求解多目标决策常用的三种方法 Read
- 格式:ppt
- 大小:404.50 KB
- 文档页数:21
常用决策分析方法(基本方法)上一节我们说了决策分析的基本概念,这一节我们谈谈决策分析常用的三种方法:决策树法、Bayes方法、Markov方法。
决策树法决策树法(decision tree-based method):是通过确定一系列的条件(if-then)逻辑关系,形成一套分层规则,将所有可能发生的结局的概率分布用树形图来表达,生成决策树(decision tree),从而达到对研究对象进行精确预测或正确分类的目的。
树的扩展是基于多维的指标函数,在医学领域主要用于辅助临床诊断及卫生资源配置等方面。
决策树分类:•按功能分:分类树和和回归树•按决策变量个数:单变量树和多变量树•按划分后得到分类项树:二项分类树和多项分类树决策树的3类基本节点:1.决策节点(用□表示)2.机会节点(用○表示)3.结局节点(用?表示)从决策节点引出一些射线,表示不同的备选方案,射线上方标出决策方案名称。
射线引导到下一步的决策节点、机会节点或结局节点。
从机会节点引出的线表示该节点可能出现的随机事件,事件名称标在射线上方,先验概率在下方。
每个结局节点代表一种可能的结局状态。
在结局节点的右侧标出各种状态的效用(utility),即决策者对于可能发生的各种结局的(利益或损失)感觉和反应,用量化值表示。
绘制决策树基本规则:1.各支路不能有交点2.每一种方案各种状态发生概率之和为1决策树分析法步骤:1 提出决策问题,明确决策目标2 建立决策树模型--决策树生长2.1决策指标的选择的两个步骤:2.1.1 提出所有分值规则2.1.2 选择最佳规则2.2 估计每个指标的先验概率3 确定各终点及计算综合指标3.1 各终点分配类别3.2 各终点期望效用值得确定3.3 综合指标的计算3.4 计算值排序选优树生长停止情况:1.子节点内只有一个个体2.子节点内所有观察对象决策变量的分布完全一致,不能再分3.达到规定标准一棵树按可能长到最大,通常是过度拟合(overfit)的。
多目标决策方法一.多目标决策方法简介1.多目标决策问题及特点(1) 案例个人:购物;买房;择业......集体或社会:商场,医院选址;水库高度选择...... (2) 要素行动方案集合X;目标和属性;偏好结构和决策规则(3) 多目标决策有如下几个特点:决策问题追求的优化目标多于一个;目标之间的不可公度性:指标量纲的不一致性; 目标之间的矛盾性;定性指标与定量指标相混合:有些指标是明确的,可以定量表示出来,如:价格、时间、产量、成本、投资等。
有些指标是模糊的、定性的,如人才选拔时候选人素质考察时往往会以:思想品德、学历、能力、工作作风、市场应变能力等个性指标作为决策依据。
2. 多目标决策问题的描述)}(),(),({21x f x f x f DR n0)(,0)(,0)(.21 x g x g x g TS p决策空间:}0)({ x g x X i 目标空间})({X x x f F两个例子:离散型;连续型3.多目标决策问题的劣解与非劣解非劣解的寻找连续型有时较难4.多目标决策主要有以下几种方法:(1)化多为少法:化成只有二个或一个目标的问题;(2)直接求非劣解法:先求出一组非劣解,然后按事先确定好的评价标准从中找出一个满意的解。
(3)分层序列法:将所有目标按其重要性程度依次排序,先求出第一个最重要的目标的最优解,然后在保证前一目标最优解的前提下依次求下一目标的最优解,一直求到最后一个目标为止。
((4)目标规划法:对于每一个目标都事先给定一个期望值,然后在满足系统一定约束条件下,找出与目标期望值最近的解。
(5)重排序法:把原来的不好比较的非劣解通过其他办法使其排出优劣次序来。
(6)多属性效用法:各个目标均用表示效用程度大小的效用函数表示,通过效用函数构成多目标的综合效用函数,以此来评价各个可行方案的优劣。
(7)层次分析法:把目标体系结构予以展开,求得目标与决策方案的计量关系。
(8)多目标群决策和多目标模糊决策。
多目标决策分析方法研究在现代社会中,决策是一项非常重要的活动,尤其是管理决策,因为一个企业或者组织的命运往往取决于它的决策质量。
而多目标决策分析方法便是解决决策问题的一种有效途径。
下面我们从什么是多目标决策、多目标决策的困难性以及多目标决策分析方法等方面,进行详细介绍。
一、什么是多目标决策多目标决策是指在决策过程中需要考虑到多种目标,并且各个目标之间存在互相制约、互相牵连的情况。
这样的决策问题称为多目标决策问题。
个人的日常生活中,应对多目标决策也是很平常的,比如在选择购买电脑时,我们通常需要考虑电脑的性能、价格、质量等多个因素。
二、多目标决策的困难性多目标决策的困难性表现在以下几个方面:(1)目标的不确定性目标的不确定性指的是因为缺乏信息或者知识而难以确定目标的重要性和权重。
