ATRP合成含金属配合物端基及含二苯乙烯类侧链的荧光聚合物研究.doc
- 格式:doc
- 大小:12.21 KB
- 文档页数:2
通过ATRP及其他方法制备嵌段共聚物摘要:原子转移自由基聚合(ATRP)是合成嵌段共聚物的有效途径。
本文介绍了原子转移自由基聚合(ATRP)的基本原理和嵌段共聚物的基本知识,重点概述了近年来采用ATRP及其他方法制备嵌段共聚物的研究进展。
关键词:原子转移自由基聚合,原理,嵌段共聚物Abstract: The atom transfer radical polymerization (ATRP) is an effective way to synthesize block copolymers. This article describes the atom transfer radical polymerization (ATRP) of the basic principles and the basics of block copolymers, focusing on an overview of recent years, and other methods using ATRP preparation of block copolymers Research.Keywords: atom transfer radical polymerization, principles, block copolymers1 引言:ATRP(Atom Transfer Radical Polymerization)聚合反应以过渡金属作为催化剂,使卤原子实现可逆转移,再从过渡金属络合物(盐)转移至自由基的反复循环的原子转移过程,伴随着自由基活性(增长链自由基)种和大分子有机卤化物休眠种之间的可逆转换平衡反应,并抑制着自由基活性种在较低的浓度,减少增长链自由基之间的不可逆双基终止副反应,使聚合反应得到有效的控制。
而原子转移自由基聚合所用的引发剂,必须具备两点基本要素。
首先,与链增长反应相比较,引发反应快;其次,须使副反应的可能性降低到最小[1]。
原子转移自由基聚合(ATRP)的研究作者:XXX摘要:目前,自由基聚合产物在高分子聚合物总产量中占很大比重(60%以上),这是由于大多数乙烯基单体适合于自由基聚合,聚合温度范围宽,许多单体容易发生共聚,体系排除氧后在水溶液中也能进行,但是传统自由基聚合反应有失控行为导致聚合物分子量、链结构、聚合物组成及末端官能度失控,有时甚至发生支化、交联等,严重影响了聚合物的性能。
这样能够合成结构可控聚合物的“活性”自由基聚合又引起广大科研工作者的关注。
ATRP技术作为一种新颖的精密聚合反应,它能实现“活性”/可控聚合,最终产物的分子量分布较窄。
它是设计大分子的有效工具。
许多烯烃单体已成功地用ATRP方法合成出结构规整的均聚物、无规共聚物、交替共聚物、梯度共聚物、嵌段,接枝共聚物和新颖的聚合物刷;星型、树枝状大分子、超支化高分子及有机/无机杂化材料等。
关键词:可控/“活性”自由基聚合、聚合难点及解决对策、分类、机理、优缺点、展望引言:与其它可控/“活性”自由基聚合方法相比,ATRP具有更强的分子设计能力。
近年来原子转移自由基聚合(ATRP)在“活性”/可控自由基聚合领域中占有突出地位,是“活性”/可控自由基聚合领域中研究的重点及难点。
1、可控/“活性”自由基聚合简介:传统的自由基聚合在聚合机理和工业应用两方面都比较成熟,其优点是可聚合的单体多,自由基活性种不如阴阳离子活性种对环境的要求那么高。
自由基聚合只要体系除去氧气及其它的阻聚剂,即使在水中也可以进行。
但是聚合物的微结构、聚合度和多分散性无法控制,其主要症结有两个:一是与阴离子和阳离子不同,自由基反应活性种本身之间会发生难以避免的歧化终止和偶合终止反应,这些终止反应趋向于分子扩散速率,其终止速率常数约为108±1m-1×s-1,比相应的链增长速率常数高4~5个数量级;二是大多数自由基引发剂在常用的条件下,分解速率极低,半衰期以小时计,因此一般说来,聚合增长反应比链引发反应快,导致分子量分布宽。
原子转移自由基聚合(atrp)方法的研
究与探索
原子转移自由基聚合(ATRP)是一种有效的聚合反应,它可以用来合成各种类型的高分子材料,如聚乙烯、聚丙烯、聚氨酯等。
ATRP的研究和探索已经受到了广泛的关注,它的研究和探索可以帮助我们更好地理解和利用这种反应。
