韦达定理应用
- 格式:doc
- 大小:45.00 KB
- 文档页数:7
韦达定理使用条件韦达定理使用条件韦达定理,也称作三角形面积公式,是初中数学中比较重要的一个定理。
它可以用来计算任意三角形的面积,因此在几何学、物理学等领域都有广泛的应用。
但是,在使用韦达定理时,需要满足一些条件才能确保计算结果的准确性。
本文将从多个方面详细介绍韦达定理的使用条件。
一、韦达定理的基本原理在介绍韦达定理使用条件之前,我们先来了解一下它的基本原理。
对于任意三角形ABC,设它的底边为a,高为h,则有:S = 1/2 × a × h其中S表示三角形ABC的面积。
然而,在实际应用中,我们往往无法直接测量出三角形ABC的高h。
因此,我们需要寻找一种方法来求解h。
二、使用韦达定理计算三角形面积1. 需要已知两条边和它们之间夹角假设已知三角形ABC中AB和AC两条边以及它们之间夹角BAC,则可以通过以下公式计算出三角形ABC的面积:S = 1/2 × AB × AC × sin(BAC)其中sin(BAC)表示夹角BAC的正弦值。
2. 需要已知三条边的长度假设已知三角形ABC的三条边分别为a、b、c,则可以通过以下公式计算出三角形ABC的面积:S = √[p×(p-a)×(p-b)×(p-c)]其中p = (a+b+c)/2,称为半周长。
三、使用韦达定理需要满足的条件1. 底边和高必须在同一平面内这是使用韦达定理计算三角形面积最基本的条件。
底边和高必须在同一平面内,否则无法确定它们之间的关系,也就无法使用韦达定理计算出面积。
2. 底边和高必须垂直如果底边和高不垂直,则无法使用公式S = 1/2 × a × h计算出面积。
因此,在使用韦达定理时,需要确保底边和高垂直。
3. 已知两条边和它们之间夹角时,夹角必须是它们之间的夹角如果已知三角形ABC中两条边及它们之间夹角外部的另一个角度,则无法使用公式S = 1/2 × AB × AC × sin(BAC)计算出面积。
韦达定理的原理应用是什么1. 韦达定理简介韦达定理(Vieta’s theorem)是一个用于解二次方程的定理,它通过多项式的系数与根之间的关系,揭示了根与系数之间的重要特征。
这个定理是以法国数学家弗朗索瓦·韦达(François Viète)的名字命名的,他在16世纪首次提出了这个定理。
2. 韦达定理的表述如果我们有一个二次方程:ax2+bx+c=0其中a、b、c是实数,x是未知数。
韦达定理给出了与这个二次方程相关的根之间的关系:如果r1和r2是方程的两个实数根,那么他们满足以下关系:r1 + r2 = -b / ar1 * r2 = c / a这些关系将帮助我们解决二次方程并找到其根的值。
3. 韦达定理的应用韦达定理有广泛的应用。
下面列举几个常见的应用场景:3.1. 求二次方程的根韦达定理为我们提供了一个实用的方法来求解二次方程的根。
我们只需要根据方程的系数,计算出和与积的值,然后利用韦达定理的关系式即可得到方程的两个根。
例如,对于方程 2x^2 + 3x - 5 = 0,我们可以使用韦达定理计算出: - 和的值:-3 / 2 - 积的值:-5 / 2这样我们就得到了方程的两个根。
3.2. 寻找根与系数之间的关系韦达定理不仅仅是一个用于解二次方程的工具,它还揭示了根与系数之间的重要关系。
通过韦达定理,我们可以发现以下一些有趣的规律:•和的值与一次项系数的相反数成比例:根的和与一次项系数的相反数成正比。
即 r1 + r2 = -b / a•积的值与常数项成比例:根的积与常数项成正比。
即 r1 * r2 = c / a这些规律对于我们研究多项式方程的性质以及根的特性都非常有用。
3.3. 解决实际问题韦达定理可以应用于解决一些实际的问题。
例如,假设我们正在研究一个投掷物体的运动,我们希望知道在什么时候物体落地。
