第三章整式的加减
- 格式:doc
- 大小:226.50 KB
- 文档页数:13
第三章整式的加减学情分析本章在学习有理数的基础上,结合学生已知的生活经验,引入用字母表示有理数,使学生的思维跨越由数到式的飞跃,继而介绍了代数式、代数式的值、整式、单项式与多项式及其相关概念,以及多项式的升(降)幂排列,并在这些概念的基础上逐步展开同类项的概念、合并同类项的法则以及去括号与添括号的法则,最后将这些法则应用于本章的重点——整式的加减,使得全章的知识体系井然有序,层层深入,结构分明,重点突出。
学生由“数”的学习转到“式”的学习,刚开始不懂,不过他们会逐步适应的。
列代数是本章的一个难点,刚开始时可以学习简单的列代数式,等全章学完后再适当补充结合生活实际的列代数式的题目;求代数式的值,在用数值代替代数式里的字母时,注意不要写错,特别是代入的数值是负数或分数时,要注意加括号;本章的概念较多,注意紧扣概念进行学习,注意单项式与多项式及其次数和系数、整式、同类项等的识别,教学时教师可补充这些概念的运用题,以进一步巩固所学的概念;在将一个多项式的按某字母升(降)幂排列时,注意是按题目要求的字母的次数,而不是这项的次数;本章学习的法则也很多,教师要帮助学生理解法则,并讲解典型题目紧扣法则进行训练,补充一些题目让学生练习,以巩固所学的法则的运用,其中在去括号与添括号时括号前面是负号,这是难点,学生特别容易做错,应加强训练,在学习本章的重点——整式的加减时,更要根据法则进行,在去括号时注意符号,计算时注意同类项的识别,运算时要细心,防止计算错误,也应多练习,以熟练掌握整式的加减运算。
在本章的学习中,让学生经历探索数量关系和变化规律的过程;学习时,对知识的呈现过程尽量能联系学生已有的生活经验,以发展学生用数学的意识和能力;在重视基础知识的同时,适当插入一些开放题,培养学生的发散思维。
在学习中,充分发挥学生的主体作用,让学生自主学习、主动探索、小组讨论、合作学习、归纳总结、练习训练,牢固地掌握所学的知识。
第三章整式的加减第1课时用字母表示数一、教学目标:1.经历探索规律并用代数式表示规律的过程。
能用字母和代数式表示规律。
2.体会字母表示数的意义,形成初步的符号感。
3.通过学生具体操作、实践、总结、归纳,以促进学生的自我创造,培养学生的动手,动脑能力,提高学生观察图形和分析,归纳能力,掌握由特殊到一般的认识规律。
4.创设问题情境,充分让学生自主地进行操作,思考归纳和互相讨论,使规律、符号感得到成为学生研究的必然结果,从中使学生体会合作与成功的快乐,由此激发其更加积极主动的学习精神和勇气。
二、教学重、难点教学重点:1.通过操作思考,由特殊归纳一般规律,并用字母表示规律. 2.理解字母表示数的意义,建立符号感. 教学难点:多角度认识搭建的正方形图形。
三、教学准备:1.投影仪、投影片。
2.每个学生准备一盒火柴棒。
四、教学过程:(一)创设问题情境。
师:同学们,我们都知道2008年奥运会将在我国举行,为了迎接2008年奥运会,我设想(用投影显示)以这种形式从左往右搭2008个正方形,谁能在10秒钟内告诉老师需要多少根火柴棒?(学生思考一会,不能迅速作答)这时教师趁机告诉学生数学的一个基本思想:由简单入手,深入浅出解决问题!在这一教学环节中,通过创设问题情境,激发学生的求知欲,培养学生积极主动地学习精神和探索勇气。
(二)探索规律并用字母表示。
先让学生用火柴棒搭一搭,数一数,并填写下表:(预先给学生)搭正方形个数 1 2 3 10 100 用火柴棒根数在这个过程中,学生积极动手,教师巡视,发现学生都能很快写出前四格的正确答案,但有不少学生最后一格空着,不知如何是好,这时教师没有立即讲解。
问:表格中哪几格可以直接通过搭拼后数出来?生:前四格。
教师趁机问:搭100个正方形的火柴棒根数不能数出来,那该怎么办呢?我放手让学生以小组为单位讨论后再回答。
教室里一下子热闹起来,同学们展开了热烈讨论,并抢着说出了答案,教师要求说出理由。
苏科版(2024)七年级上册数学第3章代数式3.3 整式的加减教案【教材分析和学情分析】教材分析:整式的加减是苏科版七年级上册代数式这一章的重要内容,主要介绍了如何对含有相同字母的多项式进行合并同类项,以及如何在实际问题中应用整式的加减法则。
这一部分的知识点是代数运算的基础,为后续的代数学习,如解一元一次方程、二次方程等奠定了基础。
教材通过丰富的实例和练习,引导学生理解并掌握整式加减的规则,同时培养他们的抽象思维能力和逻辑推理能力。
此外,通过解决实际问题,也锻炼了学生应用数学知识解决实际问题的能力。
学情分析:七年级的学生已经学习了基本的代数知识,如变量、常量、单项式、多项式等,对数学符号和运算规则有一定的理解和应用能力。
然而,对于抽象的整式加减,尤其是如何识别和合并同类项,可能会感到一定的困难。
部分学生可能还停留在具体的数的运算上,对于字母表示的数的运算可能会感到陌生和困惑。
此外,这个阶段的学生好奇心强,喜欢探索,但注意力集中时间可能较短,需要教师通过生动有趣的教学方式,激发他们的学习兴趣,保持他们的学习动力。
【教学目标】1. 知识与技能:学生应能理解整式的加减运算法则,掌握同类项的概念,能正确地进行整式的加减运算。
2. 过程与方法:通过实例,让学生经历整式加减的抽象过程,培养他们的观察、比较、抽象和概括能力,提高他们的运算能力。
3. 情感态度与价值观:培养学生严谨的数学思维习惯,体验数学的简洁美,提高学习数学的兴趣。
【教学重难点】1. 整式的加减运算法则及其应用。
2. 同类项的识别和整式加减的简化过程。
【教学过程】一、情境导入1. 展示几个生活中的实际问题,如:苹果和香蕉的总数,两本书的总价格等,引出含有加减运算的数学表达式。
二、新知探究1. 整式和同类项的概念:通过实例,引导学生总结出整式的定义,即字母和数字的乘积,且字母可以是任意次幂。
引导学生发现同类项的特征,即字母相同,字母的指数也相同的项。
