1.1磁生电的探索
- 格式:ppt
- 大小:2.93 MB
- 文档页数:22
《磁生电的探索》教案一、教学目标1. 让学生了解电磁感应现象,知道磁生电的条件。
2. 通过实验探究,培养学生动手操作能力和团队协作精神。
3. 培养学生对科学探究的兴趣,提高创新能力。
二、教学重点与难点1. 重点:电磁感应现象的理解和掌握。
2. 难点:磁生电条件的探究和应用。
三、教学准备1. 实验器材:蹄形磁铁、线圈、开关、导线、灯泡、滑动变阻器等。
2. 教学工具:PPT、黑板、粉笔等。
四、教学过程1. 导入新课:通过播放电磁感应现象的动画,引导学生关注磁生电现象。
2. 讲解基本概念:讲解电磁感应现象的定义,介绍磁生电的条件。
3. 演示实验:教师演示蹄形磁铁带动线圈旋转,使灯泡发光的实验,让学生直观感受磁生电现象。
4. 学生实验:学生分组进行实验,观察不同条件下灯泡的亮度变化,总结磁生电条件。
5. 分析与讨论:引导学生根据实验现象,分析磁生电的原理,探讨影响磁生电效果的因素。
6. 知识拓展:介绍法拉第的贡献,以及电磁感应在现代科技领域的应用。
7. 总结:对本节课的内容进行总结,强调磁生电的条件和应用。
五、作业布置1. 完成实验报告:记录实验过程,总结实验现象,分析磁生电条件。
2. 预习下一节课内容:电磁感应定律的发现。
教学反思:本节课通过实验和讲解相结合的方式,使学生了解了电磁感应现象,掌握了磁生电的条件。
在教学过程中,要注意关注学生的学习情况,及时解答学生的疑问,提高学生的动手操作能力和思考能力。
要注重培养学生的团队协作精神,提高课堂氛围。
六、教学评价1. 评价内容:学生对电磁感应现象的理解,磁生电条件的掌握,以及实验操作技能。
2. 评价方法:课堂问答、实验报告、小组讨论、课后作业等。
3. 评价标准:能准确描述电磁感应现象,明确磁生电的条件,能够独立完成实验操作,并在实验报告中进行合理分析。
七、教学拓展1. 邀请相关领域的专家或企业代表,进行专题讲座,让学生了解电磁感应技术在现实生活中的应用。
2. 组织学生参观实验室或相关企业,亲身体验电磁感应技术的实际运作。
《磁生电的探索》教案一、教学目标1. 让学生了解电磁感应现象,知道磁生电的条件。
2. 培养学生运用实验方法探究物理现象的能力。
二、教学内容1. 电磁感应现象2. 磁生电的条件3. 实验探究三、教学重点与难点1. 重点:电磁感应现象,磁生电的条件。
2. 难点:实验探究过程中,对实验现象的观察与分析。
四、教学方法1. 实验演示法2. 问题驱动法3. 小组合作法五、教学准备1. 实验器材:蹄形磁铁、线圈、导线、灯泡、开关等。
2. 教学工具:PPT、黑板、粉笔。
一、电磁感应现象1. 引入:讲解电磁感应现象的发现历程。
2. 讲解:介绍电磁感应现象的定义、特点。
3. 案例分析:分析法拉第的实验过程,引导学生理解电磁感应现象。
二、磁生电的条件1. 引入:讲解磁生电的原理。
2. 讲解:介绍磁生电的三个条件。
3. 案例分析:分析磁生电的实际应用案例,如发电机、变压器等。
三、实验探究1. 实验安排:安排学生进行电磁感应实验。
2. 实验指导:讲解实验步骤、注意事项。
3. 实验分析:引导学生观察实验现象,分析实验结果。
2. 拓展:布置课后作业,巩固所学知识。
五、教学反思1. 反思教学过程:分析教学过程中的优点与不足。