我们可以将物体的运动模型建立为二次方程,然后通过韦达定理求解出方程的根。
韦达定理经典例题及解题过程摘要:一、韦达定理简介二、韦达定理经典例题1.例题一2.例题二3.例题三三、韦达定理解题过程1.确定韦达定理的应用条件2.分析题目中给出的方程3.应用韦达定理求解方程4.总结解题过程并得出答案正文:一、韦达定理简介韦达定理,又称Vieta 定理,是一元二次方程根与系数关系的定理。
它指出,对于一元二次方程ax+bx+c=0(a≠0),其两个根x1 和x2 的和与积分别等于方程中一次项系数和常数项系数的相反数和倒数。
具体来说,韦达定理有以下两个公式:x1 + x2 = -b/ax1 * x2 = c/a二、韦达定理经典例题1.例题一题目:已知一元二次方程x-3x-4=0,求该方程的两个根。
2.例题二题目:已知一元二次方程2x-5x+3=0,求该方程的两个根。
3.例题三题目:已知一元二次方程x+2x-3=0,求该方程的两个根。
三、韦达定理解题过程假设我们有一个一元二次方程ax+bx+c=0(a≠0),我们想要求出它的两个根x1 和x2。
1.确定韦达定理的应用条件首先,我们需要确保方程有两个实数根,即b-4ac≥0。
如果b-4ac<0,则方程没有实数根。
2.分析题目中给出的方程对于每一个例题,我们首先需要将方程写成标准形式ax+bx+c=0。
然后,我们可以根据韦达定理的公式x1 + x2 = -b/a和x1 * x2 = c/a来求解。
3.应用韦达定理求解方程对于每一个例题,我们分别代入方程的系数,计算出x1 和x2 的值。
4.总结解题过程并得出答案最后,我们将求得的x1 和x2 的值代入原方程,验证它们是否是方程的根。
如果是,我们便成功求解了该方程。
综上所述,韦达定理是一种非常有用的解一元二次方程的方法。
韦达定理应用的典型例题韦达定理(Viviani's theorem)是解析几何中的一条定理,它是由意大利数学家韦达(Vincenzo Viviani)在17世纪提出的。
该定理描述了一个正四面体内部的特殊关系,也可以被看作是勾股定理在空间中的推广。
韦达定理可以用以下方式表述:如果在一个正四面体的每个面上都选择一个点,连接这些点所得到的三条线段的长度之和等于这个正四面体的高,则这三条线段的长度是相等的。
现在,让我们来看几个典型的例题,应用韦达定理来解决。
例题1:一个正四面体的高为6 cm,求连接每个顶点与相对面的中点所得到的三条线段的长度。
解析:根据韦达定理,我们知道连接每个顶点与相对面的中点所得到的三条线段的长度之和等于正四面体的高。
由于正四面体的高为6 cm,所以这三条线段的长度之和也为6 cm。
由于这三条线段的长度相等,所以每条线段的长度为2 cm。
例题2:一个正四面体的一条棱长为8 cm,求连接每个顶点与相对面的中点所得到的三条线段的长度。
解析:首先,我们需要确定正四面体的高。
一个正四面体的高是连接底面的一个顶点与相对面的中点所得到的线段。
根据勾股定理,这个高的长度等于底面棱长的一半,即4 cm。
根据韦达定理,连接每个顶点与相对面的中点所得到的三条线段的长度之和等于正四面体的高。
所以,这三条线段的长度之和也为4cm。
由于这三条线段的长度相等,所以每条线段的长度为4/3 cm。
这两个例题展示了如何应用韦达定理来解决正四面体中连接顶点和相对面中点的线段长度问题。
通过理解韦达定理的几何意义,我们能更好地理解空间几何中的关系,并能更灵活地应用于解决其他几何问题。
韦达定理应用(总7页) -CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除韦达定理的应用一、典型例题例1:已知关于x的方程2x-(m+1)x+1-m=0的一个根为4,求另一个根。
