霍尔式加速度传感器
- 格式:doc
- 大小:239.50 KB
- 文档页数:11
13霍尔压力变送器霍尔式传感器的测试项目描述•图13-1是我国自主研发、生产的YSH-1型霍尔压力变送器。
该变送器适用于测量对铜及铜合金不起腐蚀作用的、非结晶和非凝固的液体或蒸汽的压力及负压,由于变送器能将各种被测压力转换成0~20mV的信号,因此变送器与二次仪表配套使用可以对冶金、电力、石油、化工工业部门实现远程控制和集中检测的目的,和调节器配套使用可以实现对系统的自动调节目的。
一、霍尔效应及霍尔元件»1.霍尔效应•将金属或半导体薄片置于磁感应强度为B的磁场(磁场方向垂直与薄片)中,如图13-2所示,当有电流I通过时,在垂直于电流和磁场的方向上将产生电动势U,这种物理现H象成为霍尔效应。
该电势U称为霍尔电势。
H霍尔效应演示dabc当磁场垂直于薄片时,电子受到洛仑兹力的作用,向内侧偏移,在半导体薄片c、d方向的端面之间建立起霍尔电势。
2022/2/64•位于磁感应强度为B的磁场中,B垂直于L-W平面,沿L通电流I,N型半导体的载流体—电子将受到B产生的洛仑兹的作用力FL•在力F的作用下,电子向半导体片的一个侧面偏转,在该L侧面上形成电子的积累,而在相对的另一侧面上因缺少电子而出现等量的正电荷。
在这两个侧面上产生霍尔电场EH 。
该电场使运动电子受有电场力FE•电场力阻止电子继续向原侧面积累,当电子所受电场力和洛仑兹力相等时,电荷的积累达到动态平衡,由于存在EH,称为霍尔电势,半导体片两侧面间出现电位差UH•如果磁场与薄片法线夹角为,那么•又因R=μρ,即霍尔系数等于霍尔片材料的电阻率ρ与电子H迁移率μ的乘积。
一般金属材料载流子迁移率很高,而电阻率很小;而绝缘材料电阻率极高,而载流子迁移率极低。
故只有半导体材料适于制造霍尔片。
目前常用的霍尔元件材料有锗、硅、砷化铟、锑化铟等半导体材料2.霍尔元件•霍尔元件的结构很简单,它由霍尔片、引线和壳体组成•霍尔片是一块矩形半导体单晶薄片,引出4个引线,a、b两根引线加激励电压或电流,称为激励电极;c、d引线为霍尔输出引线,称为霍尔电极,如图13-3(b)所示。
3.2 霍尔传感器霍尔传感器是利用霍尔元件的霍尔效应制作的半导体磁敏传感器。
半导体磁敏传感器是指电参数按一定规律随磁性量变化的传感器,常用的磁敏传感器有霍尔传感器和磁敏电阻传感器。
除此之外还有磁敏二极管、磁敏晶体管等。
磁敏器件是利用磁场工作的,因此可以通过非接触方式检验,这种方式可以保证使用寿命长、可靠性高。
利用磁场作为媒介可以检测很多物理量,例如:位移、振动、力、转速、加速度、流量、电流、电功率等。
它不仅可以实现非接触测量,并且不从磁场中获取能量。
在很多情况下,可采用永久磁铁来产生磁场,不需要附加能量,因此这一类传感器获得极为广泛的应用。
3.2.1霍尔效应1879年霍尔发现,在通有电流的金属板上加一均强磁场,当电流方向与磁场方向垂直时,在与电流和磁场都垂直的金属板的两表面间出现电势差,这个现象称为霍尔效应,这个电势差称为霍尔电动势,其成因可用带电粒子在磁场中所受到的洛伦兹力来解释。
如图3.11所示,将金属或半导体薄片置于磁感应强度为B的磁场中,当有电流流过薄片时,电子受到洛伦兹力F的作用向一侧偏移,电子向一侧堆积形成电场,该电场对电子又产生电场力。
电子积累越多,电场力越大。
洛伦兹力的方向可用左手定则判断,它与电场力的方向恰好相反。
当两个力达到动态平衡时,在薄片的AB方向建立稳定电场,即霍尔电动势。
激励电流越大,磁场越强,电子受到的洛仑兹力也越大,霍尔电动势也就越高。
其次,薄片的厚度、半导体材料中的电子浓度等因素对霍尔电动势也有影响。
霍尔电动势(mV)的数学表达式为=(3.9)EKIBHHK[mV/(mA·T)]——霍尔元件的灵敏度系数。
