高三数学单元测试卷五
- 格式:docx
- 大小:108.94 KB
- 文档页数:8
一、选择题(每题5分,共50分)1. 【答案】A解析:由题意知,函数的定义域为R,且当x<0时,f(x)=x+2,当x≥0时,f(x)=x-2。
因此,f(x)在x=0处不连续。
2. 【答案】C解析:由三角函数的性质知,sin(π/6) = 1/2,cos(π/6) = √3/2,tan(π/6) = √3/3。
代入选项计算,只有C选项满足条件。
3. 【答案】B解析:由二次函数的性质知,当a>0时,函数开口向上,且顶点为函数的最小值点。
计算得a=1,b=-4,c=4,顶点坐标为(2, 0)。
4. 【答案】D解析:由复数的性质知,若z是复数,则|z|^2 = z·z,其中z是z的共轭复数。
计算得|z|^2 = 4,即|z| = 2。
5. 【答案】C解析:由数列的性质知,若数列{an}是等差数列,则an = a1 + (n-1)d,其中d是公差。
计算得d = 2,a6 = a1 + 5d = 3 + 10 = 13。
6. 【答案】B解析:由排列组合的性质知,从n个不同元素中取出m个元素的组合数C(n, m) = n! / [m!(n-m)!],其中n!表示n的阶乘。
计算得C(10, 3) = 10! / [3!(10-3)!] = 120。
7. 【答案】A解析:由向量的性质知,若向量a和向量b垂直,则a·b = 0。
计算得a·b = 3×(-1) + 4×2 = 5 ≠ 0,因此a和b不垂直。
8. 【答案】C解析:由函数的性质知,若函数f(x)在区间[a, b]上连续,则f(x)在区间[a, b]上一定存在最大值和最小值。
计算得f(x)在区间[0, 2π]上连续,因此一定存在最大值和最小值。
解析:由概率的性质知,若事件A和事件B互斥,则P(A∪B) = P(A) + P(B)。
计算得P(A∪B) = 1/4 + 1/6 = 5/12。
10. 【答案】B解析:由数列的性质知,若数列{an}是等比数列,则an = a1·r^(n-1),其中r是公比。
一、选择题(本大题共12小题,每小题5分,共60分)1. 已知函数f(x) = x^2 - 2ax + 1在区间[0, a]上单调递增,则实数a的取值范围是()A. a ≥ 2B. a ≤ 0C. 0 < a ≤ 2D. a > 22. 已知数列{an}的通项公式为an = 2^n - 1,则数列{an}的前n项和S_n等于()A. 2^n - nB. 2^n + nC. 2^n - 1 - nD. 2^n - 1 + n3. 若等差数列{an}的首项为a_1,公差为d,且a_1 + a_3 + a_5 = 21,则a_2 + a_4 + a_6等于()A. 21B. 27C. 33D. 394. 已知函数f(x) = x^3 - 3x + 1在区间[0, 2]上的最大值为5,则方程x^3 - 3x + 1 = 0的实数解的个数是()A. 1B. 2C. 3D. 45. 已知等比数列{an}的公比为q,若a_1 + a_2 + a_3 = 9,a_2 + a_3 + a_4 = 27,则q的值为()A. 1B. 3C. 9D. 276. 已知函数f(x) = x^2 - 4x + 4在区间[1, 3]上的图像关于直线x = 2对称,则f(x)在区间[0, 1]上的图像关于直线x =()A. 0B. 1C. 2D. 37. 若复数z满足|z - 1| = |z + 1|,则复数z的实部等于()A. 0B. 1C. -1D. 28. 已知等差数列{an}的前n项和S_n = 4n^2 - 3n,则a_1的值为()A. 1B. 2C. 3D. 49. 若函数f(x) = ax^2 + bx + c在区间[0, 1]上单调递增,且f(0) = 1,f(1) = 4,则a、b、c的关系为()A. a > 0,b > 0,c > 0B. a > 0,b < 0,c > 0C. a < 0,b > 0,c > 0D. a < 0,b < 0,c > 010. 已知函数f(x) = |x - 1| + |x + 1|,则f(x)的最小值为()A. 0B. 2C. 4D. 611. 若等比数列{an}的公比q > 1,且a_1 + a_2 + a_3 = 27,a_2 + a_3 + a_4 = 81,则a_1的值为()A. 3B. 9C. 27D. 8112. 已知函数f(x) = (x - 1)^2 - 1在区间[0, 2]上的图像关于直线x = 1对称,则f(x)在区间[0, 1]上的图像关于直线x =()A. 0B. 1C. 2D. 3二、填空题(本大题共6小题,每小题5分,共30分)13. 若等差数列{an}的首项为a_1,公差为d,且a_1 + a_3 + a_5 = 21,则a_2 + a_4 + a_6 = 27。
一、选择题(每题5分,共50分)1. 若函数f(x) = 2x^2 - 3x + 1的图像开口向上,则其顶点坐标为()。
A. (1, 0)B. (1, -2)C. (0, 1)D. (0, -2)2. 下列函数中,在区间(-∞,+∞)上单调递增的是()。
A. y = x^3B. y = x^2C. y = x^3 - xD. y = x^2 + 2x3. 若等差数列{an}的前n项和为Sn,且a1 = 3,S5 = 45,则该数列的公差d为()。
A. 3B. 4C. 5D. 64. 已知函数f(x) = ax^2 + bx + c(a ≠ 0),若f(1) = 2,f(2) = 4,f(3) = 6,则a,b,c的值分别为()。
A. 1,1,1B. 2,0,2C. 1,2,1D. 2,1,25. 在三角形ABC中,∠A = 60°,AB = AC = 2,BC = √3,则三角形ABC的面积为()。
A. 2B. √3C. 3D. 46. 已知复数z = a + bi(a,b ∈ R),若|z| = 1,则z的辐角θ满足()。
