九年级数学圆与圆的位置关系1
- 格式:ppt
- 大小:175.50 KB
- 文档页数:8
3·6圆和圆的位置关系1.圆与圆的五种位置关系:(1)外离:两个圆没有公共点,并且每一个圆上的点都在另一个圆的外部;(2)外切:两个圆有唯一公共点,除公共点外一个圆上的点都在另一个圆的外部;(3)相交:两个圆有两个公共点,一个圆上的点有的在另一个圆的外部,有的在另一个圆的内部;(4)内切:两个圆有一个公共点,除公共点外,⊙O2上的点在⊙O1的内部;(5)内含:两个圆没有公共点,⊙O2上的点都在⊙O1的内部.外离和内含都没有公共点;外切和内切都有一个公共点,相交有两个公共点.因此只从公共点的个数来考虑,可分为相离、相切、相交三种.(2)相交2.两圆相内切或外切时,两圆的连心线一定经过切点,都是轴对称图形,对称轴是它们的连心线.3.在图(1)中,两圆相外切,切点是A.因为切点A在连心线O1O2上,所以O1O2=O1A+O2A =R+r,即d=R+r:反之,当d=R+r时,说明圆心距等于两圆半径之和,O1、A、O2在一条直线上,所以⊙O1与⊙O2只有一个交点A,即⊙O1与⊙O2外切.在图(2)中,⊙O1与⊙O2相内切,切点是B.因为切点B在连心线O1O2,所以O1O2=O1B-O2B,即d=R-r:反之,当d=R-r时,圆心距等于两半径之差,即O1O2=O1B-O2B,说明O1、O2、B在一条直线上,B既在⊙O1上,又在⊙O2上,所以⊙O1与⊙O2内切.当两圆相外切时,有d=R+r,反过来,当d=R+r时,两圆相外切,即两圆相外切 d=R+r当两圆相内切时,有d=R-r,反过来,当d=R-r时,两圆相内切,即两圆相内切d =R-r.设两圆半径分别为R和r,圆心矩为d,那么(1)两圆外离d>R+r(2)两圆外切d=R+r(3)两圆相交R-r<d<R=r(R≥r)(4)两圆内切d=R-r(R>r)(5)两圆内含d<R-r(R>r)同心圆d=04.定理:相交两圆的连心线垂直平分两圆的公共弦.1.两个同样大小的肥皂泡黏(点O,O′是圆心),分隔两个肥皂泡的肥皂膜PQ成一条直线,TP、NP分别为两圆的切线,求∠TPN的大小.分析:因为两个圆大小相同,所以半径OP=O′P=OO′,又TP、NP分别为两圆的切线,所以PT⊥OP,PN⊥O′P,即∠OPT=∠O′PN=90°,所以∠TPN等于360°减去∠OPT+∠O′PN+∠OPO°即可.【解析】∵OP =OO′=PO′,∴△PO′O是一个等边三角形.∴∠OPO′=60°.又∵TP与NP分别为两圆的切线,∴∠TPO=∠NPO′=90°.∴∠TPN=360°-2× 90°-60°=120°.2.如图⊙O的半径为5cm,点P是⊙O外一点,OP=8cm.求:(1)以P为圆心作⊙P与⊙O外切,小圆⊙P的半径是多少?(2)以P为圆心作⊙P与⊙O内切,大圆⊙P的半径是多少?【解析】(1)设⊙O与⊙P外切于点A.∴ PA=OP-OA=8-5,∴ PA=3cm.(2)设⊙O与⊙p内切于点B.∴ PB=OP+OB=8+5,∴ PB=13cm.(3)如图7-101,⊙O2与以O1为圆心的同心圆相交于A、B、C、D.3.求证:四边形ABCD是等腰梯形.分析:欲证明四边形ABCD是等腰梯形,只需证明AB∥CD,AD=BC且AB≠CD即可.【解析】证明:连结O1O2,∵⊙O2与以O1为圆心的圆相交于A、B、C、D,∴ AB⊥O1O2,DC⊥O1O2.∴ AB∥CD.在⊙O2中,∵AB∥CD,又∵ AB≠CD,∴四边形ABCD是等腰梯形.4.已知:如图7-102,A是⊙O1、⊙O2的一个交点,点P是O1O2的中点.如果过A的直线MN垂直于PA,交⊙O1于M,交⊙O2于N.那么AM与AN有什么关系呢?是O1O2中点,由平行线等分线段定理可得AC=AD,而得结论.【解析】证明:过点O1、O2分别作O1C⊥MN,O2D⊥MN,垂足为C、D,又∵ PA⊥MN,∴ PA∥O1C∥O2D,∵O1P=O2P,∴ AC=AD.∴ AM=AN.。
直线与圆、圆与圆的位置关系内容分析直线与圆、圆与圆的位置关系是九年级下学期第一章第二节的内容.重点是理解直线与圆的三种位置关系和圆与圆之间的五种位置关系,掌握它们数量表达,并学会判断直线与圆、圆与圆的位置关系.难点是直线与圆、圆与圆位置关系在实际中的应用,及分类讨论的思想.知识结构模块一:直线与圆的位置关系知识精讲1、直线与圆的位置关系:相离、相切、相交当直线与圆没有公共点时,叫做直线与圆相离;当直线与圆有唯一公共点时,叫做直线与圆相切;这时直线叫做圆的切线,唯一的公共点叫做切点;当直线与圆有两个公共点时,叫做直线与圆相交;这时直线叫做圆的割线.2、数量关系描述直线与圆的位置关系如果O 的半径长为R,圆心O 到直线l 的距离为d,那么:直线l 与O 相交⇔ 0 ≤d <R ;直线l 与O 相切⇔d =R ;直线l 与O 相离⇔d >R .3、切线的判定定理经过半径的外端且垂直于这条半径的直线是圆的切线.BOA【例1】 在 ∆ABC 中, ∠C = 90︒ ,AC = 3 cm ,BC = 4 cm ,以 C 为圆心,r 为半径的圆与 AB 有怎样的位置关系?为什么?(1)r = 2 cm ;(2)r = 2.4 cm ;(3)r = 3 cm .【例2】 经过 O 上一点 P 作 O 的切线.