2015年数学中考复习28 视图与投影
- 格式:doc
- 大小:416.00 KB
- 文档页数:4
5.3视图与投影易错清单1.由三视图确定小正方体的个数时,因无实物图,导致容易出错.【例1】(2014·宁夏模拟)如图是一个用相同的小立方块搭成的几何体的三视图,则组成这个几何体的小立方块的个数是().A. 2B. 3C. 4D. 5【解析】由俯视图可知,该几何体有一行三列,再由主,左视图可知第一列有1个小立方块;第2列有2个小立方块;第3列有1个小立方块,一共有4个小立方块.【答案】 C【误区纠错】解答此类由视图还原几何体的问题,一般情况下都是由俯视图确定几何体的位置(有几行几列),再由另外两个视图确定第几行第几列处有多少个小正方体,简便的方法是在原俯视图上用标注数字的方法来解答.2.根据视图求几何图形的表面积和体积,因缺乏合理的方法而出错.【例2】(2014·云南模拟)如图所示,是一个几何体的三视图,则这个几何体的侧面积是().A. 18cm2B. 20cm2【解析】根据三视图判断,该几何体是正三棱柱,底边边长为2cm,侧棱长是3cm,所以侧面积是:(3×2)×3=6×3=18(cm2).【答案】 A【误区纠错】由物体的三视图求几何体的侧面积,表面积,体积等,关键是由三视图想象出几何体的形状.名师点拨1.明确常见几何体的展开图,通过几何体的展开与折叠,体会平面图形与立体图形之间的关系.2.三视图是中考必考热点,一般考查由物体确定视图,由视图确定物体较少见,抓住三视图从三个方向观看这个特点,发挥空间想象力,便可做出准确判断.提分策略1.图形的展开与折叠.常见几何体的展开与折叠:①棱柱的平面展开图是由两个相同的多边形和一些长方形组成,按棱柱表面不同的棱剪开,可能得到不同组合方式的平面展开图,特别关注正方体的表面展开图;②圆柱的平面展开图是由两个相同的圆形和一个长方形连成的;③圆锥的平面展开图是由一个圆形和一个扇形组成的.【例1】如图给定的是纸盒的外表面,下面能由它折叠而成的是().【解析】将A,B,C,D分别展开,能和原图相对应的即为正确答案.A项展开得到,不能和原图相对应,故本选项错误;B项展开得到,能和原图相对应,故本选项正确;C项展开得到,不能和原图相对应,故本选项错误;D项展开得到,不能和原图相对应,故本选项错误.【答案】 B2.几何体的三视图三个视图是分别从正面、左面、上面三个方向看同一个物体所得到的平面图形,要注意用平行光去看.画三个视图时应注意尺寸的大小,即三个视图的特征:主视图(从正面看)体现物体的长和高,左视图体现物体的高和宽,俯视图体现物体的长和宽.【例2】如图,是由若干个完全相同的小正方体组成的一个几何体的主视图和左视图,则组成这个几何体的小正方体的个数是().A. 3个或4个或5个B. 4个或5个C. 5个或6个D. 6个或7个【解析】本题考查了由三视图判断几何体,主要考查了考生的空间想象能力以及三视图的相关知识.左视图与主视图相同,可判断出底面最少有2个小正方体,最多有4个小正方体,而第二行则只有1个小正方体,则这个几何体的小立方体可能有3个或4个或5个.根据这个思路可判断出该几何体有多少个小立方体.本题最大误区在于:判断不出左视图与主视图相同时最多有多少个小正方体,最少有多少个小正方体.【答案】 A【例3】如图(1),是由6个棱长为1个单位的正方体摆放而成的,将正方体A向右平移2个单位,向后平移1个单位后,所得图(2)所示几何体的视图().A. 主视图改变,俯视图改变B. 主视图不变,俯视图不变C. 主视图不变,俯视图改变D. 主视图改变,俯视图不变【解析】此题考查了简单组合体的三视图,掌握主视图及俯视图的观察方法是解答本题的关键,主视图是从正面观察得到的图形,俯视图是从上面观察得到的图形,结合图形即可作出判断.只有熟练掌握三种视图的画法,本题才不会出现误判.根据图形可得:图(1)及图(2)的主视图一样,俯视图不一样,即主视图不变,俯视图改变.【答案】 C专项训练一、选择题1.(2014·湖北天门模拟)一个几何体是由若干个相同的立方体组成,其主视图和左视图如图所示,则组成这个几何体的立方体个数不可能的是().(第1题)A. 15个B. 13个C. 11个D. 5个2. (2014·江苏苏州高新区一模)如图是一个几何体的三视图,则这个几何体的侧面积是().(第2题)A. 12πcm2B. 8πcm2C. 6πcm2D. 3πcm23.(2014·云南曲靖模拟)如图,下列四个几何体中,它们各自的三视图(主视图、左视图、俯视图)有两个相同,而另一个不同的几何体是().(第3题)A. ①②B. ②③C. ②④D. ③④4. (2014·江苏南京二模)若干桶方便面摆放在桌面上,它的三个视图如图,则这一堆方便面共有().(第4题)A. 7桶B. 8.桶C. 9桶D. 10桶5. (2014·天津塘沽区一模)如图是五棱柱形状的几何体,则它的三视图为().(第5题)6.(2013·山西模拟)如图是由一些相同的小正方体搭成的几何体的三视图,搭成这个几何体的小正方体的个数为().(第6题)A. 2B. 3C. 4D. 67. (2013·广西南丹中学一模)如图是由若干个大小相同的正方体搭成的几何体的三视图,则该几何体所用的正方形的个数是( ).(第7题)A. 2B. 3C. 4D. 58. (2013·河北四模)一个几何体的三视图如下:(第8题)其中主视图和左视图都是腰长为4,底边为2的等腰三角形,则这个几何体的侧面展开图的面积为( ). A. 2π B.C. 4πD. 8π二、 解答题9. (2014·四川乐山模拟)如图(1),是由一些棱长都为1cm 的小正方体组合成的简单几何体.(第9题(1))(1)该几何体的表面积(含下底面)为 ;(2)该几何体的主视图如图所示,请在下面方格纸中分别画出它的左视图和俯视图.(第9题(2))参考答与解析1. A 2. B 3. B 4. C 5. A 6. C 7. C 8. C 9. (1)26cm2(2)如图.(第9题)。
