多服务台模型
- 格式:ppt
- 大小:1.39 MB
- 文档页数:13
实验3---多服务台排队系统的仿真姓名:学号:一、目标任务已知一个系统有N个服务员,能力相等,服务时间服从指数分布。
顾客的到达时间间隔服从指数分布。
用Monte-Carlo仿真,分别求按下列方案的总体平均排队时间:① M|M|N。
② N个单通道系统并列,按1/N概率分裂到达流。
③ N个单通道并列,挑选最短的队。
要求:①给出程序设计的过程。
②如果采用固定的N,则要求N>2。
③至少取ρ=0.3和ρ=0.7两种强度运行程序。
④对结果进行分析。
二、编程语言Matlab三、关键代码方案一:N = 3; % 服务员人数r = 6; % 顾客到达流强度u = 20; % 服务员服务强度T = 1000000; % 仿真运行时间avg_wait_time = []; % 平均等待时间for i=1:100% 模拟排队函数server_time = [0.0, 0.0, 0.0]; % 用来保存服务员下一空闲时间time = 0; % 绝对时钟,初始为0client_num = 0; % 顾客总数,初始为0CRTime = 0; % 顾客到达时间间隔ServeTime = 0; % 顾客服务时间server_id = 0; % 当前进入排队窗口的服务员编号total_wait_time = 0;% 系统中到达顾客的总等待时间while 1CRTime = exprnd(1/r); % 按指数分布产生顾客到达时间间隔time = time + CRTime; % 更新系统的绝对时钟if time > Tbreak;endclient_num = client_num + 1; % 顾客数加1ServeTime = exprnd(1/u); % 按指数分布产生顾客服务间隔server_id = mod(client_num, N); % 按1..N的顺序循环排入服务员窗口if server_id ==0server_id = N;endif server_time(1, server_id) <= time % 如果当前server_id号服务员空闲,则直接接收服务server_time(1, server_id) = time + ServeTime; % 服务员下一空闲时间为当前绝对时钟加上当前服务时间else % 否则所有服务员都在忙碌,顾客要排队等候total_wait_time = total_wait_time + server_time(1, server_id) - time; % 顾客排队等候时间为当前服务员下一空闲时间减去绝对时钟server_time(1, server_id) = server_time(1, server_id) + ServeTime;endendavg_wait_time = [avg_wait_time, total_wait_time/client_num];end% 计算平均等待时间mean_avg_wait_time = mean(avg_wait_time);fprintf('ρ=%2.1f平均等待时间%6.5f\n', r/u, mean_avg_wait_time); % 打印平均等待时间% 绘制每次仿真的平均等待时间和总体平均等待时间线状图x = 1:100;%plot(x, avg_wait_time, x, mean_avg_wait_time);scatter(x, avg_wait_time, '.');方案二:N = 3; % 服务员人数r = 6; % 顾客到达流强度u = 20; % 服务员服务强度T = 1000; % 仿真运行时间avg_wait_time = []; % 平均等待时间for i=1:100% 模拟排队函数server_time = [0.0, 0.0, 0.0]; % 用来保存服务员下一空闲时间time = 0; % 绝对时钟,初始为0client_num = 0; % 顾客总数,初始为0CRTime = 0; % 顾客到达时间间隔ServeTime = 0; % 顾客服务时间server_id = 0; % 当前进入排队窗口的服务员编号total_wait_time = 0;% 系统中到达顾客的总等待时间while 1CRTime = exprnd(1/r); % 按指数分布产生顾客到达时间间隔time = time + CRTime; % 更新系统的绝对时钟if time > Tbreak;endclient_num = client_num + 1; % 顾客数加1ServeTime = exprnd(1/u); % 按指数分布产生顾客服务时间间隔server_id = randi([1 N]); % 按1/N的概率排入服务员窗口if server_time(1, server_id) <= time % 如果当前server_id号服务员空闲,则直接接收服务server_time(1, server_id) = time + ServeTime; % 服务员下一空闲时间为当前绝对时钟加上当前服务时间else % 否则所有服务员都在忙碌,顾客要排队等候total_wait_time = total_wait_time + server_time(1, server_id) - time; % 顾客排队等候时间为当前服务员下一空闲时间减去绝对时钟server_time(1, server_id) = server_time(1, server_id) + ServeTime;endendavg_wait_time = [avg_wait_time, total_wait_time/client_num];end% 计算平均等待时间mean_avg_wait_time = mean(avg_wait_time);fprintf('ρ=%2.1f平均等待时间%6.5f\n', r/u, mean_avg_wait_time); % 打印平均等待时间% 绘制每次仿真的平均等待时间散点图x = 1:100;scatter(x, avg_wait_time, '.');方案三:N = 3; % 服务员人数r = 6; % 顾客到达流强度u = 20; % 服务员服务强度T = 1000; % 仿真运行时间avg_wait_time = []; % 平均等待时间for i=1:100% 模拟排队函数server_time = [0.0, 0.0, 0.0]; % 用来保存服务员下一空闲时间time = 0; % 绝对时钟,初始为0client_num = 0; % 顾客总数,初始为0CRTime = 0; % 顾客到达时间间隔ServeTime = 0; % 顾客服务时间server_id = 0; % 当前进入排队窗口的服务员编号total_wait_time = 0;% 系统中到达顾客的总等待时间while 1CRTime = exprnd(1/r); % 按指数分布产生顾客到达时间间隔time = time + CRTime; % 更新系统的绝对时钟if time > Tbreak;endclient_num = client_num + 1; % 顾客数加1ServeTime = exprnd(1/u); % 按指数分布产生顾客服务时间间隔temp = min(server_time); % 寻找排队时间最短的服务员窗口[x, y] = find(temp == min(min(server_time)));server_id = y; % 按队伍最短排入服务员窗口if server_time(1, server_id) <= time % 如果当前server_id号服务员空闲,则直接接收服务server_time(1, server_id) = time + ServeTime; % 服务员下一空闲时间为当前绝对时钟加上当前服务时间else % 否则所有服务员都在忙碌,顾客要排队等候total_wait_time = total_wait_time + server_time(1, server_id) - time; % 顾客排队等候时间为当前服务员下一空闲时间减去绝对时钟server_time(1, server_id) = server_time(1, server_id) + ServeTime;endendavg_wait_time = [avg_wait_time, total_wait_time/client_num];end% 计算平均等待时间mean_avg_wait_time = mean(avg_wait_time);fprintf('ρ=%2.1f平均等待时间%6.5f\n', r/u, mean_avg_wait_time); % 打印平均等待时间% 绘制每次仿真的平均等待时间散点图x = 1:100;scatter(x, avg_wait_time, '.');四、实验结果与分析方案一:图1 方案一仿真的平均等待时间散点图图2 方案一平均等待时间M|M|N1. 