【例3】 已知, O 的圆心 O 的坐标是(4,6),半径为 5,则 x 轴与 O 的位置关系是.【例4】 直线 l 与半径为 r 的 O 相交,且点 O 到直线 l 的距离为 5,则 r 的取值范围是.【例5】 如图,在射线 OA 上取一点 A ,使 OA = 4 cm ,以 A 为圆心,作一个直径为 4 cm的圆.问射线 OB 与 OA 所夹锐角α 取怎样的值时,OB 与 O 相离、相切、相交?【例6】 等腰∆ABC ,AB = AC = 5,CB = 6,以 BC 中点为圆心作圆,两腰所在直线与圆相离,则半径 r 的取值范围为.【例7】 在 ∆ABC 中, ∠C = 90︒ ,AC = 5,BC = 12,若以 C 为圆心,R 为半径,所作的圆与斜边 AB 没有公共点,则 R 的取值范围是.例题解析OP2 yAO P BxO 2 2 【例8】 如图,已知 是以平面直角坐标系的原点 O 为圆心,半径为 1 的圆,∠AOB = 45︒ ,点 P 在 x 轴上运动,若过点 P 且与 OA 平行的直线与有公共点, 设 P 的横坐标为 x ,则 x 的取值范围是( )A . 0 ≤ x ≤B . - ≤ x ≤C . -1 ≤ x ≤ 1D . x >【例9】 在 ∆ABC 中, AB = 4 , AC = 2 ,若以 A 为圆心,2 为半径的圆与直线 BC相切,则∠BAC 的度数为 .【例10】 如图,AB 是 O 的弦,C 是 O 外一点,OC 交 AB 于点 D ,若OA ⊥ OC ,CD = CB .求证:CB 是 O 的切线.【例11】 已知:如图, O 的半径为 6 cm , OD ⊥ AB ,垂足为点 D , ∠AOD = ∠B ,AD = 12 cm ,BD = 3 cm . 求证:AB 是 O 的切线.AODCBOADB22CDAOB【例12】 如图,在∆ABC 中, ∠C = 90︒ ,AC = 5,BC = 12, O 的半径为 3.(1)当圆心 O 与 C 重合时, O 与 AB 的位置关系怎样? (2)若点 O 沿 CA 移动时,当 OC 为多少时, O 与 AB 相切; (3)若点 O 沿 CA 移动时,当 OC 为多少时, O 与 AB 有公共点.BAC (O )【例13】 如图,AB 是 O 的直径,BC 是 O 的切线,切点为 B ,OC 平行于弦AD . 求证:DC 是 O 的切线.【例14】 已知,如图,在梯形 ABCD 中,AD // CB , ∠D = 90︒ ,且 AD + BC = AB ,AB为 O 的直径.求证: O 与 CD 相切.A DOB CBC OA1、 圆与圆的位置关系外离:图 1 中,两个圆没有公共点,并且每个圆上的点都在另一个圆的外部,叫做这两个圆外离.外切:图 2 中,两个圆有唯一的公共点,并且除了这个公共点以外,每个圆上的点都在另一个圆的外部,叫做这两个圆外切.这个唯一的公共点叫做切点.相交:图 3 中,两个圆有两个公共点,叫做这两个圆相交.内切:图 4 中,两个圆有唯一公共点,并且除了这个公共点以外,一个圆上的点都在另一个圆的内部,叫做这两个圆内切.这个唯一的公共点叫做切点.内含:图 5 中,两个圆没有公共点,并且一个圆上的点都在另一个圆的内部,叫做这两个圆内含.当两个圆心重合时,称它们为同心圆.综上,一般地,两圆的位置关系有五种情况:外离、外切、相交、内切、内含.两个圆外离或内含时,也可以叫做两圆相离;两个圆外切或者内切时,也可以叫做两圆相切. 2、 相关概念圆心距:两个圆的圆心之间的距离叫做圆心距. 连心线:经过两个圆圆心的直线叫做连心线.图 5 图4模块二:圆与圆的位置关系知识精讲图 1图 2 图 33、 两圆位置关系的数量表达如果两圆的半径长分别为 R 1 和 R 2 ,圆心距为 d ,那么两圆的位置关系可用 R 1 、R 2 和 d 之间的数量关系表达,具体表达如下:两圆外离⇔ d > R 1 + R 2 ; 两圆外切⇔ d = R 1 + R 2 ; 两圆相交⇔ R 1 - R 2 < d < R 1 + R 2 ;两圆内切⇔ 0 < d = R 1 - R 2 ;两圆内含⇔ 0 ≤ d < R 1 - R 2 .4、 相关定理(1)如果两圆相交,那么它们的两个交点关于连心线对称,于是,可推出以下定理:相交两圆的连心线垂直平分两圆的公共弦.(2)如果两圆相切,可归纳出以下定理:相切两圆的连心线经过切点.【例15】 (1)一个圆的半径为 9 厘米,另一圆的半径为 4 厘米,圆心距为 3 厘米,判断两个圆的位置关系(2)相切两圆的圆心距为 5,其中一个圆的半径为 3,那么另一个圆的半径是多少?【例16】 两圆的半径比为 2 : 3,圆心距等于小圆半径的 2 倍,则这两个圆的位置关系是()A .相离B .外切C .相交D .内切或内含【例17】 两圆的圆心坐标分别为( 3 ,0)和(0,1)它们的半径分别是 3 和 5,则这两个圆的位置关系是.【例18】 设 R 、r 是两圆的半径,d 为圆心距,如果它们满足 R 2 - r 2 - 2Rd + d 2 = 0 ,那么这两个圆的位置关系是( )A .外离B .相切C .相交D .内含例题解析A CB【例19】 若三圆两两相交得到三条公共弦,则这三条弦所在直线的位置关系是()A .平行B .相交于一点C .平行或交于一点D .