考点跟踪突破28视图与投影一、选择题(每小题6分,共30分)1.(2014·贵阳)一个正方体的表面展开图如图所示,六个面上各有一字,连起来的意思是“预祝中考成功”,把它折成正方体后,与“成”相对的字是( B )A.中B.功C.考D.祝2.(2014·宁夏)如图的几何体是由一个正方体切去一个小正方体形成的,它的主视图是( D )3.(2014·师大附中模拟)如图,图①是一个底面为正方形的直棱柱,现将图①切割成图②的几何体,则图②的俯视图是( C )4.(2014·孝感)如图是某个几何体的三视图,则该几何体的形状是( D )A.长方体B.圆锥C.圆柱D.三棱柱5.(2014·呼和浩特)如图是某几何体的三视图,根据图中数据,求得该几何体的体积为( B )A.60πB.70πC.90πD.160π二、填空题(每小题6分,共30分)6.(2014·梅州)写出一个在三视图中俯视图与主视图完全相同的几何体__球或正方体__.7.(2014·湖州)如图,由四个小正方体组成的几何体中,若每个小正方体的棱长都是1,则该几何体俯视图的面积是__3__.8.(2012·河源)春蕾数学兴趣小组用一块正方形木板在阳光下做投影试验,这块正方形木板在地面上形成的投影可能是__正方形、菱形(答案不唯一)__.(写出符合题意的两个图形即可)9.(2013·济宁)三棱柱的三视图如图所示,△EFG中,EF=8 cm,EG=12 cm,∠EGF =30°,则AB的长为__6__ cm.10.(2014·黔东南州)在桌上摆着一个由若干个相同正方体组成的几何体,其主视图和左视图如图所示,设组成这个几何体的小正方体的个数为n,则n的最小值为__8__.三、解答题(共40分)11.(10分)(2012·自贡)画出如图所示立体图形的三视图.解:如图所示:12.(10分)5个棱长为1的正方体组成如图的几何体.(1)该几何体的体积是__5__立方单位,表面积是__22__平方单位;(2)画出该几何体的主视图和左视图.解:(1)每个正方体的体积为1,∴组合几何体的体积为5×1=5;∵组合几何体的前面和后面共有5×2=10个正方形,上下共有6个正方形,左右共6个正方形,每个正方形的面积为1,∴组合几何体的表面积为22.故答案为5,22(2)作图如下:13.(10分)由几个相同的边长为1的小立方块搭成的几何体的俯视图如图所示.方格中的数字表示该位置的小立方块的个数.(1)请在下面方格纸中分别画出这个几何体的主视图和左视图.(2)根据三视图,请你求出这个组合几何体的表面积.(包括底面积) 解:(1)图形如下所示:(2)几何体的表面积为:(3+4+5)×2=24.14.(10分)如图,公路旁有两个高度相等的路灯AB ,CD.小明上午上学时发现路灯B 在太阳光下的影子恰好落到里程碑E 处,他自己的影子恰好落在路灯CD 的底部C 处.晚自习放学时,站在上午同一个地方,发现在路灯CD 的灯光下自己的影子恰好落在里程碑E 处.(1)在图中画出小明的位置(用线段FG 表示),并画出光线,标明太阳光、灯光; (2)若上午上学时候高1米的木棒的影子为2米,小明身高为1.5米,他离里程碑E 恰好5米,求路灯高.解:(1)(2)∵上午上学时候高1米的木棒的影子为2米,小明身高为1.5米,∴小明的影长CF为3米,∵GF ⊥AC ,DC ⊥AC ,∴GF ∥CD ,∴△EGF ∽△EDC ,∴GF CD =EF EC ,∴1.5CD =55+3,解得CD =2.4.答:路灯高为2.4米。
投影与视图【基础知识回顾】一、投影:1、定义:一般地,用光线照射物体,在某个平面上得到得影子叫做物体的其中照射光线叫做投影所在的平面叫做2、平行投影:太阳光可以近似地看作是光线,像这样的光线所形成的投影称为平行投影3、中心投影:由同一点(点光源)发出的光线形成的投影叫做,如物体在、、等照射下所形成的投影就是中心投影【名师提醒:1、中心投影的光线平行投影的光线2、在同一时刻,不同物体在太阳下的影长与物高成3、物体投影问题有时也会出现计算解答题,解决这类问题首先要根据图形准确找出比例关系,然后求解】二、视图:1、定义:从不同的方向看一个物体,然后描绘出所看到的图形即视图。
其中,从看到的图形称为主视图,从看到的图形称为左视图,从看到的图形称为俯视图2、三种视图的位置及作用⑴画三视图时,首先确定的位置,然后在主视图的下面画出,在主视图的右边画出⑵主视图反映物体的和,左视图反映物体的和俯视图反映物体的和。