输入参数:服务员人数N,顾客到达流强度r,服务员服务强度u,仿真运行时间T;2. 各变量初始值置0:绝对时钟time,服务员下一空闲时刻数组server_time[](其中按顺序保存每一个服务员的下一空闲时刻),顾客总数client_num,顾客到达时间间隔CRTime,顾客服务时间ServeTime,当前进入排队窗口的服务员编号server_id,系统中顾客总等待时间total_wait_time;3. 按照指数分布产生下一顾客到达的时间间隔CRTime,time+=CRTime。
§3 M/M/s 排队模型一、单服务台模型(即M/M/1/∞/∞ 或 M/M/1) 到达间隔: 负指数(参数为λ:到达率)分布; 服务时间: 负指数(参数为μ:服务率)分布; 服务台数: 1; 系统容量: 无限;排队长度(客源): 无限; 服务规则: FCFS. 1. 队长的分布设{}n p P N n == 0,1,2,...n =为系统平稳后队长N 的概率分布, 则由(1) 12011......n n n n n C λλλμμμ---=, 1,2,...n =(累积服务率)(2) 011(1)nn p C ∞==+∑ (无客的概率)(3) 0n n p C p =, 1,2,...n = (有n 客的概率)及n λλ=,0,1,2,...n =和n μμ=,1,2,...n =, 并记λρμ=(服务强度, 一般1ρ<) 可得nn n C λρμ⎛⎫== ⎪⎝⎭, 1,2,...n =故有 0nn p p ρ=, 1,2,...n =其中 011(1)nn p C ∞==+∑11(1)n n ρ∞==+∑110111n n ρρρ--∞=⎛⎫⎛⎫===- ⎪ ⎪-⎝⎭⎝⎭∑.因此 (1)nn p ρρ=-,0,1,2,...n =.无客的概率: 01p ρ=-,至少有一客的概率ρ 服务台处于忙的概率=繁忙程度(即服务强度)=服务机构的利用率 如单位时间,2λ=,5μ=,则,即40%在忙.2. 几个主要指标(1) 系统中平均顾客数=平均队长*- (2) 系统中等待的平均顾客数=平均排队长.可以证明(见第二版P328的注释)在M/M/1中, 顾客在系统中逗留时间服从参数为的负指数分布, 即密度分布函数:()()(),0.tf t et μλμλ--=-≥分布函数: ()()()1,0.tF t P T t e t μλ--=≤=-≥于是得(3) 在系统中顾客平均逗留时间1[]W E T μλ==-; (4) 在队列中顾客平均等待时间因为 逗留时间=等待时间q T +服务时间V , 即q T T V =+故1()()q q W E T E V W μ=+=+, 从而得1q W W W ρρμμλ=-==-另外还可得到(时间与空间关系):L W λ=和q q L W λ=这两个常称为Little 公式.各公式可记忆如下:由λ和μ→服务效率λρμ=, 从逗留时间1W μλ=-→等待时间q W W ρ= 队长L W λ=→排队队长q L L ρ=或q q L W λ=还可导出关系1q W W μ=+和1q L L λμ=+3. 服务机构的忙期B 和闲期I 分析(1) 因为忙期=至少一客的概率ρ, 闲期=无客的概率1ρ- 忙期时间长度/闲期时间长度=1ρρ- (2) 因为忙闲交替,次数平均→平均忙期时间长度/平均闲期时间长度=1ρρ-→1BIρρ=-.(3) 又由分布无记忆性和到达与服务相互独立性→任闲时刻起,下一客到达间隔仍为λ负指数分布→平均闲期=下一客到达间隔1λ→1Iλ=→平均忙期=111B Wρρλμλ=⋅==--即顾客平均逗留时间, 实际意义是明显的.例1一个铁路列车编组站, 设待编列车到达时间间隔负指数分布, 平均到达率2列/h; 编组时间服从负指数分布, 平均20min 可编一组. 已知编组站上共有2股道, 当均被占用时, 不能接车, 再来的列车只能停在站外或前方站. 求(1) 在平稳状态下系统中列车的平均数;(2) 每一列车的平均停留时间;(3) 等待编组的列车的平均数.如果列车因站中的2股道均被占用而停在站外或前方站时, 每列车的费用为a 元/h, 求每天由于列车在站外等待而造成的损失.