有两条弦平行,第三条与它们相交【例20】 如图,已知 A 、 B 和 C 两两外切,AB = 5 厘米,BC = 6 厘米,AC = 7 厘米,求这三个圆的半径.【例21】 已知 O 1 与 O 2 相交于 A 、B 两点, O 1 与 O 2 的半径分别为 2 和 ,公共弦长为 2,则∠O 1 AO 2 = .【例22】 如图,两圆轮叠靠在墙边,已知两轮半径分别为 4 和 1,则它们与墙的切点 A 、B 间的距离为.【例23】 如图,以O 2 为圆心的两个同心圆和求证:四边形 ABCD 为等腰梯形.O 1 分别交于 A 、B 、C 、D 四点.ABA DC B2【例24】 如图, O 1 、 O 2 外切与点 A ,过点 A 的直线分别交 O 1 和 O 2 于点 P 、C .求证: PA : PC O 1 A : O 1O 2 .【例25】 已知相交两圆的半径分别为 5 和 4,公共弦长为 6,求两圆的圆心距长.【例26】 如图,矩形 ABCD ,AB = 5,BC = 12.分别以 A 、C 为圆心的两圆相切,点 D在圆 C 内,点 B 在圆 C 外,求圆 A 的半径 r 的取值范围.【例27】 如图,PQ = 10,以 PQ 为直径的圆与一个半径为 20 的圆内切于点 P .正方形ABCD 的顶点 A 、B 在大圆上,小圆在正方形外部,且与 CD 相切与点 Q ,求 AB 的长.ADBCC APQ ODB PAC3【例28】 (1)计算:如图 1,直径为 a 的三等圆 O 1 、 O 2 、 O 3 两两外切,切点分别为 A 、B 、C ,求O 1 A 的长(用含 a 的代数式表示);(2)探索:若干个直径为 a 的圆圈分别按如图 2 所示的方案一和如图 3 所示的方案 2 的方式排放,探索并求出这两种方案中 n 层圆圈的高度h n 和 h’n (用含 n 和 a 的代数式表示);(3)应用:现有长方体集装箱,其内空长为 5 米,宽为 3.1 米,高为 3.1 米.用 这样的集装箱装运长为 5 米,底面直径(横截面的外圆直径)为 0.1 米的圆柱形钢管,你认为采用(2)中的哪种方案在该集装箱中装运钢管最多?并求出这样的集装箱最多能装运多少根钢管?( 1.73 )B C A图 1n 层 n 层…………3 层 3 层 h’n2 层1 层2 层 1 层图 2图 3h’1h’2h’3……【例29】 如图,正方形 ABCD 中,E 为 BC 边上一点,以 E 为圆心、EC 为半径的半圆与以 A 为圆心、AB 为半径的圆弧外切,求sin ∠EAB 的值.【例30】 如图, O ' 经过 O 的圆心,E 、F 是两圆的交点,直线OO ' 交于点 Q 、D ,交 O ' 于点 P ,交 EF 于点 C ,且 EF = 2 15 , sin ∠P = 1.4 (1)求证:PE 是 O 的切线; (2)求 O 和 O ' 的半径的长.DC EFABE QO C D PF【习题1】 已知 O 的直径为 10 厘米,如果一条直线和圆心 O 的距离为 10 厘米,则这条直线和这个圆的位置关系为( ) A .相离B .相切C .相交D .相交或相离【习题2】已知在∆ABC 中,∠ABC = 90︒ ,AB = 4,BC = 3,以 A 为圆心,以 r 为半径的圆与 BC 有公共点,则 r 的取值范围是.【习题3】已知 O 1 和 O 2 的半径分别是 5 厘米和 7 厘米,圆心距O 1O 2 是 2 厘米,则这两个圆的位置关系是( )A .外离B .外切C .相交D .内切【习题4】已知两圆的半径之比为 3 : 5,两圆内切时,圆心距为 6,则两圆的半径分别是,这两圆外切是,圆心距为.【习题5】已知点 A 和点 B 都在 x 轴上,分别以点 A 和点 B 为圆心的两圆相交于点M ( 3a - b ,5)、N (9, 2a + 3b ),则a b 的值为.【习题6】 如图, O 的半径为 3 厘米,B 为 O 外一点,OB 交 O 于点 A ,AB = OA ,动点 P 从点 A 出发,以π 厘米/秒的速度在 O 上按逆时针方向运动一周回到点 A 立即停止.当点 P 运动的时间为秒时,BP 与 O 相切.POAB【习题7】在直角坐标系中, A 与 B 只有一个公共点, A 和 B 的半径分别为 2和 6,点 A 的坐标为(2,1),点 B 为 x 轴上一点,求点 B 的坐标.随堂检测O 1【习题8】如图,等边∆ABC 的边长为 10,以 AB 为直径作 O 1 ,点O 2 在 BC 边上,且CO 2 = 2 ,以O 2 为圆心,O 2C 为半径作并证明你的结论.O 2 ,请判断 O 1 与 O 2 的位置关系,【习题9】如图, O 和相交于 A 、B 两点,O A = 3 5 ,O A = 5 ,cos ∠AO B =3.11215求: sin ∠BAO 2 的值.【习题10】 如图,三个半圆的半径均为 R ,它们的圆心C 1 、C 2 、C 3 在同一条直线上,且每一圆心都在另一半圆的圆周上. 半径,求 R : r .C 4 与这三个半圆均相切,用 r 表示 C 4 的ABCAB【作业1】 O 的半径为 R ,直线 l 和 O 有公共点,若圆心到直线 l 的距离是 d ,则 d 与 R 大小关系是( )A . d > RB . d < RC . d ≥ RD . d ≤ R【作业2】已知圆的直径是 13 厘米,圆心到直线 l 的距离为 6 厘米,则直线和这个圆的公共点的个数是个.