复杂应力电测实验共22页
- 格式:ppt
- 大小:361.00 KB
- 文档页数:22
机械工程基础实验实验报告书实验项目名称: 复杂应力电测实验学年:学期:入学班级:专业班级:学号:姓名:联系电话:指导老师:1复杂应力实验设计(预习报告)[注:同学们在上课前需完成预习报告,并交老师检查后方可进行实验] 一、 实验目的 设计出为间接测量主应力1σ及3σ而所需的应变片组分布方案。
二、 画出应变片组的几种常见分布形式三、 应变片组分布设计理论推导 a) 根据主应力公式=1σ =3σ为得到1σ及3σ,必须先求出X σ,Y σ及XY τ b) 根据广义虎克定律公式(推导一般公式)=x σ Y σ= XY XY G γτ=为得到X σ,Y σ及XY τ,必须先求出X ε,Y ε及XY γ C )根据任意角度应变公式a a a a XY Y X a cos sin sin cos 22γεεε-+=为得到X ε,Y ε及XY γ,必须建立三个方向1a 、2a ,及3a 的应变公式进行联立求解,显然1a ε,2a ε及3a ε可以由电测法直接测出,可以看作已知值。
(问题得到解决)四、 画出自己设计的应变花分布图并写出1σ及3σ的表达式(要求:有推导步骤,可写在背面)1=a ε 度;2=a ε 度;3=a ε 度),,(3211a a a f εεεσ== ),,(3213a a a f εεεσ==实验五复杂应力电测实验(2H)一、实验目的二、实验设备1.多用应力实验台(图1)C图 13三、 实验设计方案(测量位置选择在AA ‘截面的最顶点(图2))目标:测量主应力()及31σσ以及弯矩(M )和扭矩(M n ) 提示:Z x W M=σ,nn xy W M ==max ττ图2应变花。
第二章 电测法应力分析实验电测法是实验应力分析中应用最广泛和最有效的方法之一,广泛应用于机械、土木、水利、材料、航空航天等工程技术领域,是验证理论、检验工程质量和科学研究的有力手段。
第一节 矩形截面梁的纯弯曲实验一、实验目的1.熟悉电测法的基本原理和静态电阻应变仪的使用方法。
2.测量矩形截面梁在纯弯曲时横截面上正应力的分布规律。
3.比较正应力的实验测量值与理论计算值的差别。
二、实验设备和仪器1.多用电测实验台。
2.YJ28A -P10R 型静态电阻应变仪。
3.SDX -I 型载荷显示仪。
4.游标卡尺。
三、实验原理及方法实验装置如图2-1所示,矩形截面梁采用低碳钢制成。
在梁承发生纯弯曲变形梁段的侧面上,沿与轴线平行的不同高度的线段22-、11-、00-、11'-'、22'-'(00-线位于中性层上,22-线位于梁的上表面,22'-'线位于梁的下表面,11-和11'-'、22-和22'-'各距00-线等距,其距离分别用1y 和2y 表示)上粘贴有五个应变片作为工作片,另外在梁的右支点以外粘贴有一个应变片作为温度补偿片。
将五个工作片和温度补偿片的引线以半桥形式分别接入电阻应变仪后面板上的五个通道中,组成五个电桥(其中工作片的引线接在每个电桥的A 和B 端,温度补偿片接在电桥的B 和C 端)。
当梁在载荷作用下发生弯曲变形时,工作片的电阻值将随着梁的变形而发生变化,通过电阻应变仪可以分别测量出各对应位置的应变值实ε。
根据胡克定律,可计算出相应的应力值实实εσE = 式中,E 为梁材料的弹性模量。
梁在纯弯曲变形时,横截面上的正应力理论计算公式为zI y M ⋅=理σ式中:2/Fa M =为横截面上的弯矩;123/bh I z =为梁的横截面对中性轴的惯性矩;y 为中性轴到欲求应力点的距离。
图2-1 矩形截面梁的纯弯曲四、实验步骤1.测量矩形截面梁的各个尺寸,预热电阻应变仪和载荷显示仪。
复杂应力电测实验任务指导书一、实验特点:所用知识基本是材料力学和电测基础知识,但内容作了扩展和延伸,不再是对常规构件的应力、应变量测量,而是在非常规构件上当多种应变信息耦合在一起时如何进行分离和提取,包括材料常数的信息提取,实验具有研究性、综合性和设计性。
