不等式基本性质-练习
- 格式:ppt
- 大小:830.00 KB
- 文档页数:5
不等式及其性质练习题一、填空题1. 若 a > b,则 a + 3 与 b 2 的大小关系是______。
2. 若 x 5 < 0,则 x 的取值范围是______。
3. 若 |x| > 5,则 x 的取值范围是______。
4. 若 a < b < 0,则a² 与b² 的大小关系是______。
5. 若 |x 1| = |x + 3|,则 x 的值为______。
二、选择题1. 下列不等式中,正确的是()A. a² > b²B. a + b > aC. (a + b)²= a² + b²D. |a| = a2. 若 a > b,则下列不等式中正确的是()A. a b > 0B. a < bC. a² < b²D. a/b < 13. 若x² 5x + 6 < 0,则 x 的取值范围是()A. x < 2 或 x > 3B. 2 < x < 3C. x < 2 且 x > 3D. x ≠ 2 且x ≠ 3三、解答题1. 已知 a > b,证明:a² > ab。
2. 设 x 为实数,证明:若x² 3x + 2 > 0,则 x < 1 或 x > 2。
3. 已知 |x 1| + |x + 2| = 5,求 x 的值。
4. 若 a、b、c 为实数,且 a < b < c,证明:a + c < 2b。
5. 设 a、b 为正数,证明:若 a/b < 1/2,则 2a < b。
四、应用题1. 某商店举行优惠活动,满 100 元减 20 元,满 200 元减 50 元,满 300 元减 80 元。
小明购物满 300 元,实际支付了 220 元,求小明原价购物金额。
同步练习:2.2不等式的基本性质一、选择题1. 若a-b<0,则下列各式中一定正确的是()A. a>bB. ab>0C.D. -a>-b【答案】D【解析】试题分析:由a-b<0可得a<b,再根据不等式的基本性质依次分析各项即可. a-b<0,∴a<b,∴-a>-b,但无法确定ab与的符号,故选D.2. 如果t>0,那么a+t与a的大小关系是()A. a+t>aB. a+t<aC. a+t≥aD. 不能确定【答案】A【解析】试题分析:根据不等式的基本性质即可得到结果.t>0,∴a+t>a,故选A.3. 已知有理数a、b、c在数轴上的位置如图所示,则下列式子正确的是()A. cb>abB. ac>abC. cb<abD. c+b>a+b【答案】A【解析】试题分析:先根据数轴的特点得出a>0>b>c,再根据不等式的性质进行判断:A、∵a>0>b>c,∴cb>0>a b. 选项正确.B、∵c<b,a>0,∴ac<a b. 选项错误.C、∵c<a,b<0,∴cb>a b. 选项错误.D、∵c<a,∴c+b<a+b. 选项错误.故选A.4. 2a与3a的大小关系()A. 2a<3aB. 2a>3aC. 2a=3aD. 不能确定【答案】D【解析】试题分析:题目中没有明确a的正负,故要分情况讨论.当时,;当时,;当时,,故选D.5. 如果m<n<0,那么下列结论中错误的是()A. m-9<n-9B. -m>-nC.D.【答案】C6. 由不等式ax>b可以推出x<,那么a的取值范围是()A. a≤0B. a<0C. a≥0D. a>0【答案】B7. 如果,则a必须满足()A. a≠0B. a<0C. a>0D. a为任意数【答案】C【解析】试题分析:根据不等式的基本性质即可判断.,∴a>0,故选C.8. 有下列说法:(1)若a<b,则-a>-b;(2)若xy<0,则x<0,y<0;(3)若x<0,y<0,则xy<0;(4)若a<b,则2a<a+b;(5)若a<b,则;(6)若,则x>y.其中正确的说法有()A. 2个B. 3个C. 4个D. 5个【答案】C【解析】试题分析:根据不等式的基本性质依次分析各项即可。
不等式的基本性质练习及答案1.若x >y ,则下列式子中错误的是( ) A .x -3>y -3 B .x +3>y +3 C .-3x >-3yD.x 3>y32.下列不等式变形正确的是( ) A .由a >b 得ac >bc B .由a >b 得-2a >-2bC .由a >b 得-a <-bD .由a >b 得a -2<b -23.下列变形中,不正确的是( ) A .由x -5>0可得x >5 B .由12x >0可得x >0C .由-3x >-9可得x >3D .由-34x >1可得x <-434.因为-13x >1,所以x -3(填“>”或“<”),依据是 .5.用不等号填空:(1)若a >b ,则ac 2 bc 2;(2)若a >b ,则3-2a 3-2b .6.把不等式2x >3-x 化为x >a 或x <a 的形式是( ) A .x >3 B .x <3 C .x >1D .x <17.小明的作业本上有四道利用不等式的性质,将不等式化为x >a 或x <a 的作业题:①由x +7>8解得x >1;②由x <2x +3解得x <3;③由3x -1>x +7解得x >4;④由-3x >-6解得x <-2.其中正确的有( ) A .1题 B .2题 C .3题D .4题8.根据不等式的基本性质,可将“mx <2”化为“x >2m”,则m 的取值范围是 .9.已知x 满足-5x +5<-10,则x 的范围是 .10.根据不等式的基本性质,把下列不等式化成x >a 或x <a 的形式:(1)2x>-4; (2)x-4<-2;(3)-2x<1; (4)12x<2.11.某商店先在广州以每件15元的价格购进某种商品10件,后来又到深圳以每件12.5元的价格购进同种商品40件,如果商店销售这些商品时,每件定价为x 元,则会获得不少于12%的利润,用不等式表示以上问题中的不等关系,并把这个不等式变形为“x≥a”或“x≤a”的形式.12.某商贩去菜摊买西红柿,他上午买了30斤,价格为每斤x元;下午,他又买了20斤,价格为每斤y元,后来他以每斤x+y2元的价格卖完后.发现自己赔了钱,你知道是什么原因吗?答案:1. C2. C3. C4. <不等式的基本性质35. ><6. C7. B8. m<09. x>310. 解:(1)x>-2 (2)x<2(3)x>-12(4)x<411. 解:由题意得(10+40)x-(15×10+12.5×40)≥(15×10+12.5×40)×12%,∴x≥14.56.12. 解:由题意得:(30x+20y)-x+y2×50>0.整理得5x-5y>0.根据不等式的性质1,两边都加上5y,得5x>5y,所以x>y.即此商贩上午所买的西红柿的单价高于下午的单价,所以赔了钱.。