首先,ATRP的研究和探索可以帮助我们更好地理解ATRP反应机理。
ATRP反应是一种复杂的反应,它涉及到多种反应物和反应条件,因此,研究和探索ATRP反应机理可以帮助我们更好地掌握ATRP反应的过程,从而更好地控制ATRP反应的结果。
其次,ATRP的研究和探索可以帮助我们更好地控制ATRP反应的结果。
ATRP反应的结果受到反应条件的影响,因此,研究和探索ATRP反应的反应条件可以帮助我们更好地控制ATRP反应的结果,从而获得更高质量的产物。
此外,ATRP的研究和探索还可以帮助我们更好地开发新型ATRP反应体系。
ATRP反应体系的开发可以帮助我们更好地控制ATRP反应的结果,从而获得更高质量的产物。
因此,研究和探索ATRP反应体系可以帮助我们更好地开发新型ATRP反应体系,从而更好地满足我们的需求。
总之,ATRP的研究和探索对于我们更好地理解和利用ATRP 反应具有重要意义。
研究和探索ATRP反应机理、反应条件和反应体系可以帮助我们更好地控制ATRP反应的结果,从而获得更高质量的产物,并且可以帮助我们更好地开发新型ATRP反应体系,从而更好地满足我们的需求。
ATRP法制备环境响应性嵌段共聚物及其自组装的研
究的开题报告
一、选题背景及意义
环境响应性嵌段共聚物具有许多重要的应用,例如在药物传递、生
物医学领域中的纳米材料制备等。
其中,通过自组装形成的纳米粒子是
一种极具应用潜力的材料,可以用于药物传递、基因治疗及成像等领域。
ATRP(原子转移自由基聚合)是制备嵌段共聚物的重要方法之一,由于
其反应条件温和、控制性能良好等优势,近年来已成为广泛应用的合成
方法之一。
本研究旨在利用ATRP方法,制备具有环境响应性质的嵌段共聚物,并研究其自组装行为及其应用。
二、研究内容及方法
1. 合成环境响应性嵌段共聚物
以2-甲基-2-丙烯酸基丙酯(MPA)为单体,利用ATRP方法合成PMPA,利用羟乙基甲基丙烯酸酯(HEMA)为单体,制备PHEMA。
将两种单体合成的聚合物进行接枝,得到嵌段共聚物PHEMA-b-PMPA。
2. 研究嵌段共聚物的结构特征及性质
使用核磁共振、凝胶渗透色谱等表征方法,研究所合成的嵌段共聚
物的结构特征。
利用荧光特性研究PHEMA-b-PMPA的环境响应性质,并
考察其响应性能。
3. 研究嵌段共聚物的自组装行为
将合成的嵌段共聚物溶于适当的溶剂中,利用动态光散射(DLS)、透射电镜(TEM)等方法研究其自组装行为以及形态特征。
三、预期结果
通过ATRP稳定可控的聚合反应制备出具有环境响应性质的嵌段共聚物,探究其结构特征及响应性质,研究其自组装行为,为其应用于药物传递、生物医学领域中纳米材料制备等领域提供理论及实验基础。
专利名称:一种基于ATRP聚合法合成胺基化聚苯乙烯的方法与应用
专利类型:发明专利
发明人:林凌,时辰亮,邓茂青,吴玉洁,李鑫
申请号:CN202010316630.5
申请日:20200421
公开号:CN111440256A
公开日:
20200724
专利内容由知识产权出版社提供
摘要:本发明提供了一种基于ATRP聚合法合成胺基化聚苯乙烯的方法与应用,步骤如下:通过对氯甲基苯乙烯与邻苯二甲酰亚胺钾盐在无水DMF中反应,经纯化后得到单体4‑亚甲基邻苯二甲酰亚胺基苯乙烯;再将此单体与N‑溴甲基邻苯二甲酰亚胺在催化剂作用下进行ATPR聚合,得到改性聚4‑亚甲基邻苯二甲酰亚胺苯乙烯;再以此改性聚4‑亚甲基邻苯二甲酰亚胺苯乙烯做为大分子引发剂与单体苯乙烯在催化剂作用下,再次进行ATRP聚合,得到嵌段聚合物聚4‑亚甲基邻苯二甲酰亚胺基苯乙
烯‑b‑苯乙烯;最后通过水合肼还原,得到胺基化聚苯乙烯。
最后利用合成的胺基化聚苯乙烯与功能化纳米粒子进行复配,可使油/水界面张力显著降低,可应用于石油、医药等多种领域。
申请人:西南石油大学
地址:610500 四川省成都市新都区新都大道8号
国籍:CN
更多信息请下载全文后查看。
论ATRP 大分子引发剂的合成及应用1 引言原子转移自由基聚合( atom transfer radicalpolymerization,ATRP) 是一种强大且灵活的合成技术,由于其具有分子量可控、分子量分布窄、聚合物端基易修饰及分子设计能力强,因此被称为精确可控大分子结构的合成方法。