2. 改进措施:针对不足之处,提出改进措施。
六、教学过程1. 引入新课:通过回顾上节课的内容,引导学生进入本节课的学习。
2. 讲解新课:详细讲解电磁感应现象的原理,并通过示例让学生理解磁生电的条件。
3. 实验演示:进行电磁感应实验,让学生直观地观察到磁生电的现象。
4. 学生实验:安排学生分组进行实验,亲身体验磁生电的过程。
七、课堂练习1. 布置练习题:针对本节课的内容,布置一些练习题,让学生巩固所学知识。
2. 学生练习:学生独立完成练习题,巩固对磁生电的理解。
3. 答案讲解:讲解练习题的答案,解答学生的疑问。
八、拓展与应用1. 实例分析:分析一些磁生电的实际应用案例,如发电机、变压器等。
2. 学生讨论:组织学生进行小组讨论,探讨磁生电在实际生活中的应用和意义。
第1节磁生电的探索1.了解电磁感应现象发现的历史过程,体会对称思想和科学猜想在物理学发展中的重要作用.2.通过实验,知道电磁感应现象及其产生的条件.(重点+难点) 3.了解法拉第及其对电磁学的贡献.一、历史的回顾1820年,丹麦物理学家奥斯特发现了电流的磁效应,它揭示了电现象和磁现象之间存在某种联系.奥斯特发现了“电生磁”的现象之后,激发人们去探索“磁生电”的方法,比较著名的物理学家有:安培、科拉顿等,都没有成功或半途而废.英国物理学家法拉第坚信自然界的各种现象之间存在相互联系,一直坚持探索电磁感应现象,前后历时数十年的探索,终于悟出了磁生电的基本原理,“一切都存在于变化之中”.二、磁生电的实验探索1.实验观察(1)没有电池也能产生电流:闭合电路中的部分导体做切割磁感线运动时,回路中电流表的指针发生了偏转.(2)磁铁与螺线管有相对运动时也能产生电流:在条形磁铁插入或拔出螺线管的瞬间,电流表的指针发生了偏转.条形磁铁在螺线管中保持不动时,电流表的指针不发生偏转.如图所示.2.产生感应电流的条件只要穿过闭合回路的磁通量发生变化,闭合回路中就有感应电流产生.在回路中产生感应电流现象表明发生了电磁感应现象.三、发现磁生电的意义电磁感应现象的发现,实际上是发现了事物间的相互联系,展现了电和磁间的密切联系及其对称与统一,为电磁理论的发展创造了条件,进一步推动了电磁技术的发展,引领人们走进了电气时代.感应电流条件的探究1.产生感应电流的常见方法(1)闭合电路中的一部分导体做切割磁感线运动如图甲所示,导体AB做切割磁感线运动时,回路中有电流产生,而导体AB顺着磁感线运动时,回路中无电流产生.(2)磁铁在线圈中运动如图乙所示,条形磁铁插入或拔出线圈时,线圈中有电流产生,但磁铁在线圈中静止不动时,回路中无电流产生.(3)改变螺线管AB中的电流如图丙所示,将小螺线管AB插入大螺线管CD中不动,当开关S接通或断开时,电流表中有电流通过;若开关S一直接通,当改变滑动变阻器的阻值时,电流表中也有电流通过.2.产生感应电流的条件产生感应电流的条件可以归纳为两个:一是电路本身必须闭合,二是穿过回路本身的磁通量发生变化,主要体现在“变化”上,回路中有没有磁通量穿过不是产生感应电流的条件,如果穿过回路的磁通量很大但无变化,那么无论多大,都不会产生感应电流.如图所示,竖直放置的长直导线通过恒定电流,有一矩形框与导线在同一平面内,在下列情况中线圈产生感应电流的是()①导线中电流变大②线框向右平动③线框向下平动④线框以ab边为轴转动⑤线框以直导线为轴转动A.①②③ B.