不等式的基本性质 习题精选(一)★不等式的基本性质1.不等式的基本性质1:如果a>b ,那么 a+c____b+c , a -c____b -c .不等式的基本性质2:如果a>b ,并且c>0,那么ac_____bc .不等式的基本性质3:如果a>b ,并且c<0,那么ac_____bc .2.设a<b ,用“<”或“>”填空.(1)a -1____b -1;(2)a+1_____b+1;(3)2a____2b ;(4)-2a_____-2b ; 5)-a 2_____-b 2;(6)a 2____b2.3.根据不等式的基本性质,用“<”或“>”填空.(1)若a -1>b -1,则a____b ;(2)若a+3>b+3,则a____b ;(3)若2a>2b ,则a____b ;(4)若-2a>-2b ,则a___b .4.若a>b ,m<0,n>0,用“>”或“<”填空.(1)a+m____b+m ;(2)a+n___b+n ;(3)m -a___m -b ;(4)an____bn ;(5)a m ____b m ;(6)a n _____bn ;5.下列说法不正确的是( )A .若a>b ,则ac 2>bc 2(c 0)B .若a>b ,则b<aC .若a>b ,则-a>-bD .若a>b ,b>c ,则a>c★不等式的简单变形6.根据不等式的基本性质,把下列不等式化为x>a 或x>a 的形式:(1)x -3>1;(2)-32x>-1;(3)3x<1+2x ;(4)2x>4. [学科综合]7.已知实数a 、b 、c 在数轴上对应的点如图13-2-1所示,则下列式子中正确的是( )A.bc>ab B.ac>ab C.bc<ab D.c+b>a+b8.已知关于x的不等式(1-a)x>2变形为x<21-a,则1-a是____数.9.已知△ABC中三边为a、b、c,且a>b,那么其周长p应满足的不等关系是()A.3b<p<3a B.a+2b<p<2a+b C.2b<p<2(a+b)D.2a<p<2(a+b)[创新思维](一)新型题10.若m>n,且am<an,则a的取值应满足条件()A.a>0 B.a<0 C.a=0 D.a≥0(二)课本例题变式题11.(课本p6例题变式题)下列不等式的变形正确的是()A.由4x-1>2,得4x>1 B.由5x>3,得x>35C.由x2>0,得x>2D.由-2x<4,得x<-2(三)易错题12.若a>b,且m为有理数,则am2____bm2.13.同桌甲和同桌乙正在对7a>6a进行争论,甲说:“7a>6a正确”,乙说:“这不可能正确”,你认为谁的观点对?为什么?(四)难题巧解题14.若方程组2x+y=k+1x+2y=-1⎧⎨⎩的解为x,y,且3<k<6,则x+y的取值范围是______.(五)一题多解题15.根据不等式的基本性质,把不等式2x+5<4x_1变为x>a或x<a的形式.[数学在学校、家庭、社会生活中的应用]16.如图13-2-2所示,一个已倾斜的天平两边放有重物,其质量分别为a和b,如果在天平两边的盘内分别加上相等的砝码c,看一看,盘子仍然像原来那样倾斜吗?[数学在生产、经济、科技中的应用]17.小明用的练习本可以到甲商店购买,也可到乙商店购买,已知两商店的标价都是每本1元,但甲商店的优惠条件是:购买10本以上,从第11本开始按标价的70%卖,乙商店的优惠条件是:从第1本开始就按标价的85%卖.(1)小明要买20本时,到哪个商店购买较省钱?(2)写出甲商店中收款y(元)与购买本数x(本)(x>10)之间的关系式.(3)小明现有24元钱,最多可买多少本?[自主探究]18.命题:a,b是有理数,若a>b,则a2>b2.(1)若结论保持不变,那么怎样改变条件,命题才能正确?;(2)若条件保持不变,那么怎样改变结论,命题才能正确?[潜能开发]19.甲同学与乙同学讨论一个不等式的问题,甲说:每个苹果的大小一样时,5个苹果的重量大于4个苹果的重量,设每个苹果的重量为x则有5x>4x.乙说:这肯定是正确的.甲接着说:设a为一个实数,那么5a一定大于4a,这对吗?乙说:这与5x>4x不是一回事吗?当然也是正确的.请问:乙同学的回答正确吗?试说明理由.[信息处理]20.根据不等式的基本性质,把下列不等变为x>a或x<a的形式:(1)1x2>-3;(2)-2x<6.解:(1)不等式的两边都乘以2,不等式的方向不变,所以1x2>-322⨯⨯,得x>-6.(2)不等式两边都除以-2,不等式方向改变,所以-2x6>-2-2,得x>-3.上面两小题中不等式的变形与方程的什么变形相类似?有什么不同的?[开放实践]21.比较a+b与a-b的大小.[经典名题,提升自我][中考链接]22.(2004·山东淄博)如果m<n<0,那么下列结论中错误的是()A.m-9<n-9 B.-m>-n C.11>n m D.mn>123.(2004·北京海淀)若a-b<0,则下列各题中一定成立的是()A.a>b B.ab>0 C.ab>0 D.-a>-b[奥赛赏析]24.要使不等式…<753246a<a<a<a<a<a<a<…成立,有理数a的取值范围是()A.0<a<1 B.a<-1 C.-1<a<0 D.a>1[趣味数学]25.(1)A、B、C三人去公园玩跷跷板,如图13-2-3①中,试判断这三人的轻重.(2)P、Q、R、S四人去公园玩跷跷板,如图13-2-3②,试判断这四人的轻重.答案1.> > > <2.(1)<(2)<(3)<(4)>(5)>(6)<3.