如今ATRP 技术已成功应用于接枝、嵌段、梳状、星型、超支化和端基官能团聚合物的制备,且具有较高的链端保真度和精确的结构可控性,也有研究者将其应用于无机、生物材料表面修饰。
ATRP 技术适用于多种单体的可控聚合,且操作方便,其核心是引发剂的使用。
传统的ATRP 是以简单的有机卤化物为引发剂、过渡金属配合物为卤原子载体,通过氧化还原反应,在活性种与休眠种之间建立可逆的动态平衡,从而实现对聚合反应加以控制,随着技术的成熟和研究的深入,大分子引发体系成为研究的热点。
本文在介绍小分子引发剂的基础上重点介绍了大分子引发剂的合成方法及在ATRP 表面修饰中的应用。
2 小分子引发剂目前,制备活性可控聚合物的研究多集中于小分子有机卤化物作为引发剂,其所有位上含有诱导或共轭基团的卤代烷、芳基磺酰卤类引发剂都能引发ATRP 聚合,如苄基卤化物,-溴代酯,-卤代腈,-卤代酰胺,芳基磺酰氯和芳基磺酰溴类等。
可见,ATRP 的基本原理其实是通过一个交替的促活-失活可逆反应使得体系中的游离基浓度处于极低,迫使不可逆终止反应被降到最低程度,从而实现活性/可控自由基聚合。
有机卤代烷RX 的反应活性取决于烷基上的基团和可转移卤素基团的结构,不同结构烷基卤化物的活化速率常数。
由此可见,(1) 卤代烷的反应活性一般为I Cl,3 2 1,与键断裂所需要的键解离能一致;(2) -溴苯乙酸乙酯是活性最高的引发剂,其活性比苯乙基溴(PEB)高10 000倍,比溴丙酸甲酯(MBrP)高100 000倍;(3)-氰基、-苯基或酯基的存在有使活性基稳定性增强的作用,其中-氰基的增强程度大于-苯基或酯基。
原子转移自由基共聚(ATRP)反应的研究进展摘要:活性自由基聚合是目前高分子科学中最为活跃的研究领域之一。
原子转移自由基聚合(A TRP)反应是实现活性聚台的一种颇为有效的途径,也是高分子化学领域的最新研究进展之一。
ATRP的独特之处在于使用了卤代烷作引发剂,并用过渡金属催化剂或退化转移的方式,有效地抑制了自由基双基终止的反应。
ATRP可以同时适用于非极性和极性单体,可以制备多种结构形式的、结构清晰的高分子化合物。
可实现众多单体的活性/可控自由基聚合。
介绍了ATRP的研究进展,包括ATRP反应的特点、聚合反应机理、应用、研究现状及前景展望。
关键词:原子转移自由基聚合,机理,反应体系,共聚,研究进展活性聚合是高分子化学的重要技术,是实现分子设计,合成一系列结构不同、性能特异的聚合物材料,如嵌段、接枝、星状、梯状、超支化等特殊结构的聚合物的重要手段.活性聚合可分为阳离子活性聚合、阴离子活性聚合、配位活性聚合、活性自由基聚合等.迄今为止发展最完善的是阴离子活性聚合,然而,阴离子活性聚合对反应条件要求苛刻、可聚合的单体也较少,应用范围很有限.与其它类型聚合反应相比,活性自由基聚合集活性聚合与自由基聚合的优点为一身,不但可得到相对分子量分布极窄,相对分子量可控,结构明晰的聚合物,而且可聚合的单体多,反应条件温和易控制,容易实现工业化生产.所以,活性自由基聚合具有极高的实用价值,受到了高分子化学家们的重视.但是,自由基聚合存在与活性聚合相矛盾的基元反应或副反应,使聚合过程难以控制。
因此,自由基的活性聚合或可控聚合一直是人们努力探索的课题。
受有机合成中利用过渡金属催化原子转移自由基加成合成新的c—c键方法的启发,1995年,王锦山博士在卡内基一梅隆大学首次提出了原子转移自由基聚合(ATRP)的概念,并成功地将其应用于合成结构可控的聚合物,从而实现了活性自由基聚合领域的历史性突破,引起了世界各国高分子学家的极大兴趣。
ATRP 在嵌段共聚物合成中的应用进展摘要:段共聚物作为一种新型的高分子材料越来越受到人们的关注,原子转移自由基聚合(ATRP)作为一种“活性/可控”聚合方法,在嵌段共聚物合成领域发挥着重要的作用。
文中主要介绍了近年来采用ATRP 合成的不同性能的嵌段高分子聚合物,并对ATRP 在嵌段共聚物中的应用前景进行了展望。
关键词:原子转移自由基聚合;合成;嵌段共聚物0 引言原子转移自由基聚合(Atom Transfer Radical Polymerization, ATRP)现在作为“活性/可控”自由基聚合技术,具有聚合条件温和(甚至可以在少量氧存在下进行),使用单体范围广范,分子设计能力强等特点,正逐渐成为合成功能高分子材料的有力手段而备受关注[1~4]。
是现在其他活性聚合方法所无法比拟的。