解:设另一个根为x1,则相加,得x例2:已知方程x-5x+8=0的两根为x1,x2,求作一个新的一元二次方程,使它的两根分别为和.解:∵又∴代入得,∴新方程为例3:判断是不是方程9x-10x-2=0的一个实数根?解:∵二次实数方程实根共轭,∴若是,则另一根为∴,。
∴以为根的一元二次方程即为.例4:解方程组解:设∴.∴A=5. ∴x-y=5 又xy=-6.∴解方程组∴可解得例5:已知Rt ABC中,两直角边长为方程x-(2m+7)x+4m(m-2)=0的两根,且斜边长为13,求S的值解:不妨设斜边为C=13,两条直角边为a,b,则2。
又a,b为方程两根。
∴ab=4m(m-2)∴S但a,b为实数且∴∴∴m=5或6 当m=6时,∴m=5 ∴S.例6:M为何值时,方程8x-(m-1)x+m-7=0的两根①均为正数②均为负数③一个正数,一个负数④一根为零⑤互为倒数解:①∵∴m>7②∵∴不存在这样的情况。
③∴m<7④∴m=7⑤∴m=15.但使∴不存在这种情况【模拟试题】(答题时间:30分钟)1. 设n为方程x+mx+n=0(n≠0)的一个根,则m+n等于2. 已知方程x+px-q=0的一个根为-2+,可求得p= ,q=3. 若方程x+mx+4=0的两根之差的平方为48,则m的值为()A.±8 B.8 C.-8 D.±44. 已知两个数的和比a少5,这两个数的积比a多3,则a为何值时,这两个数相等?5. 已知方程(a+3)x+1=ax有负数根,求a的取值范围。
6. 已知方程组的两组解分别为,,求代数式a1b2+a2b1的值。
7. ABC中,AB=AC, A,B,C的对边分别为a,b,c,已知a=3,b和c是关于x 的方程x+mx+2-m=0的两个实数根,求ABC的周长。
高次方程的韦达定理【原创实用版】目录1.高次方程的韦达定理的概念和背景2.韦达定理在高次方程中的推广3.高次方程的韦达定理的实际应用4.结论正文一、高次方程的韦达定理的概念和背景韦达定理是代数学中的一个重要定理,它最初是由法国数学家韦达在研究一元二次方程时发现的。
韦达定理给出了一元二次方程的两个根与系数之间的关系,对于一元二次方程 ax2+bx+c=0,它的两个根 x1 和 x2 满足以下关系:x1+x2=-b/a,x1x2=c/a。
随着数学的发展,韦达定理被推广到了高次方程中。
对于一个 n 次方程 AiXi0,它的根记作 X1,X2,Xn,我们有 Xi(-1)1A(n-1)/A(n)XiXj(-1)2A(n-2)/A(n) Xi(-1)nA(0)/A(n),其中求和和求积的符号分别表示求和和求积。
二、韦达定理在高次方程中的推广在高次方程中,韦达定理的推广形式如下:对于一个 n 次方程 AiXi0,它的根 X1,X2,Xn 满足以下关系:1.Xi(-1)1A(n-1)/A(n)2.XiXj(-1)2A(n-2)/A(n)3.Xi(-1)nA(0)/A(n)这些关系式揭示了高次方程的根与系数之间的深层次关系,对于解决高次方程的根的问题有着重要的指导意义。
三、高次方程的韦达定理的实际应用高次方程的韦达定理在实际中有广泛的应用,例如在物理、化学、生物学等领域,常常需要解决一些高次方程的问题。
通过使用韦达定理,我们可以更方便地求解这些问题,进而更好地理解现象和规律。
四、结论总的来说,韦达定理是代数学中的一个重要定理,它不仅揭示了一元二次方程的根与系数之间的关系,而且被推广到了高次方程中,有着广泛的应用。
韦达定理怎么运用
中国南宋伟大的数学家秦九韶在他1247年编写的世界数学名著《数书九章》一书中提出了数字一元三次方程与任何高次方程的解法“正负开方术”,提出“商常为正,实常为负,从常为正,益常为负”的原则,纯用代数加法,给出统一的运算规律,并且扩充到任何高次方程中去。
那么,接下来就让我们一起来了解以下关于一元三次方程韦达定理怎么用的具体方法吧。
文章仅供大家的参考借鉴!希望文章能够帮助到大家!