【名师提醒:1、在画几何体的视图时,看得见部分的轮廓线通常画成线,看不见部分的轮廓线通常画成线2、在画几何体的三视图时要注意主俯对正,主左平齐,左俯相等】三、立体图形的展开与折叠:1、许多立体图形是由平面图形围成的,将它们适当展开即为平面展开图,同一个立体图形按不同的方式展开,会得到不同的平面展开图2、常见几何体的展开图:⑴正方体的展开图是⑵n边形的直棱柱展开图是两个n边形和一个⑶圆柱的展开图是一个和两个⑷圆锥的展开图是一个与一个【名师提醒:有时会出现根据物体三视图中标注的数据求原几何体的表面积,体积等题目,这时要注意先根据三种视图还原几何体的形状,然后想象有关尺寸在几何体展开图中标注的是哪些部分,最后再根据公式进行计算】【重点考点例析】考点一:简单几何体的三视图例1 (2017•锦州)下列几何体中,主视图和左视图不同的是()A.B.C.D.思路分析:分别分析四种几何体的主视图和左视图,找出主视图和左视图不同的几何体.解:A、圆柱的主视图与左视图都是长方形,不合题意,故本选项错误;B、正方体的主视图与左视图相同,都是正方形,不合题意,故本选项错误;C、正三棱柱的主视图是长方形,长方形中有一条杠,左视图是矩形,符合题意,故本选项正确;D、球的主视图和左视图相同,都是圆,且有一条水平的直径,不合题意,故本选项错误.故选:C.点评:本题考查了简单几何体的三视图,要求同学们掌握主视图是从物体的正面看到的视图,左视图是从物体的左面看得到的视图.对应训练1.(2017•黄石)如图,下列四个几何体中,它们各自的三视图(主视图、左视图、俯视图)有两个相同,而另一个不同的几何体是()A.①②B.②③C.②④D.③④考点二:简单组合体的三视图例2 (2017•湛江)如图是由6个大小相同的正方体组成的几何体,它的左视图是()A.B.C.D.思路分析:细心观察图中几何体中正方体摆放的位置,根据左视图是从左面看到的图形判定则可.解:从物体左面看,是左边2个正方形,右边1个正方形.故选A.点评:本题考查了三视图的知识,左视图是从物体左面看所得到的图形,解答时学生易将三种视图混淆而错误的选其它选项.对应训练2.(2017•襄阳)如图所示的几何体的主视图、左视图、俯视图中有两个视图是相同的,则不同的视图是()圆柱正方体正三棱柱球A.B.C.D.考点三:由三视图判断几何体例3(2017•扬州)某几何体的三视图如图所示,则这个几何体是()A.三棱柱B.圆柱C.正方体D.三棱锥思路分析:如图所示,根据三视图的知识可使用排除法来解答.解:如图,俯视图为三角形,故可排除C、B.主视图以及侧视图都是矩形,可排除D.故选A.点评:本题考查了由三视图判断几何体的知识,难度一般,考生做此类题时可利用排除法解答.例4 (2017•自贡)某超市货架上摆放着某品牌红烧牛肉方便面,如图是它们的三视图,则货架上的红烧牛肉方便面至少有()碗A.8 B.9 C.10 D.11思路分析:主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.解:易得第一层有4碗,第二层最少有3碗,第三层最少有2碗,所以至少共有9个碗.故选B.点评:考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.对应训练3.(2017•云南)图为某个几何体的三视图,则该几何体是()A.B.C.D.4.(2017•玉林)某几何体的三视图如图所示,则组成该几何体共用了()小方块.A.12块B.9块C.7块D.6块4.C考点四:几何体的相关计算例5(2017•贺州)如图是一个几何体的三视图,根据图中提供的数据(单位:cm)可求得这个几何体的体积为()A.2cm3B.3cm3C.6cm3D.8cm3思路分析:根据三视图我们可以得出这个几何体是个长方体,它的体积应该是1×1×3=3cm3.解:该几何体的主视图以及左视图都是相同的矩形,俯视图也为一个矩形,可确定这个几何体是一个长方体,此长方体的长与宽都是1,高为3,所以该几何体的体积为1×1×3=3cm3.点评:本题考查了由三视图判断几何体及长方体的体积公式,本题要先判断出几何体的形状,然后根据其体积公式进行计算.对应训练5.(2017•宁夏)如图是某几何体的三视图,其侧面积()A.6 B.4πC.6πD.12π【聚焦中考】1.(2017•烟台)下列水平放置的几何体中,俯视图不是圆的是()A.B.C.D.2.(2017•淄博)下面关于正六棱柱的视图(主视图、左视图、俯视图)中,画法错误的是()A.B.C.D.3.(2017•莱芜)下面四个几何体中,左视图是四边形的几何体共有()A.1个B.2个C.3个D.4个4.(2017•滨州)如图所示的几何体是由若干个大小相同的小正方体组成的.若从正上方看这个几何体,则所看到的平面图形是()A.B.C.D.5.(2017•潍坊)如图是常用的一种圆顶螺杆,它的俯视图正确的是()A.B.C.D.6.(2017•青岛)如图所示的几何体的俯视图是()A.B.C.D.7.(2017•济南)图中三视图所对应的直观图是()A.B.C.D.8.(2017•威海)如图是由6个同样大小的正方体摆成的几何体.将正方体①移走后,所得几何体()A.主视图改变,左视图改变B.俯视图不变,左视图不变C.俯视图改变,左视图改变D.主视图改变,左视图不变9.(2017•聊城)如图是由几个相同的小立方块组成的三视图,小立方块的个数是()A.3个B.4个C.5个D.6个9.B10.(2017•临沂)如图是一个几何体的三视图,则这个几何体的侧面积是()A.12πcm2B.8πcm2C.6πcm2D.3πcm210.C11.(2017•济宁)三棱柱的三视图如图所示,△EFG中,EF=8cm,EG=12cm,∠EGF=30°,则AB的长为cm.【备考真题过关】一、选择题1.(2017•成都)如图所示的几何体的俯视图可能是()A.B.C.D.2.(2017•昆明)下面几何体的左视图是()A.B.C.D.3.(2017•安徽)如图所示的几何体为圆台,其主(正)视图正确的是()A.B.C.D.4.(2017•本溪)如图放置的圆柱体的左视图为()A.B.C.D.5.