2013高考导航 数学 第十章第1课时
- 格式:ppt
- 大小:1.40 MB
- 文档页数:47
学案50 总体分布及特征数的估计导学目标:1.了解分布的意义和作用,会列频率分布表,会画频率分布直方图、频率折线图、茎叶图,理解它们各自的特点.2.理解样本数据标准差的意义和作用,会计算数据标准差.3.能从样本数据中提取基本的数字特征(如平均数、标准差),并给出合理的解释.4.会用样本的频率分布估计总体分布,会用样本的基本数字特征估计总体的基本数字特征,理解用样本估计总体的思想.5.会用随机抽样的基本方法和样本估计总体的思想解决一些简单的实际问题.自主梳理1.在频率分布直方图中,纵轴表示____________________,数据落在各小组内的频率用________________表示,所有长方形面积之和________.2.作频率分布直方图的步骤(1)求极差(即一组数据中最大值与最小值的差);(2)决定组距与组数;(3)将数据分组;(4)列频率分布表;(5)画频率分布直方图.3.频率分布折线图和总体密度曲线(1)频率分布折线图:将频率分布直方图中各相邻的矩形的上底边的________顺次连结起来,就得频率分布折线图,简称频率折线图.(2)总体密度曲线:如果将样本容量取得足够大,分组的组距取得足够小,那么相应的频率折线图将趋于一条光滑曲线,我们称这条光滑曲线为总体分布的密度曲线.4.当样本数据较少时,茎叶图表示数据的效果较好,一是统计图上没有原始数据丢失,二是方便记录与表示,但当样本数据很多时,茎叶图的效果就不是很好了.5.众数、中位数、平均数(1)在一组数据中,出现次数________的数据叫做这组数据的众数.(2)将一组数据按大小依次排列,把处在________位置的一个数据(或中间两个数据的平均数)叫做这组数据的中位数.(3)如果有n个数a1,a2,……,a n,那么a=____________________叫做这n个数的平均数.6.标准差和方差(1)标准差是样本数据到平均数的一种__________.(2)标准差:s=_____________________________________________________________________________________________________________________________________.(3)方差:s2=_________________________________________________________________________________________________________________________________________(x n是样本数据,n是样本容量,x是样本平均数).自我检测1.在抽查产品的尺寸过程中,将其尺寸分成若干组,[a,b)是其中的一组,抽查出的个体在该组上的频率为m,该组在频率分布直方图的高为h,则|a-b|=________.2.(2010·福建改编)若某校高一年级8个班参加合唱比赛的得分如茎叶图所示,则这组数据的中位数和平均数分别是________和________.3.(2010·滨州一模)在样本的频率分布直方图中,共有11个小长方形,若中间一个小长方形的面积等于其他10个小长方形的面积和的14,且样本容量为160,则中间一组的频数为________.4.(2010·山东改编)样本中共有五个个体,其值分别为a,0,1,2,3.若该样本的平均值为1,则样本方差为______________.5.(2011·浙江)某中学为了解学生数学课程的学习情况,在3 000名学生中随机抽取200名,并统计这200名学生的某次数学考试成绩,得到了样本的频率分布直方图(如图).根据频率分布直方图推测,这3 000名学生在该次数学考试中成绩小于60分的学生数是________.探究点一 频率分布直方图例1 (2010·福州调研)如图是某市有关部门根据该市干部的月收入情况,作抽样调查后画出的样本频率分布直方图,已知图中第一组的频数为4 000,请根据该图提供的信息解答下列问题:(图中每组包括左端点,不包括右端点,如第一组表示收入在[1 000,1 500)).(1)求样本中月收入在[2 500,3 500)的人数;(2)为了分析干部的收入与年龄、职业等方面的关系,必须从样本的各组中按月收入再用分层抽样方法抽出100人作进一步分析,则月收入在[1 500,2 000)的这段应抽多少人?(3)试估计样本数据的中位数.变式迁移1 为了解某校高三学生的视力情况,随机地抽查了该校100名高三学生的视力情况,得到频率分布直方图如图,由于不慎将部分数据丢失,但知道前4组频数成等比数列,后6组的频数成等差数列,设最大频率为a,视力在4.6到5.0之间的学生数为b,则a,b值分别为________和________.探究点二用样本数字特征估计总体数字特征例2甲、乙、丙三名射箭运动员在某次测试中各射箭20次,三人的测试成绩如表所示:s1、s2、s3分别表示甲、乙、丙三名运动员这次测试成绩的标准差,则有s1,s2,s3的大小关系为______________,三名运动员中________成绩最稳定.变式迁移2 甲、乙两名射击运动员参加某大型运动会的预选赛,他们分别射击了5次,成绩如下表(单位:环):如果甲、乙两人中只有1人入选,则入选的最佳人选应是________.探究点三用茎叶图分析数据例3随机抽取某中学甲、乙两班各10名同学,测量他们的身高(单位:cm),获得身高数据的茎叶图如图.(1)根据茎叶图判断哪个班的平均身高较高;(2)计算甲班的样本方差;(3)现从乙班这10名同学中随机抽取两名身高不低于173 cm的同学,求身高为176 cm的同学被抽中的概率.变式迁移3 (2010·天津汉沽模拟)某班甲、乙两学生的高考备考成绩如下:甲:512 554 528 549 536 556 534 541 522 538乙:515 558 521 543 532 559 536 548 527 531(1)用茎叶图表示两学生的成绩;(2)分别求两学生成绩的中位数和平均分.1.几种表示频率分布的方法的优点与不足:(1)频率分布表在数量表示上比较确切,但不够直观、形象,分析数据分布的总体态势不太方便.(2)频率分布直方图能够很容易地表示大量数据,非常直观地表明分布的形状,使我们能够看到在分布表中看不清楚的数据模式.但从直方图本身得不出原始的数据内容,也就是说,把数据表示成直方图后,原有的具体数据信息就被抹掉了.(3)频率分布折线图的优点是它反映了数据的变化趋势,如果样本容量不断增大,分组的组距不断缩小,那么折线图就趋向于总体分布的密度曲线.