解 这里 2λ=,3μ=,213λρμ==< (1) 列车的平均数21L ρρ==-(小时)(2) 列车的平均逗留时间212LW λ===(小时) (3) 等待编组的列车平均数 24233q L L ρ=-=-=(列) (4) 等待编组时间 23q W W ρ==(小时) (5) 记列车平均延误(2道满,不能进站)时间为0W ,则0012{2}(1)W W P N W p p p =⋅>=⋅---3320.2963ρ⎛⎫=== ⎪⎝⎭(小时) 故每天列车由于等待而支出的平均费用 0242420.29614.2E W a a a λ==⨯⨯⨯=(元).例2 某修理店只有一个修理工, 来修理的顾客到达过程为Poisson 流, 平均4人/h; 修理时间服从负指数分布, 平均需要6 min. 试求:(2) 店内恰有3个顾客的概率;(3) 店内至少有1个顾客的概率;(4) 在店内的平均顾客数;(5) 每位顾客在店内的平均逗留时间;(6) 等待服务的平均顾客数;(7) 每位顾客平均等待服务时间;(8) 顾客在店内等待时间超过10min 的概率. 解这里 4λ=,1/0.110μ==,215λρμ==<0112/50.6p ρ=-=-=(2) 店内恰有3个顾客的概率33332(1)10.03855p ρρ⎛⎫⎛⎫=-=-= ⎪ ⎪⎝⎭⎝⎭(3) 店内至少有1个顾客的概率0{1}12/50.4P N p ρ≥=-===(4) 在店内的平均顾客数2/50.67112/5L ρρ===--(人) (5) 每位顾客在店内的平均逗留时间 0.6710(min)4LW λ==≈ (6) 等待服务的平均顾客数 0.40.670.268q L L ρ==⨯=(人)(7) 每位顾客平均等待服务时间0.2684(min)4qq L W λ==≈ (8) 顾客在店内等待时间超过10min 的概率.11101615{10}0.3679P T ee ⎛⎫-- ⎪-⎝⎭>===.二、多服务台模型(即M/M/s/∞/∞ 或 M/M/s) 到达间隔: 负指数(参数为λ:到达率)分布;单台服务时间: 负指数(参数为μ:服务率)分布; 服务台数: s; 12s μμμμ====L系统容量: 无限;排队长度(客源): 无限; 服务规则: FCFS.数据分析设{}n p P N n == 0,1,2,...n =为系统平稳后队长N 的概率分布, 则,0,1,2,...n n λλ==和系统的服务率服务台队列⋅⋅⋅⋅⋅⋅u u u u u r u u u u u rμ1μ2sμs 个,1,2,3,...,,,1,...n n n ss n s s μμμ=⎧=⎨=+⎩记s ss ρλρμ==, 则当1s ρ<时, 不至越排越长, 称s ρ为系统的服务强度或服务机构的平均利用率. 由前面的(1),(2)和(3)公式得(/),1,2,3,...,!(/)(/),!!nn s n s nn s n s n C n ss s s s λμλμλλμμ--⎧=⎪⎪=⎨⎛⎫⎪=≥ ⎪⎪⎝⎭⎩故,1,2,3,...,!,!nn nn sp n s n p p n ss s ρρ-⎧=⎪⎪=⎨⎪≥⎪⎩ 其中1100!!(1)n s s n s p n s ρρρ--=⎡⎤=+⎢⎥-⎣⎦∑.当n s ≥时, 顾客要等待. 记这个等待的概率为0(,)!(1)sn n ss c s p p s ρρρ∞===-∑称为Erlang 等待公式. (1) 平均排队长011()()!sn sq n sn s n s p L n s p n s s ρρ∞∞-=+=+=-=-∑∑0021d !d !(1)s s n s ss n s s p p s s ρρρρρρρ∞=⎛⎫== ⎪-⎝⎭∑ 或(,)1s q sc s L ρρρ=-.(2) 正在接受服务的顾客的平均数1s n n n n ss np s p -∞===+∑∑1000!!(1)n ss n sn p s p n s ρρρ-==+-∑11101(1)!(1)!(1)n s s n s p n s ρρρρρ---=⎡⎤=+=⎢⎥---⎣⎦∑s 与s 无关. 奇!(3) 平均队长L =平均排队长+平均接受服务的顾客数q L ρ=+.对多台服务系统, 仍有Little 公式:LW λ=, 1qq L W W λμ==-例3 考虑一个医院医院急诊的管理问题. 根据统计资料, 急论据病人相继到达的时间间隔服从负指数分布, 平均每0.5h 来一个; 医生处理一个病人的时间也服从负指数分布, 平均需要20min. 