(1)>(2)>(3)>(4)<4.(1)>(2)>(3)<(4)>(5)<(6)>5.C 点拨:a>b,不等式的两边同时乘以-1,根据不等式的基本性质3,得-a<-b,所以C选项不正确.6.解:(1)x-3>1,x-3+3>1+3,(根据不等式的基本性质1)x>4;(2)-23x>-1,-23x·(-32)<-1·(-32),(根据不等式的基本性质3)x<32;(3)3x<1+2x,3x-2x<1+2x-2x,(根据不等式的基本性质1)x<1;(4)2x>4,2x4>22,(根据不等式的基本性质2)x>2.7.A 8.负9.D 10.B 11.B 12.错解:am2>bm2错因分析:m2应为大于或等于0的数,忽略了m等于0的情况正解::am2≥bm213.错解1:甲对,因为7>6,两边同乘以一个数a,由不等式的基本性质2,可得7a>6a.错解2:乙对,因为a为负数或零时,原不等式不成立.错因分析:本题没有加以分析,只片面的认为a为正数或负数,实际a为任意数,有三种情况:a为负数,a为正数,a为0,应全面考察各种.正解:两人的观点都不对,因为a的符号没有确定:①当a>0时,由性质2得7a>6a,②当a<0时,由性质3得7a<6a,③当a=0时,得7a=6a=0.14.1<x+y<2点拨:两方程两边相加得3(x+y)=k.3<k<6,即3<3(x+y)<6,∴1<x+y<2.15.解法1:2x+5<4x-1,2x+5-5<4x-1-5,2x<4x-6,2x-4x<4x-6-4x,-2x<-6,-2x-6>-2-2,x>3.解法2:2x+5<4x-1,2x+5-2x<4x-1-2x,5+1<2x-1+1,6<2x,62x<22,3<x,即x>3.16.解:从图中可看出a>b,存在这样一个不等式,两边都加上c,根据不等式的基本性质1,则a+c>b+c,所以,盘子仍然像原来那样倾斜.17.解:(1)若到甲商店购买,买20本共需10+1⨯70%⨯10=17(元),到乙商店购买20本,共需1⨯0.85⨯220=17元,因为到甲、乙两个商店买20本都需花17元,故到两个商店中的任一个购买都一样.(2)甲商店中,收款y(元)与购买本数x(本)(x>10)之间的关系式为y=10+0.7(x -10),即y=0.7x+3(其中x>10).(3)小明现有24元钱,若到甲商店购买,可以得到方程24=0.7x+3,解得x=30(本).若到乙商店购买,则可买24÷(1 0.85)≈28(本).30>28,故小明最多哥买30本.a>b18.解:(1)a,b是有理数,若a>b>0,则22(2)a,b是有理数,若a>b,则a+1>b+1.19.解:乙同学的回答不正确,5a不一定大于4a.当a>0时,5a>4a>0;当a=0时,5a=4a=0;当a<0时,5a<4a<0.20.解:这里的变形与方程中的“将未知数的系数化为1”相类似,但是也有所不同;不等式的两边都乘以(或除以)同一个正数,不等号的方向不变,不等式的两边都乘以(或除以)同一个负数,不等号的方向改变.21.解:a+b-(a-b)=2b,当b>0时,a+b>a-b;当b=0时,a+b=a-b;当b<0时,a+b<a-b.22.C 23.Da<a<a<0…,则24.B 点拨:a的奇数次方一定小于a的偶数次方,则a是负数,且246这个负数一定小于-1,故应选B.25.解:(1)三人由轻到重排列顺序是B、A、C.(2)四人由轻到重排列顺序是Q、P、S、R.。
不等式的基本性质经典练习题9.1.2 不等式的基本性质练题要点感知不等式的性质有:不等式的性质1:不等式的两边加(或减)同一个数(或式子),不等号的方向不变,即如果 $a>b$,那么 $a\pmc>b\pm c$。
不等式的性质2:不等式的两边乘(或除以)同一个正数,不等号的方向不变,即如果 $a>b。
c>0$,那么 $ac>bc$(或$\frac{a}{c}>\frac{b}{c}$)。
不等式的性质3:不等式的两边乘(或除以)同一个负数,不等号的方向改变,即如果 $a>b。
c<0$,那么 $ac<bc$(或$\frac{a}{c}<\frac{b}{c}$)。
预练1-1:若 $a>b$,则 $a-b>0$,其依据是(A)不等式性质1.1-2:若$a”“<”或“=”)。
1-3:设 $a>b$,用“”填空,并说出是根据哪条不等式性质。
1) $3a>3b$,根据不等式性质2.2) $a-8<b-8$,根据不等式性质1.3) $-2a<-2b$,根据不等式性质3.4) $2a-5<2b-5$,根据不等式性质1.5) $-3.5a-1<-3.5b-1$,根据不等式性质2.知识点1:认识不等式的性质1.如果 $b>0$,那么 $a+b$ 与 $a$ 的大小关系是(C)$a+b\geq a$。
2.下列变形不正确的是(D)$-5x>-a$ 得 $x>$。
3.若 $a>b。
am<bm$,则一定有(B)$m<0$。
4.在下列不等式的变形后面填上依据:1) 如果 $a-3>-3$,那么 $a>0$;依据不等式性质1.2) 如果 $3a<6$,那么 $a<2$;依据不等式性质2.3) 如果 $-a>4$,那么 $a<-4$;依据不等式性质3.5.利用不等式的性质填“>”或“<”。
