【推荐】最新备战2020中考数学专题复习分项提升第28讲 图形的相似与位似(学生版)
- 格式:doc
- 大小:1.10 MB
- 文档页数:8
中考数学专题复习:相似多边形与图形位似一、相似多边形1.两个多边形相似的条件是 ( )A.对应角相等B.对应边成比例C.对应角相等或对应边成比例D.对应角相等且对应边成比例 2.下面图形是相似图形的为 ( )A.所有矩形B.所有正方形C.所有菱形D.所有平行四边形 3.只增加一个条件,使矩形ABCD 与矩形A'B'C'D'相似,这个条件可以是________. 4.若五边形ABCDE∽五边形A'B'C'D'E',且AB=25cm ,A'B'=20cm ,则五边形A'B'C'D'E'与五边形ABCDE 的相似比为________. 5.如图1,四边形ABCD∽四边形A'B'C'D'.(1)α=________;(2)边x ,y 的长度分别为________,________.图16.如图2,取一张长为a ,宽为b 的矩形纸片,将它对折两次后得到一张小矩形纸片,若要使小矩形与原矩形相似,则原矩形纸片的边a ,b 应满足的条件是( )图2A.a=√2bB.a=2bC.a=2√2bD.a=4b 7.如图3,四边形ABCD∽四边形EFGH ,连接对角线AC ,EG 。
求证:AC EG=AD EH.图38.在AB=20m,AD=30m的矩形花坛四周修筑小路.(1)如果四周的小路的宽均相等,都是xm,如图4∽,那么小路四周所围成的矩形A'B'C'D'和矩形ABCD相似吗?请说明理由;(2)如果相对着的两条小路的宽均相等,宽度分别为xm,ym,如图∽,那么小路的宽x与y 的比值为多少时,能使得小路四周所围成的矩形A'B'C'D'∽矩形ABCD?图4二、位似图形1.下列各选项的两个图形中,不是位似图形的是( )图52.如图6,以点O为位似中心,把∽ABC放大为原图形的2倍得到∽A'B'C',以下说法中错误的是( )图6A.∽ABC∽∽A'B'C'B.点C,O,C'在同一直线上C.AO∽AA'=1∽2D.AB∽A'B'3.如图7,四边形ABCD与四边形A'B'C'D'位似,位似中心为点O,OC=6,CC'=4,AB=3,则A'B'=________.图74.如图8,∽ABC与∽DEF是位似图形,点B的坐标为(3,0),则其位似中心的坐标为________.图85.如图9,∽ABC三个顶点的坐标分别为A(-1,3),B(-1,1),C(-3,2).(1)请画出∽ABC关于y轴对称的∽A1B1C1;(2)以原点O为位似中心,将∽A1B1C1放大为原来的2倍,得到∽A2B2C2,请在第三象限内画出∽A2B2C2,并求出S△A1B1C1:S△A2B2C2的值.图96.如图10,在5×6的方格中,每个小正方形的边长均为1,∽ABC的顶点均为格点,D为AB的中点,以点D为位似中心,位似比为2,将∽ABC放大,得到∽A'B'C',则BB'等于( )图10A.√52B.√5 C.3√52D.√52或3√527.在平面直角坐标系中,∽ABC和∽A1B1C1的相似比等于12,并且是关于原点O的位似图形,若点A的坐标为(2,4),则其对应点A1的坐标是________.8.如图11,∽ABC与∽A'B'C'是位似图形,点A,B,A',B',O共线,点O为位似中心.(1)AC与A'C'平行吗?为什么?(2)若AB=2A'B',OC'=5,求CC'的长.图119.如图12所示,正方形OEFG和正方形ABCD是位似图形,点F的坐标为(-1,1),点C的坐标为(-4,2),则这两个正方形位似中心的坐标是________.图12参考答案一、相似多边形 1.D2.B [解析] ∽相似多边形的对应边成比例,对应角相等,∽所有正方形都是相似多边形;∽菱形的对应角不一定相等,矩形的边不一定对应成比例,∽所有菱形、所有矩形都不一定是相似图形;∽平行四边形的对应角不一定相等,边不一定对应成比例,∽所有平行四边形不一定是相似图形.3.