A. 0 ≤ θ < 2πB. 0 ≤ θ ≤ 2πC. -π ≤ θ < 0D. -π ≤θ ≤ 07. 若函数f(x) = x^3 - 3x + 2在x = 1处的导数为0,则f(x)在x = 1处的极值点为()。
A. 极大值点B. 极小值点C. 无极值点D. 不存在极值点8. 下列不等式中,正确的是()。
A. 2x + 3 > 3x + 2B. x^2 + 2x + 1 < 0C. x^2 - 4x + 4 > 0D.x^2 - 3x + 2 ≤ 09. 在直角坐标系中,点P(2,-1)关于直线y = x的对称点为()。
A. (2,-1)B. (1,2)C. (-1,2)D. (-2,1)10. 已知函数f(x) = |x - 2| + |x + 3|,则f(x)的最小值为()。
全国100所名校单元测试示范卷·高三·数学卷(五)第五单元函数的综合应用(120分钟150分)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.a、b为实数,集合M={,1},N={a,0},f:x→2x表示把集合M中的元素x,映射到集合N 中为2x,则a+b等于A.-2B.0C.2D.±2解析:由于M中元素1能对应a,能对应0,所以=0,a=2,所以b=0,a=2,因此a+b=2.答案:C2.已知函数f(x)=--则f[f(-1)]等于A.B.2 C.1 D.-1解析:f[f(-1)]=f(1)=2.答案:B3.函数y=(a>1)的图象大致形状是解析:当x>0时,y=a x,因为a>1,所以是增函数,排除C、D,当x<0时,y=-a x,是减函数,所以排除A.答案:B4.设函数f(x)为定义在R上的奇函数,当x≥0时,f(x)=2x-2x+m(m为常数),则f(-2)等于A.-B.-1C.1D.3解析:因为函数f(x)为定义在R上的奇函数,所以f(0)=0,即20+m=0,所以m=-1,所以当x≥0时,函数f(x)=2x-2x-1,所以f(-2)=-f(2)=-(4-4-1)=1.答案:C5.记min{a,b}为a,b两个数的较小者,max{a,b}为a,b两个数的较大者,f(x)=-则--·-的值为A.min{a,b}B.max{a,b}C.bD.a--=b.解析:(1)若a>b,则a-b>0,∴f(a-b)=1.∴原式=(2)若a<b,a-b<0,∴f(a-b)=-1.∴原式==a.--·-=min{a,b}.所以答案:A6.已知f(x+199)=4x2+4x+3(x∈R),那么函数f(x)的最小值为A.1B.2C.3D.5解析:求f(x)的解析式运算量较大,但这里我们注意到,y=f(x+199)与y=f(x),其图象仅是左右平移关系,它们取得的最大值和最小值是相同的,由y=4x2+4x+3=4(x+)2+2,所以f(x)的最小值即f(x+199)的最小值是2.答案:B7.函数f(x)是定义域为R的偶函数,又是以2为周期的周期函数.若f(x)在[-1,0]上是减函数,那么f(x)在[2,3]上是A.增函数B.减函数C.先增后减的函数D.先减后增的函数解析:∵f(x)为[-1,0]上的减函数,且f(x)为R上的偶函数,∴f(x)在[0,1]上是增函数,又f(x)是以2为周期的函数,∴f(x)在[2,3]上的单调性与[0,1]上相同,即递增.答案:A8.已知y=f(x)是偶函数,y=g(x)是奇函数,它们的定义域均为[-π,π],且它们在x∈[0,π]上的图象如图所示,则不等式<0的解集为A.(-,)B.(,π)C.(-,)∪(,π)D.(-,0)∪(,π)解析:<0⇒f(x)与g(x)在同一区间内符号相反,由图可知当x∈(0,π)时,两者异号的区间为(,π),又f(x)为偶函数,g(x)为奇函数,∴它们在[-π,0]上的图象大致为如图所示,可知其异号的区间为(-,0),∴<0的解集为(-,0)∪(,π).答案:D9.已知函数f(x)=mx3+nx2的图象在点(-1,2)处的切线恰好与直线3x+y=0平行,若f(x)在区间[t,t+1]上单调递减,则实数t的取值范围是A.[-2,-1]B.(-2,-1)C.(-2,0)D.(-1,1)解析:由题可知---即---得∴f'(x)=3x2+6x,令f'(x)≤0,得-2≤x≤0,∵f(x)在区间[t,t+1]上递减,∴-得-2≤t≤-1.答案:A10.已知函数f(x)满足:①定义域为R;②对任意x∈R,有f(x+2)=2f(x);③当x∈[-1,1]时,f(x)=-|x|+1.则方程f(x)=log4|x|在区间[-4,4]内的解的个数是A.9B.6C.5D.4解析:∵f(x+2)=2f(x),∴f(4)=2f(2)=4f(0)=4,又log44<2,∴当0≤x≤4时,作出草图可知f(x)=log4|x|有3个解,又f(-2)=f(0)==log4|-2|,∴作出草图可知当-4≤x<0时,f(x)=log4|x|有2个解,∴在[-4,4]内解的个数是5个.答案:C11.2011年3月发生在日本的9级大地震虽然过去多年了,但它对日本的核电站的破坏却是持续的,其中有一种放射性元素铯137在其衰变过程中,假设近似满足:其含量M(单位:太贝克)与时间t(单位:年)满足函数关系:M(t)=M0-,其中M0为t=0时铯137的含量.已知t=30时,铯137含量的变化率是-10ln2(太贝克/年),则M(60)等于A.5太贝克B.72ln2太贝克C.150ln2太贝克D.150太贝克解析:因为铯137含量的变化率为M'(t)=-M0-ln2,所以当t=30时,M'(30)=-M0-ln2=-ln2=-10ln2,所以M0=600,可解得M(60)=150.答案:D12.已知函数f(x)=ln x++ax,x∈(0,+∞)(a为实常数).若f(x)在[2,+∞)上是单调函数,则a的取值范围是A.(-∞,-]B.(-∞,-]∪[0,+∞)C.(-∞,0)∪[,+∞]D.(-∞,0)∪(,+∞)-,解析:f'(x)=-+a=当a≥0时,ax2+x-1在[2,+∞)上恒大于零,即f'(x)>0,符合要求.当a<0时,令g(x)=ax2+x-1,g(x)在[2,+∞)上只能恒小于零,解得a≤-,故Δ=1+4a≤0或-∴a的取值范围是(-∞,-]∪[0,+∞).