该急诊室已有一个医生, 管理人员现考虑是否需要再增加一个医生.解 这是一个M/M/s/∞模型, 有2λ=,3μ=,23λρμ==, 1,2s = 由前面的公式, 结果列表如下指标模型s=1 s=2 空闲的概率p00.333 05有1个病人的概率p1有2个病人的概率p20.2220.1480.3330.111平均病人数L平均等待病人数L q 21.3330.750.083病人平均逗留时间W 病人平均等待时间W q 10.6670.3750.042病人需要等待的概率P{T q>0} 0.667(=1-p0) 0.167(=1-p0 -p1)等待时间超过0.5小时的概率P{T q>0.5} 等待时间超过1小时的概率P{T q>1} 0.4040.2450.0220.003如果是一个医生值班, 则病人等待时间明显长. 结论是两个医生较合适.例4 某售票处有三个窗口,顾客的到达服从泊松过程,平均到达率每分钟0.9λ=人/min. 服务(售票)时间服从负指数分布, 平均服务率0.4μ=人/min. 现设顾客到达后排成一队,依次向空闲的窗口购票,这是M/M/s 模型, 其中2.2533,2.25,134s s s λλρμμ=====< 由公式可得:(1) 整个售票处空闲概率1100!!(1)n ss n s P n s ρρρ--=⎡⎤=+⎢⎥-⎣⎦∑ 0012310.07482.25 2.25 2.25 2.2510!1!2!3!1 2.25/3p ==+++-(2) 平均排队长02!(1)s sq s p L s ρρρ=-320.0748 2.253/4 1.703!(1/4)q L ⨯⋅==(人)平均队长:/ 1.7 2.25 3.95q L L λμ=+=+=(人)(3) 平均等待时间1.701.890.9qq L W λ===(min) 平均逗留时间1/ 1.891/0.4 4.39q W W μ=+=+=(分钟)(4) 顾客到达后必须等(即系统中顾客数已有3)的概率30 2.250.0748(3,2.25)0.57!(1)3!1/4s s p c s ρρ⋅⋅===-⋅.在上例中, 若顾客到达后在每个窗口前各排一队,且中途不换队, 则M/M/3/∞ 3个M/M/1/∞ 如下图所示(b).10.4μ=窗口0.3λ=(b)0.4μ=窗口20.4μ=窗口310.4μ=窗口0.9λ=0.4μ=窗口20.4μ=窗口3(a)0.9λ=0.3λ=0.3λ=每个队的平均到达率为1230.9/30.3λλλ====(人/分钟)结果比较如下指标模型M/M/3 M/M/1服务台空闲的概率P00.0748 0.25(每个子系统) 顾客必须等待的概率P(n≥3)=0.57 0.75平均排队长Lq 1.70 2.25(每个子系统) 平均队长L 3.95 9.00(整个系统) 平均逗留时间W 4.39(分钟) 10(分钟)平均等待时间Wq 1.89(分钟) 7.5(分钟)单队比三队优越.百度知道编组站是铁路网上集中办理大量货物列车到达、解体、编组出发、直通和其它列车作业,并为此设有比较完善的调车作业的车站。
银行服务柜台数量分析和设计摘要:本文以银行服务系统为研究对象,引入排队论和排队系统最优化问题的理论,借助高等数学的相关公式和模型求解,根据顾客进入间隔和服务时间的分布求出最优柜台服务人员数。
关键字:银行系统,排队论,最优解一、问题的描述银行是一个非常重要的金融服务机构。
随着国家经济发展水平的不断提高,人们对金融服务的种类和数量的要求在不断地增加。
这就要求金融机构能够提高自身的服务水平和服务能力。
为了适应银行业务量的增加,很多银行都积极开设了自动服务设备、网络银行等,其目的是通过用户的自助服务,分流银行业务总量,从而减少对银行柜台的服务压力。
但是,需要银行柜台进行办理的业务总量仍然是非常大的,人们可以经常看到银行中排起的长龙。
假设我们目前讨论的问题是在自由竞争的市场经济环境下进行的。
对银行方面来讲,为了减少等待队伍的人数,提高银行业务服务满意度,可以通过增加柜台服务人数来实现;但是,增加柜台服务人数必然增加银行的运营成本;可是如果不提高服务的满意度,则银行业务办理的数量也会减少,从而造成银行总利润的减少。
那么,我们怎样设计银行柜台服务人员数量能使银行利润最大呢?二、排队服务系统的基怎本概念就银行服务系统而言到底怎样才能既保证一定的服务质量指标,又使服务设施费用经济合理,恰当地解决顾客排队时间与服务设施费用大小这对矛盾,这是研究随机系统理论——排队论所要研究解决的问题。