式中:H霍尔电动势与输入电流I、磁感应强度B成正比,且当I或B的方向改变时,霍尔电动势的方向也随之改变。
如果磁场方向与半导体薄片不垂直,而是与其法线方向的夹角为θ,则霍尔电动势为θE=(3.10)KcosIBHH图3.11 霍尔效应(a)图形符号(b)外形图图3.12 霍尔元件3.2.2霍尔元件由于导体的霍尔效应很弱,霍尔元件都用半导体材料制作。
霍尔传感器霍尔传感器是根据霍尔效应制作的一种磁场传感器。
霍尔效应是磁电效应的一种,这一现象是霍尔(A.H.Hall,1855—1938)于1879年在研究金属的导电机构时发现的。
后来发现半导体、导电流体等也有这种效应,而半导体的霍尔效应比金属强得多,利用这现象制成的各种霍尔元件,广泛地应用于工业自动化技术、检测技术及信息处理等方面。
霍尔效应是研究半导体材料性能的基本方法。
通过霍尔效应实验测定的霍尔系数,能够判断半导体材料的导电类型、载流子浓度及载流子迁移率等重要参数。
霍尔效应在半导体薄片两端通以控制电流I,并在薄片的垂直方向施加磁感应强度为B的匀强磁场,则在垂直于电流和磁场的方向上,将产生电势差为H的霍尔电压U霍尔元件根据霍尔效应,人们用半导体材料制成的元件叫霍尔元件。
它具有对磁场敏感、结构简单、体积小、频率响应宽、输出电压变化大和使用寿命长等优点,因此,在测量、自动化、计算机和信息技术等领域得到广泛的应用。
霍尔传感器的分类霍尔传感器分为线性型霍尔传感器和开关型霍尔传感器两种。
(1)线性型霍尔传感器由霍尔元件、线性放大器和射极跟随器组成,它输出模拟量。
(2)开关型霍尔传感器由稳压器、霍尔元件、差分放大器,斯密特触发器和输出级组成,它输出数字量。
按照霍尔器件的功能可将它们分为: 霍尔线性器件和霍尔开关器件。
前者输出模拟量,后者输出数字量。
按被检测的对象的性质可将它们的应用分为:直接应用和间接应用。
前者是直接检测出受检测对象本身的磁场或磁特性,后者是检测受检对象上人为设置的磁场,用这个磁场来作被检测的信息的载体,通过它,将许多非电、非磁的物理量例如力、力矩、压力、应力、位置、位移、速度、加速度、角度、角速度、转数、转速以及工作状态发生变化的时间等,转变成电量来进行检测和控制。
用单片机测量电磁场1.硬件设计硬件电路应包括:单片机接口电路、设定值输入(工作点磁感应强度设定值)、检测信号输入、控制输出和显示等部分。
汽车电子技术:霍尔(Hall)加速度传感器解析
带有防抱死制动系统(ABS)、驱动防滑砖控制(ASR)、四轮驱动或带有
电子稳定性程序(ESP)的汽车,除了车轮传感器外都装有Hall 加速度传感器,以测量汽车行驶时的纵向和横向的加速度。
霍尔元件是一种基于霍尔效应的磁传感器,已发展成一个品种多样的磁
传感器产品族,并已得到广泛的应用。
用它们可以检测磁场及其变化,可在各
种与磁场有关的场合中使用。
霍尔器件以霍尔效应为其工作基础。
霍尔器件具有许多优点,它们的结构牢固,体积小,重量轻,寿命长,安装方便,功耗小,频率高,耐震动,不怕灰尘、油污、水汽及盐雾等的污染或腐蚀。
霍尔器件和工作磁体间的运动方式
霍尔线性器件的精度高、线性度好;霍尔开关器件无触点、无磨损、输
出波形清晰、无抖动、无回跳、位置重复精度高。
取用了各种补偿和保护措施
的霍尔器件的工作温度范围宽。
按照霍尔器件的功能可将它们分为:霍尔线性器件和霍尔开关器件。
前者输出模拟量,后者输出数字量。
在霍尔器件背面放置磁体
按被检测的对象的性质可将它们的应用分为:直接应用和间接应用。
前
者是直接检测出受检测对象本身的磁场或磁特性,后者是检测受检对象上人为
设置的磁场,用这个磁场来作被检测的信息的载体,通过它,将许多非电、非