韦达定理怎么运用
应用范围1:已知两个根其中的一个,就可以代入韦达定理的关系式里的任何来求得另一个根,并且还可以用另一个关系式来检验。
应用范围2:根据根与系数的关系,把已知的两个根的和的相反数做所求方程的一次项系数,两根的积做常数项,而把二次项系数作为1,这样,就能作出这个方程。
应用范围3:根据根与系数的关系,可以把所求的两个数当作一元二次方程当中的系数,然后解这个方程,那么方程的两个根就是这两个数。
应用范围4:已知一个一元二次方程,不解这个方程,求某些代数式的值(这些代数式是方程两个根的对称式)。
应用范围5:已知一个一元二次方程,不解这个方程,求作另一个方程,使它的根与原方程的根有某些特殊关系。
应用范围6:利用给出的条件,确定一个一元二次方程中某些字母系数的值。
韦达定理常见运作1. 引言韦达定理(Vieta’s theorem),又称为韦达关系(Vieta’s relations),是代数学中一个重要的定理,由法国数学家弗朗索瓦·韦达(François Viète)于16世纪提出。
该定理描述了多项式的根与系数之间的关系,是代数方程求解中的重要工具。
在本文中,我们将详细介绍韦达定理的常见运作及其应用。
我们将阐述韦达定理的基本形式及其证明方法。
我们将介绍如何利用韦达定理求解多项式方程以及相关的实际问题。
我们将探讨一些韦达定理在数学研究和应用领域中的拓展应用。
2. 韦达定理的基本形式韦达定理描述了一个n次多项式的根与系数之间的关系。
设多项式为:f(x)=a n x n+a n−1x n−1+⋯+a1x+a0其中a i为常数系数,a n≠0,且n为正整数。
设x1,x2,…,x n为多项式f(x)的n个根(可以是复数),则韦达定理给出了以下关系:x1+x2+⋯+x n=−a n−1 a nx1x2+x1x3+⋯+x n−1x n=a n−2 a n…x1x2…x n=(−1)n a0 a n韦达定理的证明可以通过多项式的因式分解和展开来完成,具体证明过程略。
3. 韦达定理的求解方法利用韦达定理,我们可以求解多项式方程以及相关的实际问题。
下面我们将介绍几种常见的求解方法。
3.1 求解一元多项式方程考虑一个一元多项式方程:f(x)=a n x n+a n−1x n−1+⋯+a1x+a0=0要求解该方程,我们可以先利用韦达定理计算出根之间的关系,然后利用这些关系进行求解。
根据韦达定理可知:x1+x2+⋯+x n=−a n−1 a nx1x2+x1x3+⋯+x n−1x n=a n−2 a n…x1x2…x n=(−1)n a0 a n利用这些关系,我们可以通过代入法逐步求解根的值。
我们可以利用第一个关系求解出其中一个根的值,然后将该根的值代入到方程中进行化简,得到一个次数较低的多项式方程。
韦达定理的应用一、典型例题例1:已知关于x的方程2x-(m+1)x+1-m=0的一个根为4,求另一个根。
解:设另一个根为x1,则相加,得x例2:已知方程x-5x+8=0的两根为x1,x2,求作一个新的一元二次方程,使它的两根分别为和.解:∵又∴代入得,∴新方程为例3:判断是不是方程9x-10x-2=0的一个实数根解:∵二次实数方程实根共轭,∴若是,则另一根为∴,。
∴以为根的一元二次方程即为.例4:解方程组解:设∴.∴A=5. ∴x-y=5 又xy=-6.∴解方程组∴可解得例5:已知RtABC中,两直角边长为方程x-(2m+7)x+4m(m-2)=0的两根,且斜边长为13,求S的值解:不妨设斜边为C=13,两条直角边为a,b,则2。
又a,b为方程两根。