1 ATRP 的反应机理1.1 ATRP 简介原子转移自由基聚合(ATRP)是以低价态过渡金属配合物作为催化剂的“活性/可控”聚合,是制备具有预期分子量、精确末端官能团和预期链结构聚合物的新技术。
早在1995 年王锦山和Matyjaszewski 等人首先报道了一种新型自由基聚合方法[ 5,6 ],它是以卤代化合物为引发剂,过渡金属化合物以适当的配体为催化剂,使可进行自由基聚合的单体进行具有活性特征的聚合。
ATRP 方法进行聚合反应的单体,一般都是一端含有一个卤素端基,另一端含有功能化引发端基;或者两端皆为卤素端基。
这些端基很容易进一步的功能化,合成出相对分子量分布较窄的聚合物。
1.2 ATRP 反应机理过渡金属化合物Mtn 从有机卤化物“提取”出卤原子,产生氧化物种Mtn+1X 和初级自由基R· ;随后自由基R·和烯烃M 反应,生成单体自由基R-M· (即活性种);R-M·与40 Mtn+1X 反应,得到目标物种R-M-X;同时过渡金属被还原为Mtn,可再次引发新一轮的氧化还原反应。
通过ATRP制备嵌段共聚物的研究综述摘要:原子转移自由基聚合(ATRP)是合成嵌段共聚物的有效途径。
本文介绍了原子转移自由基聚合(ATRP)的基本原理以及ATRP在反应体系,实验方案的研究进展,并且概述了近年来采用ATRP制备嵌段共聚物的研究进展。
关键词:原子转移自由基聚合,机理,反应体系,嵌段共聚物Abstract: The atom transfer radical polymerization (ATRP) is an effective way to synthesize block copolymers. This article describes the atom transfer radical polymerization (ATRP) as well as the basic principles of ATRP in the reaction system, the experimental research program, and an overview of recent years the use of block copolymers prepared by ATRP Research.Keywords: atom transfer radical polymerization mechanism of the reaction system, the block copolymer1 引言:ATRP(Atom Transfer Radical Polymerization)聚合反应以过渡金属作为催化剂,使卤原子实现可逆转移,包括卤原子从烷基卤化物到过渡金属络合物(盐),再从过渡金属络合物(盐)转移至自由基的反复循环的原子转移过程,伴随着自由基活性(增长链自由基)种和大分子有机卤化物休眠种之间的可逆转换平衡反应,并抑制着自由基活性种在较低的浓度,减少增长链自由基之间的不可逆双基终止副反应,使聚合反应得到有效的控制。
苯乙烯ATRP聚合实验报告姓名:吉武良院系:化院20系学号:PB13206270摘要:本实验用溴代乙苯作引发剂,在溴化亚铜和bpy的条件下进行苯乙烯的原子转移自由基聚合。
通过实验了解原子转移聚合的基本原理。
关键词:聚苯乙烯原子转移自由基聚合Abstract:In this experiment bromo ethylbenzene as the initiator for atom transfer radical polymerization of styrene under the conditions of cuprous bromideand bpy . Atom transfer by experiment to understand the basic principle ofthe polymerization .Keywords:Styrene ATRP一、引言1995年出现一种新的自由基活性聚合原子转移自由基聚合(Atom transition radical polymerization,ATRP)。
A TRP的基本原理其实是通过一个交替的“促活-失活”可逆反应使得体系中的自由基浓度处于较低的状态,迫使不可逆终止反应被降到最低程度,从而实现可控“活性”自由基聚合。