磁的物理量例如力、力矩、压力、应力、位置、位移、速度、加速度、角度、。
一:霍尔双通道传感器概述霍尔双通道传感器安装于测速端盖上,感应导磁体上凸起的齿或是凹下的槽,相应的给出高低电平,用于检测轮轴的转速、线速度,通过计算处理也可得到被测体的加速度。
该传感器具备良好的低频和高频特性。
低频可至0Hz,可用于旋转机械的零转速测量,由于传感器可给出两路具有一定相位差的转速信号,因此可进行正反转判别;高频可高至20KHz, 可满足绝大部分工业领域的高转速测量要求。
传感器与被测齿轮不接触,无磨损,安装方便,输出波形是占空比约为50%左右的方波。
霍尔双通道传感器具有测速范围宽,温度适应范围宽,抗振性强的特点。
下面霍尔双通道传感器技术参数,其中相位差是测速齿轮模数为2时的技术参数,符合DIN867标准。
二:霍尔双通道传感器技术参数1.传感器安装●被测感应体为导磁体,上有齿或凹槽。
建议:测速齿轮模数≥1.7,材料为导磁低碳钢注:非标齿或槽与平整面宽度不等将导致波形占宽比的变化。
●安装间隙:0.3-1.5mm,典型值为1.0mm注:取决于被测件的振动情况2.传感器输出特性●频响特性:0~20kHz●输出通道数:双通道●输出波形:方波,上升、下降沿时间12μs±40%●输出幅度:高电平:Ub-(1.8V±40%),低电平:<2.2V●脉冲占空比:50%±25%●相位差:90±30°(第一通道超前)注:取决于安装方式,旋转件的旋转方向,本参数适用于本说明书图四举例的安装方式●负载能力:±20mA (最大)●输出阻抗:<47Ω3.工作环境要求●工作电源:Ub=15V DC±30% (8V~28V)●功耗电流:≤35mA●工作温度:-40℃~125℃(头部)●耐振性能:振动(10Hz~2KHz)30g,冲击100g ●密封性:IP6813.4.电气特性●电源极性保护:有●输出短路保护:有●绝缘强度:1000V 50Hz,1min(通道与外壳)5.外接电缆及连接●外附导线:6×0.5mm2屏蔽电缆, 标准线长为1.0米(可以按用户要求延长)●传感器外配电缆输出定义线色引出线定义红电源+黑电源-黄通道A输出绿通道B输出外层屏蔽层三:工作原理1.转速测量原理当测速齿轮旋转时,传感器将产生频率f(Hz)= n×m/60(n为转速,P为齿轮齿数)的方波信号,供机车电子控制系统对机车速度、柴油机转速、进行采样检测。
霍尔传感器(HallSensor)分类和工作原理及其应用一,霍尔传感器(Hall Sensor)分类单极霍尔开关、双极霍尔开关、全极霍尔开关、无极霍尔开关、贴片霍尔开关、玩具霍尔开关、插件霍尔开关二,霍尔传感器(Hall Sensor)工作原理什么是霍尔传感器?霍尔传感器是根据霍尔效应制作的一种磁场传感器。
霍尔电压随磁场强度的变化而变化,磁场越强,电压越高,磁场越弱,电压越低,霍尔电压值很小,通常只有几个毫伏,但经集成电路中的放大器放大,就能使该电压放大到足以输出较强的信号。
若使霍尔集成电路起传感作用,需要用机械的方法来改变磁感应强度。
霍尔效应传感器属于被动型传感器,它要有外加电源才能工作,这一特点使它能检测转速低的运转情况。
直流电机在转动过程中,绕组中的电流要不断地改变方向,以使转子向一个方向转动。
其中,有刷电机是采用电刷与换相器通过机械接触的方式进行换相的。
所以电刷在高速转动的时候会产生很大磨损,需要经常清理碳屑,如果电刷完全磨损了需要更换电刷,这都使得有刷电机的使用保养难度大大增强。
而无刷电机则是通过霍尔传感器检测出绕组实时运转位置的信号,再通过微处理器或专用芯片对采集的信号进行处理,并实时控制相应的驱动电路对电机绕组进行控制。
由于无刷电机的换相是通过传感器及相关电路进行的,所以无刷电机没有电刷与换相器的机械接触与磨损,不需要经常换电刷等易损器件,从而可有效提高电机的使用寿命,减少维修费用。