(2017•舟山)如图,由三个小立方体搭成的几何体的俯视图是()A.B.C.D.6.(2017•义乌)如图几何体的主视图是()A.B.C.D.7.(2017•株洲)下列几何体中,有一个几何体的俯视图的形状与其它三个不一样,这个几何体是()A .B .C .D .8.(2017•营口)如图,下列水平放置的几何体中,主视图是三角形的是()A .B .C . D.9.(2017•宜宾)下列水平放置的四个几何体中,主视图与其它三个不相同的是()A .B .C .D .10.(2017•新疆)下列几何体中,主视图相同的是( )A .①②B .①③C .①④D .②④11.(2017•桂林)下列物体的主视图、俯视图和左视图不全是圆的是( )A .橄榄球B .兵乓球C .篮球D .排球12.(2017•广东)下列四个几何体中,俯视图为四边形的是( )A .B .C .D .13.(2017•天津)如图是由3个相同的正方体组成的一个立体图形,它的三视图是( )A .B .C .D .正方体 圆柱 圆锥 球14.(2017•泰州)由一个圆柱体与一个长方体组成的几何体如图所示,这个几何体的左视图是()A.B.C.D.15.(2017•遂宁)如图所示的是三通管的立体图,则这个几何体的俯视图是()A.B.C.D.16.(2017•南平)如图是由六个棱长为1的正方体组成的一个几何体,其主视图的面积是()A.3 B.4 C.5 D.6 17.(2017•宿迁)如图是由六个棱长为1的正方体组成的几何体,其俯视图的面积是()A.3 B.4 C.5 D.618.(2017•十堰)用两块完全相同的长方体摆放成如图所示的几何体,这个几何体的左视图是()A.B.C.D.19.(2017•黔东南州)如图是有几个相同的小正方体组成的一个几何体.它的左视图是()A.B.C.D.20.(2017•盘锦)如图下面几何体的左视图是()A.B.C.D.21.(2017•茂名)如图,由两个相同的正方体和一个圆锥体组成一个立体图形,其俯视图是()A.B.C.D.22.(2017•荆门)过正方体上底面的对角线和下底面一顶点的平面截去一个三棱锥所得到的几何体如图所示,它的俯视图为()A.B.C.D.23.(2017•江西)一张坐凳的形状如图所示,以箭头所指的方向为主视方向,则它的左视图可以是()A.B.C.D.24.(2017•大庆)图1所示的几何体,它的俯视图为图2,则这个几何体的左视图是()A.B.C.D.25.(2017•遵义)一个几何体的三视图如图所示,则这个几何体是()A.B.C.D.26.(2017•铁岭)如图是4块小立方块所搭成的几何体的俯视图,小正方形中的数字表示该位置小方块的个数,其主视图是()A.B.C. D27.(2017•黑龙江)由若干个相同的小正方体搭成的一个几何体的主视图和俯视图如图所示,则组成这个几何体的小正方体的个数最多有()A.4 B.5 C.6 D.728.(2017•益阳)一个物体由多个完全相同的小正方体组成,它的三视图如图所示,那么组成这个物体的小正方体的个数为()A.2个B.3个C.5个D.10个29.(2017•孝感)如图,由8个大小相同的正方体组成的几何体的主视图和俯视图,则这个几何体的左视图是()A.B.C.D.30.(2017•曲靖)如图是某几何体的三视图,则该几何体的侧面展开图是()A.B.C.D.31.(2017•乐山)一个立体图形的三视图如图所示.根据图中数据求得这个立体图形的表面积为()A.2πB.6πC.7πD.8π31.D32.(2017•杭州)如图是某几何体的三视图,则该几何体的体积是()A.183B.543C.1083D.2163二、填空题33.(2017•南通)一个几何体的主视图、俯视图和左视图都是大小相同的圆,则这个几何体是.34.(2017•绥化)由一些完全相同的小正方体组成的几何体的主视图和俯视图如图所示,则组成这个几何体的小正方体的个数可能是.35.(2017•无锡)如图是一个几何体的三视图,若这个几何体的体积是36,则它的表面积是.。
第29章投影与三视图一、目标与要求1.会从投影的角度理解视图的概念2.会画简单几何体的三视图3.通过观察探究等活动使学生知道物体的三视图与正投影的相互关系及三视图中位置关系、大小关系4.明确正投影与三视图的关系5.经历探索简单立体图形的三视图的画法,能识别物体的三视图6.培养动手实践能力,发展空间想象能力。
二、知识框架四、重点、难点重点:从投影的角度加深对三视图的理解和会画简单的三视图,能够做出简单立体图形的三视图的画法。
难点:对三视图概念理解的升华及正确画出三棱柱的三视图,三视图中三个位置关系的理解。
四、中考所占分数及题型分布本章在中考中会出1道选择或者填空,也有可能不出。
在简答题中会在几何题中穿插应用,本章约占3-5分。
第29章 投影与三视图29.1 投影1.投影:用光线照射物体,在某个平面(地面、墙壁等)上得到的影子叫做物体的投影,照射光线叫做投影线,投影所在的平面叫做投影面。
2.平行投影:有时光线是一组互相平行的射线,例如太阳光或探照灯光的一束光中的光线。
由平行光线形成的投影是平行投影.3.中心投影:由同一点(点光源发出的光线)形成的投影叫做中心投影。
4.正投影:投影线垂直于投影面产生的投影叫做正投影。