(4)用茎叶图优点是原有信息不会抹掉,能够展示数据的分布情况,但当样本数据较多或数据位数较多时,茎叶图就显得不太方便了.2.标准差、方差描述了一组数据围绕平均数波动的大小.标准差、方差越大,数据的离散程度越大,标准差、方差越小,数据的离散程度越小,因为方差与原始数据的单位不同,且平方后可能夸大了偏差的程度,所以虽然方差与标准差在刻画样本数据的分散程度上是一样的,但在解决实际问题时,一般多采用标准差.(满分:90分)一、填空题(每小题6分,共48分)1.(2010·陕西改编)如图,样本A和B分别取自两个不同的总体,它们的样本平均数分别为x A和x B,样本标准差分别为s A和s B,则x A________x B,s A________s B(填大小关系).2.(2010·宁波期末)10名工人某天生产同一种零件,生产的件数分别是15,17,14,10,15,17,17,16,14,12,设其平均数为a,中位数为b,众数为c,则a=________,b=________,c=________.3.(2010·浙江金华十校3月模拟)为了了解某校高三学生的视力情况,随机地抽查了该校100名高三学生的视力情况,得到频率分布直方图如图,由于不慎将部分数据丢失,但知道后五组频数和为62,设视力在4.6~4.8之间的学生数为a,最大频率为0.32,则a的值为________.4.下图是某学校举行的运动会上,七位评委为某体操项目打出的分数的茎叶统计图,去掉一个最高分和一个最低分后,所剩数据的平均数和方差分别为______和_______________.|7 8 99 4 4 6 4 7 35.(2011·湖北)有一个容量为200的样本,其频率分布直方图如图所示.根据样本的频率分布直方图估计,样本数据落在区间[10,12)内的频数为________.6.(2010·天津)甲、乙两人在10天中每天加工零件的个数用茎叶图表示如下图,中间一列的数字表示零件个数的十位数,两边的数字表示零件个数的个位数,则这10天甲、乙两人日加工零件的平均数分别为______和______________________________________________.7.(2010·福建)将容量为n的样本中的数据分成6组,绘制频率分布直方图,若第一组至第六组数据的频率之比为2∶3∶4∶6∶4∶1,且前三组数据的频数之和等于27,则n=________.8.已知总体的各个体的值由小到大依次为2,3,3,7,a,b,12,13.7,18.3,20,且总体的中位数为10.5,若要使该总体的方差最小,则a、b的取值分别是__________.二、解答题(共42分)9.(14分)甲、乙两人参加某体育项目训练,近期的五次测试成绩得分情况如图所示.(1)分别求出两人得分的平均数与方差;(2)根据图和上面算得的结果,对两人的训练成绩作出评价.10.(14分)(2010·湖北)为了了解一个小水库中养殖的鱼的有关情况,从这个水库中多个不同位置捕捞出100条鱼,称得每条鱼的质量(单位:kg),并将所得数据分组,画出频率分布直方图(如图所示).(1)在下面表格中填写相应的频率;1.15,1.30中的概率为多少;(2)估计数据落在[)(3)将上面捕捞的100条鱼分别作一记号后再放回水库.几天后再从水库的多处不同位置捕捞出120条鱼,其中带有记号的鱼有6条.请根据这一情况来估计该水库中鱼的总条数.11.(14分)(2010·安徽)某市2010年4月1日-4月30日对空气污染指数的监测数据如下(主要污染物为可吸入颗粒物):61,76,70,56,81,91,92,91,75,81,88,67,101,103,95,91,77,86,81,83,82,82,64,79,86,85,75,71,49,45.(1)完成频率分布表.(2)作出频率分布直方图.(3)根据国家标准,污染指数在0~50之间时,空气质量为优;在51~100之间时,为良;在101~150之间时,为轻微污染;在151~200之间时,为轻度污染.请你依据所给数据和上述标准,对该市的空气质量给出一个简短评价.学案50 总体分布及特征数的估计答案自主梳理1.频率与组距的比值 小长方形的面积 等于1 3.(1)中点 5.(1)最多 (2)中间(3)a 1+a 2+…+a n n 6.(1)平均距离 (2)1n [x 1-x 2+x 2-x 2+…+x n -x 2] (3)1n[(x 1-x )2+(x 2-x )2+…+(x n -x )2]自我检测1.mh解析 在频率分布直方图中横轴是组距,高为频率组距, 所以|a -b |=mh. 2.91.5 91.5解析 将这组数据从小到大排列,得87,89,90,91,92,93,94,96.故平均数x =87+89+90+91+92+93+94+968=91.5, 中位数为91+922=91.5. 3.32解析 ∵中间一个占总面积的15,即15=x 160, ∴x =32.4.2解析 由样本平均值为1,知15(a +0+1+2+3)=1,故a =-1. ∴样本方差s 2=15[(-1-1)2+(0-1)2+(1-1)2+(2-1)2+(3-1)2]=15(4+1+0+1+4)=2. 5.600解析 由直方图易得数学考试中成绩小于60分的频率为(0.002+0.006+0.012)×10=0.2,所以所求分数小于60分的学生数为3 000×0.2=600.课堂活动区例1 解题导引 (1)解关于图形信息题的关键是正确理解各种统计图表中各个量的含义,灵活运用这些信息和数据去发现结论.(2)在频率分布直方图中,最高矩形的中点对应值是众数;而中位数的左右两边的直方图面积相等;平均数是直方图的“重心”.解 (1)∵月收入在[1 000,1 500)的概率为0.000 8×500=0.4,且有4 000人,∴样本的容量n =4 0000.4=10 000;月收入在[1 500,2 000)的频率为0.000 4×500=0.2;月收入在[2 000,2 500)的频率为0.000 3×500=0.15;月收入在[3 500,4 000)的频率为0.000 1×500=0.05.∴月收入在[2 500,3 500)的频率为1-(0.4+0.2+0.15+0.05)=0.2.∴样本中月收入在[2 500,3 500)的人数为0.2×10 000=2 000.(2)∵月收入在[1 500,2 000)的人数为0.2×10 000=2 000,∴再从10 000人中用分层抽样方法抽出100人,则月收入在[1 500,2 000)的这段应抽取100×2 00010 000=20(人). (3)由(1)知月收入在[1 000,2 000)的频率为0.4+0.2=0.6>0.5,∴样本数据的中位数为1 500+0.5-0.40.000 4=1 500+250=1 750(元). 