【作业3】(1)有两个圆,一个圆的半径 R = 4,两圆的圆心距是 5,另一个圆的半径 r 满足什么条件时这两个圆外离?(2)两个圆的圆心距为 2 厘米,一个圆的半径为 10 厘米,要使这两个圆内含, 另一个圆的半径应满足什么条件?(3)已知两个圆内切,圆心距是 2 厘米,如果一个圆的半径是 3 厘米,那么另一圆的半径是多少?【作业4】O 的半径为 6, O 的一条弦 AB 长6 AB 的关系是.,以 3 为半径的同心圆与直线【作业5】 若线段 PQ 与 O 只有一个公共点,那么这条线段的两个端点 P 、Q 只能是 ( )A .至少有一点在圆外B .至多有一点在圆内C .P 、Q 两点中一定有一点在 O 外D .一点在 O 的内部,另一点在 O 的外部;或 PQ 是 O 的切线,P 、Q 之一为切点【作业6】 在直角梯形 ABCD 中,AD // BC , AB ⊥ AD , AB = 10 3 ,AD 、BC 的长是方程 x 2 - 20x + 75 = 0 的两根,那么以点 D 为圆心、AD 为半径的圆与以点 C 为圆心、BC 为半径的圆的位置关系是.【作业7】已知 O 1 和 O 2 相交于 A 、B 两点,AB = 24, O 1O 2 = 25 ,O 1 的半径为20,求 O 2 的半径.课后作业3BCOA PD2【作业8】 如图,在矩形 ABCD 中,AB = 3,BC = 4,P 是边 AD 上一点(除端点外),过三点 A 、B 、P 作 O . (1)指出圆心 O 的位置;(2)当 AP = 3 时,判断 CD 与 O 的位置关系; (3)当 CD 与 O 相切时,求 BC 被 O 截得的弦长.【作业9】 如图,在直角梯形 ABCD 中,AD // BC ,AB ⊥ BC ,AB = AD = 2,DC = 2 ,点 P 在边 BC 上运动,若以点 D 为圆心、1 为半径作 D ,以 P 为圆心、PC 长为半径作 P ,当 D 与 P 相切时,求 CP 的长.【作业10】 如图,扇形 OAB 的弦 AB = 18,半径为 6 的 C 恰与 OA 、OB 和 AB 相切,D 又与 C 、OA 、OB 相切,求 D 的半径.ADB P CABCM DN。
初三数学圆和圆的位置关系知识精讲圆和圆的位置关系1. 基本概念(1)两圆外离、外切、相交、内切、内含的定义;(2)两圆的公切线、外公切线、内公切线、公切线长的定义; (3)两圆的连心线、圆心距、公共弦。
两圆的位置 圆心距d 与两圆的半径R 、r 的关系 外公切线条数内公切线条数公切线条数外离 d R r >+ 2 2 4 外切 d R r =+2 13 相交 R r d R r R r -<<+≥()2 0 2 内切 d R r R r =->()1 0 1 内含d R r R r <->()说明:(1)两圆的位置关系和半径,圆心距的数量关系是互相对应的,即知道位置关系就可以确定数量关系,知道数量关系也可以确定位置关系;(2)如果遇到“相离”或“相切”问题时,都要分两种情况来解决。
3. 相交两圆的性质相交两圆的连心线垂直平分两圆的公共弦。
4. 相切两圆的性质如果两圆相切,那么切点一定在连心线上。
5. 两圆中常引用的辅助线(1)相切:过切点引公切线,引连心线。
(2)相交:引连心线、公共弦(将两圆半径、圆心距、公共弦的一半集中在一个三角形中) (3)遇两条内公切线或外公切线:引过切点的半径,构造直角三角形(将半径、圆心距、例:(1997某某)如图,已知:两圆内切于点A,P是两圆公切线上的一点过P作小圆的割线PBC,连结AB、AC,并延长分别交大圆于D、E,求证:PCPBAEAD=22。
证明:连结DEPA是两圆的公切线,∴∠=∠=∠PAD PCA E∴∴=BC DEAEADACAB//PA是⊙O1的切线,PBC是⊙O1的割线∴=⋅PA PB PC2又 ∠=∠∠=∠PCA PAB CPA APB,∴∴=∆∆PAB PCAACABPCPA~∴=∴==⋅=AEADPCPAAEADPCPAPCPB PCPCPB22222即PCPBAEAD=22说明:相切两圆中公切线是联系两圆中角的最有利条件,利用两圆的公切线,构造两圆的弦切角来进行角的转化。
5.6圆和圆的位置关系(1)备课时间: 2010.12. 6 主备人:一、学习目标知识目标:了解圆与圆之间的几种位置关系;了解两圆外切、内切与两圆圆心距d 、半径R 和r 的数量关系的联系.能力目标:经历探索两个圆之间位置关系的过程,训练学生的探索能力;通过平移实验直观地探索圆和圆的位置关系,发展学生的识图能力和动手操作能力.情感与价值观目标:通过探索圆和圆的位置关系,体验数学活动充满着探索与创造,感受数学的严谨性以及数学结论的确定性;经历探究图形的位置关系,丰富对现实空间及图形的认识,发展形象思维.二、知识准备学生在理解圆的意义和理解直线和圆的位置关系的基础上,引导生理解掌握圆和圆的几种位置关系。
学生充分预习。