例如在企业经营过程中,知道了要实现利润最大化和客户满意度最大化两个目标,但却难以确定各目标的权重,因为这需要相关知识和信息支持。
(2)多目标之间的矛盾性多目标之间常常存在矛盾,即实现一个目标可能会与其他目标相互牵制。
如在城市规划过程中,建造高楼大厦可能会破坏原有的景观和生态环境,而保护生态环境则会限制城市发展。
(3)优化方案的多样性优化方案的多样性通常会涉及成千上万的变量,真正确定最佳方案需要耗费大量的时间和资源来进行决策分析。
三、多目标决策分析方法为了规避多目标决策的困难性,人们提出了很多的决策分析方法,其中最常用的方法是层次分析法、置信限域方法、熵权法、TOPSIS法等。
这些方法各具特色,可以根据具体的情况选用不同的方法进行决策分析。
层次分析法是一种结果定量化的决策分析方法,以目标可拆分为多个层级结构为特点。
首先,通过层次化分析,确定决策目标并划分各目标间的层级结构;然后在各层次结构内进行两两比较,建立成对比较矩阵,确定各个目标之间的权重关系;最后,计算各个层次的权重系数,得到综合权重最大的方案为最佳解。
置信限域方法是一种方法,采用代表样本进行目标范围分析,确定可选择方案的可靠度。
多目标决策方法一.多目标决策方法简介1.多目标决策问题及特点(1) 案例个人:购物;买房;择业......集体或社会:商场,医院选址;水库高度选择...... (2) 要素行动方案集合X;目标和属性;偏好结构和决策规则(3) 多目标决策有如下几个特点:决策问题追求的优化目标多于一个;目标之间的不可公度性:指标量纲的不一致性; 目标之间的矛盾性;定性指标与定量指标相混合:有些指标是明确的,可以定量表示出来,如:价格、时间、产量、成本、投资等。
有些指标是模糊的、定性的,如人才选拔时候选人素质考察时往往会以:思想品德、学历、能力、工作作风、市场应变能力等个性指标作为决策依据。
2. 多目标决策问题的描述)}(),(),({21x f x f x f DR n0)(,0)(,0)(.21≤≤≤x g x g x g TS p决策空间:}0)({≤=x g x X i 目标空间})({X x x f F ∈=两个例子:离散型;连续型3.多目标决策问题的劣解与非劣解非劣解的寻找连续型有时较难4.多目标决策主要有以下几种方法:(1)化多为少法:化成只有二个或一个目标的问题;(2)直接求非劣解法:先求出一组非劣解,然后按事先确定好的评价标准从中找出一个满意的解。
(3)分层序列法:将所有目标按其重要性程度依次排序,先求出第一个最重要的目标的最优解,然后在保证前一目标最优解的前提下依次求下一目标的最优解,一直求到最后一个目标为止。
((4)目标规划法:对于每一个目标都事先给定一个期望值,然后在满足系统一定约束条件下,找出与目标期望值最近的解。
(5)重排序法:把原来的不好比较的非劣解通过其他办法使其排出优劣次序来。
(6)多属性效用法:各个目标均用表示效用程度大小的效用函数表示,通过效用函数构成多目标的综合效用函数,以此来评价各个可行方案的优劣。
(7)层次分析法:把目标体系结构予以展开,求得目标与决策方案的计量关系。
(8)多目标群决策和多目标模糊决策。
多目标决策方法一.多目标决策方法简介1.多目标决策问题及特点(1) 案例个人:购物;买房;择业......集体或社会:商场,医院选址;水库高度选择......(2) 要素行动方案集合X;目标和属性;偏好结构和决策规则(3) 多目标决策有如下几个特点:决策问题追求的优化目标多于一个;目标之间的不可公度性:指标量纲的不一致性; 目标之间的矛盾性;定性指标与定量指标相混合:有些指标是明确的,可以定量表示出来,如:价格、时间、产量、成本、投资等。
有些指标是模糊的、定性的,如人才选拔时候选人素质考察时往往会以:思想品德、学历、能力、工作作风、市场应变能力等个性指标作为决策依据。
2. 多目标决策问题的描述)}(),(),({21x f x f x f DR n0)(,0)(,0)(.21≤≤≤x g x g x g TS p决策空间:}0)({≤=x g x X i 目标空间})({X x x f F ∈=两个例子:离散型;连续型3.多目标决策问题的劣解与非劣解非劣解的寻找连续型有时较难4.多目标决策主要有以下几种方法:(1)化多为少法:化成只有二个或一个目标的问题;(2)直接求非劣解法:先求出一组非劣解,然后按事先确定好的评价标准从中找出一个满意的解。
(3)分层序列法:将所有目标按其重要性程度依次排序,先求出第一个最重要的目标的最优解,然后在保证前一目标最优解的前提下依次求下一目标的最优解,一直求到最后一个目标为止。
((4)目标规划法:对于每一个目标都事先给定一个期望值,然后在满足系统一定约束条件下,找出与目标期望值最近的解。