变式迁移1 0.27 78解析 由频率分布直方图知组距为0.1.4.3~4.4间的频数为100×0.1×0.1=1.4.4~4.5间的频数为100×0.1×0.3=3.又前4组的频数成等比数列,∴公比为3.从而4.6~4.7间的频数最大,且为1×33=27.∴a =0.27.根据后6组频数成等差数列,且共有100-13=87(人).设公差为d ,则6×27+6×52d =87. ∴d =-5,从而b =4×27+4×32×(-5)=78. 例2 s 2>s 1>s 3 丙解析 由已知可得甲、乙、丙的平均成绩均为8.5.方法一 ∵s 21=1n [(x 1-x )2+(x 2-x )2+…+(x n -x )2],∴s 1=120[5×7-8.52+5×8-8.52+5×9-8.52+5×10-8.52] =2520.同理s 2=2920,s 3=2120,∴s 2>s 1>s 3. 丙成绩最稳定.方法二 ∵s 21=1n (x 21+x 22+…+x 2n )-x 2,∴s 21=120(5×72+5×82+5×92+5×102)-8.52 =73.5-72.25=1.25=54, ∴s 1=2520.同理s 2=2920,s 3=2120,∴s 2>s 1>s 3.丙成绩最稳定.变式迁移2 甲解析 x 甲=x 乙=9,s 2甲=15[(9-10)2+(9-8)2+(9-9)2+(9-9)2+(9-9)2]=25,s 2乙=15[(9-10)2+(9-10)2+(9-7)2+(9-9)2+(9-9)2]=65>s 2甲,故甲更稳定.例3 解题导引 茎叶图在样本数据较少,较为集中且位数不多时比较适用.由于它较好地保留了原始数据,所以可以帮助我们分析样本数据的大致频率分布,还可以用来分析样本数据的一些数字特征.但当样本数据较多时,茎叶图就显得不太方便了.因为数据较多时,枝叶就会很长,需要占据较多的空间.解 (1)由茎叶图可知:甲班身高集中于160~179之间,而乙班身高集中于170~180之间.因此乙班平均身高高于甲班.(2)x =158+162+163+168+168+170+171+179+179+18210=170, 甲班的样本方差为110[(158-170)2+(162-170)2+(163-170)2+(168-170)2+(168-170)2+(170-170)2+(171-170)2+(179-170)2+(179-170)2+(182-170)2]=57.2.(3)设身高为176 cm 的同学被抽中的事件为A ,从乙班10名同学中抽中两名身高不低于173 cm 的同学有:(181,173),(181,176),(181,178),(181,179),(179,173),(179,176),(179,178),(178,173),(178,176),(176,173)共10个基本事件,而事件A 含有4个基本事件,∴P (A )=410=25. 变式迁移3 解 (1)两学生成绩的茎叶图如图所示.(2)将甲、乙两学生的成绩从小到大排列为:甲:512 522 528 534 536 538 541 549 554 556乙:515 521 527 531 532 536 543 548 558 559从以上排列可知甲学生成绩的中位数为536+5382=537. 乙学生成绩的中位数为532+5362=534. 甲学生成绩的平均分为500+12+22+28+34+36+38+41+49+54+5610=537, 乙学生成绩的平均分为500+15+21+27+31+32+36+43+48+58+5910=537. 课后练习区1.< >解析 A 中的数据都不大于B 中的数据,所以x A <x B ,但A 中的数据比B 中的数据波动幅度大,所以s A >s B .2.14.7 15 173.54解析 前两组中的频数为100×(0.05+0.11)=16.∵后五组频数和为62,∴前三组为38.∴第三组为22.又最大频率为0.32的最大频数为0.32×100=32,∴a =22+32=54.4.85 1.6解析 去掉最高分93,最低分79,平均数为15(84+84+86+84+87)=85, 方差s 2=15[(84-85)2+(84-85)2+(86-85)2+(84-85)2+(87-85)2]=85=1.6. 5.36解析 由0.02+0.05+0.15+0.19=0.41,∴落在区间[2,10]内的频率为0.41×2=0.82.∴落在区间[10,12)内的频率为1-0.82=0.18.∴样本数据落在区间[10,12)内的频数为0.18×200=36.6.24 23解析 x 甲=110(10×2+20×5+30×3+17+6+7)=24, x 乙=110(10×3+20×4+30×3+17+11+2)=23. 7.60解析 ∵第一组至第六组数据的频率之比为2∶3∶4∶6∶4∶1,∴前三组频数为2+3+420·n =27,故n =60. 8.10.5,10.5解析 ∵总体的个体数是10,且中位数是10.5,∴a +b 2=10.5,即a +b =21.∴总体的平均数是10.要使总体的方差最小,只要(a -10)2+(b -10)2最小,即(a -10)2+(b -10)2≥2⎝ ⎛⎭⎪⎫a +b -2022=12. 当且仅当a =b 时取“=”,∴a =b =10.5.9.解 (1)甲、乙两人五次测试的成绩分别为:甲 10分 13分 12分 14分 16分乙 13分 14分 12分 12分 14分甲、乙两人的平均成绩x 甲=x 乙,都是13分,(6分)s 2甲=15[(10-13)2+(13-13)2+(12-13)2+(14-13)2+(16-13)2]=4, s 2乙=15[(13-13)2+(14-13)2+(12-13)2+(12-13)2+(14-13)2]=0.8.(12分) (2)由s 2甲>s 2乙,可知乙的成绩较稳定. 从折线图看,甲的成绩基本上呈上升状态,而乙的成绩在平均线上下波动,可知甲的成绩在不断提高,而乙的成绩则无明显提高.(14分)10.解 (1)根据频率分布直方图可知,频率=组距×(频率/组距),故可得下表:(6分) (2)因为0.30+0.15+0.02=0.47,所以数据落在[1.15,1.30)中的概率约为0.47.(10分)(3)因为120×1006=2 000, 所以水库中鱼的总条数约为2 000.(14分)11.解 (1)频率分布表:(6分)(2)频率分布直方图如图所示.(10分)(3)答对下述两条中的一条即可:①该市有一个月中空气污染指数有2天处于优的水平,占当月天数的115;有26天处于良的水平,占当月天数的1315;处于优或良的天数为28,占当月天数的1415.说明该市空气质量基本良好. ②轻微污染有2天,占当月天数的115;污染指数在80以上的接近轻微污染的天数15,加上处于轻微污染的天数2,占当月天数的1730,超过50%;说明该市空气质量有待进一步改善.(14分)。