预习检测1.圆与圆的位置关系有——————————————.2.如果两圆的半径分别为R 、r,圆心距为d,则两圆外离 ________________两圆外切 ________________两圆相交 ________________两圆内切 ________________两圆内含 ________________3.如果两圆的半径为5、9,圆心距为3,那么两圆的位置关系是 ( )A 外离B 相切C 相交D 内含4.⊙O 和⊙O`相内切,若OO`=3,⊙O 的半径为7,则⊙O` 的半径为 ( )A 4B 6C 0D 以上都不对三、学习内容学生可在理解点和圆、圆和圆的位置关系的基础上,类比出圆和圆的五种位置关系。
师生互动,合作探究。
学生可利用两张透明纸上操作探究出五种位置关系再通过例题巩固其几种位置关系还可引申:已知图中各圆两两相切,⊙O 的半径为2R ,⊙O 1、⊙O 2的半径为R ,求⊙O 3的半径.分析:根据两圆相外切连心线的长为两半径之和,如果设⊙O 3的半径为r ,则O 1O 3=O 2O 3=R+r ,连接OO 3就有OO 3⊙O 1O 2,所以OO 2O 3构成了直角三角形,利用勾股定理可求得⊙O 3的半径r.四、知识梳理1.圆和圆的五种位置关系是———————————————————————————————————————————————————————————————;2.探讨圆和圆的五种位置关系圆心距d 与R 和r 之间的关系。
圆和圆的位置关系有疑问的题目请发在“51加速度学习网”上,让我们来为你解答51加速度学习网 整理一、本节学习指导前面我们总结过点、线到圆的位置关系,这里我们总结圆与圆的位置关系。
在圆的五种位置关系中,我们要注意圆心距和两个圆半径之间的联系。
本节有配套学习视频。
二、知识要点1、圆和圆的五种位置关系(用d 表示圆心距,r1,r2表示两个圆的半径) 注:圆心距是指两个圆心之间的距离,把两个圆心连接起来,很容易得出圆心距。
(1)外离:若两圆没有交点,并且不存在包含关系。
如图1,此时有:12d r r >+ (2)外切:两个圆从外面相切。
如图2,此时有:12=d r r +(3)相交:两个圆相交,有两个交点。
如图3,此时有:12<<+r r d r r -大小 (4)内切:两个圆从里面相切。
如图4,此时有:=d r r -大小(5)内含:一个圆完全在另一个圆里面,且没有交点。
如图5,此时有:d r r <-大小注意:如果两圆相切,那么切点一定在连心线上,它们是轴对称图形,对称轴是两圆的连心线;相交的两个圆的连心线垂直平分两圆的公共弦。
2、与圆位置相关的性质①切线:经过半径外端且垂直与该半径的直线是圆的切线。
圆的切线垂直于过切点的半径。
②切线长:过圆外一点作圆的切线,这点与切点之间的线段长叫做圆的切线长。
③从圆外一点可以引圆的两条切线,它们的切线长相等,且该点和圆心的连线平分两条切线的夹角。
例:三、经验之谈:在圆和圆的位置关系中,相交、相切是常考点,相交中那条公共弦我们引起重视。
我们再看看上题,题目中没有提及一个数字,最终却能求出∠PCA的度数,很奇妙吧。
此题看似简单,却涉及到:切线性质、圆心角、圆周角的知识。
所以我们平时要多做练习,积累大量实战经验。
有疑问的题目请发在“51加速度学习网”上,让我们来为你解答51加速度学习网整理。
圆和圆的位置关系
课题:圆和圆的位置关系
教材:人教版九年级上册第二十四章第二节第一课时
单位:营山华英实验学校
授课老师:李凤麟
一、教材的地位和作用
本节课是学生在已掌握了直线和圆的位置关系等知识的基础上,进一步研究平面上两圆的位置关系。
是圆的知识应用的基础,也是今后到高中继续研究平面与球的位置关系,圆与圆锥曲线的位置关系的基础。
因此本节课的内容是十分重要的,它对知识起到了承上启下的作用。
二、教学目标
根据上述教材分析,考虑到学生已有的认知结构,心理特征,制定如下教学目标。
(一)知识目标:
1、了解圆与圆之间的几种位置关系。
2、数形结合认识两圆圆心距d与半径R和r之间的数量联系。
(二)能力目标
多媒体演示“日食”现象及两圆相对运动的过程,学生经过观察、分析、归纳、猜想、等过程,提炼出圆与圆的位置关系及两圆的半径R、r与圆心距d之间的数量关系,培养学生建立数学模型的意识和能力。
(三)情感目标
1、通过本节探索学习,培养学生勇于探索创新的精神。
2、经历相互交流的探究过程,培养学生的团队精神。
三、教学的重点、难点
教学重点:
1、圆和圆的五种位置关系。
2、两圆的半径与圆心距之间的数量关系及应用。
教学难点:
两圆的半径R、r与圆心距d之间的数量关系及应用。
四、教学方式
根据本节的教学内容及学生现有的实际水平和认知能力,采用学生自己动手,相互交流,自主探索,多媒体辅助的教学手段。
五、教学过程设计。
知识点、重点、难点两圆的位置关系可以是两圆相交、两圆相切(内切或外切)、两圆相离、两圆内含。
设两个圆为⊙1O 、⊙2O ,半径分别为1R 、2R ,且1R ≥2R ,1O 与2O 的距离为d ,那么,12d R R >+⇔两圆相离⇔4条公切线(2条外公切线,2条内公切线); 12d R R =+⇔两圆外切⇔3条公切线(2条外公切线,1条内公切线); 1212R R d R R -<<+⇔两圆相交⇔2条公切线(2条外公切线,无内公切线);12d R R =-⇔两圆内切⇔条公切线(1条外公切线,无内公切线); 1d R R <-⇔两圆内含⇔无公切线。