2.1排队系统现实生活中的排队现象是多种多样的,一般排队系统包括三个组成部分:输入过程、排队规则和服务机构。
2.1.1输入过程输入过程考察的是顾客到达服务系统的规律。
它可以用一定时间内顾客到达数或前后两个顾客相继到达的间隔时间来描述。
顾客总体组成可能是有限的,也可能是无限的;相继到达的顾客时间间隔可以是确定的,也可以是随机型的;顾客到达情况可能是一个一个的,也可能是成批的。
2.1.2排队规则顾客到达时如果所有服务台都被占用,则顾客离开,即损失制;有的顾客数有一定的限制;在多服务台时,队列可以是单列,也可以是多列;在等待服务的次序,可以是先到先服务,或是带优先权服务。
排队论是一种研究排队系统的数学理论,它主要用于研究系统在不同的服务策略下的性能指标,如平均等待时间、平均服务时间、系统吞吐量等。
排队系统是指由顾客和服务台组成的系统,顾客按照先来先服务的原则依次到达服务台,并在服务台得到服务。
排队论的基本模型包括M/M/s、M/M/c、M/G/s、M/G/c等模型,其中M表示顾客到达的随机变量是泊松分布,G表示服务时间的随机变量是几何分布,c表示服务台的容量限制,s表示系统的服务速度。
M/M/s模型是指服务台的服务速度s是固定的,即服务台的服务速度不受顾客到达的影响,这种模型主要用于研究系统的平均等待时间和平均服务时间。
M/M/c模型是指服务台的容量限制c是固定的,即服务台的服务速度受到顾客到达的影响,这种模型主要用于研究系统的排队长度和服务率。
排队论的应用非常广泛,包括电话系统、银行系统、航空系统、医疗系统等。
在实际应用中,排队论可以帮助企业优化服务流程,提高服务质量,减少顾客等待时间,提高顾客满意度,从而提高企业的竞争力和经济效益。
排队论的应用还在不断地拓展和深化,例如近年来出现的排队论模型包括多服务台排队模型、排队网络模型、排队论与动态优化模型等。
这些模型可以更好地模拟实际系统中的复杂排队情况,提高系统的服务质量和效率。
§3 M/M/s 排队模型一、单服务台模型(即M/M/1/∞/∞ 或 M/M/1) 到达间隔: 负指数(参数为λ:到达率)分布; 服务时间: 负指数(参数为μ:服务率)分布; 服务台数: 1;系统容量: 无限;排队长度(客源): 无限;服务规则: FCFS.1. 队长的分布设{}n p P N n == 0,1,2,...n =为系统平稳后队长N 的概率分布, 则由 (1) 12011......n n n n n C λλλμμμ---=, 1,2,...n =(累积服务率) (2) 011(1)nn p C ∞==+∑ (无客的概率) (3) 0n n p C p =, 1,2,...n = (有n 客的概率)及n λλ=,0,1,2,...n =和n μμ=,1,2,...n =, 并记λρμ=(服务强度, 一般1ρ<) 可得n n n C λρμ⎛⎫== ⎪⎝⎭, 1,2,...n = 故有 0n n p p ρ=, 1,2,...n =其中 011(1)nn p C ∞==+∑11(1)n n ρ∞==+∑110111n n ρρρ--∞=⎛⎫⎛⎫===- ⎪ ⎪-⎝⎭⎝⎭∑. 因此 (1)n n p ρρ=-,0,1,2,...n =. 无客的概率: 01p ρ=-,至少有一客的概率ρ 服务台处于忙的概率=繁忙程度(即服务强度)=服务机构的利用率如单位时间,2λ=,5μ=,则,即40%在忙.2. 几个主要指标(1) 系统中平均顾客数=平均队长(2) 系统中等待的平均顾客数=平均排队长.可以证明(见第二版P328的注释)在M/M/1中, 顾客在系统中逗留时间服从参数为的负指数分布, 即密度分布函数:()()(),0.t f t e t μλμλ--=-≥分布函数: ()()()1,0.tF t P T t et μλ--=≤=-≥ 于是得(3) 在系统中顾客平均逗留时间1[]W E T μλ==-; (4) 在队列中顾客平均等待时间 因为 逗留时间=等待时间q T +服务时间V , 即q T T V =+ 故1()()q q W E T E V W μ=+=+, 从而得1q W W W ρρμμλ=-==-另外还可得到(时间与空间关系):L W λ=和q q L W λ=这两个常称为Little 公式.