②③④⑤C.①②④ D.①②③④⑤[思路点拨] 分析是否产生感应电流,关键就是分析穿过闭合线框的磁通量是否变化,而分析磁通量是否有变化,就要搞清楚磁感线的分布,亦即搞清楚磁感线的疏密变化和磁感线方向的变化.[解析]对①选项,因I增大而引起导线周围的磁场增强,使穿过线框的磁通量增大,故①正确.对②选项,因离开直导线方向越远,磁感线分布越疏,因此线框向右平动时,穿过线框的磁通量变小,故②正确.对③选项,由下图甲可知线框向下平动时穿过线框的磁通量不变,故③错.对④选项,可用一些特殊位置来分析,当线框在图甲所示的位置时,穿过线框的磁通量最大,当线框转过90°时,通过线框的磁通量为零,因此可以判定线框以ab为轴转动时磁通量一定变化,故④正确.对⑤选项,先画出俯视图如图乙所示,由图可看出线框绕直导线转动时,在任何一个位置穿过线框的磁感线条数均不变,因此无感应电流,故⑤错.综上所述可知选项C正确.[答案] C1.如图所示,线圈两端接在电流表上组成闭合电路.在下列情况中,电流表指针不发生偏转的是()A.线圈不动,磁铁插入线圈B.线圈不动,磁铁从线圈中拔出C.磁铁不动,线圈上、下移动D.磁铁插在线圈内不动解析:选D.产生感应电流的条件是穿过闭合回路的磁通量发生变化,线圈和电流计已经组成闭合回路,只要穿过线圈的磁通量发生变化,线圈中就产生感应电流,电流计指针就偏转.在选项A、B、C三种情况下,线圈和磁铁发生相对运动,穿过线圈的磁通量发生变化,产生感应电流;而当磁铁插在线圈中不动时,线圈中虽然有磁通量,但磁通量不变化,不产生感应电流.磁通量变化的理解1.磁通量的变化类型根据磁通量的定义式Φ=BS,引起磁通量变化的类型有:(1)由于磁场变化而引起闭合回路的磁通量的变化.(2)磁场不变,由于处在磁场中的闭合回路的面积S发生变化而引起磁通量的变化.(3)磁场、处在磁场中的闭合回路面积都发生变化时,也可引起穿过闭合电路的磁通量的变化.2.磁通量的计算(1)磁通量有正负之分,其正负是这样规定的:任何一个面都有正、反两面,若规定磁感线从正面穿入为正磁通量,则磁感线从反面穿入时磁通量为负值.若磁感线沿相反方向穿过同一平面,且正向磁感线条数为Φ1,反向磁感线条数为Φ2,则磁通量等于穿过该平面的磁感线的净条数(磁通量的代数和),即Φ=Φ1-Φ2.(2)Φ=BS中的S应是闭合电路中包含磁场的那部分有效面积.无磁场时,无论面积多大,都没有磁通量.(3)磁通量与线圈的匝数无关,也就是磁通量大小不受线圈匝数的影响,同理,磁通量的变化量ΔΦ=Φ2-Φ1也不受线圈匝数的影响.所以,直接用公式求Φ、ΔΦ时,不必考虑线圈的匝数n.(4)计算磁通量的变化:在求解磁通量的变化量ΔΦ=Φ2-Φ1时,若B变化,S不变时,可用ΔΦ=ΔB·S;若B不变,S变化时,可用ΔΦ=B·ΔS;但若B和S同时发生变化,就要找准初末态,用ΔΦ=Φ2-Φ1来计算.如图所示的各种情况中,穿过回路的磁通量增大的有()A.图甲所示,在匀强磁场中,先把由弹簧状导线组成的回路撑开,后放手到恢复原状的过程中B.图乙所示,裸铜线ab在裸金属导轨上向右匀速运动过程中C.图丙所示,条形磁铁从线圈中抽出的过程中D.图丁所示,闭合线框远离与它在同一平面内通电直导线的过程中[思路点拨] 根据磁通量的定义结合不同的过程分析,注意条形磁铁、通电导线周围磁场的分布.[解析]四种情况下,穿过闭合回路的磁通量均发生变化,故都有感应电流产生.