第三章整式的加减一、基本概念中的易错题1,单项式的定义例1,下列各式子中,是单项式的有_________________ (填序号)1 2 x 1 x①可②2;③x y;④xy;⑤匚;⑥〒;⑦—;注意:1,单个的字母或数字也是单项式;2,用加减号把数字或字母连接在一起的式子不是单项式;3,只用乘号把数字或字母连接在一起的式子仍是单项式;4,当式子中出现分母时,要留意分母里有没有字母,有字母的就不是单项式,如果分母没有字母的仍有可能是单项式(注:n ”当作数字,而不是字母)2单项式的系数与次数例2指出下列单项式的系数和次数;3,多项式的项数与次数例3下列多项式次数为3的是()A. 5x2 6x 1B. x2 x 1C.a2b ab b2D.x2y2 2x3 1注意(1)多项式的次数不是所有项的次数的和,而是它的最高次项次数;(2)多项式的每一项都包含它前面的符号;(3)再强调一次,n”当作数字,而不是字母例4请说出下列各多项式是几次几项式,并写出多项式的最高次项和常数项;(1)25______________ x2y xy3是____________________________ 次项式,最高次项是 ____ ,常数项是_________________________ ;3 2 2 1(2)—U—1是次项式,最高次项是,常数项是34,书写格式中的易错点例5下列各个式子中,书写格式正确的是( )1A.a bB. 1 abC.a 32a2bD.a3 E . 1ab F .31、代数式中用到乘法时,若是数字与数字乘,要用’乂”若是数字与字母乘,乘号通常写成” •或省略不写,如3X y应写成3 y或3y,且数字与字母相乘时,字母与字母相乘,乘号通常写成“ •或省略不写;2、带分数与字母相乘,要写成假分数;3、代数式中出现除法运算时,一般用分数写,即用分数线代替除号;4、系数一般写在字母的前面,且系数“1往往会省略;例6王强班上有男生m人,女生比男生的一半多5人,王强班上的总人数(用m表示)为______ 人。
第三章 整式的加减 基础知识复习知识点1、单项式的概念式子x 3,m t xy a ---,6.2,,32它们都是数或字母的积,像这样的式子叫做单项式,单独的一个数或一个字母也是单项式。
注意:单项式是一种特殊的式子,它包含一种运算、三种类型。
一种运算是指数与字母、字母与字母之间只能是乘法的一种运算,不能有加、减、除等运算符号;三种类型是指:一是数字与字母相乘组成的式子,如ab 2;二是字母与字母组成的式子,如3xy ;三是单独的一个数或字母,如m a ,2-,。
【特别注意】分母中只要含有字母一定不是单项式,也不是多项式,而是分式。
知识点2、单项式的系数单项式中的数字因数叫做这个单项式的系数。
注意:(1)单项式的系数可以是整数,也可能是分数或小数。
如42x 的系数是2;3ab 的系数是31,2.7m 的系数是2.7。
(2)单项式的系数有正有负,确定一个单项式的系数,要注意包含在它前面的符号,如-()xy 2的系数是-2,(注意:千万不要忘记前边的符号)(3)对于只含有字母因素的单项式,其系数是1或-1,不能认为是0,如-2xy 的系数是-1;2xy 的系数是1。
(单项式前边的系数是1或-1时,1可以省略不写。
)(4)表示圆周率的π,在数学中是一个固定的常数,当它出现在单项式中时,应将其作为系数的一部分,而不能当成字母。
如-2πxy 的系数就是-2π知识点3、单项式的次数一个单项式中,所有字母的指数和叫做这个单项式的次数。
注意:(1)计算单项式的次数时,应注意是所有字母的指数和,不要漏掉字母指数是1的情况。
如单项式z y x 342的次数是字母z y x ,,的指数和,即4+3+1=8,而不是7次,应注意字母Z 的指数是1而不是0.(2)单项式是一个单独字母时,它的指数是1,如单项式m 的指数是1,单项式是单独的一个常数时,一般不讨论它的次数。
(非要讨论的话,单独的一个数字的系数是它本身,次数是0)(3)单项式的指数只和字母的指数有关,与系数的指数无关。
第三章整式的加减单元要点分析教学内容本单元主要内容:单项式、多项式、整式等有关概念,合并同类项、去括号、整式的加减运算.课本首先通过实例列式表示数量关系,介绍了单项式、多项式以及整式等有关概念,然后通过对具体问题的解决,类比有理数的运算律,明确了同类项可以合并的道理,明确整式加减的法则以及去括号和添活号法则.这些内容也是对前一章内容的进一步认识.本章在呈现形式上突出了整式及整式加减产生的实际背景,使学生经历实际问题“符号化”的过程,发展符号感,为探索有关运算法则设置了归纳、类比等活动,力求学生对算理的理解和法则的掌握.三维目标1.知识与目标(1)了解单项式、多项式整式等概念,弄清它们之间的联系和区别.(2)掌握单项式系数、次数和多项式的次数、项与项数的概念,•明确它们之间的关系.(3)理解同类项的概念,能熟练地合并同类项.(4)掌握去括号、添括号法则,能准确地去括号和添括号.(5)熟练地进行整式的加减运算.2.过程与方法通过丰富的实例、经历观察、分析、交流、概括出单项式、多项式、整式等有关概念;经历类比有理数的运算律,探索整式的加减运算法则.发展有条理的思考及语言表达能力和用数学知识解决实际问题的能力.3.情感态度与价值观培养学生主动探究,合作交流的意识.通过将数的运算推广到整式的运算,在整式的运算中又不断地运用数的运算,使学生感受到认识事物是一个由特殊到一般,由一般到特殊的辩证过程.重、难点与关键1.重点:理解整式的概念,会进行整式的加减运算.2.难点:正确区别单项式的次数与多项式的次数,•括号前是负号时去括号或添活号易搞错符号.3.关键:正确理解整式有关概念及明确运算步骤的依据.课时划分2.1 整式 2课时2.2 整式的加减 3课时数学活动 1课时回顾与思考 1课时2.1.1单项式教学内容课本第53页至第56页.教学目标1.知识与技能(1)能用代数式表示实际问题中的数量关系.(2)理解单项式、单项式的次数,系数等概念,会指出单项式的次数和系数.2.过程与方法经历列式表示实际问题中的数量关系,发展符号感,通过观察代数式的特点,发现、归纳单项式的概念,培养学生观察、分析、归纳的能力.3.情感态度与价值观通过列单项式表示实际问题中的数量关系,体会整式比具体数字表达的式子更具有一般性,这给实际问题的解决带来很大方便.重、难点与关键1.重点:单项式的有关概念.2.难点:负系数的确定以及准确确定一个单项式的次数. 3.关键:正确理解单项式、单项式系数和次数的概念. 教具准备教师:多媒体课件、投影仪. 教学过程 一、新授教师操作课件,展示章前图案以及字幕,学生观看并思考下列问题:1.青藏铁路线上,在格尔木到拉萨之间有一段很长的冻土地段,列车在冻土地段的行驶速度是100千米/时,在非冻土地段的行驶速度可以达到120千米/时,请根据这些数据回答下列问题:(1)列车在冻土地段行驶时,2小时能行驶多少千米?3小时呢?t 小时呢?(2)在西宁到拉萨路段,列车通过非冻土地段所需要时间是通过冻土地段所需要时间的2.1倍,如果通过冻土地段所需要t 小时,能用含t•的式子表示这段铁路的全长吗?