例.把一根直的细铁丝(记为线段AB)放在三个不同位置:(1)铁丝平行于投影面;(2)铁丝倾斜于投影面;(3)铁丝垂直于投影面(铁丝不一定要与投影面有公共点).三种情形下铁丝的正投影各是什么形状?通过观察、测量可知:(1)当线段AB 平行于投影面P 时,它的正投影是线段11A B ,线段与它的投影的大小关系为11AB A B =;(2)当线段AB 倾斜于投影面P 时,它的正投影是线段22A B ,线段与它的投影的大小关系为22AB A B =;(3)当线段AB 垂直于投影面P 时,它的正投影是一个点3A .例.把一正方形硬纸板P (记正方形ABCD )放在三个不同位置:(1)纸板平行于投影面;(2)纸板倾斜于投影面;(3)纸板垂直于投影面。
第26讲视图与投影【知识清单】考点1投影1.平行投影: 由①光线形成的投影叫做平行投影.投影线垂直于投影面时产生的投影叫做正投影,正投影是一种特殊的平行投影.2.中心投影: 由同一点(点光源)发出的光线形成的投影叫做中心投影.考点2三视图1. 三视图主视图:在正面内得到的由前向后观察物体的视图,叫做主视图.俯视图:在水平面内得到的由上向下观察物体的视图,叫做俯视图.左视图:在侧面内得到的由左向右观察物体的视图,叫做左视图.2. 画物体的三视图1. 原则:主视图与俯视图②对正,主视图与左视图③平齐,左视图与俯视图的④相等.2. 提醒:在画图时,看得见部分的轮廓线画成实线,因被其他部分遮挡而看不见部分的轮廓线画成虚线.考点3立体图形的展开与折叠一个立体图形沿不同的棱剪开就得到不同的平面图形.考点4 尺规作图1.定义:在几何里,限定⑤和⑥来画图,称尺规作图.2.基本步骤:已知、求作、作法、证明、结论.3.常见的基本作图:(1)作一条线段等于已知线段;(2)作一个角等于已知角;(3)作已知角的平分线;(4)经过一点作已知直线的垂线;(5)作线段的垂直平分线.【方法总结】正方体的平面展开图归纳起来有四种情形:①“1-4-1”型:展开图有3行,中间一行有4个正方形,其余两行均为1个正方形,如图1所示;②“2-3-1”型:展开图有3行,第一行有2个正方形,中间一行有3个正方形,第三行有1个正方形,如图2所示;③“2-2-2”型:展开图有3行,每行均有2个正方形,如图3所示;④“3-3”型,展开图有2行,每一行均有3个正方形,如图4所示.【考点突破】考点1:判断几何体的三视图例题1:(2018·湖北十堰·3分)今年“父亲节”佳佳给父亲送了一个礼盒,该礼盒的主视图是()A.B.C.D.【分析】找出从几何体的正面看所得到的图形即可.【解答】解:由图可得,该礼盒的主视图是左边一个矩形,右面一个小正方形,故选:C.【点评】此题主要考查了简单几何体的三视图,画简单组合体的三视图要循序渐进,通过仔细观察和想象.方法归纳:细心观察图中几何体中正方体摆放的位置,根据主视图是从正面看到的图形判定即可. 考点2 由三视图还原几何体例题2:(2018·湖北江汉·3分)如图是某个几何体的展开图,该几何体是()A.三棱柱 B.三棱锥 C.圆柱 D.圆锥【分析】侧面为三个长方形,底边为三角形,故原几何体为三棱柱.【解答】解:观察图形可知,这个几何体是三棱柱.故选:A.方法归纳:由视图到立体图形,根据视图想象出视图所反映的立体形状,我们称为读图.读图时,可从主视图上分清物体各部分的上下和左右位置;从俯视图上分清物体各部分的左右和前后位置;从左视图上分清物体各部分的上下和前后位置.考点3 立体图形的展开与折叠例题3:将选项中的四个正方体分别展开后,所得的平面展开图与如图不同的是()A、 B、 C、 D、【考点】几何体的展开图【分析】立体图形的侧面展开图,体现了平面图形与立体图形的联系.立体图形问题可以转化为平面图形问题解决.【解析】【解答】解:观察图形可知,将选项中的四个正方体分别展开后,所得的平面展开图与如图不同的选项B.故选:B.方法归纳:三棱柱的表面展开图,上、下两底面应在侧面展开图长方形的两侧,且是全等的三角形,不能有两个侧面在两三角形的同一侧.考点4 尺规作图例题4:(2018年湖北省宜昌市3分)尺规作图:经过已知直线外一点作这条直线的垂线,下列作图中正确的是()A.B.C.D.【分析】根据过直线外一点向直线作垂线即可.【解答】已知:直线AB和AB外一点C.求作:AB的垂线,使它经过点C.作法:(1)任意取一点K,使K和C在AB的两旁.(2)以C为圆心,CK的长为半径作弧,交AB于点D和E.(3)分别以D和E为圆心,大于DE的长为半径作弧,两弧交于点F,(4)作直线CF.直线CF就是所求的垂线.故选:B.【点评】此题主要考查了过一点作直线的垂线,熟练掌握基本作图方法是解决问题的关键.方法归纳:用尺规作图作一个三角形与原三角形全等,利用三角形全等的判定方法,转化为作一个角等于已知角和作一条线段等于已知线段.【考点检测】一、基础检测:1. (2018·云南省昆明·4分)下列几何体的左视图为长方形的是()A. B.C.D.2. (2018•呼和浩特•3分)(3.00分)下面是几个一样的小正方体摆出的立体图形的三视图,由三视图可知小正方体的个数为()A.6个 B.5个 C.4个 D.3个3. (2018四川省泸州市3分)如图是一个由5个完全相同的小正方体组成的立体图形,它的俯视图是()A.B.C.D.4. (2018·广西贺州·3分)如图,这是一个几何体的三视图,根据图中所示数据计算这个几何体的侧面积为()A.9πB.10πC.11πD.12π5. (2018•莱芜•3分)已知圆锥的三视图如图所示,则这个圆锥的侧面展开图的面积为()A.60πcm2 B.65πcm2 C.120πcm2 D.130πcm26. (2018·辽宁省盘锦市)如图,是某立体图形的三视图,则这个立体图形的侧面展开图的面积是.