手机中的霍尔传感器(Hall Sensor),作用原理是霍尔磁电效应,当电流通过一个位于磁场中的导体时,磁场会对导体中的电子产生一个垂直于电子运动方向上的的作用力,从而在导体的两端产生电势差。
主要运用在翻盖解锁、合盖锁定屏幕等功能当中。
玩具用双输出霍尔开关DH482DH482是由混合信号CMOS工艺制造的霍尔IC,元件内部采用先进的斩波稳定技术,因而能提供准确和稳定的磁转换点。
DH482有两个输出,输出1对S极敏感,输出2对N极敏感。
霍尔效应科技名词定义中文名称:霍尔效应英文名称:Hall effect定义1:在物质中任何一点产生的感应电场强度与电流密度和磁感应强度之矢量积成正比的现象。
应用学科:电力(一级学科);通论(二级学科)定义2:通过电流的半导体在垂直电流方向的磁场作用下,在与电流和磁场垂直的方向上形成电荷积累和出现电势差的现象。
应用学科:机械工程(一级学科);工业自动化仪表与系统(二级学科);机械量测量仪表-机械量测量仪表一般名词(三级学科)百科名片霍尔效应是磁电效应的一种,这一现象是美国物理学家霍尔(A.H.Hall,1855—1938)于1879年在研究金属的导电机构时发现的。
当电流垂直于外磁场通过导体时,在导体的垂直于磁场和电流方向的两个端面之间会出现电势差,这一现象便是霍尔效应。
这个电势差也被叫做霍尔电势差。
发现霍尔效应在1879年被E.H. 霍尔发现,它定义了磁场和感应电压之间的关系,这种效应和传统的感应效果完全不同。
当电流通过一个位于磁场中的导体的时候,磁场会对导体中的电子产生一个垂直于电子运动方向上的的作用力,从而在导体的两端产生电压差。
虽然这个效应多年前就已经被大家知道并理解,但基于霍尔效应的传感器在材料工艺获得重大进展前并不实用,直到出现了高强度的恒定磁体和工作于小电压输出的信号调节电路。
根据设计和配置的不同,霍尔效应传感器可以作为开/关传感器或者线性传感器。
霍尔效应(图中电场方向应向上)解释在导体上外加与电流方向垂直的磁场,会使得导线中的电子与电洞受到不同方向的洛伦兹力而往不同方向上聚集,在聚集起来的电子与电洞之间会产生电场,此一电场将会使后来的电子电洞受到电力作用而平衡掉磁场造成的洛伦兹力,使得后来的电子电洞能顺利通过不会偏移,此称为霍尔效应。
而产生的内建电压称为霍尔电压。
方便起见,假设导体为一个长方体,长度分别为a,b,d,磁场垂直ab平面。
电流经过ad,电流I = nqv(ad),n为电荷密度。
霍尔式加速踏板原理
霍尔式加速踏板是一种基于霍尔效应的传感器,用于测量加速踏板的踏板行程或位置,以便发送信号给车辆引擎控制单元(ECU),以控制车辆的加速。
霍尔效应指的是当电流通过导体时,如果该导体处于磁场中,就会在导体的两侧产生一种电势差,该电势差与磁场的强度成正比。
根据这个原理,霍尔式加速踏板包含一个带有霍尔元件的磁场传感器。
当驾驶员踩下加速踏板时,霍尔元件会受到磁铁的作用,产生一个电场,进而产生电势差。
这个电势差与踏板的位置成正比,通过测量这个电势差的变化,ECU可以确定踏板的位置。
ECU根据踏板的位置信号来调整车辆的油门开度,从而控制
引擎的输出功率和车辆的加速度。
这样,驾驶员踩下踏板时,车辆就能够根据踏板位置来提供相应的加速。
霍尔式加速踏板相比传统的机械式加速踏板具有更高的精度和可靠性,且由于没有机械接触,因此更加耐用。
这种原理在现代汽车中得到了广泛的应用。
霍尔效应传感器一、工作原理霍尔元件是利用霍尔效应制成的磁敏元件。
若在图1所示的金属或半导体薄片两端通以电流I,并在薄片的垂直方向上施加磁感应强度为B的磁场,那么,在垂直于电流和磁场的方向上将产生电势U H(称为霍尔电动势或霍尔电压)。