(3)在格里木到拉萨路段,列车通过冻土地段比通过非冻土地段多用0.5小时,如果通过冻土地段需要u 小时,则这段铁路的全长可以怎样表示?•冻土地段与非冻土地段相差多少千米? 分析:(1)根据速度、时间和路程之间的关系:路程=速度×时间.•列车在冻土地段2小时行驶的路程是100×2=200(千米),3小时行驶的路程为100×3=300(千米),•t 小时行驶的路程为100×t=100t (千米).(2)列车通过非冻土地段所需时间为2.1t 小时,行驶的路程为120×2.1t (千米);列车通过冻土地段的路程为100t ,因此这段铁路的全长为120×2.1t+100t (千米). (3)在格里木到拉萨路段,列车通过冻土地段要u 小时,•那么通过非冻土地段要(u-0.5)小时,冻土地段的路程为100u 千米,非冻土地段的路程为120(u-0.5)千米,这段铁路的全长为[100u+120(u-0.5)]千米,冻土地段与非冻土地段相差为[100u-120(u-0.5)]千米. 思路点拨:上述问题(1)可由学生自己完成,问题(2)、(3)先由学生思考、•交流的基础上教师引导学生分析怎样列式.上述的3个问题中的数量关系我们分别用含有字母的式子表示,•通过本章学习,我们还可以将上述问题(2)、(3)进行加减运算,化简.2.下面,我们再来看几个用含字母的式子表示数量关系的问题. 用含有字母的式子填空,看看列出的式子有什么特点.(1)边长为a 的正方体的表面积为______,体积为_______. (2)铅笔的单价是x 元,圆珠笔的单价是铅笔的单价的2.5•倍,圆珠笔的单价是_______元.(3)一辆汽车的速度是v 千米/时,它t 小时行驶的路程为_______千米. (4)数n 的相反数是_______.教师课堂巡视,关注中下程度的学生,及时引导,学生探究交流. 上面各问题的代数式分别是:6a 2,a 3,2.5x ,vt ,-n . 观察上面各式中运算有什么共同特点?上面各式中,数字与字母之间,字母与字母之间都是乘法运算,•它们都是数字与字母的积,例如:6a 2表示6×a 2,a 3表示1×a 3,2.5x 表示2.5×x ,vt 表示1×v ×t ,-n•表示-1×n . 像上面这样,只含有数与字母的积的式子叫做单项式.单独的一个数或一个字母也是单项式.如:-2,a ,13,都是单项式,而1a,1+x 都不是单项.单项式中的数字因数叫做这个单项式的系数,例如:6a 2的系数是6,a 3的系数是1,-n 的系数是-1,-5ab 的系数是-15.单项式表示数字与字母相乘时,通常把数字写成前面,•当一个单项式的系数是1或-1时通常省略不写.一个单项式中,所有字母的指数的和叫做这个单项式的次数.例如,2.5x•中字母x 的指数是1,2.5x 是一次单项式;vt 中字母v 与t 的指数和是2,vt 是二次单项式,-a b 2c 中字母a 、b 、c 的指数和是4,-a b 2c 是4次单项式. 二、范例学习例1.用单项式填空,并指出它们的系数和次数. (1)每包书有12册,n 包书有_______册.(2)底边长为a ,高为h 的三角形的面积是______.(3)一个长方体的长和宽都是a ,高是h ,它的体积是_______.(4)一台电视机原价a 元,现按原价的9折出售,这台电视机现在售价为_____元. (5)一个长方形的长为0.9,宽是a ,这个长方形的面积是_________. 教师操作投影仪,展示例1,学生思考、交流.师生互动. 思路点拨:(1)12n ,它的系数是12,次数是1; (2)根据三角形的面积公式,得12ah ,它的系数是12,次数是2;(3)根据长方体的体积公式=长×宽×高,得a 2h ,它的系数是1,次数是3; (4)0.9a ,它的系数是0.9,次数是1; (5)0.9a ,系数为0.9,次数为1.教学时,以师生互动方式进行,由学生口述,教师板书.强调:单项式的次数是单项式中所有字母的指数和,字母的指数不写的,表示这个字母的指数是1,不是“没有”.用字母表示数后,同一个式子在不同的问题中可以表示不同的含义.例如,在问题(4)、(5)中,所填的结果都是0.9a ,一个是表示电视机的售价,一个是表示长方形的面积,你还能赋予0. 9a 一个含义吗?让学生交流各自想法,加深对字母表示数的理解. 三、巩固练习1.下列各式是不是单项式?为什么? (1)x-2y ; (2)-4;(3);(4)55xa b m ; (5)-1.2.判断下列各说法是否正确,错误的改正过来. (1)单项式-xy 2的系数是0,次数是2. (2)单项式27a 2的系数是2,次数是9. (3)单项式-23nx y 的系数是-23,次数是n+1.3.请你写出系数为-,含有x 、y ,次数为4的所有单项式.教师操作投影仪,出示上述练习题,独立思考,然后进行交流. 4.课本第56页练习1、2题.教师巡视,关注中下程度的学生,适时给予指导,学生独立完成后,相互交流. 思路点拨:1.(2)、(5)是单项式,(1)、(3)、(4)都不是单项式,因为它们不是数字与字母的乘积. 2.(1)、(2)错误,订正:-xy 2的系数是-1,次数是3,27a 2的系数是a 7,次数是2,(3)正确.3.-23xy 3,-23x 2y 2,-23x 3y . 4.略.四、课堂小结师生互动,共同学习小结本节课内容. 1.什么叫单项式?举例说明.2.单独的一个数或一个字母是单项式吗?x a是单项式吗?为什么?3.什么叫单项式的系数?什么叫单项式的次数?举例说明.五、作业布置1.课本第59页至第60页,习题2.1第1、2、8题. 2.选用课时作业设计.第一课时作业设计一、判断题.(对的打“∨”,错的打“×”) 1.x 是单项式.( ) 2.6不是单项式.( )3.m 的系数是0,次数也是0.( ) 4.单项式4πxy 的系数是4π,次数是2.( )二、填空题.5.x 2yz 的系数是________,次数是________. 6.-372ab 的系数是______,次数是_______.7.如果单项式-2x 2y n 与单项式a 4b 的次数相同,则n=________. 8.写出系数为5,含有x 、y 、z•三个字母且次数为4•的所有单项式,•它们分别是_______. 三、选择题.9.下列各式中单项式的个数是( ). 3x ,x+1,-212,-1,0.72,42a x xy -.A .2个B .3个C .4个D .5个 10.