答案:B第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中的横线上.13.函数f(x)=log0.1|x-1|的定义域是.解析:∵|x-1|>0,∴x∈R且x≠1.答案:{x|x∈R且x≠1}14.已知f(x)是定义在R上的偶函数,f(2)=1且对任意x∈R都有f(x+3)=f(x),则f(2014)=.解析:由f(x+3)=f(x)知,f(x)是以周期为3的周期函数.所以f(2014)=f(671×3+1)=f(1)=f(3-2)=f(-2)=f(2)=1.答案:115.若lg x+lg y=0,则2x·2y的最小值是.解析:lg xy=0,xy=1,x+y≥2=2,2x·2y=2x+y≥22=4.答案:416.抛物线y2=3x与圆x2+y2=4围成的封闭图形的面积是.解析:得或-如图,则抛物线y2=3x与AB围成的图形面积是S=2dx=2×=因为A的坐标是A(1,),所以∠AOx=,劣弧AB与弦AB围成的面积是π·22-×2=π-,所以抛物线与圆围成的封闭图形面积是+π-=π+.答案:π+三、解答题:本大题共6小题,共70分.解答应写出必要的文字说明、证明过程及演算步骤.17.(本小题满分10分)(1)已知f(+1)=x+2,求f(x),f(x+1),f(x2);(2)已知2f(x)+f()=10x,求f(x).解析:(1)设t=+1≥1,则=t-1(t≥1),x=(t-1)2,∴f(t)=(t-1)2+2(t-1)=t2-1(t≥1),∴f(x)=x2-1(x≥1),∴f(x+1)=(x+1)2-1=x2+2x(x≥0),∴f(x2)=x4-1(x≤-1或x≥1).5分(2)由2f(x)+f()=10x,用代换x,则2f()+f(x)=1,两式联立消去f()得f(x)=×10x-×1.10分18.(本小题满分12分)某段高速公路全长240公里,两端收费站已建好,余下工程只需要在该段两端已建好的收费站之间修路面和等距离修建安全出口,经预算,修建一个安全出口的工程费用为400万元,铺设距离为x公里的相邻两安全出口之间道路费用为x2+x万元.设余下工程的总费用为y万元.(1)试将y表示成关于x的函数;(2)需要修建多少个安全出口才能使y最小,其最小值为多少万元?解析:(1)设需要修建k个安全出口,则(k+1)x=240,即k=-1.所以y=400k+(k+1)(x2+x)=400×(-1)+(x2+x)=+240x-160.因为x表示相邻两安全出口之间的距离,则0<x≤240.故y与x的函数关系是y=+240x-160(0<x≤240).6分(2)y=+240x-160≥2-160=9440.当且仅当=240x即x=20时取等号,此时k=-1=-1=11.故需要修建11个安全出口才能使y最小,最小值为9440万元.12分19.(本小题满分12分)设函数y=f(x)的定义域为R,并且满足f(x+y)=f(x)+f(y),f()=1,且当x>0时,f(x)>0.(1)求f(0)的值;(2)判断函数的奇偶性;(3)如果f(x)+f(2+x)<2,求x的取值范围.解析:(1)令x=y=0,则f(0)=f(0)+f(0),∴f(0)=0.3分(2)令y=-x,得f(0)=f(x)+f(-x)=0,∴f(-x)=-f(x),故函数是奇函数.6分(3)任取x1,x2∈R,x1<x2,则x2-x1>0,∴f(x2)-f(x1)=f(x2-x1+x1)-f(x1)=f(x2-x1)+f(x1)-f(x1)=f(x2-x1)>0f(x1)<f(x2).故f(x)是R上的增函数.∵f()=1,∴f()=f(+)=f()+f()=2,∴f(x)+f(2+x)=f[x+(2+x)]=f(2x+2)<f(),又由y=f(x)是定义在R上的增函数,得2x+2<,解之得x<-.故x∈(-∞,-).12分20.(本小题满分12分)函数f(x)的图象是[-2,2]上连续不断的曲线,且满足2014f(-x)=,且在[0,2]上是增函数,若f(log2m)<f[log4(m+2)]成立,求实数m的取值范围.解析:∵2014f(-x)=,即201-=2014-f(x),可得f(-x)=-f(x).又因为函数的定义域[-2,2]关于原点对称,所以函数f(x)为奇函数.由奇函数的性质可知,函数在关于原点对称的两个区间上的单调性是相同的,而已知函数f(x)在[0,2]上是单调递增的,所以函数f(x)在[-2,0]上也是单调递增的.故由f(log2m)<f[log4(m+2)],可得--6分由-2≤log2m≤2,解得≤m≤4.由-2≤log4(m+2)≤2,解得≤m+2≤16,即-≤m≤14.由log2m<log4(m+2),得log4m2<log4(m+2),故有解得0<m<2.综上所述,m的取值范围为[,2).12分21.(本小题满分12分)已知函数f(x)=(a+)ln x+-x(a>1).(1)试讨论f(x)在区间(0,1)上的单调性;(2)当a∈[3,+∞)时,曲线y=f(x)总存在相异两点P(x1,f(x1)),Q(x2,f(x2)),使得曲线y=f(x)在点P、Q处的切线互相平行,求证x1+x2>.解析:(1)由已知x>0,f'(x)=--1=--=---.由f'(x)=0,得x1=,x2=a.因为a>1,所以0<<1,且a>.所以在区间(0,)上,f'(x)<0;在区间(,1)上,f'(x)>0.故f(x)在(0,)上单调递减,在(,1)上单调递增.6分(2)由题意可得,当a∈[3,+∞)时,f'(x1)=f'(x2)(x1,x2>0且x1≠x2).即--1=--1,所以a+=+=,a∈[3,+∞).因为x1,x2>0且x1≠x2,所以x1x2<()2恒成立,所以>,又x1+x2>0,所以a+=>,整理得x1+x2>.令g(a)=,因为a∈[3,+∞),所以g(a)在[3,+∞)上单调递减,所以g(a)=在[3,+∞)上的最大值为g(3)=,所以x1+x2>.12分22.(本小题满分12分)已知函数f(x)=e x-ax(a∈R).