不等式的基本性质 习题精选(一)★不等式的基本性质1.不等式的基本性质1:如果a>b ,那么 a+c____b+c , a -c____b -c .不等式的基本性质2:如果a>b ,并且c>0,那么ac_____bc .不等式的基本性质3:如果a>b ,并且c<0,那么ac_____bc .2.设a<b ,用“<”或“>”填空.(1)a -1____b -1;(2)a+1_____b+1;(3)2a____2b ;(4)-2a_____-2b ;5)-a 2_____-b 2;(6)a 2____b2.3.根据不等式的基本性质,用“<”或“>”填空.(1)若a -1>b -1,则a____b ;(2)若a+3>b+3,则a____b ;(3)若2a>2b ,则a____b ;(4)若-2a>-2b ,则a___b .4.若a>b ,m<0,n>0,用“>”或“<”填空.(1)a+m____b+m ;(2)a+n___b+n ;(3)m -a___m -b ;(4)an____bn ;(5)a m ____b m ;(6)a n _____bn ;5.下列说法不正确的是( )A .若a>b ,则ac 2>bc 2(c 0)B .若a>b ,则b<aC .若a>b ,则-a>-bD .若a>b ,b>c ,则a>c★不等式的简单变形6.根据不等式的基本性质,把下列不等式化为x>a 或x>a 的形式:(1)x -3>1;(2)-32x>-1;(3)3x<1+2x ;(4)2x>4. [学科综合]7.已知实数a 、b 、c 在数轴上对应的点如图13-2-1所示,则下列式子中正确的是( )A.bc>ab B.ac>ab C.bc<ab D.c+b>a+b8.已知关于x的不等式(1-a)x>2变形为x<21-a,则1-a是____数.9.已知△ABC中三边为a、b、c,且a>b,那么其周长p应满足的不等关系是()A.3b<p<3a B.a+2b<p<2a+b C.2b<p<2(a+b) D.2a<p<2(a+b)[创新思维](一)新型题10.若m>n,且am<an,则a的取值应满足条件()A.a>0 B.a<0 C.a=0 D.a≥0(二)课本例题变式题11.(课本p6例题变式题)下列不等式的变形正确的是()A.由4x-1>2,得4x>1 B.由5x>3,得x>35 C.由x2>0,得x>2D.由-2x<4,得x<-2(三)易错题12.若a>b,且m为有理数,则am2____bm2.13.同桌甲和同桌乙正在对7a>6a进行争论,甲说:“7a>6a正确”,乙说:“这不可能正确”,你认为谁的观点对?为什么?(四)难题巧解题14.若方程组2x+y=k+1x+2y=-1⎧⎨⎩的解为x,y,且3<k<6,则x+y的取值范围是______.(五)一题多解题15.根据不等式的基本性质,把不等式2x+5<4x_1变为x>a或x<a的形式.[数学在学校、家庭、社会生活中的应用]16.如图13-2-2所示,一个已倾斜的天平两边放有重物,其质量分别为a和b,如果在天平两边的盘内分别加上相等的砝码c,看一看,盘子仍然像原来那样倾斜吗?[数学在生产、经济、科技中的应用]17.小明用的练习本可以到甲商店购买,也可到乙商店购买,已知两商店的标价都是每本1元,但甲商店的优惠条件是:购买10本以上,从第11本开始按标价的70%卖,乙商店的优惠条件是:从第1本开始就按标价的85%卖.(1)小明要买20本时,到哪个商店购买较省钱?(2)写出甲商店中收款y(元)与购买本数x(本)(x>10)之间的关系式.(3)小明现有24元钱,最多可买多少本?[自主探究]18.命题:a,b是有理数,若a>b,则a2>b2.(1)若结论保持不变,那么怎样改变条件,命题才能正确?;(2)若条件保持不变,那么怎样改变结论,命题才能正确?[潜能开发]19.甲同学与乙同学讨论一个不等式的问题,甲说:每个苹果的大小一样时,5个苹果的重量大于4个苹果的重量,设每个苹果的重量为x则有5x>4x.乙说:这肯定是正确的.甲接着说:设a为一个实数,那么5a一定大于4a,这对吗?乙说:这与5x>4x不是一回事吗?当然也是正确的.请问:乙同学的回答正确吗?试说明理由.[信息处理]20.根据不等式的基本性质,把下列不等变为x>a或x<a的形式:(1)1x2>-3;(2)-2x<6.解:(1)不等式的两边都乘以2,不等式的方向不变,所以1x2>-322⨯⨯,得x>-6.(2)不等式两边都除以-2,不等式方向改变,所以-2x6>-2-2,得x>-3.上面两小题中不等式的变形与方程的什么变形相类似?有什么不同的?[开放实践]21.比较a+b与a-b的大小.[经典名题,提升自我][中考链接]22.(2004·山东淄博)如果m<n<0,那么下列结论中错误的是()A.m-9<n-9 B.-m>-n C.11>n m D.mn>123.(2004·北京海淀)若a-b<0,则下列各题中一定成立的是()A.a>b B.ab>0 C.ab>0 D.-a>-b[奥赛赏析]24.要使不等式…<753246a<a<a<a<a<a<a<…成立,有理数a的取值范围是()A.0<a<1 B.a<-1 C.-1<a<0 D.a>1[趣味数学]25.(1)A、B、C三人去公园玩跷跷板,如图13-2-3①中,试判断这三人的轻重.(2)P、Q、R、S四人去公园玩跷跷板,如图13-2-3②,试判断这四人的轻重.答案1.> > > <2.(1)<(2)<(3)<(4)>(5)>(6)<3.(1)>(2)>(3)>(4)<4.(1)>(2)>(3)<(4)>(5)<(6)>5.C 点拨:a>b,不等式的两边同时乘以-1,根据不等式的基本性质3,得-a<-b,所以C选项不正确.6.解:(1)x-3>1,x-3+3>1+3,(根据不等式的基本性质1)x>4;(2)-23x>-1,-23x·(-32)<-1·(-32),(根据不等式的基本性质3)x<32;(3)3x<1+2x,3x-2x<1+2x-2x,(根据不等式的基本性质1)x<1;(4)2x>4,2x4>22,(根据不等式的基本性质2)x>2.7.A 8.负 9.D 10.B 11.B 12.错解:am2>bm2错因分析:m2应为大于或等于0的数,忽略了m等于0的情况正解::am2≥bm213.错解1:甲对,因为7>6,两边同乘以一个数a,由不等式的基本性质2,可得7a>6a.错解2:乙对,因为a为负数或零时,原不等式不成立.错因分析:本题没有加以分析,只片面的认为a为正数或负数,实际a为任意数,有三种情况:a为负数,a为正数,a为0,应全面考察各种.正解:两人的观点都不对,因为a的符号没有确定:①当a>0时,由性质2得7a>6a,②当a<0时,由性质3得7a<6a,③当a=0时,得7a=6a=0.14.1<x+y<2点拨:两方程两边相加得3(x+y)=k.3<k<6,即3<3(x+y)<6,∴1<x+y<2.15.