单项式-x 2yz 2的系数、次数分别是( ).A .0.2B .0.4C .-1,5D .1,4 四、解答题.11.苹果的价格比梨贵35%,如果梨的价格是每千克m 元,那么苹果的价格是多少?如果梨的价格比苹果便宜10%,梨的价格仍是每千克m 元,那么苹果的价格是多少?12.买一级肉5千克和买二级肉6千克用的钱同样多,如果一级肉每千克a 元,那么二级肉每千克多少元?如果用买b 千克一级肉的钱去买二级肉,可以买多少千克? 答案:一、1.∨ 2.× 3.× 4.∨ 二、5. 1 4 6.-724 7.3 8.5xy 3,5x 2y 2,5x 3y三、9.B 10.C 四、11.(1+35%)m 元5612.110%65m a b -元元千克12.一级肉每千克a 元,5千克为5a 元,则二级肉每千克56a(元), 买b•千克一级肉要ab 元,所以ab 元可以买二级肉ab ÷56a =65b .2.1.2 多项式教学内容课本第56页至第59页. 教学目标1.知识与技能使学生理解多项式、整式的概念,会准确确定一个多项式的项数和次数. 2.过程与方法通过实例列整式,培养学生分析问题、解决问题的能力. 3.情感态度与价值观培养学生积极思考的学习态度,合作交流意识,了解整式的实际背景,进一步感受字母表示数的意义.重、难点与关键1.重点:多项式以及有关概念.2.难点:准确确定多项式的次数和项.3.关键:掌握单项式和多项式次数之间的区别和联系. 教具准备 投影仪. 教学过程一、复习提问1.什么叫单项式?举例说明.2.怎样确定一个单项式的系数和次数?-237ab c 的系数、次数分别是多少?3.列式表示下列问题:(1)一个数比数x 的2倍小3,则这个数为________. (2)买一个篮球需要x (元),买一个排球需要y (元),买一个足球需要z (元),买3个篮球,5个排球,2个足球共需________元. (3)如图1,三角尺的面积为________.(1) (2)(4)如图2是一所住宅的建筑平面图,这所住宅的建筑面积是________平方米. 老师操作投影仪,展示上述问题,关注学生列式情况,学生小组交流、合作学习. 思路点拨:(1)数x 的2倍表示为2x ,因此比x 的2倍小3的数为2x-3; (2)一个篮球x (元),3个篮球为3x 元;一个排球y (元),5个排球要5y 元;•一个足球z (元),2个足球要2z 元,因此一共需(3x+5x+2z )元; (3)三角尺的面积等于三角形的面积减去圆的面积,三角形的面积为12ab ,•圆面积为πr 2,因此三角尺的面积为12ab-πr 2;(4)每个房间的建筑面积分别为x 2平方米,2x 平方米,6平方米,12平方米,•因此这所住宅的建筑面积为(x 2+2x+18)平方米. 上面列出的式子2x-3,3x+5y+2z ,12ab-πr 2,x 2+2x+18,它们是单项式吗?这些式子有什么共同特点?与单项式有什么关系?2x-3可看作2x 与-3的和:3x+5y+2z 可以看作单项式3x 、5y 与2z 的和;同样12ab-πr 2看作12ab 与-πr 2的和,x 2+2x+18可以x 2、2x 、18的和.二、新授请同学们阅读课本第57页有关内容,并回答下列问题. 1.几个单项式的和叫做_________;2.在多项式中,每个单项式叫做_________;3.在多项式中,不含字母的项叫做_________;4.在多项式中,_____________________,叫做这个多项式的次数.5.多项式的次数与单项式的次数有什么区别?6.请说出上面各多项式的次数和项.思路点拨:(1)多项式的各项应包括它前面的符号,比如,多项式6x2-12x-3中第二项是-1 2x,而不是12x,常数项是-3,不是3.多项式没有系数概念,但其每一项均有系数,每一项的系数应包括自己的符号.(2)多项式的次数与单项式的次数概念不同,但又有联系,•首先求出此多项式各项(单项式)的次数,次数最高的就是这个多项式的次数.(3)一个多项式的最高次项可以不唯一,次高项也可以不唯一,•如,•多项式3x2y-12xy2+x2-xy-5中,最高次项为3x2y和-12x y2,二次项也有2项,x2和-xy,•这个多项式为二次五项式.单项式和多项式统称为整式,例如:100t,6a3,vt,-n,2x-3,3x+5y+2z等都是整式.三、范例学习例1.用多项式填空,并指出它们的项和次数.(1)温度由t℃下降5℃后是_______℃.(2)甲数x的13与乙数y的12的差可以表示为_________.(3)如课本图2.1-3,圆环的面积为________.(4)如课本图2.1-4,钢管的体积是________.思路点拨:(1)t-5,它的项为t和-5,次数是1;(2)甲数x的13表示为13x,乙数y•的12表示为12y,它们的差为13x-12y,它的项为13x和-12y,次数为1;(3)•圆环面积等于大圆面积减去小圆面积,因此圆环面积为πR2-πr2,它的项是πR2-πr2,次数是2(π是常数是R2的系数).(4)•钢管的体积等于大圆柱的体积减去小圆柱的体积,即πR2a-πr2a,它的项是πR2a和-πr2a,次数是3.例2.一条河流的水流速度为2.5千米/时,如果已知船在静水中的速度,那么船在这条河流中顺水行驶和逆水行驶的速度分别怎样表示?如果甲、•乙两条船在静水中的速度分别是20千米/时和35千米/时,•则它们在这条河流中的顺水行驶和逆水行驶的速度各是多少?教师操作投影仪,展示例2,并引导学生进行分析:顺水行驶时船的速度=船在静水中的速度+水流速度逆水行驶时船的速度=船在静水中的速度-水流速度这里水流速度为2.5千米/时,如果,我们设船在静水中的速度为v千米/时,•那么船在顺水行驶时的速度表示为(v+2.5)千米/时,船在逆水行驶时的速度为(v-2.5)千米/时.当v=20时,则v+2.5=20+2.5=22.5,v-2.4=20-2.5=17.5;当v=35时,则v+2.5=35+2.5=37.5,v-2.5=35-2.5=32.5.因此,甲船顺水行驶的速度是22.5千米/时,逆水行驶的速度为17.5千米/时;乙船顺水行驶的速度是37.5千米/•时,•逆水行驶的速度为32.5千米/时.思路点拨:从例2可以看到:用整式表示实际问题中的数量关系,然后再将整式中的字母所表示的不同数代入计算,从而可求出相应的值,这给问题的解决带来方便.•代入时,要将整式中省略掉的乘号添上.例如,当x=-1时,整式2x23x+1的值为2×(-1)2-3×(-1)+1=2×1+3+1=6.