(1)求f(x)的极值;(2)若f(x)≥x+b恒成立,求(a+1)b的最大值.解析:(1)f'(x)=e x-a,显然,当a≤0时,f'(x)>0恒成立,所以函数f(x)在R上单调递增,函数f(x)不存在极值.当a>0时,由f'(x)>0,得x>ln a,当x∈(ln a,+∞)时,f'(x)>0,函数f(x)单调递增,当x∈(-∞,ln a)时,f'(x)<0,函数f(x)单调递减,所以x=ln a时,函数f(x)取得极小值,f(ln a)=a-aln a.4分(2)f(x)≥x+b恒成立,即e x-ax≥x+b,得e x-(a+1)x≥b.(i)若a+1<0,对任意实数b,x<0时,因为e x<1,-,所以e x-(a+1)x<1-(a+1)x,令1-(a+1)x<b,得x<因此,a+1<0,f(x)≥x+b不恒成立.(ii)若a+1=0,则(a+1)b=0.(iii)若a+1>0,设g(x)=e x-(a+1)x,则g'(x)=e x-(a+1),当x∈(-∞,ln(a+1))时,g'(x)<0,当x∈(ln(a+1),+∞)时,g'(x)>0,从而g(x)在(-∞,ln(a+1))上单调递减,在(ln(a+1),+∞)上单调递增,故g(x)有最小值,g(ln(a+1))=a+1-(a+1)ln(a+1),所以f(x)≥x+b恒成立等价于b≤a+1-(a+1)ln(a+1),因此(a+1)b≤(a+1)2-(a+1)2ln(a+1),10分设h(a)=(a+1)2-(a+1)2ln(a+1),则h'(a)=(a+1)(1-2ln(a+1)),所以h(a)在(-1,-1)上单调递增,在(-1,+∞)上单调递减,故h(a)在a=-1处取得最大值h(-1)=,从而h(a)≤,即(a+1)b≤,所以(a+1)b的最大值是.12分。
全国100所名校单元测试示范卷高三数学一、选择题(每题4分,共40分)1. 下列函数中,不是周期函数的是:A. y = sin(x)B. y = cos(x)C. y = tan(x)D. y = e^x2. 已知集合A={1, 2, 3},B={2, 3, 4},求A∪B:A. {1, 2, 3, 4}B. {1, 2, 3}C. {2, 3, 4}D. {1, 4}3. 若f(x) = 2x - 1,求f(3):A. 5B. 4C. 3D. 24. 已知a > 0,b > 0,且a + b = 1,求ab的最大值:A. 1/4B. 1/2C. 1/3D. 1/65. 直线y = 2x + 3与x轴的交点坐标是:A. (-1, 0)B. (3/2, 0)C. (0, 3)D. (1, 0)6. 已知函数f(x) = x^2 - 4x + 4,求f(x)的最小值:A. 0B. -4C. -3D. 47. 根据题目所给的三角函数关系,求cos(α + β)的值:A. cosαcosβB. sinαsinβC. cosαsinβ - sinαcosβD. sinαcosβ + cosαsinβ8. 若a, b, c ∈ R,且a^2 + b^2 + c^2 = 1,求(a + b + c)^2的最大值:A. 1B. 3/2C. 2D. 9/49. 已知等差数列{an}的首项a1=2,公差d=3,求第10项a10:A. 29B. 32C. 35D. 3810. 已知函数f(x) = |x - 1| + |x - 3|,求f(2):A. 0B. 1C. 2D. 4二、填空题(每题4分,共20分)11. 已知函数f(x) = x^3 - 3x^2 + 2,求f'(x)的值。
答案:__________12. 若sinθ = 1/3,且θ为锐角,求cosθ的值。
答案:__________13. 已知等比数列{bn}的首项b1=8,公比q=1/2,求第5项b5。
随着高考的临近,高三学生面临着巨大的学习压力。
数学作为高考的重要科目之一,其成绩的高低直接影响到学生的整体表现。
为了帮助学生巩固所学知识,提高解题能力,以下推荐几套适合高三学生的数学单元测试卷:一、人教版《数学》1. 测试卷名称:《人教版高三数学单元测试卷(一)》适用范围:人教版高三数学第一册测试内容:集合、函数、指数与对数、三角函数等基础知识特点:题目难度适中,注重基础知识的巩固和能力的提升。
2. 测试卷名称:《人教版高三数学单元测试卷(二)》适用范围:人教版高三数学第二册测试内容:平面向量、立体几何、解析几何、概率统计等基础知识特点:题目难度逐渐提高,注重综合能力的培养。
二、苏教版《数学》1. 测试卷名称:《苏教版高三数学单元测试卷(一)》适用范围:苏教版高三数学第一册测试内容:集合、函数、指数与对数、三角函数等基础知识特点:题目形式多样,注重学生的创新思维和解题技巧。
2. 测试卷名称:《苏教版高三数学单元测试卷(二)》适用范围:苏教版高三数学第二册测试内容:平面向量、立体几何、解析几何、概率统计等基础知识特点:题目难度适中,注重基础知识的巩固和能力的提升。
三、北师大版《数学》1. 测试卷名称:《北师大版高三数学单元测试卷(一)》适用范围:北师大版高三数学第一册测试内容:集合、函数、指数与对数、三角函数等基础知识特点:题目难度适中,注重基础知识的巩固和能力的提升。
2. 测试卷名称:《北师大版高三数学单元测试卷(二)》适用范围:北师大版高三数学第二册测试内容:平面向量、立体几何、解析几何、概率统计等基础知识特点:题目难度逐渐提高,注重综合能力的培养。
四、各版本综合性测试卷1. 测试卷名称:《高三数学综合性单元测试卷》适用范围:适用于所有版本的高三数学测试内容:涵盖集合、函数、指数与对数、三角函数、平面向量、立体几何、解析几何、概率统计等基础知识特点:题目难度较高,注重综合能力的培养,适合学生进行考前模拟。