课程实施:共18学时,课内12学时,课外6学时,实验室在指定的时间段开放,两人一组,自由选题,自主完成方案设计和实验,以课程报告形式结课。
课程注重学生的科学实验训练,强调学生的创新能力、动手能力以及理论联系实际的能力的培养。
二、实验条件1. 拉压加载装置:台式,手动加载,配有5kN测力传感器及测力的数字显示;测力系统精度:0.5%±1字;实验空间:高350,宽200,厚度方向无限制;实验行程:40;装置外形尺寸:300×300×800,见右图。
2. TS3862型静态数字电阻应变仪(16通道);3.单轴应变片10枚,万用表,游标卡尺,钢尺,502胶水,剪刀、刀片、砂纸、酒精、丙酮棉、导线等;4. 10种类型金属材质的测试构件,包括:圆环构件、方框构件1(面内加载)、方框构件2(一边内侧变截面)、方框构件3(一边外侧变截面)、方框构件4(一边内侧变截面、一边外侧变截面)、方框构件5(离面加载)、异型截面方框、角形构件、不同截面组合构件、薄壁构件。
构件尺寸自行测量。
三、实验项目名称及内容实验所给的测试构件均在材料弹性常数E、 、G未知条件下进行,载荷施加位置均在连接孔处,实施拉伸载荷。
测量内容包括:(1)、非常规构件上多种应变信息耦合在一起时材料常数的信息提取;(2)、测试构件在面内和离面载荷下的内力分离,关键几何位置测定,危险截面、危险点应力测定,载荷测定等实验方案设计和实验。
具体实验项目名称及内容如下:1、材料常数未知、对心载荷下角形构件内力图测定的方案设计及实验,构件见图2;内容包括:(1)、在给定加载方式的角形构件上设法测出完成实验任务所需的材料常数;(2)、在载荷已知条件下测定角形构件的内力分布,给出内力分布图(实验中所给的最大载荷不要超过350N)。
第一章应力分析电测法§1-1 概述实验应力分析,是利用实验的方法来测定构件内应力或应变的一种技术。
它在工程应用领域是确定构件的承载能力,验证理论分析结果,改进构件设计的一种重要手段。
目前,实验应力分析技术已经形成一门学科并广泛应用于机械、动力、土木、水利、航空、材料化工和生物力学等领域。
应力分析试验是利用物理原理,把不易测量的力学量,如应力、应变等,转换成易测量的其他物理量,如光强、电压等,并且这种转换在理论上有确定的关系。
这样,可以通过测量这些物理量得到相应力学量的确定关系。
电测应力分析是利用金属丝的“电阻-应变”效应实现应变—电压转换的一种力学实验技术。
于20世纪30年代逐步应用于工程测试。
20世纪50年代,出现箔式应变计,由于箔式应变计便于大批量、标准化制造,使电测法逐步规范化和规模化,使之成为测量物体表面应变的一种常规测试方法。
目前商品化的应变计达2万余种,应用范围扩展到振动、高温、高压、液下、高速、强辐射等极端环境下的测量。
应变电测法也是某些力学量传感器的技术基础,广泛应用于传感器的设计。
应变电测法的主要缺点是:一只应变计仅能测量物体表面一点的某个方向的应变。
因此,需要多点、多方向布设应变计,才能得到全场测量的近似值。
另外,应变计存在有限面积,当贴附于测点时,反映的应变是片基面积内的平均应变。
对于高应变梯度测试精度较差。
本章将介绍应变电测法——简称“电测法”基本原理与试验技术。
§1-2 应变电测法原理应变电测法是利用金属丝的“电阻应变效应”测量构件表面应变的一种实验应力分析技术。
在测量硬件上主要由3部分组成:1.电阻应变片:作为传感器将应变量转换成可测量的电量参数。
2.测量电桥:组成各种测量电路。
3.电阻应变仪:输入测量电路获取的信号加以放大并转换成实际应变值。