典型的原子转移自由基聚合的基本原理如下:引发时处于低价态的过渡金属络合物Mtn从有机卤化物(R-X)中夺取卤原子X,生成自由基R·及高价态的金属络合物Mtn+1-X;链增长时,聚合物链末端的C-X键与Mtn反应也可生成增长链自由基Mn·和Mtn+1-X。
与此同时,自由基又可与Mtn+1-X发生失活反应生成有机卤化物(R-X, Mn-X)和Mtn。
换言之,在聚合反应过程中,存在着自由基活性种Mn.与有机大分子卤化物休眠种Mn-X之间的平衡反应。
这种聚合反应包含着卤原子从有机卤化物→金属卤化物→有机卤化物的反复循环的原子转移过程,且活性中心为自由基,故称之为原子转移自由基聚合。
开题报告题目:金属配合物催化剂催化苯乙烯的聚合研究参考文献[1] Lefebvre G, Dawans J.[J].JPolym Sci A2,1964:3277.[2] Dolgoplosk B.A., Beilin S.I., Korshak Yu V, et al.[J].Eru PolymJ,1973,9:895-908.[3] Wilke G.[J].Angew Chem,1988,100:190-192.[4] Longo P, Grisi F, Proto A, et al.[J].Macromolecular Rapid Commun,1998,19(1):3-34.[5] Eijilhara T.F., Hajime Y.T., et al.[J].Polym Sci,2000,38:4764-4775.[6] Muzzio F.J, Loffler D.G..[J].Acta Chim Scanda,1987,124:403.[7] Puckert M, Keim W.[J].Organometallics,1983,2:594-603.[8] Muller V, Keim W, Kruger C.[J].Angew Chem Int Ed Eng,1989,28:1011-1012.[9] Kaminsky W. Metalorganic Catalysts for Synthesis and Polymerization[J].Berlin:Springer,1999:1-674.[10] SinnH,Kaminsky W. Advances in Organometallic Catalysis[J].New York: Academic Press,1980:99-100.[11] SinnH, Kaminsky W. Adv Organomet Chem[J].1980,18:99-105.[12] Sinn H, Kaminsky W, V ollmer H.J..[J].Angew Chem Int Ed,1980,19:390-392.[13] Yang Yue, Yang Peiju, Zhang Cui, et al. Synthesis, structure, and catalytic ethylene oligomerization of nickel complexes bearing 2-pyrazolyl substituted 1,10-phenanthroline ligands[J].Journal of Molecular Catalysis A:Chemical,2008,296(2):9-17.[14] YangPeiju, YangYue, ZhangCui, et al. Synthesis, structure, and eatalytic ethylene oligomerization of nickel(II) and cobalt(II) complexes with symmetrical and unsymmetrical 2,9-diary1-1,10-phenanthroline ligands[J].Inorganica chimica Acta,2009,362(1):89-96. [15] HAMADA A,BRAUNSTEIN P. Bis(diphenylphosphino) methane-phosphonate ligands and their Pd(II),Ni(II) and Cu(I) complexes catalytic oligomerization of ethylene[J].Inog anic Chemistry,2009,48(4):1624-1637.。