解法1:2x+5<4x-1,2x+5-5<4x-1-5,2x<4x-6,2x-4x<4x-6-4x,-2x<-6,-2x-6>-2-2,x>3.解法2:2x+5<4x-1,2x+5-2x<4x-1-2x,5+1<2x-1+1,6<2x,62x<22,3<x,即x>3.16.解:从图中可看出a>b,存在这样一个不等式,两边都加上c,根据不等式的基本性质1,则a+c>b+c,所以,盘子仍然像原来那样倾斜.17.解:(1)若到甲商店购买,买20本共需10+1⨯70%⨯10=17(元),到乙商店购买20本,共需1⨯0.85⨯220=17元,因为到甲、乙两个商店买20本都需花17元,故到两个商店中的任一个购买都一样.(2)甲商店中,收款y(元)与购买本数x(本)(x>10)之间的关系式为y=10+0.7(x-10),即y=0.7x+3(其中x>10).(3)小明现有24元钱,若到甲商店购买,可以得到方程24=0.7x+3,解得x=30(本).若到乙商店购买,则可买24÷(1 0.85)≈28(本).30>28,故小明最多哥买30本.a>b18.解:(1)a,b是有理数,若a>b>0,则22(2)a,b是有理数,若a>b,则a+1>b+1.19.解:乙同学的回答不正确,5a不一定大于4a.当a>0时,5a>4a>0;当a=0时,5a=4a=0;当a<0时,5a<4a<0.20.解:这里的变形与方程中的“将未知数的系数化为1”相类似,但是也有所不同;不等式的两边都乘以(或除以)同一个正数,不等号的方向不变,不等式的两边都乘以(或除以)同一个负数,不等号的方向改变.21.解:a+b-(a-b)=2b,当b>0时,a+b>a-b;当b=0时,a+b=a-b;当b<0时,a+b<a -b.22.C 23.Da<a<a<0…,则24.B 点拨:a的奇数次方一定小于a的偶数次方,则a是负数,且246这个负数一定小于-1,故应选B.25.解:(1)三人由轻到重排列顺序是B、A、C.(2)四人由轻到重排列顺序是Q、P、S、R.(注:文档可能无法思考全面,请浏览后下载,供参考。
第五章 一元一次不等式不等式的基本性质 例题例1 将下列不等式化成“x>a ”或“x<a ”的形式:(1) x-5>-1 (2) -2x>3解:(1)根据不等式的基本性质1,两边都加上5,得 x>-1+5即 x>4(2)根据不等式的基本性质3,两边都除以-2,得 -2x ÷(-2)<3÷(-2)即 32x <-例2 若a-b<0,则下列各式中一定成立的是( D )>b >0<0 >-b解:将a-b<0 两边同时减去a 得-a>-b 故D 一定成立或者有a b <;而ab 与0的大小关系就不确定例3 若x 是任意实数,则下列不等式中,恒成立的是( B )>2x >2x2+x>2 +x2>2解:A 可以化为0x > 两边同时减去2xB 可化为 20x > 两边同时减去22xC 可化为 1x >- 两边减去3D 可化为 21x >-两边减去3又知x 是任意实数 显然20x >恒成立 故选B例4、已知a <b,用“<”或“>”号填空:(1) a-3_<__b-3(2) 6a _<__6b(3)–a_>__-b(4) a-b_<__0解:(1)在a b <两边同时减去3(2)在a b <两边同时乘以6(3)在a b <两边同时乘以-1(变号)(4)在a b <两边同时减去b例5 将下列不等式化成“x>a”或“x<a”的形式:(1)x - 5>-1(2)-2x>3(3)2x- 1<2(4)-x <5/6解:(1)4x>两边同时加5(2)32x<-两边同时除以-2(3)32x<先移项,再两边同时除以2(4)56x>-两边同时乘以-1例6、按照下列条件写出仍然成立的不等式,并说明根据不等式的哪一条基本性质:(一般形式)(1)m>n,两边都减去3;(2)m>n,两边同乘以3;(3)m>n,两边同乘以-3;(4)m>n,两边同乘以m.解:(1)m-3>n-3(2) 3m>3n(3)-3m< -3n(4) m>0时,不等式成立。
八年级数学上册《第三章不等式的基本性质》练习题及答案-浙教版一、选择题1.已知实数a、b,若a>b,则下列结论正确的是()A. a﹣5<b﹣5B.2+a<2+bC.2a<2bD.3a>3b2.已知a<b,则下列不等式中不正确的是( )A.4a<4bB.a+4<b+4C.-4a<-4bD.a-4<b-43.下列不等式一定成立的是()A.5a>4aB.x+2<x+3C.-a>-2aD.4.若x>y,则下列式子错误的是()A.1﹣2x>1﹣2yB.x+2>y+2C.﹣2x<﹣2yD.2x>2y5.如果a<b,那么下列不等式中一定正确的是()A.a﹣2b<﹣bB.a2<abC.ab<b2D.a2<b26.下列不等式中,解集是x>1的不等式是()A.3x>-3B.x+4>3C.2x+3>5D.-2x+3>57.已知a,b,c都是实数,则关于三个不等式:a>b,a>b+c,c<0的逻辑关系的表述,下列正确的是( )A.因为a>b+c,所以a>b,c<0B.因为a>b+c,c<0,所以a>bC.因为a>b,a>b+c,所以c<0D.因为a>b,c<0,所以a>b+c8.已知四个实数a,b,c,d,若a>b,c>d,则( )A.a+c>b+d B.a﹣c>b﹣d C.ac>bd D.>二、填空题9.当a<0时,6+a 6-a(填“<”或“>”).10.若a<b<0 ,则2a-1 2b-1.11.关于x的不等式(m-2)x>1的解集为x>1m-2,则m的取值范围是________.12.如果a>0,b>0,那么ab 0.13.若关于x的不等式3m﹣2x<5的解集是x>3,则实数m的值为________.14.若m<n,比较下列各式的大小:(1)m-3______n-3 (2)-5m_____-5n (3)______(4)3-m______2-n (5)0_____m-n (6)_____三、解答题15.判断下列推导是否正确,并说明理由.因为4a>4b,所以a>b;16.