一.电阻应变片的工作原理1.金属丝的电阻应变效应一根长l ,横截面积A ,电阻率ρ的金属丝,电阻R 表示为:ARρ= 当金属丝受到轴向拉伸作用,上式两边取微分,有:dA Ad A d A dR 2-+=ρρ 两边同时除以R ,得:AdAd d R dR -+= ρρ (1-1) 考虑圆形截面金属丝,直径为D 则: 24D A π= D d D dA 2π=于是d D dD A dA ν22-== 另外,试验表明,电阻率的变化率ρρd 与体积变化率VdV成正比,即: ldlm V dV md )21(νρρ-==式中ν为金属材料的泊松比;m 为比例常数。
应⼒分析电测法第⼀章应⼒分析电测法§1-1 概述实验应⼒分析,是利⽤实验的⽅法来测定构件内应⼒或应变的⼀种技术。
它在⼯程应⽤领域是确定构件的承载能⼒,验证理论分析结果,改进构件设计的⼀种重要⼿段。
⽬前,实验应⼒分析技术已经形成⼀门学科并⼴泛应⽤于机械、动⼒、⼟⽊、⽔利、航空、材料化⼯和⽣物⼒学等领域。
应⼒分析试验是利⽤物理原理,把不易测量的⼒学量,如应⼒、应变等,转换成易测量的其他物理量,如光强、电压等,并且这种转换在理论上有确定的关系。
这样,可以通过测量这些物理量得到相应⼒学量的确定关系。
电测应⼒分析是利⽤⾦属丝的“电阻-应变”效应实现应变—电压转换的⼀种⼒学实验技术。
于20世纪30年代逐步应⽤于⼯程测试。
20世纪50年代,出现箔式应变计,由于箔式应变计便于⼤批量、标准化制造,使电测法逐步规范化和规模化,使之成为测量物体表⾯应变的⼀种常规测试⽅法。
⽬前商品化的应变计达2万余种,应⽤范围扩展到振动、⾼温、⾼压、液下、⾼速、强辐射等极端环境下的测量。
应变电测法也是某些⼒学量传感器的技术基础,⼴泛应⽤于传感器的设计。
应变电测法的主要缺点是:⼀只应变计仅能测量物体表⾯⼀点的某个⽅向的应变。
因此,需要多点、多⽅向布设应变计,才能得到全场测量的近似值。
另外,应变计存在有限⾯积,当贴附于测点时,反映的应变是⽚基⾯积内的平均应变。
对于⾼应变梯度测试精度较差。
本章将介绍应变电测法——简称“电测法”基本原理与试验技术。
§1-2 应变电测法原理应变电测法是利⽤⾦属丝的“电阻应变效应”测量构件表⾯应变的⼀种实验应⼒分析技术。
在测量硬件上主要由3部分组成:1.电阻应变⽚:作为传感器将应变量转换成可测量的电量参数。
2.测量电桥:组成各种测量电路。
3.电阻应变仪:输⼊测量电路获取的信号加以放⼤并转换成实际应变值。
⼀.电阻应变⽚的⼯作原理1.⾦属丝的电阻应变效应⼀根长l ,横截⾯积A ,电阻率ρ的⾦属丝,电阻R 表⽰为:ARρ= 当⾦属丝受到轴向拉伸作⽤,上式两边取微分,有:dA Ad A d A dR 2-+=ρρ两边同时除以R ,得:AdAd d R dR -+= ρρ(1-1)考虑圆形截⾯⾦属丝,直径为D 则: 24D A π= D d D dA 2π=于是d D dD A dA ν22-== 另外,试验表明,电阻率的变化率ρρd 与体积变化率VdV成正⽐,即: ldlm V dV md )21(νρρ-==式中ν为⾦属材料的泊松⽐;m 为⽐例常数。
实验五 电测应力分析一、电测法的基本原理与方法电阻应变测量技术可用于测定构件的表面应变,根据应力与应变之间的关系,确定构件的应力状态。
按作用原理,电阻应变片测量技术可看成由电阻应变片、电阻应变仪及记录器三部分组成。
它的工作原理是将电阻应变片固定在被测的构件上,当构件变形时,电阻应变片的阻值发生相应的变化,能通过电阻应变仪的电桥将此电阻值的变化转化为电压或电流的变化,并经放大器的放大,最后换算成应变数或输出与应变成正比的模拟电信号。
z 应变片(1)概念:能将被测试件的应变量转换成电阻变化量的敏感元件。
(2)组成:由敏感栅、基底、覆盖层、引线四部分组成。
(3)原理:电阻变化与弹性体应变有确定的线性关系。
这种电阻值随同变形发生变化的现象叫电阻应变效应。
关系表达式:εK RR=Δ K -应变片的灵敏系数z 电桥由于被测构件变形引起应变片电阻的变化是很小,必须通过仪器来测量,这种仪器就是电阻应变仪。