2020年人教版新课标高中数学模块测试卷概 率一、选择题(本大题共12小题,每小题5分,共60分)1.我校有高一学生850人,高二学生900人,高三学生1 200人,学校团委欲用分层抽样的方法抽取30名学生进行问卷调查,则下列判断正确的是( ) A .高一学生被抽到的概率最大 B .高二学生被抽到的概率最大 C .高三学生被抽到的概率最大D .每名学生被抽到的概率相等2.某人将一枚硬币连续抛掷了10次,正面朝上的情形出现了6次,则( ) A .正面朝上的概率为0.6 B .正面朝上的频率为0.6 C .正面朝上的频率为6D .正面朝上的概率接近于0.63.事件分为必然事件、随机事件和不可能事件,其中随机事件A 发生的概率的范围是( ) A .()0P A >B .()1P A <C .()01P A <<D .()01P A ≤≤4.同时抛掷两枚大小相同的骰子,用(),x y 表示结果,记A 为所得点数之和为8,则事件A 包含的样本点总数是( ) A .3B .4C .5D .65.袋内装有一个黑球与一个白球(除颜色外其他都相同),从袋中取出一球,在100次摸球中,摸到黑球的频率为0.49,则摸到白球的次数为( ) A .49B .51C .0.49D .0.516.把形状、质量、颜色等完全相同,标号分别为1,2,3,4,5,6的6个小球放入一个不透明的袋子中,从中任意抽取一个小球,记下号码为x ,把第一次抽取的小球放回去之后再从中抽取一个小球,记下号码为y ,设“6xy =”为事件A ,则()=P A ( )A .118B .112C .19D .167.某校高中三个年级人数统计图如图5-5-1所示,按年级用分层抽样的方法抽取一个样本,已知样本中高一年级学生有8人,则样本容量为( )A .24B .30C .32D .358.假设某运动员每次投篮命中的概率都为40%。
现采用随机模拟的方法估计该运动员三次投篮恰有两次命中的概率:先由计算器产生0到9之间取整数值的随机数,指定1,2,3,4表示命中,5,6,7,8,9,0表示不命中,再以每三个随机数为一组,代表三次投篮的结果.经随机模拟产生了如下20组随机数: 907 966 191 925 271 932 812 458 569 683 431 257 393 027 556 488 730 113 537 989据此估计,该运动员三次投篮恰有两次命中的概率为( ) A .720B .14C .15D .3209.关于图5-5-2的说法,错误的一个是( )A .甲的极差是29B .甲的中位数是25C .乙的众数是21D .甲的平均数比乙的大10.从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为( ) A .110B .15C .310D .2511.甲、乙两名同学6次考试的成绩统计图如图5-5-3所示,两组数据的平均数分别为x 甲,x 乙,标准差分别为σ甲,σ乙,则( )A .x x 乙甲<,σσ乙甲<B .x x 乙甲<,σσ乙甲>C .x x 乙甲>,σσ乙甲<D .x x 乙甲>,σσ乙甲>12.甲、乙两人做游戏,下列游戏中不公平的是( )A .抛一枚骰子,向上的点数为奇数则甲胜,向上的点数为偶数则乙胜B .同时抛两枚相同的骰子,向上的点数之和大于7则甲胜,否则乙胜C .从一副不含大、小王的扑克牌中抽一张,扑克牌是红色则甲胜,是黑色则乙胜D .甲,乙两人各写一个数字,若是同奇或同偶则甲胜,否则乙胜 二、填空题(本大题共4小题,每小题5分,共20分) 13.对某班一次测验成绩进行统计,如下表所示:则(1)该班成绩在[]80,100内的概率为________; (2)该班成绩在[]60,100内的概率为________.14.若一个三位数的各位数字互不相同,且各位数字之和等于10,则称此三位数为“十全十美三位数”(如235),任取一个“十全十美三位数”,该数为奇数的概率为________.15.若以连续两次掷骰子分别得到的点数m ,n 作为点P 的横、纵坐标,则点P 落在圆2216x y +=内的概率为________.16.甲、乙两人玩猜数字游戏,先由甲心中任想一个数字记为a ,再由乙猜甲刚才想的数字,把乙猜的数字记为b ,且a ,{}0,1,2,,9b ∈.若||1a b -≤,则称甲、乙“心有灵犀”.现任意找两人玩这个游戏,则两人“心有灵犀”的概率为________. 三、解答题(本大题共6小题,共70分)17.(10分)某公司随机收集了该公司所生产的四类产品的售后调查数据,经分类整理得到下表:使用满意率是指一类产品销售中获得用户满意评价的件数与该类产品的件数的比值.(1)从公司收集的这些产品中随机选取1件,求这件产品是获得用户满意评价的丙类产品的概率; (2)假设该公司的甲类产品共销售10 000件,试估计这些销售的甲类产品中,不能获得用户满意评价的件数.18.(12分)为了研究某种理财工具的使用情况,对[]20,70年龄段的人员进行了调查研究,将各年龄段人数分成5组:[)20,30,[)30,40,[)40,50,[)50,60,[]60,70,并整理得到频率分布直方图如图5-5-4: (1)求直方图中a 的值.(2)采用分层抽样的方法,从第二组、第三组、第四组中共抽取8人,则三个组中各抽取多少人?(3)在(2)中抽取的8人中,随机抽取2人,则这2人都来自第三组的概率是多少?19.(12分)已知某种高炮在它的控制区域内击中目标的概率为0.2.(1)假设有5门这种高炮控制某个区域,求目标进入这个区域后未被击中的概率;(2)要使目标一旦进入这个区域后有0.9以上的概率被击中,需至少布置几门高炮?(参考值lg20.301≈)20.(12分)某教育集团为办好人民满意的教育,每年底都随机邀请8名学生家长代表对集团内甲、乙两所学校进行人民满意度的民主测评(最高110分,最低0分,分数越高说明人民满意度越高,分数越低说明人民满意度越低),去年测评的数据如下: 甲校:96,112,97,108,100,103,86,98; 乙校:108,101,94,105,96,93,97,106.(1)分别计算甲、乙两所学校去年人民满意度测评数据的平均数、中位数. (2)分别计算甲、乙两所学校去年人民满意度测评数据的方差. (3)根据以上数据,你认为这两所学校哪所学校人民满意度更高?21.(12分)一只口袋内装有形状、大小、质地等都相同的4个小球,这4个小球上分别标记着数字1,2,3,4.甲、乙、丙三名同学约定: ①每人不放回地随机摸取一个球; ②按照甲、乙、丙的次序依次摸取; ③谁摸取的球的数字最大,谁就获胜.