四、巩固练习1.下列式子中,哪些是单项式?哪些是多项式?哪些是整式?3x ,2x-1,13m +,-ab ,-5,2x-1,3m-4n+m 2n .(3x ,-ab ,-5都是单项式;2x-1,13m +,3m-4n+m 2n 都是多项式;题目中除2x-1以外都是整式) 思路点拨:13m +=3m +13,是一次二次项,因为2x不是单项式,所以2x-1不是多项式,•当然也不是整式. 2.判别正误:(1)多项式-x 2y+2x 2-y 的次数2.( ) (2)多项式-12-a+3a 2的一次项系数是1.( )(3)-x-y-z 是三次三项式.( )思路点拨:要求学生说明错误原因,并加以改正. (1)次数是3;(2)一次项系数是-1,(3)是一次三项式. 3.课本第59页练习. 4.课本第61页第10题.点拨:观察图形易知每增加一个梯形,图形的周长就增加3a ,因此梯形个数为5时,周长为17a ,梯形个数为6时,周长为20a .因为梯形的长、下底之和为3a ,所以n 个梯形按课本所示拼在一起所得图形较长两边长之和为3a ·n ,•另外两边之和为2a ,所以n 个梯形拼成的图形周长为3an+2a .根据这个整式3an+2a ,我们很容易计算出n 为任意正整数时,图形的周长,•例如当n=10时,周长为32a ,当n=56时,周长为170a .•用整式表示实际问题中的数量关系,它比具体数字表达的式子更具有一般性,这给实际问题的解决带来很大方便. 教师引导,关注学生思路,指导学生合作交流,探索规律. 五、课堂小结师生互动,共同小结本节课内容.1.什么叫做多项式?多项式是整式吗?整式是多项式吗? 2.什么叫多项式的基?什么叫做常数项?举例说明? 3.什么叫做多项式的次数? 六、作业布置1.课本第60页,习题2.1第2、3、4、5、6、7题. 2.选用课时作业设计. 第二课时作业设计 一、填空题. 1.在式子-35ab ,229,32x y x +,-a 2bc ,1,x 3-2x+3,3a,1x+1中,单项式的是______,多项式的是_______. 2.多项式-23x y +2x-3是_______次_______项式,最高次项的系数是______,常数项是________.3.2x 2-3x y 2+x-1的各项分别为________. 二、选择题.4.一个五次多项式,它任何一项的次数( ).A .都小于5B .都等于5C .都不小于5D .都不大于5 5.下列说法正确的是( ). A .x 2+x 3是五次多项式 B .3a b +不是多项式C .x 2-2是二次二项式D .xy 2-1是二次二项式 三、列式表示.6.n 为整数,不能被3整除的整数表示为________.7.一个三位数,十位数字为x ,个位数字比十位数字少3,•百位数字是个位数字的3倍,则这个三位数可表示为________.8.某班有学生a 人,若每4人分成一组,有一组少2人,则所分组数是________. 9.如图3所示,阴影部分的面积表示为________.(3) (4) 10.用火柴棒按图4的方式搭塔式三角形. (1)观察填表:(2 答案: 一、1.-35ab ,2229,,132x y x a bc +-,x 3-2x+32.三 三 -13-3 3.2x ,-3x y 2,x ,-1 二、4.D 5.C三、6.3n+1,3n+2 7.300(x-3)+10x+(x-3) 8.24a + 9.ab-π·(2a )210.(1)•小三角形个数依次是1,4,9,16,火柴棒总根数依次为3,9,18,30(2)n 22.2 整式的加减(1)教学内容课本第63页至第66页. 教学目标1.知识与技能(1)了解同类项、合并同类项的概念,掌握合并同类项法则,•能正确合并同类项. (2)能先合并同类项化简后求值. 2.过程与方法经历类比有理数的运算律,探究合并同类项法则,培养学生观察、探索、分类、归纳等能力.3.情感态度与价值观掌握规范的解题步骤,养成良好的学习习惯,通过比较两种求代数式值的方法,体会合并同类项的作用. 重、难点与关键1.重点:掌握合并同类项法则,熟练地合并同类项. 2.难点:多字母同类项的合并.3.关键:正确理解同类项概念和合并同类项法则. 教具准备投影仪. 教学过程 一、新授有理数可以进行加减计算,那么整式能否可以加减运算呢?怎样化简呢?我们来看本章引言中的问题(2).在西宁到拉萨路段,如果列车通过冻土地段的时间是t小时,那么它通过非冻土地段所需的时间就是2.1t小时,则这段铁路的全长是100t+120×2.1t,即100t+252t1.类比数的运算,我们应如何化简式子100t+252t呢?(1)运用有理数的运算律计算:100×2+252×2=______;100×(-2)+252×(-2)=________.(2)根据(1)中的方法完成下面的运算,并说明其中的道理.思路点拨:根据逆用乘法对加法的分配律可得:100t+252t=________.思路点拨:逆用乘法对加法的分配律可得:100×2+252×2=(100+252)×2=352×2100×(-2)+252×(-2)=(100+252)×(-2)=352×(-2)我们知道字母可以表示数,如果用t表示上述算术中的数2(或-•2)•就有,•100t+252t=(100+252)×t=352t.事实上,100t+252t与100×2+252×2和100×(-2)+252×(-2)有相同的结构,•都是两个数分别与同一个数乘积的和,这里t表示同一个因数,•因此根据分配律也应该有:100t+252t=(100+252)t=352t2.填空:(1)100t-252t=()t;(2)3x2+2x2=()x2;(3)3ab24ab2=()a b2.上述运算有什么共同特点,你能从中得出什么规律?思路点拨:上述两个探究,教师组织学生分四人小组进行讨论,引导学生观察、•类比,从而发现规律,鼓励学生用自己的语言表达.对于上面的(1)、(2)、(3),利用分配律可得100t-252t=(100-252)t=-152t3x2+2x2=(3+2)x2=5x23a b2-4ab2=(3-4)ab2=-ab2这就是说,上面的三个多项式都可以合并为一个单项式.具备什么特点的多项式可以合并呢?观察(1)中多项式的项100t和-252t,它们都含有相同字母t,并且t的指数都是1;(2)中的多项式的项3x2+2x2都含有相同字母x,并且字母x的指数都是2;(3)•中的多项式的项3ab2和-4ab2都含有字母a,b,并且字母a的指数都是1,b的指数都是2.