∴ab=4m(m-2)∴S 但a,b为实数且∴∴∴m=5或6 当m=6时,∴m=5 ∴S.例6:M为何值时,方程8x-(m-1)x+m-7=0的两根①均为正数②均为负数③一个正数,一个负数④一根为零⑤互为倒数解:①∵∴m>7②∵∴不存在这样的情况。
③∴m<7④∴m=7⑤∴m=15.但使∴不存在这种情况【模拟试题】(答题时间:30分钟)1. 设n为方程x+mx+n=0(n≠0)的一个根,则m+n等于2. 已知方程x+px-q=0的一个根为-2+,可求得p= ,q=3. 若方程x+mx+4=0的两根之差的平方为48,则m的值为()A.±8 B.8 C.-8 D.±44. 已知两个数的和比a少5,这两个数的积比a多3,则a为何值时,这两个数相等5. 已知方程(a+3)x+1=ax有负数根,求a的取值范围。
6. 已知方程组的两组解分别为,,求代数式a1b2+a2b1的值。
7. ABC中,AB=AC, A,B,C的对边分别为a,b,c,已知a=3,b和c是关于x 的方程x+mx+2-m=0的两个实数根,求ABC的周长。
【试题答案】1. -12. 4,13. A4. a=1或135. -3≤a≤-2 提示:分a=-3以及a≠-3讨论求解6. 13例1 已知p+q=198,求方程x2+px+q=0的整数根.(’94祖冲之杯数学邀请赛试题)解:设方程的两整数根为x1、x2,不妨设x1≤x2.由韦达定理,得x1+x2=-p,x1x2=q.于是x1x2-(x1+x2)=p+q=198,即x1x2-x1-x2+1=199.∴(x1-1)(x2-1)=199.注意到x1-1、x2-1均为整数,解得x1=2,x2=200;x1=-198,x2=0.例2 已知关于x的方程x2-(12-m)x+m-1=0的两个根都是正整数,求m的值.解:设方程的两个正整数根为x1、x2,且不妨设x1≤x2.由韦达定理得x1+x2=12-m,x1x2=m-1.于是x1x2+x1+x2=11,即(x1+1)(x2+1)=12.∵x1、x2为正整数,解得x1=1,x2=5;x1=2,x2=3.故有m=6或7.例3 求实数k,使得方程kx2+(k+1)x+(k-1)=0的根都是整数.解:若k=0,得x=1,即k=0符合要求.若k≠0,设二次方程的两个整数根为x1、x2,由韦达定理得∴x1x2-x1-x2=2,(x1-1)(x2-1)=3.因为x1-1、x2-1均为整数,所以例4 已知二次函数y=-x2+px+q的图像与x轴交于(α,0)、(β,0)两点,且α>1>β,求证:p+q>1.(’97四川省初中数学竞赛试题)证明:由题意,可知方程-x2+px+q=0的两根为α、β.由韦达定理得α+β=p,αβ=-q.于是p+q=α+β-αβ,=-(αβ-α-β+1)+1=-(α-1)(β-1)+1>1(因α>1>β).一元二次方程根的判别式、判别式与根的个数关系、判别式与根、韦达定理及其逆定理〖大纲要求〗1.掌握一元二次方程根的判别式,会判断常数系数一元二次方程根的情况。
对含有字母系数的由一元二次方程,会根据字母的取值范围判断根的情况,也会根据根的情况确定字母的取值范围;2.掌握韦达定理及其简单的应用;3.会在实数范围内把二次三项式分解因式;4.会应用一元二次方程的根的判别式和韦达定理分析解决一些简单的综合性问题。
