010…. In case of data frequency is to small the ISM circuit will disable the laser because of long High- or Low-series. The ISM-circuit can be deactivated by a 25kΩ resistor from CISM to V EE. The ILM-circuit additionally is used for ac-coupled data inputs. It works as a peak detector. The laser will be disabled if data are set to a static state. The cutoff frequency of ILM fILM is defined for data pattern 1010…. (Specified value is for data input voltage swing of 400mV).The ILM-circuit is direct AC-coupled to the data input. So the cutoff frequency depends on data input swing. The ILM-circuit can be deactivated by a short from CILM to V CC.15)A capacitor within this range programs the time (or frequency).16)Open collector output for pulling up a resistor to monitor the current.17)Difference and temperature drift of passive IC component parameters match to passive IC componentparameters in other circuit parts.18)The supervisor circuit will detect a failure condition if MD voltage exceeds VMDnom±2dB range. V MDnom is given by nominal voltage level at MD which is set by V MDR. The deviation is calculated with 20lg(V MD/V MDnom).The deviation of optical power is calculated with 10lg(V MD/V MDnom).19)The supervisor circuit will detect no failure condition if MD input voltage ranges from VMDnom -1.2dB toV MDnom+1.2dB. V MDnom is given by nominal voltage level at MD which is set by V MDR. The deviation is calculated with 20lg(V MD/V MDnom). The deviation of optical power is calculated with 10lg(V MD/V MDnom). 20)A failure condition will be reported by LF=H if this condition lasts for tFDEL. Minimal capacitor on CFDEL has to be chosen that the failure recognition time is longer than the setting time of the bias controller.21)Time between LF high (or LEN high) and LDOFF high.22)At supply voltages below VCC threshold the laser diode bias and modulation current will be held disabled and LDOFF will be held high. Above the laser diode will be enabled after the Power On Delay.23)The Power On Delay is the Reset time after VCC voltage has risen above the V CC reset threshold. During the Power On Delay the Laser diode bias and modulation current will be held disabled and LDOFF will be held high.24)Temperature and voltage drift are included.25)The minimal enable pulse width time for RST=L or RSTN=H or LEN=L has to be longer then tFDEL.26)Out of amPILOT and ab PILOT a factor K=ab PILOT/am PILOT can be defined, which is an important factor for the pilot control (for definition of am PILOT and ab PILOT see Figure8). For most laser diodes the optimum value of K is 1.44 (default value). If K is set close to factor2 the modulation current and jitter may increase. If K is set close to factor 1 the modulation current may decrease. In both cases a malfunction of laser control is possible.A resistor between V CC and RMRIP can be used for decreasing am PILOT. Further a resistor between V CC andRBRIP can be used for decreasing ab PILOT. So the factor K can be adjusted. For default factor K let RBRIP and RMRIP connected to V CC (=V CCA).2.4Typical Characteristics of Temperature Compensation (Mode 1)2.4.1Modulation Current Swing versus R MOD , R TC ,Junction Temperature and Supply Voltage / High Current DriveFigure 2F =I 100°C /I 0°C versus R TC , Parameter R MOD , V CCFigure 3I 0 versus T j , Parameter R MOD , R TC (V CC =3.3V)ITD11328-5010t˚C I O 20304050607080-30-101030507090130mA2 k Ω/700 Ω2 k Ω/200 Ω2 k Ω/2 k Ω4 k Ω/200 Ω4 k Ω/700 Ω4 k Ω/2 k Ω110Figure 4I 0 versus T j , Parameter R MOD , R TC (V CC =5.0V)ITD11329-500t˚C I O-30-101030507090130mA1020304050607080100 2 k Ω/700 Ω2 k Ω/200 Ω2 k Ω/2 k Ω4 k Ω/200 Ω4 k Ω/700 Ω4 k Ω/2 k Ω1102.4.2Modulation Current Swing versus R MOD , R TC ,Junction Temperature and Supply Voltage / Low Current DriveFigure 5F =I 100°C /I 0°C versus R TC , Parameter R MOD , V CCFigure 6I 0 versus T j , Parameter R MOD , R TC (V CC =3.3V)ITD1133018001.00F 1.051.101.151.201.251.301.402800380048005800680078009800R