像这样,所含字母相同,并且相同字母的指数也分别相等的项叫做同类项,•几个常数项也是同类项.3.思考:下列各组是不是同类项:(1)0.5x2y和0.2xy2;(2)4abc和4ab;(3)-5m2n3和2n3m2;(4)7x n y n+1和-3x n y n+1.思路点拨:根据同类项定义进行判断,同类项应所含字母相同,•并且相同字母的指数也相同,二者缺一不可,与其系数无关,与其字母顺序无关.(1)•题虽然所含字母相同,但相同字母的指数不同,(2)题所含字母不同;(3)、(4)符合同类项定义,所以(3)、(4)是同类项,(1)、(2)不是同类项.因为多项式中的字母表示的是数,所以我们也可以运用交换律、结合律、•分配律把多项式中的同类项进行合并.例如,4x2+2x+7+3x-8x2-2 (找出多项式中的同类项)(交换律)=(4x2-8x2)+(2x+3x)+(7-2)(结合律)=(4-8)x 2+(2+3)x+(7-2) (分配律) =-4x 2+5x+5把多项式中的同类项合并成一项,叫做合并同类项.合并同类项后,所得项的系数、字母以及字母的指数与合并前各同类项的系数、字母及字母的指数有什么联系?学生交流后,教师归纳:合并同类项法则:在合并同类项时,把同类项的系数相加,字母和字母的指数保持不变.若两个同类项的系数互为相反数,则两项的和等于零,即这两项相抵消,如-3a b 2+3ab 2=(-3+3)ab 2=0·ab 2=0.多项式中只有同类项才能合并,不是同类项不能合并. 通常我们把一个多项式的各项按照某个字母的指数从大到小(降幂)或者从小到大(升幂)的顺序排列,如-4x 2+5x+5或写成5+5x-4x 2. 二、范例学习例1.合并下列各式的同类项:(1)xy 2-15x y 2; (2)-3x 2y+2x 2y+3x y 2-2x y 2; (3)4a 2+3b 2+2ab-4a 2-4b 2.教师操作投影仪,展示例1,引导学生先观察多项式中哪些项是同类项,初学时,•按照上面的解题步骤,先根据交换律、结合律把同类项结合在一起,然后再合并.解题过程按照课本、教学时,可采用学生口述,老师板书,同时让学生说明每一步骤的依据.例2.(1)求多项式2x 2-5x +x 24x-3x 22的值,其中x=12.(2)求多项式3a+abc-13c 2-3a+13c 2的值,其中a=-16,b=2,c=-3.教师操作投影仪,展示例2,(1)题先让学生直接代入求值,•然后采用先化简后代入的方法,让学生通过比较两种方法,以使体会合并同类项的作用. 解:(1)2x 2-5x+x 2+4x-3x 2-2 (仔细观察,标出同类项) =(2+1-3)x 2+(-5+4)x-2 (系数相加,字母部分不变)=-x-2 (系数是“1”或“-1”时省略不写) 当x=12时,原式=-12-2=-52(2)3a+abc 213c --3a 213c + =(3-3)a+abc+(-13+13)c 2=abc当a=-16,b=2,c=-3时,原式=(-16)×2×(-3)=1点评:在求多项式的值时,一般先对多项式进行化简,然后再代入指定的数值进行计算,这样做比较简便,同时也减少计算失误.合并时,特殊注意系数是负数的情况,规范书写格式,代入字母给定的值时,必要时要正确使用括号,否则易发生错误. 例3.(1)水库中水位第一天连续下降了a 小时,每小时平均下降2cm ,•第二天连续上升了a 小时,每小时平均上升0.5cm ,这两天水位总的变化情况如何?(2)某商店原有5袋大米,每袋大米为x 千克,上午卖出3袋,•下午又购进同样包装的大米4袋,进货后这个商店有大米多少千克? 思路点拨:(1)水位上升量与水位下降量是具有相反意义的两个量.•我们可以把下降的水位变化量记为负,上升的水位变化量记为正,那么,第一天水位的变化量为-2acm ,第二天水位的变化量0.5acm ,两天水位的总变化量为-2a+0.5a=(-2+0.5)a=-1.5a (cm ),这表明这两天水位的总变化情况是下降了1.5acm ;(2)类似(1)•把进货的数量记为正,售出的数量记为负,那么进货后这个商店共有大米5x-3x+4x=(5-3+4)x=6x(千克).三、巩固练习课本第66页,练习第1、2、3题.教师巡视,关注中下程度的学生,适时给予指导,学生独立练习,选择中等程度的学生上黑板演算.四、课堂小结1.什么叫同类项?字母相同,次数也相同的项是同类项吗?举例说明.2.什么叫合并同类项?怎样合并同类项?合并同类项的依据是什么?对于求多项式的值,不要急于代入,应先观察多项式,看其中有没有同类项,若有,要先合并同类项使之变得简单,而后代入求值.五、作业布置1.课本第71页习题2.2第1、7、10题.2.选用课时作业设计.第一课时作业设计一、填空题.1.如果5x2y与12x m y n是同类项,那么m=______,n=______.2.合并同类项:(1)-a-a-2a=________.(2)-xy-5xy+6yx=________.(3)0.8ab2-a2b+0.2a b2=_______.二、选择题.3.下列各组式子中是同类项的是().A.-2a与a2 B.2a2b与3ab2 C.5ab2c与-b2a c D.-17a b2和4ab2c4.下列运算中正确的是().A.3a2-2a2=a2 B.3a2-2a2=1 C.3x2-x2=3 D.3x2-x=2x三、合并下列各式中的同类项:5.-7mn+mn+5nm; 6.56x2-12x2-23x; 7.3a2b-4a b2-4+5a2b+2ab2+7.四、求下列各式的值:8.3x2-8x+2x3-13x2+2x-2x3+3,其中x=-112.9.a2b-6ab-3a2b+5ab+2a2b,其中a=0.1,b=0.01.10.2(x-2y)2-4(2x-y)+(x-2y)2-3(2x-y),其中x=-1,y=12. [提示:分别把(x-2y),(2x-y)看作一个整体]答案:一、1.2 1 2.(1)-4a (2)0 (3)a b2-a2b二、3.C 4.A三、5.-mn 6.0 7.8a2b-2ab2+3四、8.-10x2-6x+3 -10129.-ab -0.00110.3(x-2y)2-7(2x-y) 29122.2 整式的加减(2)教学内容课本第66页至第68页.教学目标1.知识与技能能运用运算律探究去括号法则,并且利用去括号法则将整式化简.2.