但甲中电路的面积减小,磁通量减小;乙中的ab向右移动时在磁场的闭合电路的面积增大,磁通量增大;丙中磁铁向上运动时通过线圈的磁场变弱,磁通量减小;丁中直线电流近处的磁场强,远处的磁场弱.所以线圈远离通电直导线时,磁通量也减小.所以B正确.[答案] B2.条形磁铁竖直放置,闭合圆环水平放置,条形磁铁中心线穿过环中心,如图所示.若圆环为弹性环,其形状由Ⅰ扩大为Ⅱ,那么圆环内磁通量变化情况是()A.磁通量增大 B.磁通量减小C.磁通量不变 D.条件不足,无法确定解析:选B.由于圆环在形状Ⅱ时面积大于形状Ⅰ的面积,因此形状Ⅱ中由磁铁N极回到S 极时向下穿过圆环的磁感线条数大于Ⅰ.而在Ⅰ、Ⅱ两种形状时,在磁铁内部由S极到N极向上穿过圆环的磁感线条数相同(分布在磁体外部空间的磁感线在磁体内全部从S极返回到N极),因此不论圆环处于形状Ⅰ或Ⅱ,向上穿过圆环的磁感线条数总是多于向下穿过圆环的磁感线条数.由于形状Ⅱ中向下的磁感线增加,因此形状Ⅱ中总的磁通量较小,故本题正确答案应选B.[随堂检测]1.有关磁通量Φ,下列说法正确的是()A.磁通量越大,表示磁感应强度越大B.面积越大,穿过它的磁通量也越大C.穿过单位面积的磁通量等于磁感应强度D.磁通密度在数值上等于磁感应强度解析:选D.磁通量是穿过某一面积的磁感线的条数,在匀强磁场中磁通量等于垂直于磁场的面积跟磁感应强度的乘积.2.如图所示,闭合的矩形线圈abcd放在范围足够大的匀强磁场中,下列情况下,线圈中能产生感应电流的是()A.线圈向左平移B.线圈向上平移C.线圈以ab为轴旋转D.线圈不动解析:选C.要使线圈中产生感应电流,必须使线圈中的磁通量发生变化,无论线圈向哪个方向平移或是不动,线圈中磁通量均不变,只有绕某一边转动才能使磁通量变化.3.如图所示,L为一根无限长的通电直导线,M为一金属环,L过M的圆心与圆面垂直,且通以向上的电流I,则()A.当L中的电流I发生变化时,环中有感应电流B.当M向右平移时,环中有感应电流C.当M保持水平在竖直方向上上下移动时环中有感应电流D.只要L和M保持垂直,则以上几种情况下,环中均无感应电流解析:选D.金属环与长直导线产生的磁场平行,穿过圆环的磁通量为零,在前三个选项中穿过圆环的磁通量均不发生变化,无感应电流,故选项D正确.4.如图所示的条形磁铁的上方,放置一矩形线框,线框平面水平且与条形磁铁平行,则线框在由N端匀速平移到S端的过程中,线框中感应电流的变化情况是()A.线框中始终无感应电流B.线框中始终有感应电流C.线框中开始有感应电流,当线框运动到磁铁中部上方时无感应电流,以后又有感应电流D.开始无电流,当运动到磁铁中部的上方时有感应电流,后来又没有电流解析:选B.在线框滑过的过程中,穿过线框的磁通量先减小后增大,因此有感应电流.穿过线框的磁通量始终在变化,所以说始终有感应电流,B对.5.有一根由金属丝绕制成的闭合环套在条形磁铁上,如图所示,当闭合环收缩导致它所围的面积减小时:(1)穿过它的磁通量是否有变化?如有变化,怎样变?(2)闭合环中是否存在感应电流,为什么?解析:条形磁铁内部的磁感线方向由S极到N极,外部从N极到S极;条形磁铁外部向下穿过闭合环的磁通量抵消了一部分内部向上穿过的磁通量,当环收缩时被抵消的部分减少,所以穿过闭合环的磁通量增加,由于穿过环的磁通量有变化,所以在环中产生感应电流.