学案54 几何概型导学目标: 了解几何概型的意义.自主梳理 1.几何概型设D 是一个可度量的区域,每个基本事件可以视为从区域D 内随机地取一点,区域D 内的每一点被取到的机会都一样;随机事件A 的发生可以视为恰好取到区域D 内的某个指定区域d 中的点.这时,事件A 发生的概率与d 的测度(长度、面积、体积等)成正比,与d 的形状和位置无关,则称这样的概率模型为几何概型.2.几何概型中,事件A 的概率计算公式:P (A )=d 的测度D 的测度.3.古典概型与几何概型的区别(1)相同点:基本事件发生的可能性都是________; (2)不同点:古典概型的基本事件是有限个,是可数的;几何概型的基本事件是________,是不可数的.自我检测1.在长为12cm 的线段AB 上任取一点M ,并且以线段AM 为边作正方形,则这个正方形的面积介于36cm 2与81cm 2之间的概率为________.2.(2009·山东改编)在区间⎣⎡⎦⎤-π2,π2上随机取一个数x ,cos x 的值介于0到12之间的概率为________.3.如图所示,A 是圆上一定点,在圆上其他位置任取一点A ′,连结AA ′,得到一条弦,则此弦的长度小于或等于半径长度的概率为________.4.(2010·湖南)在区间[-1,2]上随机取一个数x ,则|x |≤1的概率为________. 5.(2009·福建)点A 为周长等于3的圆周上的一个定点.若在该圆周上随机取一点B ,则劣弧AB 的长度小于1的概率为________.探究点一与长度有关的几何概型例1国家安全机关监听录音机记录了两个间谍的谈话,发现30min 长的磁带上,从开始30s 处起,有10s 长的一段内容包含两间谍犯罪的信息.后来发现,这段谈话的一部分被某工作人员擦掉了,该工作人员声称他完全是无意中按错了键,使从此处起往后的所有内容都被擦掉了.那么由于按错了键使含有犯罪的内容的谈话被部分或全部擦掉的概率有多大?变式迁移1在半径为1的圆的一条直径上任取一点,过这个点作垂直于直径的弦,则弦长超过圆内接等边三角形边长的概率为________.探究点二与角度有关的几何概型例2如图所示,在等腰Rt△ABC中,过直角顶点C在∠ACB内部作一条射线CM,与线段AB交于点M,求AM<AC的概率.变式迁移2若将例2题目改为:“在等腰Rt△ACB中,在斜边AB上任取一点M,求AM 的长小于AC的长的概率”,答案还一样吗?探究点三与面积有关的几何概型例3两人约定在20∶00到21∶00之间相见,并且先到者必须等迟到者40分钟方可离去,如果两人出发是各自独立的,在20∶00至21∶00各时刻相见的可能性是相等的,求两人在约定时间内相见的概率.变式迁移3甲、乙两艘轮船驶向一个不能同时停泊两艘轮船的码头,它们在一昼夜内任何时刻到达是等可能的.如果甲船和乙船的停泊时间都是4小时,求它们中的任何一条船不需要等待码头空出的概率.分类讨论与数形结合思想例(14分)已知函数f (x )=x 2-2ax +b 2,a ,b ∈R .(1)若a 从集合{0,1,2,3}中任取一个元素,b 从集合{0,1,2}中任取一个元素,求方程f (x )=0有两个不相等实根的概率;(2)若a 从区间[0,2]中任取一个数,b 从区间[0,3]中任取一个数,求方程f (x )=0没有实根的概率.【答题模板】解(1)∵a 取集合{0,1,2,3}中任一个元素,b 取集合{0,1,2}中任一个元素,∴a ,b 的取值的情况有(0,0),(0,1),(0,2),(1,0),(1,1),(1,2),(2,0),(2,1),(2,2),(3,0),(3,1),(3,2),其中第一个数表示a 的取值,第二个数表示b 的取值,即基本事件总数为12.[3分]设“方程f (x )=0有两个不相等的实根”为事件A ,当a ≥0,b ≥0时,方程f (x )=0有两个不相等实根的充要条件为a >b .当a >b 时,a ,b 取值的情况有(1,0),(2,0),(2,1),(3,0),(3,1),(3,2),即A 包含的基本事件数为6,∴方程f (x )=0有两个不相等实根的概率为P (A )=612=12.[7分](2)∵a 从区间[0,2]中任取一个数,b 从区间[0,3]中任取一个数,则试验的全部结果构成区域Ω={(a ,b )|0≤a ≤2,0≤b ≤3},这是一个矩形区域,其面积S Ω=2×3=6.[9分]设“方程f (x )=0没有实根”为事件B ,则事件B 所构成的区域为M ={(a ,b )|0≤a ≤2,0≤b ≤3,a <b },即图中阴影部分的梯形,其面积S M =6-12×2×2=4.[12分]由几何概型的概率计算公式可得方程f (x )=0没有实根的概率为P (B )=S M S Ω=46=23.[14分]【突破思维障碍】古典概型和几何概型的区别在于试验的全部结果是否有限,因此到底选用哪一种模型,关键是对试验的确认和分析.第(1)问关键是列举不重不漏隐含了分类讨论思想.第(2)问是几何概型问题,解决此问题的关键是将已知的两个条件转化为线性约束条件,从而转化成平面区域中的面积型几何概型问题,隐含了数形结合思想.【易错点剖析】1.计算古典概型的概率时,列举基本事件应不重不漏.2.计算几何概型的概率时,区域的几何度量要准确无误.1.几何概型:若一个试验具有两个特征:①每次试验的结果是无限多个,且全体结果可用一个有度量的几何区域来表示;②每次试验的各种结果是等可能的.那么这样的试验称为几何概型.2.由概率的几何定义可知,在几何概型中,“等可能”一词应理解为对应于每个试验结果的点落入某区域内的可能性大小仅与该区域的几何度量成正比,而与该区域的位置与形状无关.3.几何概型的概率公式:设几何概型的基本事件空间可表示成可度量的区域Ω,事件A 所对应的区域用A 表示(A ⊆Ω),则P (A )=A 的度量Ω的度量.(满分:90分)一、填空题(每小题6分,共48分) 1.(2009·辽宁)ABCD 为长方形,AB =2,BC =1,O 为AB 的中点,在长方形ABCD 内随机取一点,取到的点到O 的距离大于1的概率为________.2.(2010·天津和平区一模)在面积为S 的△ABC 的边AB 上任取一点P ,则△PBC 的面积大于S4的概率是__________________________________________________________________.3.