内容分析1.一元二次方程的根的判别式一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac△>0时,方程有两个不相等的实数根当△=0时,方程有两个相等的实数根,当△<0时,方程没有实数根. 2.一元二次方程的根与系数的关系 (1)如果一元二次方程ax2+bx+c=0(a≠0)的两个根是x1,x2,那么x1+x2=-b/a,x1x2=c/a(2)如果方程x2+px+q=0的两个根是x1,x2,那么x1+x2=-P,x1x2=q (3)以x1,x2为根的一元二次方程(二次项系数为1)是x2-(x1+x2)x+x1x2=0. 3.二次三项式的因式分解(公式法) 在分解二次三项式ax2+bx+c的因式时,如果可用公式求出方程ax2+bx+c=0的两个根是x1,x2,那么ax2+bx+c=a(x-x1)(x-x2).〖考查重点与常见题型〗1.利用根的判别式判别一元二次方程根的情况,有关试题出现在选择题或填空题中,如:关于x的方程ax2-2x+1=0中,如果a<0,那么根的情况是()(A)有两个相等的实数根(B)有两个不相等的实数根(C)没有实数根(D)不能确定2.利用一元二次方程的根与系数的关系求有关两根的代数式的值,有关问题在中考试题中出现的频率非常高,多为选择题或填空题,如:设x1,x2是方程2x2-6x+3=0的两根,则x12+x22的值是()(A)15 (B)12 (C)6 (D)33.在中考试题中常出现有关根的判别式、根与系数关系的综合解答题。
在近三年试题中又出现了有关的开放探索型试题,考查了考生分析问题、解决问题的能力。
考查题型1.关于x的方程ax2-2x+1=0中,如果a<0,那么根的情况是()(A)有两个相等的实数根(B)有两个不相等的实数根(C)没有实数根(D)不能确定2.设x1,x2是方程2x2-6x+3=0的两根,则x12+x22的值是()(A)15 (B)12 (C)6 (D)33.下列方程中,有两个相等的实数根的是()(A) 2y2+5=6y(B)x2+5=2√5 x(C)√3 x2-√2 x+2=0(D)3x2-2√6 x+1=0 4.以方程x2+2x-3=0的两个根的和与积为两根的一元二次方程是()(A) y2+5y-6=0 (B)y2+5y+6=0 (C)y2-5y+6=0 (D)y2-5y-6=0 5.如果x1,x2是两个不相等实数,且满足x12-2x1=1,x22-2x2=1,那么x1•x2等于()(A)2 (B)-2 (C)1 (D)-1 6.如果一元二次方程x2+4x+k2=0有两个相等的实数根,那么k=7.如果关于x的方程2x2-(4k+1)x+2 k2-1=0有两个不相等的实数根,那么k的取值范围是8.已知x1,x2是方程2x2-7x+4=0的两根,则x1+x2=,x1•x2=,(x1-x2)2= 9.若关于x的方程(m2-2)x2-(m-2)x+1=0的两个根互为倒数,则m=二、考点训练:1、不解方程,判别下列方程根的情况:(1)x2-x=5 (2)9x2-6√2 +2=0 (3)x2-x+2=02、当m= 时,方程x2+mx+4=0有两个相等的实数根;当m= 时,方程mx2+4x+1=0有两个不相等的实数根;3、已知关于x的方程10x2-(m+3)x+m-7=0,若有一个根为0,则m= ,这时方程的另一个根是;若两根之和为-3/5 ,则m= ,这时方程的两个根为 . 4、已知3-2 是方程x2+mx+7=0的一个根,求另一个根及m的值。
5、求证:方程(m2+1)x2-2mx+(m2+4)=0没有实数根。
6、求作一个一元二次方程使它的两根分别是1-√5 和1+√5 。