(结果保留π)7. (2018•齐齐哈尔)三棱柱的三视图如图所示,已知△EFG中,EF=8cm,EG=12cm,∠EFG=45°.则AB的长为 cm.8. (2018·湖北省孝感·3分)如图是一个几何体的三视图(图中尺寸单位:cm),根据图中数据计算,这个几何体的表面积为cm2.9. (2018•通辽)如图,在△ABC中,按以下步骤作图:①分别以点A和点C为圆心,以大于AC的长为半径作弧,两弧相交于M、N两点;②作直线MN交BC于点D,连接AD.若AB=BD,AB=6,∠C=30°,则△ACD的面积为.10.(2018·山东青岛·3分)一个由16个完全相同的小立方块搭成的几何体,其最下面一层摆放了9个小立方块,它的主视图和左视图如图所示,那么这个几何体的搭法共有种.二、能力检测:11. (2018•湖州)在每个小正方形的边长为1的网格图形中,每个小正方形的顶点称为格点.以顶点都是格点的正方形ABCD的边为斜边,向内作四个全等的直角三角形,使四个直角顶点E,F,G,H 都是格点,且四边形EFGH为正方形,我们把这样的图形称为格点弦图.例如,在如图1所示的格点弦图中,正方形ABCD的边长为,此时正方形EFGH的而积为5.问:当格点弦图中的正方形ABCD 的边长为时,正方形EFGH的面积的所有可能值是(不包括5).12. (2018·山东青岛·4分)已知:如图,∠ABC,射线BC上一点D.求作:等腰△PBD,使线段BD为等腰△PBD的底边,点P在∠ABC内部,且点P到∠ABC两边的距离相等.13. (2018·浙江宁波·8分)在5×3的方格纸中,△ABC的三个顶点都在格点上.(1)在图1中画出线段BD,使BD∥AC,其中D是格点;(2)在图2中画出线段BE,使BE⊥AC,其中E是格点.14. (2018·四川自贡·10分)如图,在△ABC中,∠ACB=90°.(1)作出经过点B,圆心O在斜边AB上且与边AC相切于点E的⊙O(要求:用尺规作图,保留作图痕迹,不写作法和证明)(2)设(1)中所作的⊙O与边AB交于异于点B的另外一点D,若⊙O的直径为5,BC=4;求DE的长.(如果用尺规作图画不出图形,可画出草图完成(2)问)15. 高高的路灯挂在路边的上方,高傲而明亮,小明拿着一根2米长的竹竿,想量一量路灯的高度,直接量是不可能的.于是,他走到路灯旁的一个地方,竖起竹竿(即AE),这时,他量了一下竹竿的影长(AC)正好是1米,他沿着影子的方向走,向远处走出两根竹竿的长度(即AB=4米),他又竖起竹竿,这时竹竿的影长正好是一根竹竿的长度(即BD=2米).此时,小明抬头瞧瞧路灯,若有所思地说:“噢,我知道路灯有多高了!”同学们,请你和小明一起解答这个问题:(1)在图中作出路灯O的位置,并作OP⊥l于P.(2)求出路灯O的高度,并说明理由.16. 某校墙边有甲、乙两根木杆,已知乙木杆的高度为1.5m.(1)某一时刻甲木杆在阳光下的影子如图所示,画出此时乙木杆的影子DF.(2)△ABC∽△DEF,如果测得甲、乙木杆的影子长分别为1.6m和1m,那么甲木杆的高度是多少?【参考答案】【知识清单】①平行②长③高④宽⑤直尺⑥圆规【考点检测】一、基础检测:1. (2018·云南省昆明·4分)下列几何体的左视图为长方形的是()A. B.C.D.【分析】找到个图形从左边看所得到的图形即可得出结论.【解答】解:A.球的左视图是圆;B.圆台的左视图是梯形;C.圆柱的左视图是长方形;D.圆锥的左视图是三角形.故选:C.【点评】此题主要考查了简单几何体的三视图,关键是掌握左视图所看的位置.2. (2018•呼和浩特•3分)(3.00分)下面是几个一样的小正方体摆出的立体图形的三视图,由三视图可知小正方体的个数为()A.6个B.5个C.4个D.3个解:综合三视图,这个立体图形的底层应该有3个,第二层应该有1个小正方体,因此构成这个立体图形的小正方体的个数是3+1=4个.故选:C.3. (2018四川省泸州市3分)如图是一个由5个完全相同的小正方体组成的立体图形,它的俯视图是()A.B.C.D.【分析】根据从上面看得到的图形是俯视图,可得答案.【解答】解:从上面看第一列是两个小正方形,第二列是一个小正方形,第三列是一个小正方形,故选:B.【点评】本题考查了简单组合体的三视图,从上面看得到的图形是俯视图.4. (2018·广西贺州·3分)如图,这是一个几何体的三视图,根据图中所示数据计算这个几何体的侧面积为()A.9πB.10π C.11π D.12π【解答】解:由题意可得此几何体是圆锥,底面圆的半径为:2,母线长为:5,故这个几何体的侧面积为:π×2×5=10π.故选:B.5. (2018•莱芜•3分)已知圆锥的三视图如图所示,则这个圆锥的侧面展开图的面积为()A.60πcm2B.65πcm2C.120πcm2D.130πcm2【分析】先利用三视图得到底面圆的半径为5cm,圆锥的高为12cm,再根据勾股定理计算出母线长为13cm,然后根据锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式计算.【解答】解:根据三视图得到圆锥的底面圆的直径为10cm,即底面圆的半径为5cm,圆锥的高为12cm,所以圆锥的母线长==13,所以这个圆锥的侧面积=•2π•5•13=65π(cm2).故选:B.6. (2018·辽宁省盘锦市)如图,是某立体图形的三视图,则这个立体图形的侧面展开图的面积是.(结果保留π)【解答】解:由三视图可知圆锥的底面半径为5,高为12,所以母线长为13,所以侧面积为πrl=π×5×13=65π.