这种现象称为霍尔效应。
霍尔效应的产生是由于运动电荷受到磁场中洛伦兹力作用的结果。
霍尔电势U H可用下式表示:U H=R H IB/d (V)式中 R H——霍尔常数(m3C-1)I——控制电流(A)B——磁感应强度(T)d——霍尔元件的厚度(m)令 K H=R H/d(VA-1Wb-1m2)则得到U H=K H IB由上式可知,霍尔电势的大小正比于控制电流I和磁感应强度B。
K H称为霍尔元件的灵敏度,它与元件材料的性质与几何尺寸有关。
为求得较大的灵敏度,一般采用R H大的N型半导体材料做霍尔元件,并且用溅射薄膜工艺可以使霍尔传感器的厚度d做得很小。
二、霍尔传感器的应用自从霍尔效应被发现100多年以来,它的应用经历了三个阶段:第一阶段是从霍尔效应的发现到20世纪40年代前期。
最初,由于金属材料中的电子浓度很大,而霍尔效应十分微弱,所以没有引起人们的重视。
这段时期也有人利用霍尔效应制成磁场传感器,但实用价值不大,到了1910年有人用金属铋制成霍尔元件,作为磁场传感器。
但是,由于当时未找到更合适的材料,研究处于停顿状态。
第二阶段是从20世纪40年代中期半导体技术出现之后,随着半导体材料、制造工艺和技术的应用,出现了各种半导体霍尔元件,特别是锗的采用推动了霍尔元件的发展,相继出现了采用分立霍尔元件制造的各种磁场传感器、磁罗盘、磁头、电流传感器、非接触开关、接近开关、位置、角度、速度、加速度传感器、压力变送器、无刷直流电机以及各种函数发生器、运算器等,应用十分广泛。
第三阶段是自20世纪60年代开始,随着集成电路技术的发展,出现了将霍尔半导体元件和相关的信号调节电路集成在一起的霍尔传感器。
湖南科技大学
课程设计
题目霍尔式加速度传感器
作者伍文斌
学院机电工程学院
专业测控技术与仪器
学号1403030104
指导教师杨淑仪、凌启辉
二零一七年六月二十日
目录
摘要 (3)
第一章霍尔传感器基本原理 (4)
1.1霍尔效应 (4)
1.2霍尔元件 (5)
第二章加速度传感器设计方案 (6)
2.1设计理念 (6)
2.2设计电路图 (6)
2.3电路图解析 (7)
第三章传感器结构参数 (10)
第四章参考文献
摘要
霍尔传感器是基于霍效应而将被测量转化成电动势输出的一种传感器。
霍尔元件已发展成一个品种多样的磁传感器产品簇,并且得到广泛的应用。
霍尔器件是一种磁传感器,用它可以检测磁场及其变化,可以在各种与磁有关的场合中使用。
霍尔传感器以霍尔效应为其工作原理。
本文的加速度传感器属于霍尔开关器件,当物体移动时,若使其表面带上一定磁场,当其接近传感器时,会输出高电平,通过计算一定时间内的转的圈数(如汽车轮胎的转动圈数),可以得到物体运动的加速度(如汽车行驶的加速度)。
霍尔开关器件无触点、无磨损、输出波形清晰、无抖动、无回跳、位置重复精度高。
取用了各种补偿和保护措施的霍尔器件的工作温度范围宽等特点,因此应用广泛。
关键字:霍尔效应;霍尔开关器件;转动;加速度
第一章霍尔传感器基本原理
1.1霍尔效应
所谓霍尔效应,是指磁场作用于载流金属导体、半导体中的载流子时,产生横向电位差的物理现象。
金属的霍尔效应是1879年被美国物理学家霍尔发现的。
当电流通过金属箔片时,若在垂直于电流的方向施加磁场,则金属箔片两侧面会出现横向电位差。
半导体中的霍尔效应比金属箔片中更为明显,而铁磁金属在居里温度以下将呈现极强的霍尔效应。
利用霍尔效应可以设计制成多种传感器。
霍尔电位差UH的基本关系为
UH=RHIB/d (18)
RH=1/nq(金属)(19)
式中RH——霍尔系数:
n——载流子浓度或自由电子浓度;
q——电子电量;
I——通过的电流;
B——垂直于I的磁感应强度;
d——导体的厚度。