答案不唯一,如ABA'B' = BCB'C' [解析] ∽矩形的四个角都是直角,∽只要矩形的对应边成比例,则两个矩形相似,∽这个条件可以是ABA'B' = BCB'C'(答案不唯一).4.45 [解析] ∽A'B'AB = 2025 = 45,五边形A'B'C'D'E'∽五边形ABCDE ,∽五边形A'B'C'D'E'与五边形ABCDE 的相似比为45. 5.(1)83° (2)12332[解析] (1)∽四边形ABCD∽四边形A'B'C'D',∽∽A'=∽A=62°,∽B'=∽B=75°,∽α=360°-62°-75°-140°=83°.故答案为83°.(2)∽四边形ABCD∽四边形A'B'C'D',∽x 8 = y 11 = 96,解得x=12,y=332.6.B [解析] 对折两次后的小矩形的长为b ,宽为14a.∽小矩形与原矩形相似,∽a b = b14a,∽a=2b.7.证明:∽四边形ABCD∽四边形EFGH ,∽AD EH = CD GH ,∽D=∽H ,∽∽ADC∽∽EHG ,∽ACEG =AD EH.8.解:(1)如果四周的小路的宽均相等,那么小路四周所围成的矩形A'B'C'D'和矩形ABCD 不相似.理由:∽四周的小路的宽均为x m ,∽A'D'AD=30+2x 30=15+x 15,A'B'AB=20+2x 20=10+x 10.∽x>0,∽15+x 15≠10+x 10,即A'D'AD ≠ A'B'AB,∽小路四周所围成的矩形A'B'C'D'和矩形ABCD 不相似.(2)A'D'AD =30+2y 30=15+y 15,A'B'AB =20+2x 20=10+x 10.当15+y 15=10+x 10时,小路四周所围成的矩形A'B'C'D'∽矩形ABCD ,解得x y =23,∽小路的宽x 与y 的比值为23时,能使得小路四周所围成的矩形A'B'C'D'∽矩形ABCD. 二、位似图形 1.C2.C [解析] ∽以点O 为位似中心,把∽ABC 放大为原图形的2倍得到∽A'B'C',∽∽ABC∽∽A'B'C',点C ,O ,C'在同一直线上,AB∽A'B',AO∽OA'=1∽2,故选项C 错误.故选C.3.5 [解析] ∽四边形ABCD 与四边形A'B'C'D'位似,其位似中心为点O ,OC=6,CC'=4, ∽AB A'B'=OCOC'=610= 35.∽AB=3,∽A'B'=5.4.(1,0) [解析] 如图,连接各对应点A 与D ,C 与F ,直线AD ,CF 的交点Q 即为位似中心,∽位似中心的坐标为(1,0).5.解:(1)如图所示,∽A 1B 1C 1即为所求.(2)如图所示,∽A 2B 2C 2即为所求.∽将∽A 1B 1C 1放大为原来的2倍得到∽A 2B 2C 2,∽∽A 1B 1C 1∽∽A 2B 2C 2,且位似比为12,∽S △A 1B 1C 1∽S △A 2B 2C 2=14.6.D [解析] 如图.∽AC=1,BC=2,∽AB=√5.∽∽A'B'C'∽∽ABC ,位似比为2,∽ABA'B' = 12, ∽A'B'=2√5,∽BB' = 12(A'B'-AB) =√52.同理可得,BB″=A″B″-A″B=3√52.故选D.7.(4,8)或(-4,-8) [解析] ∽∽ABC 和∽A 1B 1C 1的相似比等于12,并且是关于原点O 的位似图形,而点A 的坐标为(2,4),∽点A 的对应点A 1的坐标为(2×2,2×4)或(-2×2,-2×4),即(4,8)或(-4,-8).8.解:(1)AC∽A'C'.理由如下:∽∽ABC 与∽A'B'C'是位似图形,∽∽ABC∽∽A'B'C',∽∽A=∽C'A'B',∽AC∽A'C'.(2)∽∽ABC∽∽A'B'C',∽ABA'B' = ACA'C'.∽AB=2A'B',∽ACA'C' =2.∽AC∽A'C',∽OCOC' = ACA'C' = 2. ∽OC'=5,∽OC=10,∽CC'=OC -OC'=10-5=5. 9.(2,0)或-43,23[解析] 本题分两种情况讨论:∽当两个位似图形在位似中心O'同旁时,位似中心就是直线CF 与x 轴的交点.设直线CF 的函数表达式为y=kx+b(k≠0),将点C(-4,2),F(-1,1)的坐标代入,得,解得,∽y=-,,+23.令y=0,得x=2,∽点O'的坐标是(2,0).∽当位似中心O'在两个正方形之间时,可求直线OC 的函数表达式为y=-12x ,直线DE 的函数表达式为y=14x+1,由, 解得,即O'-,,23.故答案为(2,0)或-43,23.。