(5)重排序法:把原来的不好比较的非劣解通过其他办法使其排出优劣次序来。
(6)多属性效用法:各个目标均用表示效用程度大小的效用函数表示,通过效用函数构成多目标的综合效用函数,以此来评价各个可行方案的优劣。
(7)层次分析法:把目标体系结构予以展开,求得目标与决策方案的计量关系。
(8) 多目标群决策和多目标模糊决策。
多目标决策相关知识简介第13章多目标决策单目标决策问题前三章差不多进行了较为详细的探讨。
从合理行为假设引出的效用函数,提供了对这类问题进行合理分析的方法和程序。
但在实际工作中所遇到的的决策分析问题,却常常要考虑多个目标。
这些目标有的相互联系,有的相互制约,有的相互冲突,因而形成一种专门复杂的结构体系,使得决策问题变得专门复杂。
国外一样认为,多目标优化问题最早是在19世纪末由意大利经济学家帕累托〔V.Pareto〕从政治经济学的角度提出来的,他把许多本质上不可比较的目标,设法变换成一个单一的最优目标来进行求解。
到了20世纪40年代,冯诺曼等人由从计策论的角度提出在彼此有矛盾的多个决策人之间如何进行多目标决策问题。
1950年代初,考普曼〔T.C.koopmans〕从生产和分配的活动分析中提出多目标最优化问题,并引入了帕累托最优的概念。
1960年代初,菜恩思〔F.Charnes〕和考柏〔J.Cooper〕提出了目标规划方法来解决多目标决策问题。
目标规划是线性规划的修正和进展,这一方法不只是对一些目标求得最优,而是尽量使求得的最优解与原定的目标值之间的偏差为最小。
1970年代中期,甘尼〔R.L.Keeney〕和拉发用比较完整的描述多属性效用理论来求解多目标决策问题。
1970年代末,萨蒂〔A.L.Saaty〕提出了阻碍广泛的AHP(the analytical hierarchy process)法,并在1980年代初纂写了有关AHP 法的专著。
自1970年代以来,有关研究和讨论多目标决策的方法也随之显现。
总之,多目标决策问题正愈来愈多的受到人们的重视,专门是在经济、治理、系统工程、操纵论和运筹学等领域中得到了更多的研究和关注。
13.1 差不多概念多目标决策和单目标决策的全然区别在于目标的数量。
单目标决策,只要比较各待选方案的期望效用值哪个最大即可,而多目标问题就不如此简单了。
例13.1房屋设计某单位打算建筑一栋家属楼,在差不多确定地址及总建筑面积的前提下,作出了三个设计方案,现要求依照以下5个目标综合选出最正确的设计方案:1)低造价〔每平方米造价不低于500元,不高于700元〕;2)抗震性能〔抗震能力不低于里氏5级不高于7级〕;3)建筑时刻〔越快越好〕;4)结构合理〔单元划分、生活设施及使用面积比例等〕;5)造型美观〔评判越高越好〕这三个方案的具体评判表如下。
第十七章 多目标决策法基本内容一、多目标决策概述多目标决策:统计决策中的目标通常不会只有一个,而是有多个目标,具有多个目标的决策问题的决策即称为多目标决策。
多目标决策的方法有多属性效用理论、字典序数法、多目标规划、层次分析、优劣系数法、模糊决策法等。
多目标决策的特点:1、目标之间的不可公度性,即众多目标之间没有一个统一标准。
2、目标之间的矛盾性。
某一目标的完善往往会损害其他目标的实现。
常用的多目标决策的目标体系分类:单层目标体系;树形多层目标体系;非树形多层目标体系。
多目标决策遵循的原则:1、在满足决策需要的前提下,尽量减少目标个数。
2、分析各目标重要性大小,分别赋予不同权数。
二、层次分析法层次分析法,简称AHP 法,是用于处理有限个方案的多目标决策方法。
(一)层次分析的基本原理层次分析法的基本思想:是把复杂问题分解为若干层次,在最低层次通过两两对比得出各因素的权重,通过由低到高的层层分析计算,最后计算出各方案对总目标的权数,权数最大的方案即为最优方案。
层次分析法的基本假设:层次之间存在递进结构,即从高到低或从低到高递进。
(二)层次分析法的步骤1、明确问题,搞清楚涉及的因素以及因素相互之间的关系。
2、建立层次结构模型。
将决策问题层次化,划分为总目标层、分目标层和方案层。
2、通过对各层元素的重要性进行两两比较,构造判断矩阵。
3、由各层判断矩阵确定各层权重。
用特征向量法中的和积法求解判断矩阵的最大特征值和归一化后的特征向量。
4、对各层判断矩阵的一致性进行检验。
一致性检验通过后,按归一化处理过的特征向量作为某一层次对上一层次某因素相对重要的排序加权值。
否则,对判断矩阵进行调整。
5、层次加权得出各方案关于总目标的权重,最大权重的方案为最优方案。
(三)判断矩阵以每两个方案(或子目标)的相对重要性为元素的矩阵称为判断矩阵。
判断矩阵是层次分析法的核心。
判断矩阵的元素ij a 具有三条性质:(1)1=ii a (2)ji ij a a /1= (3)kjik ij a a a ⋅=判断矩阵的元素ij a 可以利用决策者的知识和经验估计出来。