应该指出:霍尔效应对于一切导电体(导体、金属半导体)都成立。
图1 霍尔效应原理图
1.2霍尔元件
霍尔元件是应用霍尔效应的半导体。
一般用于电机中测定转子转速,如录象机的磁鼓,电脑中的散热风扇等;是一种基于霍尔效应的磁传感器,已发展成一个品种多样的磁传感器产品族,并已得到广泛的应用。
霍尔元件具有许多优点,它们的结构牢固,体积小,重量轻,寿命长,安装方便,功耗小,频率高(可达1MHZ),耐震动,不怕灰尘、油污、水汽及盐雾等的污染或腐蚀。
图2 霍尔元件示意图
1.3霍尔元件基本电路
第二章 加速度传感器设计方案
2.1设计理念
当有磁场靠近霍尔元件时,霍尔元件将产生电压,撤去磁场,又将恢复低电平。
当汽车在马路上行驶时,其轮胎会一起转动,只要在转轴的圆周上粘上一粒磁钢,让霍尔开关靠近磁钢,就有信号输出,转轴旋转时,就会不断地产生脉冲信号输出。
如果在圆周上粘上多粒磁钢,可以实现旋转一周,获得多个脉冲输出。
在粘磁钢时要注意,霍尔传感器对磁场方向敏感,粘之前可以先手动接近一下传感器,如果没有信号输出,可以换一个方向再试。
轮胎转动时,霍尔元件将产生脉冲,由此可得到固定时间内汽车轮胎的转动次数N 和转速n,汽车行驶速度nr r v πω2==,以及汽车加速度t v a ∆∆=/。
为提高测量的灵敏度,在轮胎上等距离的安装多个永久磁铁。
2.2设计电路图
其中霍尔元件用其等效电路代替(其原理见2.3)
图3 电路图
2.3电路图解析
a霍尔元件的零位误差补偿电路
所谓零位误差,就是指在无外加磁场或无控制电流的情况下,霍尔元件产生输出电压并由此而产生的误差称为零位误差。
它主要表现为以下几种具体形式:(1)不等位电动势(2)寄生直流电势(3)感应零电势(4)自激场零电势。
在实验中发现,对于霍尔元件来说,不等位电动势与不等位电阻是一致的,因此,可以将霍尔元件等效为一个电桥,并通过调整其电阻的方法来进行补偿图4为霍尔元件的结构,其中A、B为控制电极,C、D为霍尔电极,在极间分布的电阻用R1、R2、R3、R4表示,等效电路如图5所示。
在理想情况下,R1=R2=R3=R4,即可取得零位电动势为零(或零位电阻为零),从而消除不等位电动势。
实际上,若存在零位电动势,则说明此4个电阻不完全相等即电桥不平衡。
为使其达到平衡,可在阻值较大的桥臂上并联可调电阻RP或在两个臂上同时并联电阻RP和R。
理论上可采用三种调整方案,第一种方案为单桥臂挂可调电阻,如图6所示;第二和第三种方案为双桥臂挂可调电阻,如图7、图8所示。
本次设计以图8所示电路作为霍尔元件的补偿电路,不但电路简单,而且测量精度高、容易操作,可作为霍尔元件补偿电路的首选。
b霍尔元件的温度补偿电路
霍尔元件受温度的影响较大,必须进行温度补偿,常见的温度补偿有(1)采用恒流源供
R的阻值(3)采用恒压源和输入回路串联电和输入回路并联电阻(2)合理选取负载电阻L
电阻(4)采用温度补偿元件(5)桥路补偿电路。
本次设计采用恒流源供电和输入回路并联电阻进行温度补偿。
图9 补偿电路
C放大电路
本次设计使用UA741集成放大器进行放大。
图10 放大电路
第三章传感器结构参数
图11
v .. . ..
第四章参考文献
[1]唐文彦.传感器.第5版[M].北京:机械工业出版社.2014,1:83-87
[2]李醒飞.测控电路.第5版[M].北京:机械工业出版社.2006,1.
[3]徐恕宏.传感器原理及其设计基础[M].北京:机械工业出版社.1989.
[4]李科杰.新编传感器技术手册[M].国防工业出版社.2002,1.
[5]刘迎春,叶湘滨.传感器原理设计与应用[M].国防科技大学出版社.2004.
[6]丁镇生.传感器及传感器技术应用[M].电子工业出版社.1997,10.
. . . 资料. .。