(2010·山东临沂一中期末)已知正三棱锥S —ABC 的底面边长为4,高为3,在正三棱锥内任取一点P ,使得V P —ABC <12V S —ABC 的概率为________.4.已知正方体ABCD —A 1B 1C 1D 1内有一个内切球O ,则在正方体ABCD —A 1B 1C 1D 1内任取点M ,点M 在球O 内的概率是________.5.已知函数f (x )=x 2+bx +c ,其中0≤b ≤4,0≤c ≤4.记函数f (x )满足⎩⎪⎨⎪⎧f (2)≤12f (-1)≤3的事件为A ,则事件A 的概率为________.6.(2010·青岛一模)从集合{(x ,y )|x 2+y 2≤4,x ∈R ,y ∈R }内任选一个元素(x ,y ),则x ,y 满足x +y ≥2的概率为________.7.如图所示,半径为10cm 的圆形纸板内有一个相同圆心的半径为1cm 的小圆.现将半径为1cm 的一枚硬币抛到此纸板上,使硬币整体随机落在纸板内,则硬币落下后与小圆无公共点的概率为________.8.(2010·济南模拟)在可行域内任取一点,规则如流程图所示,则能输出数对(x ,y )的概率是________.二、解答题(共42分)9.(14分)已知等腰Rt△ABC中,∠C=90°.(1)在线段BC上任取一点M,求使∠CAM<30°的概率;(2)在∠CAB内任作射线AM,求使∠CAM<30°的概率.10.(14分)甲、乙两艘轮船都要停靠在同一个泊位,它们可能在一昼夜的任意时刻到达.设甲乙两艘轮船停靠泊位的时间分别是4小时和6小时,求有一艘轮船停靠泊位时必须等待一段时间的概率.11.(14分)已知函数f(x)=-x2+ax-b.(1)若a,b都是从0,1,2,3,4五个数中任取的一个数,求上述函数有零点的概率;(2)若a,b都是从区间[0,4]任取的一个数,求f(1)>0成立时的概率.学案54 几何概型答案自主梳理3.(1)相等的 (2)无限个 自我检测 1.14 解析∵AM 2∈[36,81],∴AM ∈[6,9],∴P =9-612=312=14.2.13解析在区间[-π2,π2]内,0<cos x <12⇔x ∈⎝⎛⎭⎫-π2,-π3∪⎝⎛⎭⎫π3,π2,其区间长度为π3,又已知区间⎣⎡⎦⎤-π2,π2的长度为π.由几何概型知P =π3π=13. 3.13解析当∠A ′OA =π3时,AA ′=OA ,∴P =23π2π=13.4.23解析由|x |≤1,得-1≤x ≤1.由几何概型的概率求法知,所求的概率 P =区间[-1,1]的长度区间[-1,2]的长度=23.5.23解析圆周上使弧AM 的长度为1的点M 有两个,设为M 1,M 2,则过A 的圆弧M 1M 2的长度为2,B 点落在优弧M 1M 2上就能使劣弧AB 的长度小于1,所以劣弧AB 的长度小于1的概率为23.课堂活动区例1解题导引解决概率问题先判断概型,本题属于几何概型,满足两个条件:基本事件的无限性和每个基本事件发生的等可能性,需要抓住它的本质特征,即与长度有关. 解包含两个间谍谈话录音的部分在30s 和40s 之间,当按错键的时刻在这段时间之内时,部分被擦掉,当按错键的时刻在0到30s 之间时全部被擦掉,即在0到40s 之间,即0到23min之间的时间段内按错键时含有犯罪内容的谈话被部分或全部擦掉,而0到30min 之间的时间段内任一时刻按错键的可能性是相等的,所以按错键使含有犯罪内容的谈话被部分或全部擦掉的概率只与从开始到谈话内容结束的时间段长度有关,符合几何概型的条件.记A ={按错键使含有犯罪内容的谈话被部分或全部擦掉},A 的发生就是在0到23min 时间段内按错键.P (A )=2330=145.变式迁移112解析记“弦长超过圆内接等边三角形的边长”为事件A ,如图所示,不妨在过等边三角形BCD 的顶点B 的直径BE 上任取一点F 作垂直于直径的弦,当弦为CD 时,就是等边三角形的边长,弦长大于CD 的充要条件是圆心O 到弦的距离小于OF ,由几何概型的概率公式得P (A )=12×22=12.例2解题导引如果试验的结果所构成的区域的几何度量可用角度来表示,则其概率公式为P (A )=构成事件A 的角度试验的全部结果所构成区域的角度. 解在AB 上取AC ′=AC ,连结CC ′,则∠ACC ′=180°-45°2=67.5°.设A ={在∠ACB 内部作出一条射线CM ,与线段AB 交于点M ,AM <AC },则μΩ=90°,μA =67.5°,P (A )=μA μΩ=67.5°90°=34.变式迁移2解不一样,这时M 点可取遍AC ′(长度与AC 相等)上的点, 故此事件的概率应为AC ′长度AB 长度=22.例3解题导引解决此题的关键是将已知的两个条件转化为线性约束条件,从而转化成平面区域中与面积有关的几何概型问题.对于几何概型的应用题,关键是构造出随机事件A 对应的几何图形,利用几何图形的度量来求随机事件的概率,根据实际问题的具体情况,合理设置参数,建立适当的坐标系,在此基础上将试验的每一个结果一一对应于该坐标系的一点,便可构造出度量区域. 解设两人分别于x 时和y 时到达约见地点,要使两人能在约定的时间范围内相见.当且仅当|x -y |≤23.两人在约定时间内到达约见地点的所有可能结果可用图中的单位正方形内(包括边界)的点来表示,两人在约定时间内相见的所有可能结果可用图中的阴影部分(包括边界)的点来表示.因此阴影部分与单位正方形的面积比就反映了两人在约定时间范围内相遇的可能性的大小,也就是所求的概率,即P =S 阴影部分S 单位正方形=1-⎝⎛⎭⎫13212=89.变式迁移3解设甲、乙两船到达时间分别为x 、y , 则0≤x ≤24,0≤y ≤24且y -x ≥4或y -x ≤-4. 作出区域⎩⎪⎨⎪⎧0≤x ≤24,0≤y ≤24,y -x ≥4或y -x ≤-4.设“两船无需等待码头空出”为事件A , 则P (A )=S 阴影部分S 正方形=2×12×20×2024×24=2536.课后练习区1.1-π4解析当以O 为圆心,1为半径作圆,则圆与长方形的公共区域内的点满足到点O 的距离小于或等于1,故所求事件的概率为P (A )=μA μΩ=S 长方形-S 半圆S 长方形=1-π4.2.34解析由于△ABC 、△PBC 有公共底边BC ,所以只需P 位于线段BA 靠近B 的四分之一分点E 与A 之间,即构成一个几何概型,∴所求的概率为|AE ||AB |=34.3.78 解析当P 在三棱锥的中截面及下底面构成的正三棱台内时符合要求,由几何概型知,P =1-18=78.4.