下面是解不等式的部分过程,如果错误,说明错误原因并改正;如果正确,说明理由.(1)由2x>﹣4,得x<﹣2;(2)由16x﹣8>32﹣24x,得2x﹣1>4﹣3x;(3)由﹣3x>12,得x<﹣4.17.某单位打算和一个体车主或一出租车公司签订月租合同.个体车主答应除去每月1 500元租金外,每千米收1元;出租车公司规定每千米收2元,不收其他费用.设该单位每月用车x千米时,乘坐出租车合算,请写出x的范围.18.若不等式(2k+1)x<2k+1的解集是x>1,求k的取值范围.19.某单位为改善办公条件,欲购进20台某品牌电脑,据了解,该品牌电脑的单价大致在6000元至6500元之间,则该单位购进这批电脑应预备多少钱?20.利用不等式的基本性质,将下列不等式化为“x>a”或“x<a”的形式:(1)x+2>7. (2)3x<-12. (3)-7x>-14. (4)13x<2.参考答案1.D2.C3.B4.A5.A6.C7.D8.A9.答案为:<.10.答案为:<;11.答案为:m>2.12.答案为:>.13.答案为:11/3.14.答案为:(1)<(2)>(3)>(4)>(5)>(6)<15.解:因为4a>4b所以a>b;正确利用不等式两边同除以一个数不等号的方向不变;16.解:(1)错误.等式的两边同时乘以(或除以)同一个正数,不等号的方向不变,所以由2x>﹣4,得x>﹣2;(2)正确.等式的两边同时乘以(或除以)同一个正数,不等号的方向不变,所以把16x﹣8>32﹣24x两边都除以8得到2x﹣1>4﹣3x;(3)正确.不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变,所以﹣3x>12两边都除以﹣3,得到x<﹣4.17.解:根据题意,得1 500+x>2x,解得x<1 500.∵单位每月用车x(千米)不能是负数∴x的取值范围是0<x<1 500.18.答案为:k<-0.5.19.解:设该品牌电脑的单价为x元.则6000≤x≤6500.∴6000×20≤20x≤6500×20(不等式的基本性质3)即120000≤20x≤130000.答:该单位购买这批电脑应预备的钱数在12000元至13000元之间.20.解:(1)两边都减去2,得x>5.(2)两边都除以3,得x<-4.(3)两边都除以-7,得x<2.(4)两边都乘3,得x<6.。
2.2 《不等式的基本性质》练习题一、选择题(每题4分,共32分)1、如果m <n <0,那么下列结论中错误的是( )A 、m -9<n -9B 、-m >-nC 、11n m > D 、1mn >2、若a -b <0,则下列各式中一定正确的是( )A 、a >bB 、ab >0C 、0ab < D 、-a >-b3、由不等式ax >b 可以推出x <ba ,那么a 的取值范围是( )A 、a≤0B 、a <0C 、a≥0D 、a >04、如果t >0,那么a +t 与a 的大小关系是( )A 、a +t >aB 、a +t <aC 、a +t≥aD 、不能确定5、如果34a a<--,则a 必须满足( )A 、a≠0B 、a <0C 、a >0D 、a 为任意数6、已知有理数a 、b 、c 在数轴上的位置如图所示,则下列式子正确的是() a 0b cA 、cb >abB 、ac >abC 、cb <abD 、c +b >a +b7、有下列说法:(1)若a <b ,则-a >-b ; (2)若xy <0,则x <0,y <0;(3)若x <0,y <0,则xy <0; (4)若a <b ,则2a <a +b ;(5)若a <b ,则11a b >; (6)若1122x y--<, 则x >y 。
其中正确的说法有( )A 、2个B 、3个C 、4个D 、5个8、2a 与3a 的大小关系( )A 、2a <3aB 、2a >3aC 、2a =3aD 、不能确定二、填空题(每题4分,共32分)9、若m <n ,比较下列各式的大小:(1)m -3______n -3(2)-5m______-5n(3)3m -______3n - (4)3-m______2-n(5)0_____m -n(6)324m --_____324n -- 10、用“>”或“<”填空:(1)如果x -2<3,那么x______5; (2)如果23-x <-1,那么x______32; (3)如果15x >-2,那么x______-10;(4)如果-x >1,那么x______-1; (5)若ax b >,20ac <,则x______b a. 11、x <y 得到ax >ay 的条件应是____________。
第一讲不等式的基本性质一、单选题1.若m>n,下列不等式不一定成立的是()A.m+2>n+2B.2m>2n C.>D.m2>n2【答案】D【解析】试题分析:A、不等式的两边都加2,不等号的方向不变,故A正确;B、不等式的两边都乘以2,不等号的方向不变,故B正确;C、不等式的两条边都除以2,不等号的方向不变,故C正确;D、当0>m>n时,不等式的两边都乘以负数,不等号的方向改变,故D错误;故选D.【考点】不等式的性质.2.下列推理正确的是( )A.因为a<b,所以a+2<b+1 B.因为a<b,所以a-1<b-2C.因为a>b,所以a+c>b+c D.因为a>b,所以a+c>b-d【答案】C【解析】【分析】根据不等式的基本性质逐项分析即可.【详解】A. 因为由a<b,变为a+2<b+1,两边不是加的同一个数,故不正确;B. 因为由a<b,变为a-1<b-2,两边不是减的同一个数,故不正确;C. 因为由a>b,所以a+c>b+c,符合不等式的性质1,故正确;D. 因为由a>b,变为a+c>b-d,两边不是同时加上或减去同一个数,故不正确;故选C.【点睛】本题考查了不等式的基本性质:①把不等式的两边都加(或减去)同一个整式,不等号的方向不变;①不等式两边都乘(或除以)同一个正数,不等号的方向不变;①不等式两边都乘(或除以)同一个负数,不等号的方向改变.3.