各公式可记忆如下:由λ和μ→服务效率λρμ=, 从逗留时间1W μλ=-→等待时间q W W ρ= 队长L W λ=→排队队长q L L ρ=或q q L W λ=还可导出关系1q W W μ=+和1q L L λμ=+3. 服务机构的忙期B 和闲期I 分析(1) 因为忙期=至少一客的概率ρ, 闲期=无客的概率1ρ- 忙期时间长度/闲期时间长度=1ρρ-(2) 因为忙闲交替,次数平均→平均忙期时间长度/平均闲期时间长度=1ρρ-→1BIρρ=-.(3) 又由分布无记忆性和到达与服务相互独立性→任闲时刻起,下一客到达间隔仍为λ负指数分布→平均闲期=下一客到达间隔1λ→1Iλ=平均忙期=111B Wρρλμλ=⋅==--即顾客平均逗留时间, 实际意义是明显的.例1一个铁路列车编组站, 设待编列车到达时间间隔负指数分布, 平均到达率2列/h; 编组时间服从负指数分布, 平均20min 可编一组. 已知编组站上共有2股道, 当均被占用时, 不能接车, 再来的列车只能停在站外或前方站. 求(1) 在平稳状态下系统中列车的平均数;(2) 每一列车的平均停留时间;(3) 等待编组的列车的平均数.如果列车因站中的2股道均被占用而停在站外或前方站时, 每列车的费用为a 元/h, 求每天由于列车在站外等待而造成的损失.解 这里 2λ=,3μ=,213λρμ==< (1) 列车的平均数21L ρρ==-(小时)(2) 列车的平均逗留时间212LW λ===(小时) (3) 等待编组的列车平均数 24233q L L ρ=-=-=(列) (4) 等待编组时间23q W W ρ==(小时) (5) 记列车平均延误(2道满,不能进站)时间为0W ,则 0012{2}(1)W W P N W p p p =⋅>=⋅---3320.2963ρ⎛⎫=== ⎪⎝⎭(小时) 故每天列车由于等待而支出的平均费用 0242420.29614.2E W a a a λ==⨯⨯⨯=(元).例2某修理店只有一个修理工, 来修理的顾客到达过程为Poisson流, 平均4人/h; 修理时间服从负指数分布, 平均需要6 min. 试求:(1) 修理店空闲的概率;(2) 店恰有3个顾客的概率;(3) 店至少有1个顾客的概率;(4) 在店的平均顾客数;(5) 每位顾客在店的平均逗留时间;(6) 等待服务的平均顾客数;(7) 每位顾客平均等待服务时间;(8) 顾客在店等待时间超过10min 的概率.解这里 4λ=,1/0.110μ==,215λρμ==< (1) 修理店空闲的概率0112/50.6p ρ=-=-=(2) 店恰有3个顾客的概率33332(1)10.03855p ρρ⎛⎫⎛⎫=-=-= ⎪ ⎪⎝⎭⎝⎭(3) 店至少有1个顾客的概率0{1}12/50.4P N p ρ≥=-===(4) 在店的平均顾客数2/50.67112/5L ρρ===--(人) (5) 每位顾客在店的平均逗留时间0.6710(min)4LW λ==≈ (6) 等待服务的平均顾客数0.40.670.268q L L ρ==⨯=(人)(7) 每位顾客平均等待服务时间0.2684(min)4qq L W λ==≈ (8) 顾客在店等待时间超过10min 的概率.11101615{10}0.3679P T ee ⎛⎫-- ⎪-⎝⎭>===.二、多服务台模型(即M/M/s/∞/∞ 或 M/M/s)到达间隔: 负指数(参数为λ:到达率)分布;单台服务时间: 负指数(参数为μ:服务率)分布; 服务台数: s; 12s μμμμ====L 系统容量: 无限;排队长度(客源): 无限; 服务规则: FCFS.数据分析设{}n p P N n == 0,1,2,...n =为系统平稳后队长服务台队列⋅⋅⋅⋅⋅⋅u u u u u r u u u u u rμ1μ2sμs 个N 的概率分布, 则,0,1,2,...n n λλ==和系统的服务率,1,2,3,...,,,1,...n n n ss n s s μμμ=⎧=⎨=+⎩记s ss ρλρμ==, 则当1s ρ<时, 不至越排越长, 称s ρ为系统的服务强度或服务机构的平均利用率. 由前面的(1),(2)和(3)公式得(/),1,2,3,...,!(/)(/),!!nn s n sn n s n s n C n ss s s s λμλμλλμμ--⎧=⎪⎪=⎨⎛⎫⎪=≥ ⎪⎪⎝⎭⎩ 故00,1,2,3,...,!,!nn nn sp n s n p p n ss s ρρ-⎧=⎪⎪=⎨⎪≥⎪⎩其中1100!!