π6解析设正方体棱长为a ,则正方体的体积为a 3,内切球的体积为43π⎝⎛⎭⎫a 23=16πa 3,故M 在球O 内的概率为16πa 3a 3=π6.5.58 解析满足0≤b ≤4,0≤c ≤4的区域的面积为4×4=16,由⎩⎨⎧f (2)≤12f (-1)≤3,得⎩⎪⎨⎪⎧2b +c ≤8-b +c ≤2,其表示的区域如图中阴影部分所示,其面积为12×(2+4)×2+12×2×4=10,故事件A 的概率为1016=58.6.π-24π解析即图中弓形面积占圆面积的比例,属面积型几何概型:π-24π.7.7781解析由题意知,硬币的中心应落在距圆心2~9cm 的圆环上,圆环的面积为π×92-π×22=77π,故所求概率为77π81π=7781.8.π4解析根据题意易知输出数对(x ,y )的概率即为满足x 2+y 2≤12的平面区域与不等式组⎩⎪⎨⎪⎧-1≤x +y ≤1,-1≤x -y ≤1所表示的平面区域面积的比,即P (A )=π×122=π4.9.解(1)设CM =x ,则0<x <a (不妨设BC =a ). 若∠CAM <30°,则0<x <33a , 故∠CAM <30°的概率为P (A )=区间⎝⎛⎭⎫0,33a 的角度区间(0,a )的角度=33.(7分)(2)设∠CAM =θ,则0°<θ<45°. 若∠CAM <30°,则0°<θ<30°, 故∠CAM <30°的概率为P (B )=区间(0°,30°)的长度区间(0°,45°)的长度=23.(14分)10.解设事件A ={有一艘轮船停靠泊位时必须等待一段时间},以x 轴和y 轴分别表示甲、乙两船到达泊位的时间,则点(x ,y )的所有可能结果是边长为24的正方形区域,如右图所示,由已知得事件A 发生的条件是⎩⎪⎨⎪⎧x +4≥y ,y +6≥x ,0≤x ≤24,0≤y ≤24.(7分)作出这个二元一次不等式组表示的平面区域为如图所示的阴影部分.∵S 正方形=242=576,S 阴影=242-12×202-12×182=214,(12分)∴P (A )=S 阴影S 正方形=214576=107288.所以,甲、乙两船有一艘停靠泊位时必须等待一段时间的概率为107288.(14分) 11.解(1)a ,b 都是从0,1,2,3,4五个数中任取的一个数的基本事件总数为N =5×5=25(个).(2分)函数有零点的条件为Δ=a 2-4b ≥0,即a 2≥4b .因为事件“a 2≥4b ”包含(0,0),(1,0),(2,0),(2,1),(3,0),(3,1),(3,2),(4,0),(4,1),(4,2),(4,3),(4,4),共12个.所以事件“a 2≥4b ”的概率为P =1225.(7分) (2)∵a ,b 都是从区间[0,4]上任取的一个数,f (1)=-1+a -b >0,∴a -b >1,此为几何概型,所以事件“f (1)>0”的概率为P =12×3×34×4=932.(14分)。
第十部分 概率与统计一.随机事件的概率1、事件的分类:必然事件、不可能事件、随机事件2、概率定义:在大量重复进行同一试验时,事件A 发生的频率nm 总是接近于某个常数,在它附近摆动,这个常数叫事件A 的概率.记为P(A),范围:0≤P(A)≤1.3、等可能性事件的概率:如果一次试验由n 个基本事件组成,而且所有结果出现的可能性都相等,那么每一个基本事件的概率都是n 1,如果某个事件A 包含的结果有m 个,那么事件A 的概率P(A)=nm . [注意]:①应明确,等可能事件概率的前提是:a.试验的结果数n 是有限的;b.每种结果发生的可能性是相等的;c.事件A 所包含的结果数m 是可以确定的.②P (A)=nm 既是等可能事件概率的定义,又是计算这种概率的基本方法,求P(A)时,要首先判定是否满足等可能事件的特征,其计算步骤是:a.算出基本事件的总个数n ;b.算出事件A 中包含的基本事件的个数m ;c.算出A 的概率,即P(A)=nm . [例题]将三个不同的小球随意放入4个不同的盒子中,求3个小球恰好在3个不同盒子中的概率.(P(A)=834334=A ) 二、互斥事件有一个发生的概率1、互斥事件,对立事件定义2、互斥事件的充要条件A 、B 互斥⇔P(A+B)=P(A)+P(B)A 1,A 2,…,A n 彼此互斥⇔P(A 1+A 2+…+A n )=P(A 1)+P(A 2)+…+P(A n ).3、对立事件的概率:P(A)+P(A )=P(A+A )=1 ∴P(A)=1-P(A ).[注意] ①互斥事件是对立事件的必要不充分条件;②如果A 、B 互斥,则A 与B ,A 与B ,A 与B 不一定互斥;③把一个复杂事件分解成几个彼此互斥事件时要做到不重复不遗漏;④计算稍复杂事件的概率通常有两种方法:a.将所求事件化成彼此互斥事件和;b.先去求事件的对立事件概率,然后再求所求事件概率.[例题]从一副扑克牌(52张)抽出1张,放回后重新洗牌,再抽出1张,前后两次所抽的牌为同花的概率.(P=211311352C C ×4=41) 三、相互独立事件同时发生的概率1、相互独立事件定义.⑵两个相互独立事件的充要条件:A 、B 相互独立⇔P(A ·B)=P(A)·P(B).⑶独立重复试验:如果一次试验中某事件发生的概率为P ,那么在n 次独立重复试验中这个事件恰好发生K 次的概率是P n (k)=C n k P k (1-P)n -k .[注意]①如果A 、B 相互独立,那么A 与B ,A 与B ,A 与B 也是相互独立的。
2013高考数学教案和学案(有答案)--第10章--学案54学案54几何概型导学目标:了解几何概型的意义.自主梳理1.几何概型设D是一个可度量的区域,每个基本事件可以视为从区域D内随机地取一点,区域D内的每一点被取到的机会都一样;随机事件A的发生可以视为恰好取到区域D内的某个指定区域d中的点.这时,事件A发生的概率与d的测度(长度、面积、体积等)成正比,与d的形状和位置无关,则称这样的概率模型为几何概型.2.几何概型中,事件A的概率计算公式:P(A)=d的测度D的测度.3.古典概型与几何概型的区别(1)相同点:基本事件发生的可能性都是________;(2)不同点:古典概型的基本事件是有限个,是可数的;几何概型的基本事件是________,是不可数的.自我检测1.在长为12 cm的线段AB上任取一点M,并且以线段AM为边作正方形,则这个正方形的人员擦掉了,该工作人员声称他完全是无意中按错了键,使从此处起往后的所有内容都被擦掉了.那么由于按错了键使含有犯罪的内容的谈话被部分或全部擦掉的概率有多大?变式迁移1在半径为1的圆的一条直径上任取一点,过这个点作垂直于直径的弦,则弦长超过圆内接等边三角形边长的概率为________.探究点二与角度有关的几何概型例2如图所示,在等腰Rt△ABC中,过直角顶点C在∠ACB内部作一条射线CM,与线段AB交于点M,求AM<AC的概率.