1.结合课题任务情况,查阅文献资料,撰写1500~2000字左右的文献综述(1)ATRP介绍王锦山等[1]采用1-苯-1-氯乙烷作为引发剂,氯化亚铜和联吡啶(bpy) 的络合物作为催化剂,在130℃下引发苯乙烯(St) 的本体聚合,反应3h产率可达95%。
理论分子量和实验值符合较好。
为了验证反应的自由基机理,比较了所得聚合物与一般自由基聚合所得聚合物的立构规整度,发现两者比较一致。
并且当加入第二单体丙烯酸甲酯时,成功实现了嵌段共聚,具有明显的活性聚合特征。
由此他们提出了原子转移自由基聚合(ATRP)。
ATRP是以简单的有机卤化物为引发剂、过渡金属配合物为卤原子载体,通过氧化还原反应,在活性种与休眠种之间建立可逆的动态平衡,从而实现了对聚合反应的控制。
聚合原理引发阶段,处于低氧化态的转移金属卤化物Mt n,从有机卤化物R-X中吸取卤原子X,生成引发自由基R·及处于高氧化态的金属卤化物Mt n+1-X,自由基R·可引发单体聚合,形成链自由基R-M n·。
R-M n·可从高氧化态的金属配位化合物Mt n+1-X中重新夺取卤原子而发生钝化反应,形成R-M n-X,并将高氧化态的金属卤化物还原为低氧化态的Mt n。
增长阶段,R-M n-X与R-X一样(不总一样)可与Mt n发生促活反应生成相应的R-M n·和Mt n+1-X,R-M n·与R-M·性质相似均为活性种,同时R-M n·和Mt n+1-X又可反过来发生钝化反应生成R-M n-X和Mt n,则在自由基聚合反应进行的同时始终伴随着一个自由基活性种与大分子卤化物休眠种的可逆转换平衡反应。
由此可见,ATRP 的基本原理其实是通过一个交替的“促活—失活”可逆反应使得体系中的游离基浓度处于极低,迫使不可逆终止反应被降到最低程度,从而实现可控/“活性”自由基聚合。
引发剂ATRP聚合体系的引发剂主要是卤代烷RX(X= Br ,C1),另外也有采用芳基磺酰氯、偶氮二异丁腈等。
ATRP合成含金属配合物端基及含二苯乙烯类侧链的荧光聚合物
研究
原子转移自由基聚合(ATRP)是新兴的活性自由基聚合中最为活跃,受到最多关注的一个分支。
通过对引发剂和单体的设计,ATRP可以灵活的合成多种具有特殊结构和性能的功能性聚合物。
本文以ATRP为基本合成方法,合成了端基功能化和侧链功能化的聚合物发光材料。
分别将金属配合物和有机小分子发色团通过ATRP集成于聚合物体系中,克服了小分子发色团在稳定性和加工性能方面的一些缺点,在得到优异的发光性能的同时使材料具有了很好的稳定性和溶解性,并且可以很方便的成膜为材料的器件化作了准备。
1.本文使用功能性引发剂,5-氯甲基-8-羟基喹啉,通过ATRP合成了分子量可控,分子量分布窄的端基功能化聚苯乙烯。
并且将端基功能化聚苯乙烯作为大分子配体,通过末端的8-羟基喹啉单元与金属离子进行配位,可以得到末端含有金属配合物单元的端基功能化聚合物。
Zn<sup>2+</sup>与聚合物末端的8-羟基喹啉的配位,增强了聚合物的荧光,在荧光发射光谱上表现为发射强度的大幅度增强。
2.通过Zn<sup>2+</sup>和聚苯乙烯末端的8-羟基喹啉单元进行的配位合成了末端含有Zn<sup>2+</sup>/8-羟基喹啉配合物单元的聚苯乙烯,并用ICP测定了聚合物中的锌含量以及所含配合物的量。
使用微波辐射作为辅助手段,可以在很短的时间内大幅度的推进Zn
和聚苯乙烯末端的8-羟基喹啉之间的配位反应的反应进程,在微波辐射条件下
反应6分钟,可以使聚合物中的锌含量达到50%,而在加热条件下反应5小时锌含量也只能达到30%。
3.通过末端含有Zn<sup>2+</sup>/8-羟基喹啉配合物单元的聚苯乙烯和其
他有机小分子配体,邻氨基苯甲酸、邻菲啰啉和8-羟基喹啉,的配位得到了以Zn<sup>2+</sup>为中心离子,含有大分子配体和有机小分子配体的高分子复合配合物。
基于Zn(Ⅱ)的高分子复合配合物具有良好的荧光性能,并且可以通过选用不同的有机小分子配体调节高分子配合物的光物理性质。
将过渡金属配合物通过配位键引入聚合物体系,可以有效的提高配合物发色团的光物理稳定性,具体表现为处于聚合物体系中的Zn(Ⅱ)配合物比相应的小分子配合物具有更长的荧光寿命。
因为含有大分子配体,Zn(Ⅱ)的高分子复合配合物具有良好的溶解性和成膜性,而且在薄膜状态中也表现出良好的荧光性能。