TCk Ω5 k Ω/3.3 V5 k Ω/5 V 10 k Ω/5 V 10 k Ω/3.3 V ITD11331-505t˚C I O -30-101030507090130mA6789101112131415161810 k Ω/2 k Ω10 k Ω/5 k Ω10 k Ω/9.5 k Ω5 k Ω/5 k Ω5 k Ω/2 k Ω5 k Ω/9.5 k Ω110Figure7I0 versus T j, Parameter R MOD, R TC (V CC=5.0V)2.5Principle of Modulation Current Control by Using a Pilot Signal (Mode 2)The DC-part of the monitor current controls the bias current. The difference of the optical low frequency AC-part ∆Ppp is used for the modulation current control. ∆Ppp is measured over the monitor current. The aim of the control is to settle ∆Ppp to Zero. (That means a part of the pilot current amplitude on bias current is modulated below laser current threshold. Therefore please take into account the laser characteristics, e.g.switch-on delay, for higher data rates.) Mode 2 can only be used for DC-coupled laser diodes.Figure 8Modulation Current Control by Using a Pilot Signal2.6Data / Clock Input StageData and clock inputs are terminated with 100Ω and are connected to a V BB reference by resistors R1/R2. (V BB for Clock input is V BBC, V BB for Data input is V BBD.) This easily provides the input reference voltage at AC coupling. A schematic of the input stage is shown below:Figure9Data/Clock Input Stage 2.7Timing of Clock and DataFigure10Timing of Clock and Data ITS11334PN RINR1R2ReferenceGeneratorVBBR 1, R2= 5 kΩRIN= 100 Ω ±20%2.8Laser and V CC Supervising CircuitIf there is a laser fault (optical power deviates ±1dB) this signal is stored and indicated by LF (logic high). The fault indication (LF) can be reset with low level at RSTN or with high level at RST or with power down (V CC < V CC Reset Threshold) only. After power up,LF will always be cleared. Disabling the laser by LEN does not influence a previous fault indication by LF. The laser fault generation can be switched off by connecting CFDEL to V CC . During RSTN is logic low or RST is logic high the circuit is in Reset state.In case of changing RST =H or RSTN =L after laser fault recognition LF =H (after t FDEL ) there is an additional delay time implemented which has the same value as the Power On Delay.If the supply voltage is lower than the V CC reset threshold the indicator Hardware Alarm (HWA) is still at the low level and the circuit is in Reset state.During Power On Delay the circuit is in Reset state too. The Power On Delay is defined as the delay after V CC voltage has risen above the V CC reset threshold. This time can be adjusted by an external capacitor at COSC (Mode 1). The Reset N-Output of the MAX 809S Power Supervisor IC can be connected to RSTN to use the reset function of the MAX 809S.The laser control by RST and RSTN is fully redundant. This means only an AND combination of RST =0 / RSTN =1 can switch the laser on. The OR combination of RST =1 / RSTN =0 switches the laser off (see Table 4 for clarification).Table 4 shows the static states of these signals. Dynamic changes or delays due toexternal delay capacitors are not shown.Table 4Laser Diode Currents Enable / Disable SignalsRST LEN RSTN In Case of Laser Fault V CC < Reset Threshold V CC LDOFF Modulation Enable 1)1)Internal signal Bias Enable 1)LF (highactive)X 1X 0X 10001X X X X 1000X X 0X X 1000X X X X yes 10000011no 2)2)After Power On Delay 13)3)After t FDEL0013)01no 2)04)4)Sink current enabled = Low11Bias current is disabled by setting Bias Enable low, modulation current is disabled by setting Modulation Enable low.LEN do not effect LF. This means LF can not be reset by LEN.2.9Input Signal Monitoring and Hardware Alarm(Consideration in absence of Laser Fault)Table5Function of ISM Circuit and Hardware Alarm Indicator (HWA)Data Level (after delay of ISM)V CC < ResetThreshold of V CC/Circuit in ResetstateISM LaserEnable1)1)Internal signal LDOFF HWA (lowactive)ModulationEnable1)BiasEnable1)Constant High No01000 Constant Low No01000 Constant High Yes01000 Constant Low Yes01000 Duty Cycle ok Yes11000 Duty Cycle ok No102)2)Sink current enabled = Low111。