故答案为:65π.7. (2018•齐齐哈尔)三棱柱的三视图如图所示,已知△EFG中,EF=8cm,EG=12cm,∠EFG=45°.则AB的长为4cm.【分析】根据三视图的对应情况可得出,△EFG中FG上的高即为AB的长,进而求出即可.【解答】解:过点E作EQ⊥FG于点Q,由题意可得出:EQ=AB,∵EF=8cm,∠EFG=45°,∴EQ=AB=×8=4(cm).故答案为:4.8. (2018·湖北省孝感·3分)如图是一个几何体的三视图(图中尺寸单位:cm),根据图中数据计算,这个几何体的表面积为16πcm2.【分析】由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状,确定圆锥的母线长和底面半径,从而确定其表面积.【解答】解:由主视图和左视图为三角形判断出是锥体,由俯视图是圆形可判断出这个几何体应该是圆锥;根据三视图知:该圆锥的母线长为6cm,底面半径为2cm,故表面积=πrl+πr2=π×2×6+π×22=16π(cm2).故答案为:16π.【点评】考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.9. (2018•通辽)如图,在△ABC中,按以下步骤作图:①分别以点A和点C为圆心,以大于AC的长为半径作弧,两弧相交于M、N两点;②作直线MN交BC于点D,连接AD.若AB=BD,AB=6,∠C=30°,则△ACD的面积为9.【分析】只要证明△ABD是等边三角形,推出BD=AD=DC,可得S△ADC=S△ABD即可解决问题;【解答】解:由作图可知,MN垂直平分线段AC,∴DA=DC,∴∠C=∠DAC=30°,∴∠ADB=∠C+∠DAC=60°,∵AB=AD,∴△ABD是等边三角形,∴BD=AD=DC,∴S△ADC=S△ABD=×62=9,故答案为9.10. (2018·山东青岛·3分)一个由16个完全相同的小立方块搭成的几何体,其最下面一层摆放了9个小立方块,它的主视图和左视图如图所示,那么这个几何体的搭法共有 4 种.【分析】先根据主视图确定每一列最大分别为4,2,3,再根据左视确定每一行最大分别为4,3,2,总和要保证为16,还要保证俯视图有9个位置.【解答】解:这个几何体的搭法共有4种:如下图所示:故答案为:4.【点评】本题考查几何体的三视图.由几何体的主视图、左视图及小立方块的个数,可知俯视图的列数和行数中的最大数字.二、能力检测:11. (2018•湖州)在每个小正方形的边长为1的网格图形中,每个小正方形的顶点称为格点.以顶点都是格点的正方形ABCD的边为斜边,向内作四个全等的直角三角形,使四个直角顶点E,F,G,H 都是格点,且四边形EFGH为正方形,我们把这样的图形称为格点弦图.例如,在如图1所示的格点弦图中,正方形ABCD的边长为,此时正方形EFGH的而积为5.问:当格点弦图中的正方形ABCD 的边长为时,正方形EFGH的面积的所有可能值是13或49或9 (不包括5).【分析】当DG=,CG=2时,满足DG2+CG2=CD2,此时HG=,可得正方形EFGH的面积为13.当DG=8,CG=1时,满足DG2+CG2=CD2,此时HG=7,可得正方形EFGH的面积为49.当DG=7,CG=4时,满足DG2+CG2=CD2,此时HG=3,可得正方形EFGH的面积为9.【解答】解:当DG=,CG=2时,满足DG2+CG2=CD2,此时HG=,可得正方形EFGH的面积为13.当DG=8,CG=1时,满足DG2+CG2=CD2,此时HG=7,可得正方形EFGH的面积为49.当DG=7,CG=4时,满足DG2+CG2=CD2,此时HG=3,可得正方形EFGH的面积为9.故答案为13或49或9.12. (2018·山东青岛·4分)已知:如图,∠ABC,射线BC上一点D.求作:等腰△PBD,使线段BD为等腰△PBD的底边,点P在∠ABC内部,且点P到∠ABC两边的距离相等.【分析】根据角平分线的性质、线段的垂直平分线的性质即可解决问题.【解答】解:∵点P在∠ABC的平分线上,∴点P到∠ABC两边的距离相等(角平分线上的点到角的两边距离相等),∵点P在线段BD的垂直平分线上,∴PB=PD(线段的垂直平分线上的点到线段的两个端点的距离相等),如图所示:【点评】本题考查作图﹣复杂作图、角平分线的性质、线段的垂直平分线的性质等知识,解题的关键是灵活运用所学知识解决问题,属于基础题,中考常考题型.13. (2018·浙江宁波·8分)在5×3的方格纸中,△ABC的三个顶点都在格点上.(1)在图1中画出线段BD,使BD∥AC,其中D是格点;(2)在图2中画出线段BE,使BE⊥AC,其中E是格点.【分析】(1)将线段AC沿着AB方向平移2个单位,即可得到线段BD;(2)利用2×3的长方形的对角线,即可得到线段BE⊥AC.【考点】作图、平行四边形的性质【解答】解:(1)如图所示,线段BD即为所求;(2)如图所示,线段BE即为所求.【点评】本题主要考查了作图以及平行四边形的性质,首先要理解题意,弄清问题中对所作图形的要求,结合对应几何图形的性质和基本作图的方法作图.14. (2018·四川自贡·10分)如图,在△ABC中,∠ACB=90°.(1)作出经过点B,圆心O在斜边AB上且与边AC相切于点E的⊙O(要求:用尺规作图,保留作图痕迹,不写作法和证明)(2)设(1)中所作的⊙O与边AB交于异于点B的另外一点D,若⊙O的直径为5,BC=4;求DE的长.(如果用尺规作图画不出图形,可画出草图完成(2)问)【分析】(1)作∠ABC的角平分线交AC于E,作EO⊥AC交AB于点O,以O为圆心,OB为半径画圆即可解决问题;(2)作OH⊥BC于H.