图形的位似--知识讲解【学习目标】1、了解位似多边形的概念,知道位似变换是特殊的相似变换,能利用位似的方法,将一个图形放大或缩小;2、能在同一坐标系中,感受图形放缩前后点的坐标的变化. 【要点梳理】要点一、位似多边形1.位似多边形定义:如果两个相似多边形任意一组对应顶点所在的直线都经过同一个点O,且每组对应点与点O 点的距离之比都等于一个定值k,例如,如下图,OA′=k·OA(k≠0),那么这样的两个多边形叫做位似多边形,点O叫做位似中心.要点诠释:位似图形与相似图形的区别:位似图形是一种特殊的相似图形,而相似图形未必能构成位似图形.2.位似图形的性质:(1)位似图形的对应点相交于同一点,此点就是位似中心;(2) 位似图形的对应点到位似中心的距离之比等于相似比;(3)位似图形中不经过位似中心的对应线段平行.3.平移、轴对称、旋转和位似四种变换的异同:图形经过平移、旋转或轴对称的变换后,虽然对应位置改变了,但大小和形状没有改变,即两个图形是全等的;而位似变换之后图形是放大或缩小的,是相似的.4.作位似图形的步骤第一步:在原图上找若干个关键点,并任取一点作为位似中心;第二步:作位似中心与各关键点连线;第三步:在连线上取关键点的对应点,使之满足放缩比例;第四步:顺次连接各对应点.要点诠释:位似中心可以取在多边形外、多边形内,或多边形的一边上、或顶点,下面是位似中心不同的画法.要点二、坐标系中的位似图形在平面直角坐标系中,将一个多边形每个顶点的横坐标、纵坐标都乘同一个数k(k≠0),所对应的图形与原图形位似,位似中心是坐标原点,它们的相似比为|k|.要点诠释:在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标等于原来点的坐标乘以(或除以)k或-k.【典型例题】类型一、位似多边形1.下列每组的两个图形不是位似图形的是().A. B. C. D.【思路点拨】根据位似图形的概念对各选项逐一判断,即可得出答案.【答案】D【解析】解:对应顶点的连线相交于一点的两个相似多边形叫位似图形.据此可得A 、B 、C 三个图形中的两个图形都是位似图形; 而D 的对应顶点的连线不能相交于一点,故不是位似图形. 故选D .【总结升华】位似与相似既有联系又有区别,相似仅要求两个图形形状完全相同;而位似是在相似的基础上要求对应点的连线相交于一点.举一反三【变式】在小孔成像问题中, 根据如图4所示,若O 到AB 的距离是18cm ,O 到CD 的距离是6cm ,则像CD 的长是物AB 长的 ( ).A. 3倍B.21C.31 D.不知AB 的长度,无法判断【答案】C2. 利用位似图形的方法把五边形ABCDE 放大1.5倍.A B DE【答案与解析】即是要画一个五边形A ′B ′C ′D ′E ′,要与五边形ABCDE 相似且相似比为1.5.画法是:1.在平面上任取一点O.2.以O 为端点作射线OA 、OB 、OC 、OD 、OE.3.在射线OA 、OB 、OC 、OD 、OE 上分别取点A ′、B ′、C ′、D ′、E ′,使OA ′:OA = OB ′:OB =OC ′:OC =OD ′:OD =OE ′:OE =1.5.4.连结A ′B ′、B ′C ′、C ′D ′、D ′E ′、E ′A ′.这样:A ′B ′AB =B ′C ′BC =C ′D ′CD =D ′E ′DE =A ′E ′AE=1.5. 则五边形A ′B ′C ′D ′E ′为所求. 另外一种情况,所画五边形跟原五边形分别在位似中心的两侧.【总结升华】由本题可知,利用位似的方法,可以把一个多边形放大或缩小.