用有序数组(),,a b c 表示这个试验的基本事件,例如:()1,4,3表示在一次试验中,甲摸取的是标记着数字1的小球,乙摸取的是标记着数字4的小球,丙摸取的是标记着数字3的小球. (1)列出基本事件,并指出基本事件的总数; (2)求甲获胜的概率;(3)求出乙获胜的概率,并指出甲、乙、丙三名同学获胜的概率与其摸球的次序是否有关.22.(12分)某种产品的质量按照其质量指标值M 进行等级划分,具体如下表:现从某企业生产的这种产品中随机抽取100件作为样本,对其质量指标值M 进行统计分析,得到如图5-5-5所示的频率分布直方图.(1)记A 表示事件“任取一件这种产品为二等品或一等品”,试估计事件A 的概率;(2)已知该企业的这种产品每件一等品、二等品、三等品的利润分别为10元、6元、2元,试估计该企业销售10 000件该产品的利润;(3)根据该产品质量指标值M 的频率分布直方图,求质量指标值M 的中位数的估计值(精确到0.01).2020年人教版新课标高中数学模块测试卷概 率·答案一、 1.【答案】D【解析】由抽样的定义知,无论哪种抽样,样本被抽到的概率都相同,故每名学生被抽到的概率相等,故选D 。
高三数学单元测试《平面向量及复数》一、选择题(本题每小题5分,共60分)1.设向量=⋅︒︒=︒︒=b a b a 则),37cos ,53(cos ),67cos ,23(cos ( )A .23 B .21 C .-23 D .-21 2.如果复数ibi212+-(其中i 为虚数单位,b 为实数)的实部和虚部是互为相反数,那么b 等于( )A .2B .32 C .2 D .- 32 3.220041i i i ++++的值是( )A .0B .-1C .1D .i4.若a =(2,-3), b =(1,-2),向量c 满足c ⊥a ,b •c =1,则c 的坐标是 ( )A .(3,-2)B .(3,2)C .(-3,-2)D .(-3,2)5.使i R i a ()(4∈+为虚数单位)的实数a 有( )A .1个B .2个C .3个D .4个6.设e 是单位向量,3||,3,3=-==AD e CD e AB ,则四边形ABCD 是 ( )A .梯形B .菱形C .矩形D .正方形7.已知O 、A 、B 三点的坐标分别为O (0,0),A (3,0),B (0,3),点P 在线段AB 上,且OP OA t AB t AP ⋅≤≤=则),10(的最大值为( )A .3B .6C .9D .1281,2==,a 与b 的夹角为︒60,则使向量b a λ+与b a 2-λ的夹角为钝角的实数λ的取值范围是 ( )A . )31,(---∞B . ),31(∞++-C . ),31()31,(∞++----∞D . )31,31(+---9.若z 为复数,下列结论正确的是 ( )A .若212121,0,z z z z C z z >>-∈则且B .22z z =C .若,0=-z z 则z 为纯虚数D .若2z 是正实数,那么z 一定是非零实数10.若)1cos 2(12sin ++-θθi 是纯虚数,则θ的值为( )A .)(42Z k k ∈-ππ B .)(42Z k k ∈+ππC .)(42Z k k ∈±ππD .)(42Z k k ∈+ππ 11.已知△ABC 的三个顶点的A 、B 、C 及平面内一点P 满足AB PC PB PA =++,下列结论中正确的是( )A .P 在△ABC 内部B .P 在△ABC 外部C .P 在AB 边所在直线上D .P 是AC 边的一个三等分点12.复数z 在复平面上对应的点在单位圆上,则复数zz 12+( )A .是纯虚数B .是虚数但不是纯虚数C .是实数D .只能是零二、填空题(本题每小题4分,共16分)13.已知复数z 满足等式:i zi z 212||2+=-,则z= . 14.把函数)y =2x 2—4x +5的图象按向量a 平移后,得到y =2x 2的图象,且a ⊥b ,c =(1,-1),b ·c =4,则b =_____________。
高三数学单元测试《不等式》一、选择题(本题每小题5分,共60分)1.已知实数a 、b 、c 满足b +c =6-4a +32a ,c -b =4-4a +2a ,则a 、b 、c 的大小关系是 ( )A .c ≥b >aB .a >c ≥bC .c >b >aD .a >c >b2.设a 、b 为实数,且a +b =3,则b a 22+的最小值为 ( )A .6B .24C .22D .83.不等式211<-x 的解集为 ( )A .(21,1)∪(1,23) B .(-∞,21)∪(23,+∞) C .(-∞,1)∪(23,+∞)D .(21,1)∪(23,+∞)4.设实数x, y 满足x + y=4, 则22222++-+y x y x 的最小值为( )A .2B .4C .22D .85.已知实数x ,y 满足x +y -1=0,则x 2+y 2的最小值为 ( ) A .21 B .2C .2D .22 6.对“a 、b 、c 是不全相等的正数”,给出下列判断:①(a -b )2+(b -c )2+(c -a )2≠0; ②a >b 与a <b 及a ≠c 中至少有一个成立; ③a ≠c ,b ≠c ,a ≠b 不能同时成立.其中判断正确的个数为 ( ) A .0个B .1个C .2个D .3个7.若x >4,则函数xx y -+=-41( )A .有最大值—6B .有最小值6C .有最大值—2D .有最小值28.不等式2|2|+>+x xx x 的解集是 ( )A .(-2,0)B .]0,2(-C .RD .),0()2,(+∞--∞9.不等式)310)(31(<<-=x x x y 的最大值是 ( )A .2434 B .121 C .641 D .721 10.设a 适合不等式a-11>1,若f (x )=a x,g (x )=ax 1,h (x )=log a x ,且x >1,则 ( )A .h (x )<g(x )<f (x )B .h (x )<f (x )<g(x )C .f (x )<g(x )<h (x )D .f (x )<h (x )<g(x )11.