变式迁移2若将例2题目改为:“在等腰Rt△ACB中,在斜边AB上任取一点M,求AM 的长小于AC的长的概率”,答案还一样吗?探究点三与面积有关的几何概型例3两人约定在20∶00到21∶00之间相见,并且先到者必须等迟到者40分钟方可离去,如果两人出发是各自独立的,在20∶00至21∶00各时刻相见的可能性是相等的,求两人在约定时间内相见的概率.变式迁移3甲、乙两艘轮船驶向一个不能同时停泊两艘轮船的码头,它们在一昼夜内任何时刻到达是等可能的.如果甲船和乙船的停泊时间都是4小时,求它们中的任何一条船不需要等待码头空出的概率.分类讨论与数形结合思想例(14分)已知函数f(x)=x2-2ax+b2,a,b∈R.(1)若a从集合{0,1,2,3}中任取一个元素,b 从集合{0,1,2}中任取一个元素,求方程f(x)=0有两个不相等实根的概率;(2)若a从区间[0,2]中任取一个数,b从区间[0,3]中任取一个数,求方程f(x)=0没有实根的概率.【答题模板】解(1)∵a取集合{0,1,2,3}中任一个元素,b 取集合{0,1,2}中任一个元素,∴a,b的取值的情况有(0,0),(0,1),(0,2),(1,0),(1,1),(1,2),(2,0),(2,1),(2,2),(3,0),(3,1),(3,2),其中第一个数表示a的取值,第二个数表示b的取值,即基本事件总数为12.[3分]设“方程f(x)=0有两个不相等的实根”为事件A,当a≥0,b≥0时,方程f(x)=0有两个不相等实根的充要条件为a>b.当a>b时,a,b取值的情况有(1,0),(2,0),(2,1),(3,0),(3,1),(3,2),即A包含的基本事件数为6,∴方程f(x)=0有两个不相等实根的概率为P(A)=612=12.[7分](2)∵a从区间[0,2]中任取一个数,b从区间[0,3]中任取一个数,则试验的全部结果构成区域Ω={(a,b)|0≤a≤2,0≤b≤3},这是一个矩形区域,其面积SΩ=2×3=6.[9分]设“方程f(x)=0没有实根”为事件B,则事件B 所构成的区域为M ={(a ,b )|0≤a ≤2,0≤b ≤3,a <b },即图中阴影部分的梯形,其面积S M =6-12×2×2=4.[12分] 由几何概型的概率计算公式可得方程f (x )=0没有实根的概率为P (B )=S M S Ω=46=23.[14分] 【突破思维障碍】古典概型和几何概型的区别在于试验的全部结果是否有限,因此到底选用哪一种模型,关键是对试验的确认和分析.第(1)问关键是列举不重不漏隐含了分类讨论思想.第(2)问是几何概型问题,解决此问题的关键是将已知的两个条件转化为线性约束条件,从而转化成平面区域中的面积型几何概型问题,隐含了数形结合思想.【易错点剖析】1.计算古典概型的概率时,列举基本事件应不重不漏.2.计算几何概型的概率时,区域的几何度量要准确无误.1.几何概型:若一个试验具有两个特征:①每次试验的结果是无限多个,且全体结果可用一个有度量的几何区域来表示;②每次试验的各种结果是等可能的.那么这样的试验称为几何概型.2.由概率的几何定义可知,在几何概型中,“等可能”一词应理解为对应于每个试验结果的点落入某区域内的可能性大小仅与该区域的几何度量成正比,而与该区域的位置与形状无关.3.几何概型的概率公式:设几何概型的基本事件空间可表示成可度量的区域Ω,事件A所对应的区域用A表示(A⊆Ω),则P(A)=A的度量Ω的度量.(满分:90分)一、填空题(每小题6分,共48分)1.(2009·辽宁)ABCD为长方形,AB=2,BC=1,O为AB的中点,在长方形ABCD内随机取一点,取到的点到O的距离大于1的概率为________.2.(2010·天津和平区一模)在面积为S的△ABC的边AB上任取一点P,则△PBC的面积大于S4的概率是__________________________________________ ________________________.3.(2010·山东临沂一中期末)已知正三棱锥S —ABC 的底面边长为4,高为3,在正三棱锥内任取一点P ,使得V P —ABC <12V S —ABC 的概率为________.4.已知正方体ABCD —A 1B 1C 1D 1内有一个内切球O ,则在正方体ABCD —A 1B 1C 1D 1内任取点M ,点M 在球O 内的概率是________.5.已知函数f (x )=x 2+bx +c ,其中0≤b ≤4,0≤c ≤4.记函数f (x )满足⎩⎨⎧f (2)≤12f (-1)≤3的事件为A ,则事件A 的概率为________.6.(2010·青岛一模)从集合{(x ,y )|x 2+y 2≤4,x ∈R ,y ∈R}内任选一个元素(x ,y ),则x ,y 满足x +y ≥2的概率为________.7. 如图所示,半径为10 cm 的圆形纸板内有一个相同圆心的半径为1 cm 的小圆.现将半径为1 cm 的一枚硬币抛到此纸板上,使硬币整体随机落在纸板内,则硬币落下后与小圆无公共点的概率为________.8.(2010·济南模拟)在可行域内任取一点,规则如流程图所示,则能输出数对(x ,y )的概率是________.二、解答题(共42分)9.(14分) 已知等腰Rt△ABC中,∠C=90°.(1)在线段BC上任取一点M,求使∠CAM<30°的概率;(2)在∠CAB内任作射线AM,求使∠CAM<30°的概率.10.(14分)甲、乙两艘轮船都要停靠在同一个泊位,它们可能在一昼夜的任意时刻到达.设甲乙两艘轮船停靠泊位的时间分别是4小时和6小时,求有一艘轮船停靠泊位时必须等待一段时间的概率.11.(14分)已知函数f(x)=-x2+ax-b.(1)若a,b都是从0,1,2,3,4五个数中任取的一个数,求上述函数有零点的概率;(2)若a,b都是从区间[0,4]任取的一个数,求f(1)>0成立时的概率.学案54 几何概型答案自主梳理3.(1)相等的 (2)无限个 自我检测1.14解析 ∵AM 2∈[36,81],∴AM ∈[6,9],∴P =9-612=312=14.2.13解析 在区间[-π2,π2]内,0<cos x <12⇔x ∈⎝⎛⎭⎪⎪⎫-π2,-π3∪⎝ ⎛⎭⎪⎪⎫π3,π2,其区间长度为π3,又已知区间⎣⎢⎢⎡⎦⎥⎥⎤-π2,π2的长度为π.由几何概型知P =π3π=13.3.13解析 当∠A ′OA =π3时,AA ′=OA ,∴P =23π2π=13.4.23解析 由|x |≤1,得-1≤x ≤1.