两圆的内(外)公切线的长为2212()l d R R =-+内;2212().l d R R =--外由圆的对称性知:若两圆相交,则两圆的连心线垂直平分公共弦。
若两圆有两条外(内)公切线,那么这两条外(内)公切线长相等。
若两条外(内)公切线相交,那么交点在连心线上,并且连心线平分两公切线所夹的角。
例题精讲例1:如图,过⊙O 外一点P 作⊙O 的切线PN ,N 为切点。
令PN 的中点为M ,过PM 的圆与⊙O 交于A 、B ,BA 的延长线与PM 交于点Q ,求证: PM =3MQ .解 因PN 为切线,由切割线定理知 NQ 2= QA ·QB = QM ·QP .设QM =x ,QN =y ,于是MP = MN =x +y (x >0,y >0),故QP =x +(x +y )= 2x +y ,所以2y =x (2x + y ),即222x xy y +-=0.由此得(x +y )(2x-y )=0,故2x = y 或x =-y (舍去),MP=x +y = 3x = 3MQ .例2:如图,△ABC 的内切圆切BC 边于D ,求证△ABD 和△ACD 的内切圆相外切。
解 设E 、F 为△ABC 内切圆与AC 、AB 的切点,1T 、2T 分别为⊙1O 、 ⊙2O 与AD 的切点,于是BF = BD ,CE =CD .122AB BD AB AB BD AF BFDT +-+--==.2AD AF -=同理2.2AD AEDT -=又AE = AF ,所以12DT DT =,即1T 与2T 重合.所以⊙1O 与⊙2O 切于1T 点。
高中数学知识点:圆与圆的位置关系1.圆与圆的位置关系:(1)圆与圆相交,有两个公共点;(2)圆与圆相切(内切或外切),有一个公共点;(3)圆与圆相离(内含或外离),没有公共点.2.圆与圆的位置关系的判定:(1)代数法:判断两圆的方程组成的方程组是否有解.有两组不同的实数解时,两圆相交;有一组实数解时,两圆相切;方程组无解时,两圆相离.(2)几何法:设1O 的半径为1r ,2O 的半径为2r ,两圆的圆心距为d . 当1212r r d r r -<<+时,两圆相交;当12r r d +=时,两圆外切;当12r r d +<时,两圆外离; 当12r r d -=时,两圆内切;当12r r d ->时,两圆内含.要点诠释:判定圆与圆的位置关系主要是利用几何法,通过比较两圆的圆心距和两圆的半径的关系来确定,这种方法运算量小.也可利用代数法,但是利用代数法解决时,一是运算量大,二是方程组仅有一解或无解时,两圆的位置关系不明确,还要比较两圆的圆心距和两圆半径的关系来确定.因此,在处理圆与圆的位置关系时,一般不用代数法.3.两圆公共弦长的求法有两种:方法一:将两圆的方程联立,解出两交点的坐标,利用两点间的距离公式求其长.方法二:求出公共弦所在直线的方程,利用勾股定理解直角三角形,求出弦长.4.两圆公切线的条数与两个圆都相切的直线叫做两圆的公切线,圆的公切线包括外公切线和内公切线两种.(1)两圆外离时,有2条外公切线和2条内公切线,共4条;(2)两圆外切时,有2条外公切线和1条内公切线,共3条;(3)两圆相交时,只有2条外公切线;(4)两圆内切时,只有1条外公切线;(5)两圆内含时,无公切线.。
九年级数学圆与圆的位置关系在我们学习数学的过程中,有些知识总是能让人拍案叫绝,比如说圆与圆之间的位置关系。
你想啊,两个圆就像两个好朋友,有时候紧紧相拥,有时候则是形同陌路。
今天咱们就来聊聊这些圆的“社交”动态,保准让你听了哈哈大笑,边学边乐。
首先呢,咱们得知道圆和圆之间的基本关系。
两个圆如果能够相交,形成两个交点,那就叫做“相交”。
这就好比是两位朋友在某个聚会上聊得火热,结果发现两个人的兴趣爱好还真是有那么一点点相似,嘿嘿,意外的发现吧。
如果这两个圆的距离刚刚好,让它们只轻轻碰了一下,那就叫做“相切”。
就像两个朋友在街上偶遇,点头致意一下,心照不宣,继续各自的旅程,既亲密又有些距离。
哦,对了,记得咱们的圆心距离和半径的关系。
圆心距小于半径之和,那就能相交;等于半径之和,那就相切;大于半径之和,嘿,那就各自飞了。
咱们得聊聊“相离”这种情况。
两圆如果完全不相交,远得像两个恋人各自生活在两个城市,联系得少之又少,那就是“相离”。
你想啊,两个圆心的距离大于半径之和,真是远得像是天涯海角,不同的生活方式,不同的爱好,没啥交集,生活就这么各自精彩。
想象一下,两个圆在画纸上悄悄地待着,互不干扰,彼此就是那种“风马牛不相及”的感觉。
再来看看特殊的情况。
比如,当两个圆的圆心重合,但半径不同,那就有点意思了。
想象一下,有个圆在外面转来转去,另一个圆在它的“肚子”里悄悄待着。
这个时候,内圆完全被外圆包裹住了,像极了朋友间的包容。
总有那么一个人,给你无条件的支持,虽然不总是被看到,但心里永远有那么一个位置。
可惜,这种情况可不是每个人都能理解的。
说到这里,咱们再来琢磨一下这些圆之间的关系的意义。
生活中,朋友之间的关系也好,爱人之间的互动也罢,都是那么复杂又简单。
有人总是希望彼此相交,有人则想要独立。
相交的朋友就像是在一起打游戏,总是能碰撞出各种火花,而相切的朋友则是在适当的时候给予彼此空间,既能相互支持,又能保留个人的独特性。