过程与方法经历类比带有括号的有理数的运算,发现去括号时的符号变化的规律,归纳出去括号法则,培养学生观察、分析、归纳能力.3.情感态度与价值观培养学生主动探究、合作交流的意识,严谨治学的学习态度.重、难点与关键1.重点:去括号法则,准确应用法则将整式化简.2.难点:括号前面是“-”号去括号时,括号内各项变号容易产生错误.3.关键:准确理解去括号法则.教具准备投影仪.教学过程一、新授利用合并同类项可以把一个多项式化简,在实际问题中,往往列出的式子含有括号,那么该怎样化简呢?现在我们来看本章引言中的问题(3):在格尔木到拉萨路段,如果列车通过冻土地段要t小时,•那么它通过非冻土地段的时间为(t-0.5)小时,于是,冻土地段的路程为100t千米,•非冻土地段的路程为120(t-0.5)千米,因此,这段铁路全长为100t+120(t-0.5)千米①冻土地段与非冻土地段相差100t-120(t-0.5)千米②上面的式子①、②都带有括号,它们应如何化简?思路点拨:教师引导,启发学生类比数的运算,利用分配律.学生练习、交流后,教师归纳:利用分配律,可以去括号,合并同类项,得:100t+120(t-0.5)=100t+120t+120×(-0.5)=220t-60100t-120(t-0.5)=100t-120t-120×(-0.5)=-20t+60我们知道,化简带有括号的整式,首先应先去括号.上面两式去括号部分变形分别为:+120(t-0.5)=+120t-60 ③-120(t-0.5)=-120+60 ④比较③、④两式,你能发现去括号时符号变化的规律吗?思路点拨:鼓励学生通过观察,试用自己的语言叙述去括号法则,然后教师板书(或用屏幕)展示:如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.特别地,+(x-3)与-(x-3)可以分别看作1与-1分别乘(x-3).利用分配律,可以将式子中的括号去掉,得:+(x-3)=x-3 (括号没了,括号内的每一项都没有变号)-(x-3)=-x+3 (括号没了,括号内的每一项都改变了符号)去括号规律要准确理解,去括号应对括号的每一项的符号都予考虑,做到要变都变;要不变,则谁也不变;另外,括号内原有几项去掉括号后仍有几项.二、范例学习例1.化简下列各式:(1)8a+2b+(5a-b);(2)(5a-3b)-3(a2-2b).。
第三章整式的加减一、基础题[典例优化解题]例1下列说法正确的是()A、2是单项式B、不是单项式C、x的次数是0D、x的系数0[解析]因为单独一个数是单项式,所以A项是正确的;因为可以看作是与x的积,所以是单项式,故B项是错误的;因为x的指数是1,所以单项式x的次数是1,而不是0,故C项是错误的;因为x可以看作是1与x的积,所以单项式x的系数是1,而不是0,故D项是错误的。
于是应选A。
[答案]A[点评]解答本题的关键是理解单项式的概念以及单项式的系数和次数。
第一,单项式是指含有数字与字母乘积的代数式,如4x,ab,x3,-n,等等;第二,单独一个数或一个字母也是单项式,如2,x,-2003等等;第三,单项式中的数字因数叫做单项式的系数,如-x的系数是-1;第四,一个单项式中,所有字母的指数的和叫做单项式的次数,如ab2是三次单项式。
下列变式例题都是考查单项式的概念以及单项式的系数和次数。
[变式一]单项式-的系数是()A、-1B、-5C、-D、[解析]本题变化点是考查单项式的系数。
单项式的系数包括前面的符号,在书写单项式的系数时,一定要连同它前面的符号一起。
另外,还要注意它的分子和分母。
因此,-的系数是-。
故应选C。
[答案]C[变式二]单项式-2x3y n是五次单项式,则n的值是。
[解析]本题变化点是利用单项式的次数列方程求解。
依题意,得3+n=5,所以有,n=2。
[答案]2例2下列说法正确的是()A、2x+是多项式B、2x+xy是二次二项式C、2x-3是由2x与3两项组成的一次二项式D、若一个多项式的次数是4,则这个多项式任何一项的次数都是4[解析]因为多项式是几个单项式的和,而不是单项式,所以2x+不是多项式,故A项是错误的;因为2x+xy含有2x与xy,而且最高次项xy的次数是2,所以,B项是正确的;因为2x-3的项是2x与-3,故C项是错误的;因为在多项式里,次数最高项的次数就是这个多项式的次数,注意是“最高”,而不是“所有”,故D项是错误的。
于是应选B。
[答案]B[点评]解答本题的关键是理解多项式的概念以及多项式的项数和次数等相关概念。
第一,几个单项式的和叫做多项式。
在多项式中,每个单项式叫做多项式的项。
其中,不含字母的项叫做常数项;第二,一个多项式含有几项,就叫做几项式;第三,多项式里,次数最高项的次数,就是这个多项式的次数;第四,把一个多项式按某一个字母的指数从大到小的顺序排列起来,叫做把多项式按这个字母的降幂排列;反之,称为升幂排列。
下列变式例题都是考查多项式及其相关的概念。
[变式一]多项式x2-2x2y2+3y3-25的次数是()A、2B、3C、4D、5[解析]本题变化点是侧重考查多项式的次数。
多项式的次数就是“次数最高项的次数”。
这里的“最高次数”是单项式的次数,是对字母而言。
因此,多项式x2-2x2y2+3y3-25的最高次项是-2x2y2,其次数为4。
故应选C。
[答案]C[变式二]把多项式5x2+3xy-4x3y2-y3+2x4y4按x的升幂排列。
[解析]本题变化点是侧重考查多项式的重新排列。
依题意,只需考虑x的指数按从小到大的顺序排列。
排列时,注意符号跟着一起移动。
[答案]-y3+3xy+5x2-4x3y2+2x4y4例3下列说法中,正确的是()A、所含字母相同并且次数相同的项是同类项B、次数相同的项一定是同类项C、同类项的次数一定相同D、系数相同的项才是同类项[解析]根据同类项的定义知,判别同类项的标准:一是字母相同;二是相同字母的次数相同。
两者缺一不可,并且要注意的是相同字母的次数相同。
因此,A、B两项都是错误的;另外是否为同类项与它们系数的大小无关。
因此,D项也是错误的。
只有C项是正确的,因为根据单项式次数的定义知,互为同类项的各项的次数就是它们所有字母的指数和,因而一定相同。
故应选C项。
[答案]C[点评]解答本题的关键是理解同类项的概念。
第一,所含字母相同,并且相同字母的次数也相同的项叫做同类项;第二,几个常数项也是同类项;第三,同类项的判别与系数无关,也与字母的排列顺序无关。
下列变式例题都是考查同类项的概念及其应用。