答案:(1)变化增加(2)存在穿过闭合环的磁通量变化[课时作业]一、选择题1.发现电磁感应现象的科学家是()A.安培 B.赫兹C.法拉第 D.麦克斯韦解析:选C.安培首先着手研究磁生电,但法拉第于1831年才发现电磁感应现象,故C项正确.2.关于产生感应电流的条件,下列说法中正确的是()A.只要闭合电路在磁场中运动,闭合电路中就一定有感应电流B.只要闭合电路中有磁通量,闭合电路中就有感应电流C.只要导体做切割磁感线运动,就有感应电流产生D.只要穿过闭合电路的磁感线条数发生变化,闭合电路中就有感应电流解析:选D.只有穿过闭合电路的磁通量发生变化时,才会产生感应电流,D正确.3.闭合电路的一部分导线ab处于匀强磁场中,下图中各情况导线都在纸面内运动,那么下列判断中正确的是()A.都会产生感应电流B.都不会产生感应电流C.甲、乙不会产生感应电流,丙、丁会产生感应电流D.甲、丙会产生感应电流,乙、丁不会产生感应电流解析:选D.闭合电路的部分导线切割磁感线致使穿过闭合回路的磁通量发生变化时,闭合回路中产生感应电流.4.如图所示,矩形线圈与磁场垂直,且一半在匀强磁场内一半在匀强磁场外,下述过程中使线圈产生感应电流的是()A.以bc为轴转动45°B.以ad为轴转动45°C.将线圈向下平移D.将线圈向上平移解析:选B.以bc为轴转动大于60°和以ad为轴转动小于60°时穿过矩形线圈中的磁通量都发生变化,而将线圈上、下平移时,穿过矩形线圈的磁通量不变,根据产生感应电流的条件可知选项B对,选项A、C、D错.5.如图所示,把磁铁的N极向线圈中插入时,线圈中会产生感应电流.下列哪些情况不能在线圈中产生感应电流()A.磁铁的N极静止在线圈中B.把磁铁的N极从线圈中抽出时C.把磁铁的S极向线圈中插入时D.把磁铁的S极从线圈中抽出时解析:选A.闭合电路中产生感应电流必须有磁通量的变化,题中情形,必须磁铁和线圈有相对运动才能使线圈中的磁通量变化,且变化即可,与磁场方向无关.6.如图所示,ab是水平面上一个圆的直径,在过ab的竖直平面内有一根通电导线ef.已知ef平行于ab,当ef竖直向上平移时,电流磁场穿过圆面积的磁通量将()A.逐渐增大 B.逐渐减小C.始终为零 D.不为零,但保持不变解析:选C.利用安培定则判断直线电流产生的磁场,作出俯视图(如图所示).考虑到磁场具有对称性,可以知道,穿入线圈的磁感线的条数与穿出线圈的磁感线的条数是相等的.故选C.7.如图所示,导线ab和cd互相平行,则下列四种情况下导线cd中无电流的是()A.开关S闭合或断开的瞬间B.开关S是闭合的,但滑动触头向左滑C.开关S是闭合的,但滑动触头向右滑D.开关S始终闭合,不滑动触头解析:选D.如果导线cd中无电流产生,则说明通过下面的闭合线圈的磁通量没有发生变化,也就说明通过导线ab的电流没有发生变化.显然,开关S是闭合或断开的瞬间;开关S是闭合的,但滑动触头向左滑的过程,开关S是闭合的,但滑动触头向右滑的过程都是通过导线ab的电流发生变化的过程,都能在导线cd中产生感应电流.因此本题的正确选项应为D.8.接有理想电压表的三角形导线框abc,如图所示,在匀强磁场中向右运动,则框中有无感应电流?电压表有无读数(示数不为零称有读数)()A.无、有 B.有、无C.无、无 D.有、有解析:选C.虽然是闭合电路,但穿过闭合回路的磁通量不变化,没有产生感应电流,电压表在有电流通过时才能有示数,因此电压表无示数.