第33课圆与圆的位置关系知识点:圆和圆的位置关系、两圆的连心线的性质、两圆的公切线大纲要求:1.了解两圆公切线的求法,掌握圆和圆的位置关系;2.了解两圆位置关系与公共点个数、外公切线条数、内公切线条数以及d、R、r之间的关系;3.掌握相交两圆的性质和相切两圆的性质;4.注意 (1)圆与圆的五种位置关系相交和相切是重点;(2)在解题中把两个圆中有关问题利用圆的性质和直线圆的位置关系的定理和性质转化为一般圆的问题;(3)涉及相交两圆的问题常可作出公共弦,利用圆周角定理及其推论或连心线垂直乎分公共弦。
公共弦可沟通两个圆的角之间关系,有了连心线,公共弦不仅可取应用相交两圆的性质定理且还能沟通两圆半径、公切线等之间的关系;(4)涉及相切两圆问题主要可从以下几个方面考虑;①过切点作两圆的公切线,利用弦切角定理或切线长定理;②作出连心线,利用连心线过切点的性质;③利用两圆的圆心距等于两圆半径之和或之差;④当两圆外切时,利用连心线、外公切线及过公切线切点的两条毕径组成的直角梯形,将有关圆的间题转化为直线形间题,把梯形问题转化为直角三角形问题,通过解直角三角形来解决有关两圆公切线等问题。
考查重点与常甩题型:1.判断基本概念、基本定理等的正误。
在中考题申常以选择题或填空题的形式考查学生对基本概念和基本定理的正确理解,如:已知两圆的半径分别为2、5,且圆心距等于3,则两圆位置关系是 ( )(A)外离 (B)外切 (C)相交 (D) 内切2.考查两圆位置关系中的相交及相切的性质,可以以各种题型形式出现,多见于选择题或填空题,有时在证明、计算及综合题申也常有出现。
预习练习:1.已知两圆的半径分别是2和4,圆心距是3,那么这两圆的位置是()(A)内含 (B)内切 (C)相交 (D) 外切2.已知半径为R和r的两个圆相外切。
则它的外公切线长为()(A)R+r (B)R2+r2 (C) R+r (D) 2Rr3.已知⊙O1半径为3cm,⊙O2半径为4cm,并且⊙O1与⊙O2相切,则这两个圆的圆心距为()(A)1cm (B)7cm (C) 10cm (D) 1cm或7cm4.两圆半径为5和r,圆心距为8,当两圆相交时,r取值范围是5.两圆直径分别为6、8,圆心距为10,则这两圆的最多公切线条数是考点训练:1.已知半径为R和r的两个圆外切,R=2+ 3 ,r=2- 3 ,两圆的一条公切线与连心线的夹角为α,则角α的度数为()(A)30 ° (B)45 ° (C) 60 ° (D) 无法确定2.如图,两个同心圆,点A在大圆上,ABC为小圆的割线,若AB·AC=8,则圆环的面积为()(A)8π(B)12π(C) 4π(D) 16π。
九年级数学圆和圆的位置关系6圆和圆的位置关系本节课要学习的内容是圆和圆的位置关系,其中包括利用平移实验直观地探索圆和圆之间的几种位置关系,通过讨论两圆圆心之间的距离d与两圆半径R和r之间的关系来确定两圆的位置关系.重点和难点是通过学生动手操作和互相交流探索出圆和圆之间的几种位置关系.在教学中教师不要只强调结论,要关注学生的动手操作过程,关注他们互相交流的过程.看学生是否能积极地投入到数学活动中去,在他们困难的时候要适时地给予帮助,要多加鼓励,提高他们学习数学的兴趣,只要学生有了兴趣就成功了一半,他们就能敢于面对数学活动中的困难,并有独立克服困难和运用知识解决问题的成功体验.通过学习本节课的内容,使学生具备一定的识图能力,体会数学活动充满着探索性和创造性,敢于发表自己的观点,并尊重和理解他人的见解,能从交流中获益.教学目标教学知识点.了解圆与圆之间的几种位置关系..了解两圆外切、内切与两圆圆心距d、半径R和r的数量关系的联系.能力训练要求经历探索两个圆之间位置关系的过程,训练学生的探索能力..通过平移实验直观地探索圆和圆的位置关系,发展学生的识图能力和动手操作能力.情感与价值观要求.通过探索圆和圆的位置关系,体验数学活动充满着探索与创造,感受数学的严谨性以及数学结论的确定性..经历探究图形的位置关系,丰富对现实空间及图形的认识,发展形象思维.教学重点探索圆与圆之间的几种位置关系,了解两圆外切、内切与两圆圆心距d、半径R和r的数量关系的联系.教学难点探索两个圆之间的位置关系,以及外切、内切时两圆圆心距d、半径R和r的数量关系的过程.教学方法教师讲解与学生合作交流探索法教具准备投影片三张张:第二张:第三张:教学过程Ⅰ.创设问题情境,引入新[师]我们已经研究过点和圆的位置关系,分别为点在圆内、点在圆上、点在圆外三种;还探究了直线和圆的位置关系,分别为相离、相切、相交.它们的位置关系都有三种.今天我们要学习的内容是圆和圆的位置关系,那么结果是不是也是三种呢?没有调查就没有发言权.下面我们就来进行有关探讨.Ⅱ.新课讲解一、想一想[师]大家思考一下,在现实生活中你见过两个圆的哪些位置关系呢?[生]如自行车的两个车轮间的位置关系;车轮轮胎的两个边界圆间的位置关系;用一只手拿住大小两个圆环时两个圆环间的位置关系等.[师]很好,现实生活中我们见过的有关两个圆的位置很多.下面我们就来讨沦这些位置关系分别是什么.二、探索圆和圆的位置关系在一张透明纸上作一个⊙o.再在另一张透明纸上作一个与⊙o1半径不等的⊙o2.把两张透明纸叠在一起,固定⊙o1,平移⊙o2,⊙o1与⊙o2有几种位置关系?[师]请大家先自己动手操作,总结出不同的位置关系,然后互相交流.[生]我总结出共有五种位置关系,如下图:[师]大家的归纳、总结能力很强,能说出五种位置关系中各自有什么特点吗?