首先求出OH、EC、BE,利用△BCE∽△BED,可得=,解决问题;【解答】解:(1)⊙O如图所示;(2)作OH⊥BC于H.∵AC是⊙O的切线,∴OE⊥AC,∴∠C=∠CEO=∠OHC=90°,∴四边形ECHO是矩形,∴OE=CH=,BH=BC﹣CH=,在Rt△OBH中,OH==2,∴EC=OH=2,BE==2,∵∠EBC=∠EBD,∠BED=∠C=90°,∴△BCE∽△BED,∴=,∴=,∴DE=.【点评】本题考查作图﹣复杂作图,切线的判定和性质,相似三角形的判定和性质、勾股定理、角平分线的定义,等腰三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.15. 高高的路灯挂在路边的上方,高傲而明亮,小明拿着一根2米长的竹竿,想量一量路灯的高度,直接量是不可能的.于是,他走到路灯旁的一个地方,竖起竹竿(即AE),这时,他量了一下竹竿的影长(AC)正好是1米,他沿着影子的方向走,向远处走出两根竹竿的长度(即AB=4米),他又竖起竹竿,这时竹竿的影长正好是一根竹竿的长度(即BD=2米).此时,小明抬头瞧瞧路灯,若有所思地说:“噢,我知道路灯有多高了!”同学们,请你和小明一起解答这个问题:(1)在图中作出路灯O的位置,并作OP⊥l于P.(2)求出路灯O的高度,并说明理由.解:(1)(2)由于BF=DB=2(米),即∠D=45°,所以,DP=OP=灯高,△COP中AE⊥CP,OP⊥CP,∴AE∥OP∴△CEA∽△COP,即,设AP=x,OP=h则:①,DP=OP表达为2+4+x=h②,联立①②两式得:x=4,h=10,∴路灯有10米高.16. 某校墙边有甲、乙两根木杆,已知乙木杆的高度为1.5m.(1)某一时刻甲木杆在阳光下的影子如图所示,画出此时乙木杆的影子DF.(2)△ABC∽△DEF,如果测得甲、乙木杆的影子长分别为1.6m和1m,那么甲木杆的高度是多少?【解析】(1)解:如图所示,DF是乙木杆的影子(2)解:∵△ABC∽△DEF,∴ ,即,解得AB=2.4m.答:甲木杆的高度是2.4m。
视图与投影
一、选择题(每小题6分,共30分)
1.(2014·温州)如图所示的支架是由两个长方体构成的组合体,则它的主视图是(D)
2.(2014·宁夏)如图的几何体是由一个正方体切去一个小正方体形成的,它的主视图是(D)
3.(2014·陕西)如图是一个正方体被截去一个直三棱柱得到的几何体,则该几何体的左视图是(A)
4.(2014·孝感)如图是某个几何体的三视图,则该几何体的形状是(D)
A.长方体B.圆锥
C.圆柱D.三棱柱
5.(2014·呼和浩特)如图是某几何体的三视图,根据图中数据,求得该几何体的体积为(B)
A.60πB.70πC.90πD.160π
二、填空题(每小题6分,共30分)
6.(2014·梅州)写出一个在三视图中俯视图与主视图完全相同的几何体__球或正方体__.
7.(2014·湖州)如图,由四个小正方体组成的几何体中,若每个小正方体的棱长都是1,则该几何体俯视图的面积是__3__.
8.(2012·河源)春蕾数学兴趣小组用一块正方形木板在阳光下做投影试验,这块正方形木板在地面上形成的投影可能是__正方形、菱形(答案不唯一)__.(写出符合题意的两个图形即可)
9.(2013·济宁)三棱柱的三视图如图所示,△EFG中,EF=8 cm,EG=12 cm,∠EGF =30°,则AB的长为__6__ cm.
10.(2014·黔东南州)在桌上摆着一个由若干个相同正方体组成的几何体,其主视图和左视图如图所示,设组成这个几何体的小正方体的个数为n,则n的最小值为__8__.
三、解答题(共40分)
11.(10分)(2012·自贡)画出如图所示立体图形的三视图.
解:如图所示:
(10分)5个棱长为1的正方体组成如图的几何体.
(1)该几何体的体积是__5__立方单位,表面积是__22__平方单位;
(2)画出该几何体的主视图和左视图.
解:(1)每个正方体的体积为1,∴组合几何体的体积为5×1=5;∵组合几何体的前面和后面共有5×2=10个正方形,上下共有6个正方形,左右共6个正方形,每个正方形的面积为1,∴组合几何体的表面积为22.故答案为5,22
(2)作图如下:
13.(10分)由几个相同的边长为1的小立方块搭成的几何体的俯视图如图所示.方格中的数字表示该位置的小立方块的个数.
(1)请在下面方格纸中分别画出这个几何体的主视图和左视图.
(2)根据三视图,请你求出这个组合几何体的表面积.(包括底面积)
解:(1)图形如下所示:
(2)几何体的表面积为:(3+4+5)×2=24.
(10分)如图,公路旁有两个高度相等的路灯AB,CD.小明上午上学时发现路灯B在太阳光下的影子恰好落到里程碑E处,他自己的影子恰好落在路灯CD的底部C处.晚自习放学时,站在上午同一个地方,发现在路灯CD的灯光下自己的影子恰好落在里程碑E处.
(1)在图中画出小明的位置(用线段FG表示),并画出光线,标明太阳光、灯光;
(2)若上午上学时候高1米的木棒的影子为2米,小明身高为1.5米,他离里程碑E恰好5米,求路灯高.
解:(1)
(2)∵上午上学时候高1米的木棒的影子为2米,小明身高为1.5米,∴小明的影长CF
为3米,∵GF⊥AC,DC⊥AC,∴GF∥CD,∴△EGF∽△EDC,∴GF
CD=EF
EC,∴
1.5
CD=
5
5+3,
解得CD=2.4.答:路灯高为2.4米。