二、非选择题9.如图所示,框架面积为S,框架平面与磁感应强度为B的匀强磁场方向垂直,则穿过线框平面的磁通量为________;若使框架绕轴OO ′转过60°的角,则穿过线框平面的磁通量为________;若从初始位置转过90°,则穿过线框平面的磁通量为________;若从初始位置转过180°,则穿过线框平面的磁通量变化为________.解析:Φ1=BS ,Φ2=BS cos 60°=12BS ,Φ3=0, ΔΦ=BS -(-BS )=2BS .答案:BS 12BS 0 2BS 10.如图所示,一个矩形线框套在蹄形磁铁的一端,并垂直于磁感线移动(假设两极间的磁场是均匀的),关于这个线框中是否会产生感应电流,甲、乙两同学有不同观点:甲说:线框右移时,cd 边切割磁感线,所以有感应电流.乙说:线框右移时,线框平面始终跟磁感线平行,穿过线框的磁通量没有变化(始终为零),所以没有感应电流.请你对这两种说法作一评价.解析:cd 边是线框的一部分导体,线框右移时,符合“闭合电路的一部分导体做切割磁感线运动”的条件,因此线框中会有感应电流,所以甲的说法是对的.乙造成误判的原因是只考虑了两个磁极间的磁场,以为线框平面始终平行磁感线,事实上磁感线是闭合的.在磁极间有从N 极到S 极的磁感线,在磁体内部有从S 极回到N 极的磁感线,因此穿过线圈的磁通量并不为零,而且在移动过程中会发生变化.答案:见解析。
第1节:磁生电的探索[自学教材]1.电流的磁效应1820年,丹麦物理学家发现了电流的磁效应,它揭示了和之间存在的某种联系。
2.探索“磁生电”奥斯特发现了“电生磁”的现象之后,激励人们去探索“磁生电”的方法。
比较著名的物理学家有、、、等,但都没有坚持到最后。
这其中已经发现感应电流的科学家是。
3.法拉第的探索英国科学家前后历时数十年的探索,终于悟出了磁生电的基本原理,“一切都存在于变化之中”。
[重点诠释]1.“磁生电”“磁生电”是一种在变化、运动的过程中才能出现的效应。
法拉第把引起电流的原因概括为五类,它们都与变化和运动相联系,这就是:变化的电流、变化的磁场、运动的恒定电流、运动的磁铁、在磁场中运动的导体。
2.电磁感应现象发现的意义(1)电磁感应的发现使人们对电与磁内在联系的认识更加完善,宣告了电磁学作为一门统一学科的诞生。
(2)电磁感应的发现使人们找到了磁生电的条件,引领人类进入电气化时代。
1.自然界的电、热和磁等现象都是相互联系的,很多物理学家为寻找它们之间的联系做出了贡献。
下列说法正确的是()①奥斯特发现了电流的磁效应,揭示了电现象和磁现象之间的联系②奥斯特发现了电流的热效应,说明了热现象和电现象之间存在联系③法拉第发现了电磁感应现象,揭示了磁现象和电现象之间的联系④法拉第发现了电流的热效应,定量给出了电能和热能之间的转换关系A .①③B .①④C .②③D .②④[自学教材]1.探究导体棒在磁场中运动是否产生电流图1-1-12.探究磁铁在通电螺线管中运动是否产生电流图1-1-23.模拟法拉第的实验图1-1-34.实验结论利用磁场产生电流的条件:只要穿过 的磁通量 ,闭合电路中就会产生电流。
[重点诠释]1.判断感应电流有无的方法。
(1)明确电路是否为闭合电路。
(2)判断穿过电路的磁通量是否发生变化。
穿过闭合电路的磁通量发生变化,大致有以下几种情况:①磁感应强度B 不变,线圈面积S 发生变化。