从公共点的个数和一个圆上的点在另一个圆的内部还是外部来考虑.[生]如图:外离:两个圆没有公共点,并且每一个圆上的点都在另一个圆的外部;外切:两个圆有唯一公共点,除公共点外一个圆上的点都在另一个圆的外部;相交:两个圆有两个公共点,一个圆上的点有的在另一个圆的外部,有的在另一个圆的内部;内切:两个圆有一个公共点,除公共点外,⊙o2上的点在⊙o1的内部;内含:两个圆没有公共点,⊙o2上的点都在⊙o1的内部.[师]总结得很出色,如果只从公共点的个数来考虑,上面的五种位置关系中有相同类型吗?[生]外离和内含都没有公共点;外切和内切都有一个公共点,相交有两个公共点.[师]因此只从公共点的个数来考虑,可分为相离、相切、相交三种.经过大家的讨论我们可知:投影片如果从公共点的个数,和一个圆上的点在另一个圆的外部还是内部来考虑,两个圆的位置关系有五种:外离、外切、相交、内切、内含.如果只从公共点的个数来考虑分三种:相离、相切、相交,并且相离外离外切相切内含内切三、例题讲解投影片两个同样大小的肥皂泡黏在一起,其剖面如图所示分隔两个肥皂泡的肥皂膜PQ成一条直线,TP、NP分别为两圆的切线,求∠TPN的大小.分析:因为两个圆大小相同,所以半径oP=o′P=oo′,又TP、NP分别为两圆的切线,所以PT⊥oP,PN⊥o′P,即∠oPT=∠o′PN=90°,所以∠TPN等于360°减去∠oPT+∠o′PN+∠oPo°即可.解:∵oP=oo′=Po′,∴△Po′o是一个等边三角形.∴∠oPo′=60°.又∵TP与NP分别为两圆的切线,∴∠TPo=∠NPo′=90°.∴∠TPN=360°-2×90°-60°=120°.四、想一想如图,⊙o1与⊙o2外切,这个图是轴对称图形吗?如果是,它的对称轴是什么?切点与对称轴有什么位置关系?如果⊙o1与⊙o2内切呢?[如图][师]我们知道圆是轴对称图形,对称轴是任一直径所在的直线,两个圆是否也组成一个轴对称图形呢?这就要看切点了是否在连接两个圆心的直线上,下面我们用反证法来证明.反证法的步骤有三步:步是假设结论不成立;第二步是根据假设推出和已知条件或定理相矛盾的结论;第三步是证明假设错误,则原来的结论成立.证明:假设切点丁不在o1o2上.因为圆是轴对称图形.所以T关于o1o2的对称点广也是两圆的公共点,这与已知条件⊙o1和⊙o2相切矛盾,因此假没不成立.则T在o1o2上.由此可知图是轴对称图形,对称轴是两圆的连心线,切点与对称轴的位置关系是切点在对称轴上.在图中应有同样的结论.通过上面的讨论,我们可以得出结论:两圆相内切或外切时,两圆的连心线一定经过切点,图和图都是轴对称图形,对称轴是它们的连心线.五、议一议投影片设两圆的半径分别为R和r.当两圆外切时,两圆圆心之间的距离d与R和r具有怎样的关系?反之当d与R和r满足这一关系时,这两个圆一定外切吗?当两圆内切时,圆心距d与R和r具有怎样的关系?反之,当d与R和r满足这一关系时,这两个圆一定内切吗?[师]如图,请大家互相交流.[生]在图中,两圆相外切,切点是A.因为切点A在连心线o1o2上,所以o1o2=o1A+o2A=R+r,即d=R+r:反之,当d=R+r时,说明圆心距等于两圆半径之和,o1、A、o2在一条直线上,所以⊙o1与⊙o2只有一个交点A,即⊙o1与⊙o2外切.在图中,⊙o1与⊙o2相内切,切点是B.因为切点B在连心线o1o2,所以o1o2=o1B-o2B,即d=R-r:反之,当d =R-r时,圆心距等于两半径之差,即o1o2=o1B-o2B,说明o1、o2、B在一条直线上,B既在⊙o1上,又在⊙o2上,所以⊙o1与⊙o2内切.[师]由此可知,当两圆相外切时,有d=R+r,反过来,当d=R+r时,两圆相外切,即两圆相外切d=R+r 当两圆相内切时,有d=R-r,反过来,当d=R-r时,两圆相内切,即两圆相内切d=R-r.Ⅲ.课堂练习随堂练习Ⅳ.课时小结本节课学习了如下内容:.探索圆和圆的五种位置关系;.讨论在两圆外切或内切情况下,图形的轴对称性及对称轴,以及切点和对称轴的位置关系;.探讨在两圆外切或内切时,圆心距d与R和r之间的关系.Ⅴ.课后作业Ⅵ.活动与探究已知图中各圆两两相切,⊙o的半径为2R,⊙o1、⊙o2的半径为R,求⊙o3的半径.分析:根据两圆相外切连心线的长为两半径之和,如果设⊙o3的半径为r,则o1o3=o2o3=R+r,连接oo3就有oo3⊙o1o2,所以oo2o3构成了直角三角形,利用勾股定理可求得⊙o3的半径r.解:连接o2o3、oo3,∴o2oo3=90°,oo3=2R-ro2o3=R+r,oo2=R∴2=2+R2.∴r=R板书设计6圆和圆的位置关系一、1.想一想.探索圆和圆的位置-关系.例题讲解.想一想.议一议二、课堂练习三、课时小结四、课后作业备课资料参考练习.⊙o1和⊙o2的半径分别为3c和4c,若两圆外切,则d=_____;若两圆内切;则d=____..如果两个圆相切,那么切点和两圆的圆心_____..半径为5c的⊙o外一点P,则以点P为圆心且与⊙o相切的⊙P能画_______个..两圆半径之比为3:5,当两圆内切时,圆心距为4c,则两圆外切时圆心距的长为_____..两圆内切时圆心距是2,这两圆外切时圆心距是5,两圆的半径分别是______、.两圆的半径分别为10c和R、圆心距为13c,若这两个圆相切,则R的值是。