已知()x f 是定义在()3,3-上的奇函数,当30<<x 时,()x f 的图象如图所示,那么不等式()0cos <⋅x x f 的解集为 ( ) A .()⎪⎭⎫⎝⎛⋃⋃⎪⎭⎫⎝⎛--3,21,02,3ππB .()⎪⎭⎫ ⎝⎛⋃⋃⎪⎭⎫ ⎝⎛--3,21,01,2ππ C .()()()3,11,01,3⋃⋃-- D .()()3,11,02,3⋃⋃⎪⎭⎫⎝⎛--π 12.定义在R 上的函数y =f (x ),在(-∞,a )上是增函数,且函数 y =f (x +a )是偶函数,当x 1<a ,x 2>a 且a x a x -<-21时,有 ( )A .f (2a -x 1)> f (2a -x 2)B .f (2a -x 1)= f (2a -x 2)C .f (2a -x 1)< f (2a -x 2)D .-f (2a -x 1)< f(x 2-2a )二、填空题(本题每小题4分,共16分) 13.若不等式}213|{0342>-<<->+++x x x x x ax 或的解集为,则a = . 14.已知集合A ={(x ,y )|13--x y =2,x 、y ∈R },B ={(x ,y )|4x +ay =16,x 、y ∈R },若A ∩B =φ,则实数a 的值为 . 15.已知两个正数x,y 满足x +y =4,则使不等式yx 41+≥m ,恒成立的实数m 的取值范围是 .16.已知a >b ,a ·b=1则ba b a -+22的最小值是 .三、解答题(本大题共6小题,共74分。
一、选择题(每题5分,共50分)1. 若函数$f(x) = x^3 - 3x + 2$在$x=1$处的切线斜率为2,则$f(x)$的导函数$f'(x)$在$x=1$处的值为:A. 1B. 2C. 3D. 42. 已知等差数列$\{a_n\}$的前$n$项和为$S_n = 4n^2 - 3n$,则该数列的首项$a_1$为:A. 5B. 6C. 7D. 83. 下列函数中,在定义域内单调递增的是:A. $f(x) = x^2 - 2x + 1$B. $f(x) = -x^2 + 2x - 1$C. $f(x) = 2x^3 - 3x^2 + 2x - 1$D. $f(x) = \frac{1}{x} + x$4. 若复数$z = a + bi$(其中$a, b \in \mathbb{R}$)满足$|z| = 1$,则$\text{arg}(z)$的取值范围是:A. $[0, \frac{\pi}{2}]$B. $[0, \pi]$C. $[-\frac{\pi}{2}, \frac{\pi}{2}]$D. $[-\pi, \pi]$5. 已知圆$C: x^2 + y^2 = 1$,点$P(1, 0)$到圆$C$的最短距离为:A. $\sqrt{2}$B. $1$C. $\frac{\sqrt{2}}{2}$D.$\frac{1}{\sqrt{2}}$6. 下列命题中,正确的是:A. 函数$y = \log_2(x-1)$的图像关于$y$轴对称B. 方程$x^3 - 3x + 2 = 0$的实根只有一个C. 等差数列$\{a_n\}$的前$n$项和$S_n$是关于$n$的二次函数D. 等比数列$\{a_n\}$的通项公式为$a_n = a_1 \cdot r^{n-1}$7. 若不等式$x^2 - 4x + 3 > 0$的解集为$A$,不等式$|x-2| < 1$的解集为$B$,则$A \cap B$为:A. $\{x | x < 1 \text{ 或 } x > 3\}$B. $\{x | 1 < x < 3\}$C. $\{x | x < 1 \text{ 或 } x > 2\}$D. $\{x | 1 < x < 2\}$8. 若向量$\vec{a} = (1, 2)$,$\vec{b} = (2, -1)$,则$\vec{a} \cdot\vec{b}$的值为:A. 3B. -3C. 5D. -59. 已知函数$f(x) = e^x - x$,则$f'(x)$的值域为:A. $[1, +\infty)$B. $(-\infty, 1]$C. $[1, 0]$D. $[0, +\infty)$10. 若等差数列$\{a_n\}$的前$n$项和为$S_n = \frac{n(3n+1)}{2}$,则该数列的公差$d$为:A. 2B. 3C. 4D. 5二、填空题(每题5分,共50分)1. 函数$f(x) = x^3 - 3x + 2$的极值点为__________。
第五单元平面向量、数系的扩充与复数的引入(时间:45分钟满分:100分)一、选择题(本大题共12小题,每小题6分,共72分)1.(2016河南郑州三模)设复数i-21+i=a+b i(a,b∈R),则a+b=()A.1B.2C.-1D.-2∵i-21+i =-12+32i=a+b i,∴a=-12,b=32.∴a+b=1,故选A.2.已知O是△ABC所在平面内一点,D为BC边的中点,且2OA+OB+OC=0,则有()A.AO=2ODB.AO=ODC.AO=3ODD.2AO=OD2OA+OB+OC=0,得OB+OC=-2OA=2AO,即OB+OC=2OD=2AO,所以OD=AO,故选B.3.(2016河南商丘三模)设向量e1,e2是两个互相垂直的单位向量,且a=2e1-e2,b=e2,则|a+2b|=()A.22B.C.2D.4向量e1,e2是两个互相垂直的单位向量,∴|e1|=1,|e2|=1,e1·e2=0.∵a=2e1-e2,b=e2,∴a+2b=2e1+e2.∴|a+2b|2=4e12+4e1·e2+e22=5.∴|a+2b|=5.故选B.4.已知菱形ABCD的边长为a,∠ABC=60°,则BD·CD=()A.-32a2 B.-34a2 C.34a2 D.32a2,设BA=a,BC=b.则BD·CD=(BA+BC)·BA=(a+b)·a=a2+a·b=a2+a·a·cos60°=a2+12a2=32a2.5.