举一反三【变式】在已知三角形内求作内接正方形.A 1B 1C 1D 1E 1【答案与解析】作法:(1)在AB 上任取一点G ′,作G ′D ′⊥BC;(2)以G ′D ′为边,在△ABC 内作一正方形D ′E ′F ′G ′;(3)连接BF ′,延长交AC 于F ;(4)作FG∥CB,交AB 于G ,从F 、G 分别作BC 的垂线FE , GD; ∴四边形DEFG 即为所求.类型二、坐标系中的位似图形B C3.(优质试题•漳州)如图,在10×10的正方形网格中,点A,B,C,D均在格点上,以点A为位似中心画四边形AB′C′D′,使它与四边形ABCD位似,且相似比为2.(1)在图中画出四边形AB′C′D′;(2)填空:△AC′D′是三角形.【思路点拨】(1)延长AB到B′,使AB′=2AB,得到B的对应点B′,同样得到C、D的对应点C′,D′,再顺次连接即可;(2)利用勾股定理求出AC′2=42+82=80,AD′2=62+22=40,C′D′2=62+22=40,那么AD′=C′D′,AD′2+C′D′2=AC′2,即可判定△AC′D′是等腰直角三角形.【答案与解析】解:(1)如图所示:(2)∵AC′2=42+82=16+64=80,AD′2=62+22=36+4=40,C′D′2=62+22=36+4=40,∴AD′=C′D′,AD′2+C′D′2=AC′2,∴△AC′D′是等腰直角三角形.故答案为:等腰直角.【总结升华】本题考查了作图﹣位似变换.画位似图形的一般步骤为:①确定位似中心,②分别连接并延长位似中心和能代表原图的关键点;③根据相似比,确定能代表所作的位似图形的关键点;顺次连接上述各点,得到放大或缩小的图形.同时考查了勾股定理及其逆定理等知识.熟练掌握网格结构以及位似变换的定义是解题的关键.4.(优质试题春•威海期末)如图△ABC的顶点坐标分别为A (1,1),B(2,3),C(3,0).(1)以点O为位似中心画△DEF,使它与△ABC位似,且相似比为2.(2)在(1)的条件下,若M(a,b)为△ABC边上的任意一点,则△DEF的边上与点M对应的点M′的坐标为.【思路点拨】(1)把点A、B、C的横、纵坐标都乘以2可得到对应点D、E、F 的坐标,再描点可得△DEF;把点A、B、C的横、纵坐标都乘以﹣2可得到对应点D′、E′、F′的坐标,然后描点可得△D′E′F′;(2)利用以原点为位似中心的位似变换的对应点的坐标特征求解.【答案与解析】解:(1)如图,△DEF和△D′E′F′为所作;(2)点M对应的点M′的坐标为(2a,2b)或(﹣2a,﹣2b).故答案为(2a,2b)或(﹣2a,﹣2b).【总结升华】本题考查了位似变换:如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心.在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k.举一反三:【变式】如图,将△AOB中各顶点的纵坐标,横坐标分别乘-1,•得到的图形与原图形相比有什么变化?作出所得的图形,这个过程可以看作是一个什么图形变换?【答案】解:图形的形状和大小都没有变化;可以看作是△AOB绕O•点按逆时针方向旋转180°得到的.。
图形的相似一.选择题(共10小题)1.如图, 以点O为位似中心, 将△OAB放大后得到△OCD, OA=2, AC=3, 则的值为()A.B.C.D.2.已知线段a、b、c、d, 如果ab=cd, 那么下列式子中一定正确的是()A.B.C.D.3.已知=, 那么的值是()A.B.﹣C.5D.﹣54.在平面直角坐标系xOy中, 以原点O为位似中心, 把△ABO缩小为原来的, 得到△CDO, 则点A(﹣4, 2)的对应点C的坐标是()A.(﹣2, 1)B.(﹣2, 1)或(2, ﹣1)C.(﹣8, 4)D.(﹣8, 4)或(8, ﹣4)5.如图, AD∥BE∥FC, 它们依次交直线l1、l2于点A、B、C和点D、E、F, 如果AB=4, AC =9, 那么的值是()A.B.C.D.6.