(1)n s s n s p n s ρρρ--=⎡⎤=+⎢⎥-⎣⎦∑.当n s ≥时, 顾客要等待. 记这个等待的概率为0(,)!(1)sn n ss c s p p s ρρρ∞===-∑称为Erlang 等待公式. (1) 平均排队长011()()!sn sq n sn s n s p L n s p n s s ρρ∞∞-=+=+=-=-∑∑0021d !d !(1)s s n s ss n s sp p s s ρρρρρρρ∞=⎛⎫== ⎪-⎝⎭∑ 或(,)1s q sc s L ρρρ=-.(2) 正在接受服务的顾客的平均数1s n n n n ss np s p -∞===+∑∑1000!!(1)n ss n s n p s p n s ρρρ-==+-∑11101(1)!(1)!(1)n s s n s p n s ρρρρρ---=⎡⎤=+=⎢⎥---⎣⎦∑s 与s 无关. 奇!(3) 平均队长L =平均排队长+平均接受服务的顾客数q L ρ=+.对多台服务系统, 仍有Little 公式:LW λ=, 1qq L W W λμ==-例3 考虑一个医院医院急诊的管理问题. 根据统计资料, 急论据病人相继到达的时间间隔服从负指数分布, 平均每0.5h 来一个; 医生处理一个病人的时间也服从负指数分布, 平均需要20min. 该急诊室已有一个医生, 管理人员现考虑是否需要再增加一个医生.解 这是一个M/M/s/∞模型, 有2λ=,3μ=,23λρμ==, 1,2s =由前面的公式, 结果列表如下指标模型s=1 s=2 空闲的概率p00.333 05有1个病人的概率p1有2个病人的概率p20.2220.1480.3330.111平均病人数L平均等待病人数L q 21.3330.750.病人平均逗留时间W 病人平均等待时间W q 10.6670.3750.病人需要等待的概率P{T q>0} 0.667(=1-p0) 0.167(=1-p0 -p1)等待时间超过0.5小时的概率P{T q>0.5} 等待时间超过1小时的概率P{T q>1} 0.4040.2450.0.003如果是一个医生值班, 则病人等待时间明显长. 结论是两个医生较合适.例4 某售票处有三个窗口,顾客的到达服从泊松过程,平均到达率每分钟0.9λ=人/min. 服务(售票)时间服从负指数分布, 平均服务率0.4μ=人/min. 现设顾客到达后排成一队,依次向空闲的窗口购票,这是M/M/s 模型, 其中2.2533,2.25,134s s s λλρμμ=====<由公式可得:(1) 整个售票处空闲概率1100!!(1)n ss n s P n s ρρρ--=⎡⎤=+⎢⎥-⎣⎦∑0012310.07482.25 2.25 2.25 2.2510!1!2!3!1 2.25/3p ==+++-(2) 平均排队长02!(1)s sq s p L s ρρρ=-320.0748 2.253/4 1.703!(1/4)q L ⨯⋅==(人)平均队长:/ 1.7 2.25 3.95q L L λμ=+=+=(人)(3) 平均等待时间1.701.890.9qq L W λ===(min) 平均逗留时间1/ 1.891/0.4 4.39q W W μ=+=+=(分钟)(4) 顾客到达后必须等(即系统中顾客数已有3)的概率30 2.250.0748(3,2.25)0.57!(1)3!1/4s s p c s ρρ⋅⋅===-⋅.在上例中, 若顾客到达后在每个窗口前各排一队,且中途不换队, 则M/M/3/∞ 3个M/M/1/∞ 如下图所示(b).10.4μ=窗口0.3λ=(b)0.4μ=窗口20.4μ=窗口310.4μ=窗口0.9λ=0.4μ=窗口20.4μ=窗口3(a)0.9λ=0.3λ=0.3λ=每个队的平均到达率为1230.9/30.3λλλ====(人/分钟)结果比较如下指标模型M/M/3 M/M/1服务台空闲的概率P00.0748 0.25(每个子系统) 顾客必须等待的概率P(n≥3)=0.57 0.75平均排队长Lq 1.70 2.25(每个子系统) 平均队长L 3.95 9.00(整个系统) 平均逗留时间W 4.39(分钟) 10(分钟)平均等待时间Wq 1.89(分钟) 7.5(分钟)单队比三队优越.百度知道编组站是铁路网上集中办理大量货物列车到达、解体、编组出发、直通和其它列车作业,并为此设有比较完善的调车作业的车站。