7、设x1,x2是方程2x2+4x-3=0的两根,利用根与系数关系求下列各式的值:(1) (x1+1)(x2+1) (2)x2/x1 + x1/x2 (3)x12+ x1x2+2 x1解题指导1、如果x2-2(m+1)x+m2+5是一个完全平方式,则m= ;2、方程2x(mx-4)=x2-6没有实数根,则最小的整数m= ;3、已知方程2(x-1)(x-3m)=x(m-4)两根的和与两根的积相等,则m= ;4、设关于x的方程x2-6x+k=0的两根是m和n,且3m+2n=20,则k值为 ;5、设方程4x2-7x+3=0的两根为x1,x2,不解方程,求下列各式的值:(1) x12+x22 (2)x1-x2 (3)√x1 +√x2 *(4)x1x22+12 x1*6.实数s、t分别满足方程19s2+99s+1=0和且19+99t+t2=0求代数式(st +4s+1)/t 的值。
7.已知a是实数,且方程x2+2ax+1=0有两个不相等的实根,试判别方程x2+2ax+1-(1/2) (a2x2-a2-1)=0有无实根8.求证:不论k为何实数,关于x的式子(x-1)(x-2)-k2都可以分解成两个一次因式的积。
9.实数K在什么范围取值时,方程kx2+2(k-1)x-(K-1)=0有实数正根独立训练(一)1、不解方程,请判别下列方程根的情况;(1)2t2+3t-4=0, ; (2)16x2+9=24x, ;(3)5(u2+1)-7u=0, ;2、若方程x2-(2m-1)x+m2+1=0有实数根,则m的取值范围是 ;3、一元二次方程x2+px+q=0两个根分别是2+√3 和2-√3 ,则p= ,q= ;4、已知方程3x2-19x+m=0的一个根是1,那么它的另一个根是,m= ;5、若方程x2+mx-1=0的两个实数根互为相反数,那么m的值是 ;6、 m,n是关于x 的方程x2-(2m-1)x+m2+1=0的两个实数根,则代数式mn= 。
7、已知关于x的方程x2-(k+1)x+k+2=0的两根的平方和等于6,求k的值;8、如果α和β是方程2x2+3x-1=0的两个根,利用根与系数关系,求作一个一元二次方程,使它的两个根分别等于α+(1/β) 和β+(1/α) ;9、已知a,b,c是三角形的三边长,且方程(a2+b2+c2)x2+2(a+b+c)x+3=0有两个相等的实数根,求证:这个三角形是正三角形10.取什么实数时,二次三项式2x2-(4k+1)x+2k2-1可因式分解.11.已知关于X的一元二次方程m2x2+2(3-m)x+1=0的两实数根为α,β,若s=1/α +1/β ,求s的取值范围。
独立训练(二)1、已知方程x2-3x+1=0的两个根为α,β,则α+β= , αβ= ;2、如果关于x的方程x2-4x+m=0与x2-x-2m=0有一个根相同,则m的值为 ;3、已知方程2x2-3x+k=0的两根之差为2又1/2 ,则k= ;4、若方程x2+(a2-2)x-3=0的两根是1和-3,则a= ;5、方程4x2-2(a-b)x-ab=0的根的判别式的值是 ;6、若关于x的方程x2+2(m-1)x+4m2=0有两个实数根,且这两个根互为倒数,那么m的值为 ;7、已知p<0,q<0,则一元二次方程x2+px+q=0的根的情况是 ;8、以方程x2-3x-1=0的两个根的平方为根的一元二次方程是 ;9、设x1,x2是方程2x2-6x+3=0的两个根,求下列各式的值:(1)x12x2+x1x22 (2) 1/x1 -1/x210.m取什么值时,方程2x2-(4m+1)x+2m2-1=0(1)有两个不相等的实数根,(2)有两个相等的实数根,(3)没有实数根;11.设方程x2+px+q=0两根之比为1:2,根的判别式Δ=1,求p,q的值。