如图, 在△ABC中, AB=AC=6, D在BC边上, ∠ADE=∠B, CD=4, 若△ABD的面积等于9, 则△CDE的面积为()A.4B.2C.3D.67.点C为线段AB的黄金分割点(AC>BC), 且AB=2, 则AC的长为()A.2B.﹣2C.﹣1D.3﹣8.若3x=2y(y≠0), 则下列比例式成立的是()A.B.C.D.9.线段a, b, c, d是成比例线段, 已知a=2, b=, 则d=()A.B.C.D.10.若△ABC∽△A'B'C', 且相似比为2:3, 则△ABC与△A'B'C'的面积比为()A.2:3B.3:2C.4:9D.9:4二.填空题(共5小题)11.已知=, 那么=.12.如图, 在矩形ABCD中, E是CD边的中点, 且BE⊥AC于点F, 连接DF, 则下列结论:①;②;③AD=DF;④AD2=BE•BF.其中正确的是(把正确结论的序号都填上).13.非零实数x, y满足2x=3y, 则=.14.已知, 则=.15.如图, AB∥CD∥EF, 直线l1、l2分别与这三条平行线交于点A、C、E和点B、D、F.已知AC=3, CE=5, DF=4, 则BD的长为.三.解答题(共6小题)16.如图, 已知正方形ABCD, 点在边BC上, 连接AE.(1)利用尺规在AE上求作一点F, 使得△ABE∽△DF A.(不写作法, 保留作图痕迹)(2)若AE=4, AB=3, 求DF的长.17.如图, 点F是平行四边形ABCD的边AD上的一点, 直线CF交线段BA的延长线于点E.(1)求证:△AEF∽△DCF;(2)若AF:DF=1:2, AE=, S△AEF=.①求AB的长;②求△EBC的面积.18.如图, 在矩形ABCD中, E为CD边上一点, 把△ADE沿AE翻折, 使点D恰好落在BC 边上的点F处.(1)求证:△ABF∽△FCE;(2)若, 求EC的长.19.如图1, 在△ABC中, 已知AB=6, AC=8, BC=10.点D是边BC上一动点, 过点D作DE⊥BC交射线CA于点E, 把△CDE沿DE翻折, 点C落在点G处, AD和GE相交于点F.(1)若点G和点B重合, 请在图2中画出相应的图形, 并求CE的长.(2)在(1)的条件下, 求证:△AFB∽△EFD.(3)是否存在这样的点D, 使得△ABG是等腰三角形?若存在, 请直接写出这时∠CAD 的正切值;若不存在, 请说明理由.20.定义:一般地, 如果两个相似多边形任意一组对应顶点P, P'所在的直线都经过同一点O, 且有OP'=k⋅OP(k≠0), 那么这样的两个多边形叫做位似多边形, 点O叫做位似中心,(1)如图, 在△ABC中, ∠ACB=90°, ∠A=30°, AB=6cm.点P在AB上, 点Q在AC上, 以PQ为边作菱形PQMN, 点N在线段PB上且∠APQ=120°, 在△ABC及其内部, 以点A为位似中心, 请画出菱形PQMN的位似菱形P'Q'M'N', 且使菱形P'Q'M'N'的面积最大(不要求尺规作图);(2)求(1)中作出的菱形P'Q'M'N'的面积;(3)如图, 四边形ABCD、AEFG是全等的两个菱形, CD、EF相交于点M, 连接BG、CF.请用定义证明:△ABG与△MCF位似.21.如图, l1∥l2∥l3, AB=7, DE=6, EF=12, 求AC的长.2023年中考数学专题复习--图形的相似参考答案与试题解析一.选择题(共10小题)1.如图, 以点O为位似中心, 将△OAB放大后得到△OCD, OA=2, AC=3, 则的值为()A.B.C.D.【分析】直接利用位似图形的性质, 进而得出=, 求出答案即可.【解答】解:∵以点O为位似中心, 将△OAB放大后得到△OCD,∴△BOA∽△DOC,∴=,∵OA=2, AC=3,∴=.故选:D.【点评】此题主要考查了位似变换, 正确得出相似三角形是解题关键.2.已知线段a、b、c、d, 如果ab=cd, 那么下列式子中一定正确的是()A.B.C.D.【分析】根据内项之积等于外项之积即可判断.【解答】解:∵ab=cd,∴=,故选:C.