在电阻应变仪中一般有电桥将应变片的电阻变化转换为电压或电流的变化。
如图:(1)无载荷工作状态()()43214231R R R R R R R R E U ++−= 当 4231R R R R =则电桥处于平衡状态,称为电桥的平衡条件0=U(2)有载荷工作状态各臂阻值分别有ΔR1、ΔR2、ΔR3、ΔR4变化()43214433221144εεεε−+−=⎟⎟⎠⎞⎜⎜⎝⎛Δ−Δ+Δ−Δ=EKR R R R R R R R E U通过仪器转换直接输出应变值:4321εεεεε−+−=r ()με电阻应变仪电桥输出U 与各桥臂应变计的指示应变r ε有下列关系: 其中 4321εεεε、、、分别为各桥臂应变计的指示应变,K 为应变片的灵敏系数,为桥压。
E 二、电阻应变片各种接桥方法(一)接桥方法(1)温补半桥接法 (2)互补半桥接法(3)温补全桥接法(4)互补全桥接法(二)温度补偿在测量时,粘贴了应变片的被测试件总是处在一定温度环境中。
电测应力实验报告电测应力实验报告引言:应力是物体内部的力,它描述了物体受力后产生的形变程度。
电测应力实验是一种常用的测量应力的方法,通过电阻应变片测量电阻值的变化,进而计算出应力的大小。
本实验旨在通过电测应力实验,探究应力的测量原理和方法,并分析实验结果。
实验原理:电测应力实验基于应变电阻效应,即材料的电阻值随应变的变化而发生改变。
应变电阻片是一种特殊的电阻片,其电阻值随着应力的变化而产生微小的变化。
通过测量电阻值的变化,可以计算出应力的大小。
实验步骤:1. 准备工作:将应变电阻片粘贴在试样上,并连接电路。
2. 施加载荷:在试样上施加一定的力,使其发生形变。
3. 电阻测量:使用电阻计测量应变电阻片的电阻值。
4. 记录数据:记录不同加载下的电阻值,并计算应力。
实验结果:通过实验测量得到的电阻值可以计算出应力的大小。
根据实验数据可以绘制应力-应变曲线,进一步分析材料的力学性质。
通过实验结果可以得出材料的弹性模量、屈服强度等重要参数,为材料的设计和应用提供依据。
实验误差:在实际实验中,由于测量设备和试样本身的不完美,会引入一定的误差。
例如,电阻计的精度、应变电阻片的粘贴质量等都会对实验结果产生影响。
为了减小误差,可以进行多组实验数据的平均值计算,并进行数据处理和统计分析。
实验应用:电测应力实验在工程领域有着广泛的应用。
例如,在航空航天、汽车制造、建筑结构等领域,需要对材料的应力进行准确测量,以确保结构的安全性和可靠性。
电测应力实验可以帮助工程师了解材料的性能,优化设计方案,提高产品质量。
结论:通过电测应力实验,我们可以准确测量材料的应力,并得到材料的力学性质参数。
电测应力实验是一种简便、可靠的方法,广泛应用于工程实践中。
在实际应用中,我们需要注意实验误差的控制,以提高实验结果的准确性。
电测应力实验为材料的设计和应用提供了重要的参考依据,对于工程领域的发展具有重要意义。
总结:电测应力实验是一种重要的实验方法,通过测量电阻值的变化来计算应力的大小。
复杂结构应力测量方案设计
一种常用复杂结构应力测量方案是电子应变计法。
具体操作步骤如下:
1. 根据实际情况确定需要测量的复杂结构部位以及测试点的数量和位置。
2. 根据测试点的位置和复杂结构的外形和材料特性,选择适合的电子应变计型号和粘贴方式。
一般采用光纤电子应变计或者片式电阻应变计。
3. 在原材料上面或者不影响外观和使用的位置上安装电子应变计。
粘贴时要注意压力均匀,粘贴实验前的应变计上必须紧固,并留出连接线头,初定应变计时注意保持垂直状态。
4. 制作牵引线,并在两端接上扩大器和数据采集系统。
数据采集系统要选择采样率、精度和测量范围合适的设备。
5. 经过以上步骤后,可以对复杂结构进行实验。
测量数据可以通过计算机软件实时监视和处理,也可以通过各种输出设备进行及时显示。