由几何概型的概率求法知,所求的概率P =区间[-1,1]的长度区间[-1,2]的长度=23.5.23解析 圆周上使弧AM 的长度为1的点M 有两个,设为M 1,M 2,则过A 的圆弧M 1M 2的长度为2,B 点落在优弧M 1M 2上就能使劣弧AB 的长度小于1,所以劣弧AB 的长度小于1的概率为23. 课堂活动区例1 解题导引 解决概率问题先判断概型,本题属于几何概型,满足两个条件:基本事件的无限性和每个基本事件发生的等可能性,需要抓住它的本质特征,即与长度有关.解 包含两个间谍谈话录音的部分在30 s 和40 s 之间,当按错键的时刻在这段时间之内时,部分被擦掉,当按错键的时刻在0到30 s 之间时全部被擦掉,即在0到40 s 之间,即0到23min之间的时间段内按错键时含有犯罪内容的谈话被部分或全部擦掉,而0到30 min之间的时间段内任一时刻按错键的可能性是相等的,所以按错键使含有犯罪内容的谈话被部分或全部擦掉的概率只与从开始到谈话内容结束的时间段长度有关,符合几何概型的条件.记A={按错键使含有犯罪内容的谈话被部分或全部擦掉},A的发生就是在0到2 3min时间段内按错键.P(A)=2330=145.变式迁移112解析记“弦长超过圆内接等边三角形的边长”为事件A,如图所示,不妨在过等边三角形BCD 的顶点B的直径BE上任取一点F作垂直于直径的弦,当弦为CD时,就是等边三角形的边长,弦长大于CD的充要条件是圆心O到弦的距离小于OF,由几何概型的概率公式得P(A)=12×22=12.例2解题导引如果试验的结果所构成的区域的几何度量可用角度来表示,则其概率公式为P(A)=构成事件A的角度试验的全部结果所构成区域的角度.解在AB上取AC′=AC,连结CC′,则∠ACC′=180°-45°2=67.5°.设A={在∠ACB内部作出一条射线CM,与线段AB交于点M,AM<AC},则μΩ=90°,μA=67.5°,P(A)=μAμΩ=67.5°90°=34.变式迁移2解不一样,这时M点可取遍AC′(长度与AC相等)上的点,故此事件的概率应为AC′长度AB长度=22.例3解题导引解决此题的关键是将已知的两个条件转化为线性约束条件,从而转化成平面区域中与面积有关的几何概型问题.对于几何概型的应用题,关键是构造出随机事件A对应的几何图形,利用几何图形的度量来求随机事件的概率,根据实际问题的具体情况,合理设置参数,建立适当的坐标系,在此基础上将试验的每一个结果一一对应于该坐标系的一点,便可构造出度量区域.解 设两人分别于x 时和y 时到达约见地点,要使两人能在约定的时间范围内相见.当且仅当|x -y |≤23.两人在约定时间内到达约见地点的所有可能结果可用图中的单位正方形内(包括边界)的点来表示,两人在约定时间内相见的所有可能结果可用图中的阴影部分(包括边界)的点来表示.因此阴影部分与单位正方形的面积比就反映了两人在约定时间范围内相遇的可能性的大小,也就是所求的概率,即P =S 阴影部分S 单位正方形=1-⎝ ⎛⎭⎪⎪⎫13212=89.变式迁移3 解 设甲、乙两船到达时间分别为x 、y ,则0≤x ≤24,0≤y ≤24且y -x ≥4或y -x ≤-4.作出区域⎩⎪⎨⎪⎧0≤x ≤24,0≤y ≤24,y -x ≥4或y -x ≤-4.设“两船无需等待码头空出”为事件A ,则P (A )=S 阴影部分S 正方形=2×12×20×2024×24=2536.课后练习区1.1-π4解析 当以O 为圆心,1为半径作圆,则圆与长方形的公共区域内的点满足到点O 的距离小于或等于1,故所求事件的概率为P (A )=μAμΩ=S 长方形-S 半圆S 长方形=1-π4.2.34解析 由于△ABC 、△PBC 有公共底边BC ,所以只需P 位于线段BA 靠近B 的四分之一分点E 与A 之间,即构成一个几何概型,∴所求的概率为|AE ||AB |=34.3.78解析 当P 在三棱锥的中截面及下底面构成的正三棱台内时符合要求,由几何概型知,P =1-18=78.4.π6解析 设正方体棱长为a ,则正方体的体积为a 3,内切球的体积为43π⎝ ⎛⎭⎪⎪⎫a 23=16πa 3,故M 在球O 内的概率为16πa 3a 3=π6.5.58 解析满足0≤b ≤4,0≤c ≤4的区域的面积为4×4=16,由⎩⎨⎧ f (2)≤12f (-1)≤3, 得⎩⎨⎧2b +c ≤8-b +c ≤2,其表示的区域如图中阴影部分所示,其面积为12×(2+4)×2+12×2×4=10,故事件A 的概率为1016=58.6.π-24π解析 即图中弓形面积占圆面积的比例,属面积型几何概型:π-24π.7.7781解析 由题意知,硬币的中心应落在距圆心2~9 cm 的圆环上,圆环的面积为π×92-π×22=77π,故所求概率为77π81π=7781.8.π4解析 根据题意易知输出数对(x ,y )的概率即为满足x 2+y 2≤12的平面区域与不等式组⎩⎨⎧-1≤x +y ≤1,-1≤x -y ≤1所表示的平面区域面积的比,即P (A )=π×122=π4.9.解(1)设CM=x,则0<x<a(不妨设BC =a).若∠CAM<30°,则0<x<33a,故∠CAM<30°的概率为P(A)=区间⎝⎛⎭⎪⎫0,33a的角度区间(0,a)的角度=33.(7分)(2)设∠CAM=θ,则0°<θ<45°.若∠CAM<30°,则0°<θ<30°,故∠CAM<30°的概率为P(B)=区间(0°,30°)的长度区间(0°,45°)的长度=23.(14分)10.解设事件A={有一艘轮船停靠泊位时必须等待一段时间},以x轴和y轴分别表示甲、乙两船到达泊位的时间,则点(x,y)的所有可能结果是边长为24的正方形区域,如右图所示,由已知得事件A发生的条件是⎩⎪⎨⎪⎧x+4≥y,y+6≥x,0≤x≤24,0≤y≤24.(7分)作出这个二元一次不等式组表示的平面区域为如图所示的阴影部分.∵S 正方形=242=576,S 阴影=242-12×202-12×182=214,(12分) ∴P (A )=S 阴影S 正方形=214576=107288. 所以,甲、乙两船有一艘停靠泊位时必须等待一段时间的概率为107288.(14分) 11.解 (1)a ,b 都是从0,1,2,3,4五个数中任取的一个数的基本事件总数为N =5×5=25(个).(2分)函数有零点的条件为Δ=a 2-4b ≥0,即a 2≥4b .因为事件“a 2≥4b ”包含(0,0),(1,0),(2,0),(2,1),(3,0),(3,1),(3,2),(4,0),(4,1),(4,2),(4,3),(4,4),共12个.所以事件“a 2≥4b ”的概率为P =1225.(7分) (2)∵a ,b 都是从区间[0,4]上任取的一个数,f (1)=-1+a -b >0,∴a -b >1,此为几何概型,所以事件“f (1)>0”的概率为P =12×3×34×4=9.(14分) 32。