《磁生电的探索》教案一、教学目标1. 让学生了解电磁感应现象,知道发电机的工作原理。
2. 培养学生观察、思考、实验的能力,提高学生的科学素养。
3. 引导学生运用科学知识解决实际问题,培养学生的创新意识。
二、教学重点1. 电磁感应现象的理解和应用。
2. 发电机工作原理的探究。
三、教学难点1. 电磁感应现象的实验操作和现象的解释。
2. 发电机工作原理的深入理解。
四、教学准备1. 实验室用具:电磁感应实验装置、发电机模型、导线、磁铁等。
2. 教学课件和视频资料。
五、教学过程1. 导入:通过展示发电机的图片,引导学生思考发电机的原理是什么。
2. 新课讲解:介绍电磁感应现象,讲解发电机的工作原理。
3. 实验演示:进行电磁感应实验,让学生观察实验现象,并解释原因。
4. 小组讨论:让学生分组讨论电磁感应现象的应用,如发电机、动圈式话筒等。
5. 课堂小结:总结本节课所学内容,强调电磁感应现象在生活中的应用。
6. 作业布置:让学生设计一个简单的发电机模型,并观察其工作原理。
7. 课后反思:教师对本节课的教学进行反思,看是否达到教学目标,学生是否掌握了电磁感应现象和发电机的原理。
六、教学延伸1. 家庭作业:让学生完成一个关于电磁感应现象的应用项目,例如制作一个简易的电动机或探究其他电磁现象。
2. 课后阅读:推荐学生阅读关于电磁感应和发电机的科普书籍,以加深对相关知识的理解。
七、教学评估1. 课堂参与度:观察学生在课堂上的积极参与情况,包括提问、回答问题和实验操作等。
2. 作业完成情况:评估学生完成家庭作业的质量和创新性,以及对作业的认真程度。
3. 小组讨论:评价学生在小组讨论中的表现,包括合作、交流和分享等能力。
八、教学改进1. 根据学生的反馈和学习情况,及时调整教学内容和教学方法,以提高教学效果。
2. 在实验环节,可以增加一些互动环节,让学生更主动地参与进来,提高学生的实践能力。
3. 对于难以理解的知识点,可以采用多媒体教学手段,如动画演示,以帮助学生更好地理解。
1.1 磁生电的探索一、科学探究——感应电流产生的条件1.探究1:利用导体在磁场中运动闭合回路的部分导体在磁场中做运动时,闭合回路中电流表的指针发生偏转,说明回路中产生了感应电流.2.探究2:利用磁铁在螺线管中的运动将条形磁铁或与电流表构成闭合电路的螺线管过程中,观察到电流表的指针发生偏转,说明回路中产生了感应电流.3.探究3:利用通电螺线管的磁场螺线管A、滑动变阻器、电源、开关组成一个回路,螺线管B与电流表组成闭合回路,螺线管A放在螺线管B内.开关闭合或断开的瞬间,电流表的指针会发生,而开关闭合稳定后,电流表的指针偏转;保持开关闭合,当滑动变阻器的滑片移动时,电流表的指针发生;保持开关闭合,当螺线管A离开B或进入B时,电流表的指针发生.二、产生感应电流的条件只要穿过闭合电路的发生变化,闭合电路中就会产生感应电流.思考:只要电路中磁通量发生变化就一定有电流吗?核心要点突破一、对磁通量及其变化的理解1.磁通量磁通量表示磁场中穿过某一面积的磁感线净条数.Φ=BS为匀强磁场中磁通量的计算公式.应用此公式时需注意以下两点:(1)公式Φ=BS的适用条件:①匀强磁场;②磁感线与平面垂直,即B⊥S.(2)S为有效面积①在匀强磁场B中,若磁感线与平面不垂直.公式Φ=BS中的S应为平面在垂直于磁感线方向上的投影面积.