如果t>0,那么a+t与a的大小关系是( )A.a+t>a B.a+t<a C.a+t≥a D.不能确定【答案】A【解析】试题分析:根据不等式的基本性质即可得到结果.t>0,①a+t>a,故选A.考点:本题考查的是不等式的基本性质点评:解答本题的关键是熟练掌握不等式的基本性质1:不等式两边同时加或减去同一个整式,不等号方向不变.4.把不等式-3x>-6变形为x<2的依据是不等式的( )A .基本性质1B .基本性质2C .基本性质3D .以上都不是【答案】C【解析】【分析】根据不等式的基本性质,结合变形的方法求解即可.【详解】①把不等式-3x >-6的两边都除以-2可变形为x <2,①变形的依据是不等式的基本性质3.故选C.【点睛】本题考查了不等式的基本性质:①把不等式的两边都加(或减去)同一个整式,不等号的方向不变;①不等式两边都乘(或除以)同一个正数,不等号的方向不变;①不等式两边都乘(或除以)同一个负数,不等号的方向改变.5.若-2a <-3a ,则a 一定满足的条件是( ) A .a >0B .a <0C .a≥0D .a≤0 【答案】A【解析】将原不等式两边都乘以﹣6,得:3a >2a ,移项、合并,得:a >0,故选A .6.设“○”、“□”、“①”分别表示三种不同的物体,用天平比较它们质量的大小,两次情况如图所示,那么每个“○”、“□”、“①”这样的物体,按质量从小到大的顺序排列为( )A.○□①B.○①□C.□○①D.①□○【答案】D【解析】由图1可知1个○的质量大于1个□的质量,由图2可知1个□的质量等于2个①的质量,因此1个□质量大于1个①质量.故选D7.a,b,c在数轴上的对应点的位置如图所示,下列式子:①b+c>0;①a+b>a+c;①bc>ac;①ab>ac.其中正确的有( )A.1个B.2个C.3个D.4个【答案】C【分析】根据数轴上右边的数总大于左边的数,原点右边表示正数,左边表示负数,结合有理数运算法则进行判断即可求解.【详解】解:依题意得-2<c<-1<0<b<1<2<a①b+c<0,故说法错误;①a+b>a+c,故说法正确;①bc>ac,故说法正确;①a-b>0,故说法正确;①正确的是①①①,共3个.故选C.【点睛】此题主要考查了利用数轴比较两个负数的大小,绝对值大的反而小.8.2a与3a的大小关系()A.2a<3a B.2a>3a C.2a=3a D.不能确定【答案】D【分析】题目中没有明确a的正负,故要分情况讨论.【详解】当a<0时,2a>3a;当a=0时,2a=3a;当a>0时,2a<3a,故选D.【点睛】本题考查的是不等式的基本性质,解答本题的关键是熟练掌握不等式的基本性质3:不等式两边同时乘以(或除以)同一个小于0的整式,不等号方向改变.9.若x+5>0,则()A.x+1<0B.x﹣1<0C.<﹣1D.﹣2x<12【答案】C【解析】试题分析:根据不等式x+5>0,求得x>﹣5,然后可知:A、根据x+1<0得出x<﹣1,故本选项不符合题意;B、根据x﹣1<0得出x<1,故本选项不符合题意;C、根据<﹣1得出x<5,故本选项符合题意;D、根据﹣2x<12得出x>﹣6,故本选项不符合题意;故选C.考点:不等式的性质10.已知实数a,b满足a+1>b+1,则下列选项错误的为()A.a>b B.a+2>b+2C.﹣a<﹣b D.2a>3b【答案】D【解析】试题分析:由不等式的性质得a>b,a+2>b+2,﹣a<﹣b.故选D.考点:不等式的性质.点睛:根据不等式的性质1:不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变,来判断各选项.11.在平面直角坐标系中,点A ()7,21m --+在第三象限,则m 的取值范围是( )A .12m >B .12m >-C .12m <-D .12m < 【答案】A【分析】点在第三象限的条件是:横坐标是负数,纵坐标是负数,可得-2m+1<0,求不等式的解即可.【详解】解:①点在第三象限,①点的横坐标是负数,纵坐标也是负数,即-2m+1<0,解得m >12. 故选A .【点睛】本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-). 12.当0<x <1时,x 2、x 、1x的大小顺序是( ) A .21x x x <<B .21x x x <<C .21x x x <<D .21x x x<< 【答案】A【解析】 分析:先在不等式0<x <1的两边都乘上x ,再在不等式0<x <1的两边都除以x ,根据所得结果进行判断即可.详解:当0<x <1时,在不等式0<x<1的两边都乘上x,可得0<x2<x,在不等式0<x<1的两边都除以x,可得0<1<1x,又①x<1,①x2、x、1x的大小顺序是:x2<x<1x.故选A.点睛:本题主要考查了不等式,解决问题的关键是掌握不等式的基本性质.不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变,即:若a>b,且m>0,那么am>bm或a bm m >.二、填空题13.用“>”“=”或“<”填空:(1) 若a>b,且a<0,则a2________ab;(2) 若a+5<b+5,则-a_________-b.【答案】<>【解析】【分析】(1)根据不等式的性质3求解即可(2)先根据不等式的性质1,再根据性质3求解即可.【详解】(1) ①a>b,且a<0,①a2>ab;(2) ①a+5<b+5,①a<b,①-a>-b.故答案为:(1)< , (2)>.【点睛】本题考查了不等式的基本性质:①把不等式的两边都加(或减去)同一个整式,不等号的方向不变;①不等式两边都乘(或除以)同一个正数,不等号的方向不变;①不等式两边都乘(或除以)同一个负数,不等号的方向改变.14.已知a>b ,选择适当的不等号填空:(1)-3a ________-3b ; (2)1-5a__________1-5b ;(3)ax 2_________bx 2;(4)a(-c 2-1)_________b(-c 2-1).