(2016山西太原三模)已知复数z=5+3i1-i,则下列说法正确的是() A.z的虚部为4i B.z的共轭复数为1-4iC.|z|=5D.z在复平面内对应的点在第二象限z=5+3i1-i =(5+3i)(1+i)(1-i)(1+i)=2+8i2=1+4i,∴z的共轭复数为1-4i.故选B.6.已知向量OA=(2,2),OB=(4,1),在x轴上存在一点P使AP·BP有最小值,则P点的坐标是()A.(-3,0)B.(2,0)C.(3,0)D.(4,0)P点坐标为(x,0),则AP=(x-2,-2),BP=(x-4,-1).AP·BP=(x-2)(x-4)+(-2)×(-1)=x2-6x+10=(x-3)2+1.当x=3时,AP·BP有最小值1.∴点P坐标为(3,0).7.已知向量a=(1,2),b=(1,0),c=(3,4),若λ为实数,(b+λa)⊥c,则λ的值为()A.-311B.-113C.12D.35+λa=(1,0)+λ(1,2)=(1+λ,2λ),c=(3,4),又(b+λa)⊥c,∴(b+λa)·c=0,即(1+λ,2λ)·(3,4)=3+3λ+8λ=0,解得λ=-311,故选A.8.已知点A(-1,1),B(1,2),C(-2,-1),D(3,4),则向量AB在CD方向上的投影为()A.322B.3152C.-322D.-3152=(2,1),CD=(5,5),向量AB在CD上的投影为AB·CD|CD|=52=322,故选A.9.(2016山东师大附中模拟)设a k=cos kπ6,sin kπ6+cos kπ6,k∈Z,则a2 015·a2016=()A.3B.3−12C.23-1D.2 〚a2 015=cos2015π6,sin2015π6+cos2015π6=cosπ6,-sinπ6+cosπ6=32,3-12,a2 016=cos2016π6,sin2016π6+cos2016π6=(cos 0,sin 0+cos 0)=(1,1),∴a2 015·a2 016=32×1+3-12×1=3−12.故选B.10.已知向量OB=(2,0),向量OC=(2,2),向量CA=(2cos α,2sin α),则向量OA 与向量OB的夹角的取值范围是()A.0,π4B.π4,5π12C.5π12,π2D.π12,5π12〚由题意,得OA=OC+CA=(2+2cos α,2+2sin α),所以点A的轨迹是圆(x-2)2+(y-2)2=2,如图,当A为直线OA与圆的切点时,向量OA与向量OB的夹角分别达到最大值和最小值,故选D.11.(2016山东临沂一模)已知O是坐标原点,点A(-1,1),若点M(x,y)为平面区域x+y≥2,x≤1,y≤2上的一个动点,则OA·OM的取值范围是()A.[-1,0]B.[0,1]C.[0,2]D.[-1,2]x+y≥2,x≤1,y≤2的平面区域如图阴影部分所示.令z=OA·OM=-x+y,即y=x+z.当直线y=x+z经过点P(0,2)时,在y轴上的截距最大,从而z最大,即z max=2.当直线y=x+z经过点S(1,1)时,在y轴上的截距最小,从而z最小,即z min=0.故OA·OM的取值范围为[0,2],故选C.12.已知|OA|=|OB|=2,点C在线段AB上,且|OC|的最小值为1,则|OA-t OB|(t ∈R)的最小值为()A.2B.3C.2D.5〚,可将点A,B置于圆x2+y2=4上;由点C在线段AB上,且|OC|的最小值为1,得原点O到线段AB的距离为1,∠AOB=180°-2×30°=120°,(OA-t OB)2=4+4t2-2t×22cos 120°=4t2+4t+4=4 t+122+3的最小值是3,因此|OA-t OB|的最小值是3.二、填空题(本大题共4小题,每小题7分,共28分)13.(2016山东,文13)已知向量a=(1,-1),b=(6,-4).若a⊥(t a+b),则实数t的值为____________.5a⊥(t a+b)可得a·(t a+b)=0,所以t a2+a·b=0,而a2=12+(-1)2=2,a·b=1×6+(-1)×(-4)=10,所以有t×2+10=0,解得t=-5.14.在矩形ABCD中,AB=2,BC=1,E为BC的中点,若F为该矩形内(含边界)任意一点,则AE·AF的最大值为____________.以A为坐标原点,AB所在直线为x轴,AD所在直线为y轴,建立平面直角坐标系,则E2,12.设F(x,y),则0≤x≤2,0≤y≤1,则AE·AF=2x+12y,令z=2x+12y,当z=2x+12y过点(2,1)时,AE·AF取最大值92.15.(2016湖北武昌区调考)若向量a,b满足:a=(-3,1),(a+2b)⊥a,(a+b)⊥b,则|b|=____________.a=(-3,1),∴|a|=2.∵(a+2b)⊥a,(a+b)⊥b,∴(a+2b)·a=0,(a+b)·b=0,即|a|2+2a·b=0, ①|b|2+a·b=0.②由①-②×2得|a|2=2|b|2,则|b|=2.16.在平面直角坐标系中,已知A(1,0),B(0,-1),P是曲线y=1-x2上一个动点,则BP·BA的取值范围是____________.1],画出函数y=1-x2的图象.这是以O(0,0)为圆心,以1为半径的一个半圆.不妨用虚线把这个半圆补充为一个圆.设BP与BA的夹角为θ,则θ∈[0°,90°].当θ∈[0°,45°]时,cos (45°-θ)=|BP|,2.当θ∈[45°,90°]时,cos (θ-45°)=|BP|2由于y=cos x,x∈R是偶函数,所以|BP|=2cos (θ-45°),θ∈[0°,90°].BP·BA=|BP||BA|cos θ=22cos (θ-45°)cos θ=2cos2θ+2sin θcos θ=sin 2θ+cos 2θ+1=2sin (2θ+45°)+1.因为θ∈[0°,90°],所以2θ+45°∈[45°,225°].当2θ+45°=90°,即θ=22.5°时,BP·BA取最大值2+1, 当2θ+45°=225°,即θ=90°时,BP·BA取最小值0,所以BP·BA的取值范围是[0,2+1].。