如图所示,在水平方向的匀强磁场中,面积为S的平面abcd与垂直于磁感线方向的平面的夹角为θ,则穿过平面abcd的磁通量应为Φ=B·S cosθ.S cosθ即为平面S在垂直于磁感线方向上的投影,我们称之为“有效面积”.②S 是指闭合回路中包含磁场的那部分有效面积.如图所示,若闭合电路abcd 和ABCD 所在平面均与匀强磁场B 垂直,面积分别为S 1和S 2,且S 1>S 2,但磁场区域恰好只有ABCD 那么大,穿过S 1和S 2的磁通量是相同的,因此,Φ=BS 中的S 应是指闭合回路中包含磁场的那部分有效面积S 2.2.磁通量的变化(1)引起磁通量变化的原因:由公式Φ=BS cos α可知,引起磁通量发生变化的原因有: ①面积S 不变,磁感应强度B 发生变化,则磁通量Φ发生变化; ②面积S 变化,磁感应强度B 不变,则磁通量Φ发生变化;③面积S 变化,磁感应强度B 也发生变化,则磁通量Φ可能发生变化; ④线圈平面和磁场方向的夹角发生变化时,引起穿过线圈的磁通量发生变化.特别提醒1.磁通量是标量,但有正、负之分,正、负由线圈的面决定,磁通量的计算类问题首先要明确其正、负.2.磁通量与线圈的匝数无关,也就是说磁通量大小不受线圈匝数的影响.同理,磁通量的变化量ΔΦ=Φ2-Φ1也不受线圈匝数的影响.所以,直接用公式求Φ、ΔΦ时,不必考虑线圈匝数n .二、对“导体切割”磁感线的理解闭合回路中的一段导体做切割磁感线运动时,闭合回路中产生感应电流. 1.“切割磁感线”产生感应电流和“磁通量变化”在本质上是一致的.如图所示,当导体ab 向右运动时,会引起abcd 回路的面积变大,从而使磁通量发生变化,所以在回路中产生感应电流.2.注意导线是否“切割”磁感线,形象地说就是将磁感线“割断”.如果导线方向平行于磁感线,或者速度方向平行于磁感线,则导线并没有“切割”磁感线.3.回路中有导线切割磁感线,也不能保证一定产生感应电流.例如整个回路都处在一个匀强磁场中沿垂直磁场方向运动时,回路的磁通量没有变化,虽然有切割现象,但不会产生感应电流.课堂互动讲练一、 磁通量的变化(2)磁通量变化量的计算: ΔΦ=Φt -Φ0=⎩⎪⎨⎪⎧B ΔS (B ⊥S ,且B 不变S 变化)S ΔB (B ⊥S ,且S 不变B 变化)B t S t -B 0S 0(B 与S 均变化,S 为有效面积)例1.磁通量是研究电磁感应现象的重要物理量,如图所示,通有恒定电流的导线MN与闭合线框共面,第一次将线框由1平移到2,第二次将线框绕cd边翻转到2,设先后两次通过线框的磁通量变化量分别为ΔΦ1和ΔΦ2,则()A.ΔΦ1>ΔΦ2B.ΔΦ1=ΔΦ2C.ΔΦ1<ΔΦ2 D.无法确定例2.一个200匝、面积为20 cm2的线圈放在磁场中,磁场的方向与线圈平面成30°角,若磁感应强度在0.05 s内由0.1 T增加到0.5 T,在此过程中磁通量变化了多少?二、产生感应电流的条件例1.如图所示的条件下,闭合矩形线圈能产生感应电流的是()例2.如图所示恒定的磁场中有一圆形的闭合导体线圈,线圈平面垂直于磁场方向,当线圈在此磁场中做下列哪种运动时,线圈中能产生感生电流的是()A.线圈沿自身所在的平面做匀速运动B.线圈沿自身所在的平面做加速运动C.线圈绕任意一条直径做匀速转动D.线圈绕任意一条直径做变速转动课堂练习1.自然界的电、热和磁等现象都是相互联系的,很多物理学家为寻找它们之间的联系做出了贡献。