【点评】本题考查比例线段, 解题的关键是灵活运用内项之积等于外项之积解决问题, 属于中考基础题.3.已知=, 那么的值是()A.B.﹣C.5D.﹣5【分析】根据已知条件得出a=5b, 再代入要求的式子进行计算, 即可得出答案.【解答】解:∵=,∴3a﹣3b=2a+2b,∴a=5b,∴==5.故选:C.【点评】此题考查了比例的性质, 熟练掌握两内项之积等于两外项之积.4.在平面直角坐标系xOy中, 以原点O为位似中心, 把△ABO缩小为原来的, 得到△CDO, 则点A(﹣4, 2)的对应点C的坐标是()A.(﹣2, 1)B.(﹣2, 1)或(2, ﹣1)C.(﹣8, 4)D.(﹣8, 4)或(8, ﹣4)【分析】根据位似变换的性质计算, 即可解答.【解答】解:以原点O为位似中心, 把这个三角形缩小为原来的得到△CDO, 点A的坐标为(﹣4, 2),则点A的对应点C的坐标为(﹣4×, 2×)或(4×, ﹣2×), 即(﹣2, 1)或(2, ﹣1),故选:B.【点评】本题考查的是位似变换的概念和性质, 解题关键是在平面直角坐标系中, 如果位似变换是以原点为位似中心, 相似比为k, 那么位似图形对应点的坐标的比等于k或﹣k.5.如图, AD∥BE∥FC, 它们依次交直线l1、l2于点A、B、C和点D、E、F, 如果AB=4, AC =9, 那么的值是()A.B.C.D.【分析】根据平行线分线段成比例定理列出比例式, 把已知数据代入计算即可.【解答】解:∵AD∥BE∥FC, AB=4, AC=9,∴===,故选:C.【点评】本题考查的是平行线分线段成比例定理, 灵活运用定理、准对应关系是解题的关键.6.如图, 在△ABC中, AB=AC=6, D在BC边上, ∠ADE=∠B, CD=4, 若△ABD的面积等于9, 则△CDE的面积为()A.4B.2C.3D.6【分析】过点D作DM⊥AB于M, 过点E作EN⊥BC于N, 根据等腰三角形的性质推出∠B=∠C, 再由三角形的外角定理推出∠DAB=∠EDC, 从而得出△ABD∽△DCE, 根据相似三角形的性质求出EN, 即可求解.【解答】解:过点D作DM⊥AB于M, 过点E作EN⊥BC于N,∵AB=AC=6,∴∠B=∠C,∵∠ADE=∠B, ∠ADC=∠B+∠BAD=∠ADE+∠CDE,∴∠BAD=∠CDE,∴△ABD∽△DCE.∴,∵△ABD的面积等于9,∴AB•DM=×6×DM=9,∴DM=3,∴,∴EN=2.∴△CDE的面积为CD•EN=×4×2=4,故选:A.【点评】本题考查等腰三角形的性质, 相似三角形的判定和性质, 利用等腰三角的性质及相似三角形的判定和性质求解是解题的关键.7.点C为线段AB的黄金分割点(AC>BC), 且AB=2, 则AC的长为()A.2B.﹣2C.﹣1D.3﹣【分析】根据黄金分割的定义可得到AC=AB, 然后把AB=2代入计算即可.【解答】解:根据题意得AC=AB=×2=﹣1.故选:C.【点评】本题考查了黄金分割:把线段AB分成两条线段AC和BC(AC>BC), 且使AC 是AB和BC的比例中项(即AB:AC=AC:BC), 叫做把线段AB黄金分割, 点C叫做线段AB的黄金分割点.其中AC=≈0.618AB, 并且线段AB的黄金分割点有两个.8.若3x=2y(y≠0), 则下列比例式成立的是()A.B.C.D.【分析】根据两内项之积等于两外项之积对各选项分析判断即可得解.【解答】解:A、由=得, xy=6, 故本选项比例式不成立;B、由=得, 3x=2y, 故本选项比例式成立;C、由=得, 2x=3y, 故本选项比例式不成立;D、由=得, xy=6, 故本选项比例式不成立.故选:B.【点评】本题考查了比例的性质, 主要利用了两内项之积等于两外项之积, 熟记性质是解题的关键.9.线段a, b, c, d是成比例线段, 已知a=2, b=, 则d=()A.B.C.D.【分析】根据成比例线段的概念, 可得a:b=c:d, 再根据比例的基本性质, 即可求得d 的值.【解答】解:∵a:b=c:d,∴ad=bc,∵a=2, b=, c=2,∴2d=×2,∴d=.