[变式一]下列每组代数式中,不属于同类项的是()A、与-3xyB、8x2y与8xy2C、-2ab与3baD、23与32[解析]本题变化点是侧重考查同类项的判别。
解答时,应看清题目要求:“不属于同类项”。
[答案]B[变式二]若2x a+2y4与-2x5y4是同类项,则a=。
[解析]本题变化点是侧重考查同类项概念的应用。
根据同类项的定义,列方程求解。
依题意,得a+2=5,解得a=3。
[答案]3例4下列各等式中,正确的是()A、-x2+(3x-2)=-x2+3x+2B、-(x2+3x)-2=-x2+3x-2C、-x2+3x-2=-x2+(3x-2)D、-x2+3x-2=-(x2-3x-2)[解析]根据去括号、添括号的法则可知,选项A是错误的,因为括号前是“+”号,括号里各项都不改变符号;选项B是错误的,因为括号前是“-”号,括号里各项都改变符号,但是解答中只改变了第一项的符号;选项D也是错误的,因为括号里最后一项没有改变符号;只有选项C是正确的。
[答案]C[点评]解答本题的关键是掌握去括号、添括号的法则。
第一,去括号的法则:括号前是“+”号,把括号和它前面的“+”号去掉时,括号里各项都不变符号;括号前是“-”号,把括号和它前面的“-”号去掉时,括号里各项都改变符号。
第二,添括号的法则:添括号后,括号前是“+”号,括到括号里的各项都不变符号;添括号后,括号前是“-”号,括到括号里的各项都改变符号。
第三,添括号与去括号正好相反,如-(a-b+c)-a+b-c,从左到右是去括号,而从右到左是添括号。
因此,添括号正确与否可用去括号来检验,反之亦然。
下列变式例题都是考查去括号、添括号的法则及其应用。
[变式一]下列各式中,去括号正确的是()A、a+(b-c+d)=a-b+c-dB、a-(b-c+d)=a-b-c+dC、a-(b-c+d)=a-b+c-dD、a-(b-c+d)=a-b+c+d[解析]本题变化点是侧重考查去括号的应用。
根据去括号的法则可知,选项A是错误的,因为括号前是“+”号,括号里各项都不改变符号;选项B是错误的,因为括号前是“-”号,括号里各项都改变符号,但是解答中只改变了第一项的符号;选项D也是错误的,因为括号里最后一项没有改变符号;只有选项C是正确的。
[答案]C[变式二]添括号:2x-3x2+5=5-()[解析]本题变化点是侧重考查添括号的应用。
根据添括号的法则,题目的括号前的符号是“-”号,所以括到括号里的各项都要改变符号。
原来多项式的常数项5没有括到括号内,其余的两项2x、-3x2要括到括号内,因此,必须改变符号。
于是,得到2x-3x2+5=5-(-2x+3x2),也可以写成5-(3x2-2x)。
[答案]3x2-2x[变式联通练习]题1下列式子中,是单项式的有()A、B、C、D、m2-n2[变式一]单项式-ab2c3的次数是()A、-1B、3C、5D、6[变式二]单项式-4πr 2的系数是()A、-1B、-4C、4πD、-4π题2多项式x4-2x2+1是次项式。
[变式一]多项式x3-2x2y2+3y3-25的最高次项的系数是。
[变式二]把多项式5x2+3xy-4x3y2-y3+2x4y4按y的降幂排列。
题3下列语句中正确的是()A、3abc与-3ab是同类项B、与2不是同类项C、-3a2b3与-3a3b2是同类项D、a2b与-3ba2是同类项[变式一]在多项式5xy2+2x3-3x2y-y3中,与2x2y是同类项的是()A、5xy2B、2x3C、3x2yD、-3x2y[变式二]已知25x4与5x n是同类项,则n等于()A、2B、3C、4D、2或4题4把-(a+b)-c去括号后得()A、-a+b-cB、-a-b-cC、-a-b+cD、-a+b+c[变式一]添括号:x2-y2+4y-4=x2-()[变式二]不改变代数式的值,把2a-(3b-4c+d)括号前的符号变为相反的符号,其中正确的是()A、2a+(3b-4c+d)B、2a+(3b+4c-d)C、2a+(-3b+4c-d)D、2a+(-3b-4c+d)二、拔高题[典例优化解题]例1把下列各代数式填入相应的大括号里:a-3,5xy,x2,2003,-0.01,,,,3b+4c2-d3,n, 3-单项式集合{…}多项式集合{…}整式集合{…}[解析]分母中含有字母的式子,一定不是单项式,也不是多项式,从而它也一定不是整式。
所以首先应排除,,3-。
又由单项式、多项式以及整式的定义可知:5xy,x2,2003,-0.01,n是单项式;a-3,,3b+4c2-d3是多项式;5xy,x2,2003,-0.01,n,a-3,,3b+4c2-d3是整式。
[答案]单项式集合{5xy,x2,2003,-0.01,n,…}多项式集合{a-3,,3b+4c2-d3,…}整式集合{5xy,x2,2003,-0.01,n,a-3,,3b+4c2-d3,…}[点评]解答本题的关键是正确理解单项式、多项式以及整式的概念。
第一,单项式是指含有数字与字母乘积的代数式,单独一个数或一个字母也是单项式;第二,几个单项式的和叫做多项式;第三,单项式和多项式统称整式,即整式例2合并同类项:-4x2+5x2=[解析]根据合并同类项的法则,得到-4x2+5x2=(-4+5)x2=x2[答案]x2[点评]解答本题的关键是掌握合并同类项的法则以及合并同类项的一般步骤。
第一,把多项式中的同类项合并成一项,叫做合并同类项;第二,合并同类项的法则是:同类项的系数相加,所得的结果作为系数,字母和字母的指数不变;第三,合并同类项的一般步骤是:⑴准确地找出同类项。
⑵利用分配律,把同类项的系数加在一起(用小括号),字母和字母的指数不变。
⑶写出合并后的结果;第四,合并同类项时,如果两个同类项的系数互为相反数,那么其结果就为0。
另外,合并同类项时,只能把同类项合并成一项,不是同类项的不能合并,但是,在每一步运算中不要漏掉。
下列变式例题都是考查合并同类项。
思维向多层次、多角度拓展和延伸。
[变式一]合并同类项:x2y+8xy2+5-3x2y-xy2-2[解析]本题变化点是侧重考查项数较多的多项式的同类项合并。
解答时,一定要先找出同类项,几个常数项也是同类项。
另外,还要特别注意,x2y与-xy2不是同类项。
[答案]x2y+8xy2+5-3x2y-xy2-2=(x2y-3x2y)+(8xy2-xy2)+(5-2)=(1-3)x2y+(8-1)xy2+(5-2)=-2x2y+7xy2+3[变式二]合并同类项:-5ba2+4ab2+2ab+5a2b-2ab[解析]本题变化点是侧重考查系数互为相反数的同类项合并。