【答案】< < ≥ <【解析】【分析】(1)根据不等式的性质3两边都除以-3解答即可;(2)先用不等式的性质3两边都乘以-5,,再用不等式的性质1两边都加1解答;(3)先判断x 2的取值范围,再根据不等式的性质解答;(4)先判断-c 2-1的取值范围,再根据不等式的性质解答.【详解】(1) ① a >b ,①-3a <-3b ; (2) ① a >b ,①-5a <-5b , ①1-5a <1-5b ;(3) ① a >b ,x 2≥0,①ax 2≥bx 2;(4) ①c2≥0,①-c2≤0,①-c2-1<0;① a>b,①a(-c2-1)<b(-c2-1).故答案为:(1)<;(2) <;(3) ≥ ;(4) <.【点睛】本题考查了不等式的基本性质:①把不等式的两边都加(或减去)同一个整式,不等号的方向不变;①不等式两边都乘(或除以)同一个正数,不等号的方向不变;①不等式两边都乘(或除以)同一个负数,不等号的方向改变.15.若7x+2<7y+2,则x_______y,它经历了两步,第一步是将不等式7x+2<7y+2的两边_______________,第二步是将不等式的两边_______________.【答案】<都减去2 都除以7【解析】【分析】先根据不等式的性质1两边都减去2,再根据不等式的性质2两边都除以7.【详解】若7x+2<7y+2,则x<y,它经历了两步,第一步是将不等式7x+2<7y+2的两边都减去2,第二步是将不等式的两边都除以7.故答案为:<;都减去2 ;都除以7.【点睛】本题考查了不等式的基本性质:①把不等式的两边都加(或减去)同一个整式,不等号的方向不变;①不等式两边都乘(或除以)同一个正数,不等号的方向不变;①不等式两边都乘(或除以)同一个负数,不等号的方向改变.16.当x____________时,代数式2x-3的值是正数.【答案】>3 2先由题意列出不等式,再根据不等式的基本性质即可得到结果.【详解】由题意得2x-3>0,解得x>3 2 .考点:本题考查的是不等式的基本性质【点睛】解答本题的关键是熟练掌握不等式的基本性质1:不等式两边同时加或减去同一个整式,不等号方向不变;不等式的基本性质2:不等式两边同时乘以(或除以)同一个大于0的整式,不等号方向不变.三、解答题17.将下列不等式化为“x>a”或“x<a”的形式:(1)2x>3x-4;(2)5x-1<14;(3)-19x<-3;(4) 13x<12x+1.【答案】(1) x<4;(2) x<3;(3) x>27;(4) x>-6.【解析】(1)先根据不等式的性质1两边都减去3x,合并同类项后,再根据不等式的性质3两边都除以-1;(2)先根据不等式的性质1两边都加1,合并同类项后,再根据不等式的性质2两边都除以5;(3)先根据不等式的性质3两边都乘以-9即可;(4)先根据不等式的性质1两边都减去12x,合并同类项后,再根据不等式的性质2两边都除以6.【详解】(1) ①2x>3x-4,①2x-3x>-4,①-x>-4,①x<4;(2) ①5x-1<14,①5x<14+1,①5x<15,①x<3;(3)-19x<-3,①-19x×(-9)>-3×(-9)①x>27;(4) ① 13x<12x+1,①13x-12x<1,①-16x<1,①x>-6.【点睛】本题考查了不等式的基本性质:①把不等式的两边都加(或减去)同一个整式,不等号的方向不变;①不等式两边都乘(或除以)同一个正数,不等号的方向不变;①不等式两边都乘(或除以)同一个负数,不等号的方向改变.18.指出下列各式成立的条件.(1)由a>b,得ac≤bc;(2)由(a-3)x>a-3,得x>1;(3)由a<b,得(m-2)a>(m-2)b.【答案】(1)c≤0;(2)a>3;(3)m<2.【解析】试题分析:根据不等式的性质,又不等式的不等号的变化判断即可.试题解析:(1)由a>b,得ac≤bc,根据不等式的性质3,可知c≤0;(2)由(a-3)x>a-3,得x>1,根据不等式的基本性质2,可得a-3>0,即a>3;(3)由a<b,得(m-2)a>(m-2)b,根据不等式的性质3,可知m-2<0,解得m<2.19.已知x>0,试比较10x2-3x+2与8x2-3x+2的大小【答案】10x2-3x+2>8x2-3x+2.【解析】【分析】先把两个式子相减,并去括号合并同类项,然后由x>0,结合不等式的性质判断差的正负即可.【详解】解:(10x2-3x+2)-(8x2-3x+2)=2x2,①x>0,①2x2>0,①10x2-3x+2>8x2-3x+2.【点睛】本题考查了不等式的性质和利用作差法比较两个代数式的大小.作差法比较大小的方法是:如果a-b>0,那么a>b;如果a-b=0,那么a=b;如果a-b<0,那么a<b;另外本题还用到了不等式的传递性,即如果a>b,b>c,那么a>b>c.20.已知x>y,试比较(m-1)x与(m-1)y的大小【答案】见解析【解析】【分析】分三种情况①m-1>0,①m-1=0,①m-1<0,根据不等式的性质解答即可.【详解】解:当m-1>0,即m>1时,(m-1)x>(m-1)y;当m-1=0,即m=1时,(m-1)x=(m-1)y;当m-1<0,即m<1时,(m-1)x<(m-1)y.【点睛】本题考查了不等式的基本性质及分类讨论的数学思想,分三种情况解答是解答本题的关键.21.小明从一商店买了3个相同的玻璃杯,平均每个a元,又从另一个商店买了2个相同的玻璃杯,平均每个b 元,后来他以每个2a b +元的价格把玻璃杯全部都卖给了乙,结果赔了钱,你能用不等式的知识说明原因吗?【答案】见解析【解析】【分析】 先理解题意知道赔钱是什么意思,进而利用题中数量关系列出不等式2a b +<3a +2b >5,根据不等式的基本性质变形即可得到赔钱的原因.【详解】 解:因为赔了钱,所以×5<3a +2b ,①5a +5b <6a +4b ,①-a +b <0,即b <a ,①赔钱的原因是b <a.【点睛】本题考查了不等式的基本性质的应用,根据题意列出不等式并能根据不等式的基本性质变形是解答本题的关键.。