故选:D.【点评】此题考查了成比例线段, 解题时一定要严格按照顺序写出比例式, 再根据比例的基本性质进行求解.10.若△ABC∽△A'B'C', 且相似比为2:3, 则△ABC与△A'B'C'的面积比为()A.2:3B.3:2C.4:9D.9:4【分析】根据相似三角形的性质:面积的比等于相似比的平方, 解答即可.【解答】解:∵△ADE∽△ABC, 相似比为2:3,∴△ADE与△ABC的面积比为(2:3)2=4:9.故选:C.【点评】本题主要考查了相似三角形的性质, 相似三角形面积的比等于相似比的平方.二.填空题(共5小题)11.已知=, 那么=﹣.【分析】根据已知条件得出=, 再把化成1﹣, 然后进行计算即可.【解答】解:∵=,∴=,∴=1﹣=1﹣=﹣.故答案为:﹣.【点评】此题考查了比例的性质.题目比较简单, 解题的关键是掌握比例的性质与比例变形.12.如图, 在矩形ABCD中, E是CD边的中点, 且BE⊥AC于点F, 连接DF, 则下列结论:①;②;③AD=DF;④AD2=BE•BF.其中正确的是①③④(把正确结论的序号都填上).【分析】根据E是CD边的中点, 得到CE:AB=1:2, 根据矩形的性质得到CE∥AB, 推出△CEF∽△ABF, 求得=()2=, 故选①选项正确;根据相似三角形的性质得到=, 设CE=a, AD=b, 则CD=2a, 于是得到=, 故②选项错误;如图, 过D作DM∥BE交AC于N, 交AB于M, 根据平行四边形的判定定理得到四边形BMDE是平行四边形, 求得BM=DE=DC, 得到DM垂直平分AF, 根据线段垂直平分线的性质得到AD=DF, 故③选项正确;根据射影定理和矩形的性质得到AD2=BE•BF.故④正确.【解答】解:∵E是CD边的中点,∴CE:AB=1:2,∵四边形ABCD是矩形,∴CE∥AB,∴△CEF∽△ABF,∴=()2=, 故选①选项正确;∵四边形ABCD是矩形,∴AD∥BC, ∠ADC=∠BCD=90°,∴∠CAD=∠BCF,∵BE⊥AC,∴∠CFB=90°,∴∠ADC=∠CFB,∴△ADC∽△CFB,∴=,设CE=a, AD=b, 则CD=2a,∴=,即b=a,∴=,∴=, 故②选项错误;如图, 过D作DM∥BE交AC于N, 交AB于M,∵DE∥BM, BE∥DM,∴四边形BMDE是平行四边形,∴BM=DE=DC,∴BM=AM,∴AN=NF,∵BE⊥AC于点F, DM∥BE,∴DN⊥AF,∴DM垂直平分AF,∴AD=DF, 故③选项正确;∵∠BCE=90°, BE⊥AC,∴BC2=BF•BE,∵AD=BC,∴AD2=BE•BF.故④正确;故答案为:①③④.【点评】本题考查了相似三角形的判定和性质, 矩形的性质, 射影定理, 正确地作出辅助线是解题的关键.13.非零实数x, y满足2x=3y, 则=.【分析】根据比例的性质解决此题.【解答】解:∵2x=3y,∴.故答案为:.【点评】本题主要考查比例的性质, 熟练掌握比例的性质是解决本题的关键.14.已知, 则=.【分析】根据比例的性质, 由, 得5x=2(x+y), 即3x=2y, 即可求出答案.【解答】解:∵,∴5x=2(x+y),∴3x=2y,∴=.故答案为:.【点评】本题考查了比例的性质, 熟记两内项之积等于两外项之积是解题的关键.15.如图, AB∥CD∥EF, 直线l1、l2分别与这三条平行线交于点A、C、E和点B、D、F.已知AC=3, CE=5, DF=4, 则BD的长为.【分析】先根据平行线分线段成比例定理得到=, 然后利用比例性质得到BD的长.【解答】解:∵AB∥CD∥EF,∴=, 即=,解得BD=.故答案为:.【点评】本题考查了平行线分线段成比例:三条平行线截两条直线, 所得的对应线段成比例.三.解答题(共6小题)16.如图, 已知正方形ABCD, 点在边BC上, 连接AE.(1)利用尺规在AE上求作一点F, 使得△ABE∽△DF A.(不写作法, 保留作图痕迹)(2)若AE=4, AB=3, 求DF的长.【分析】(1)过点D作DF⊥AE于点F, 点F即为所求;(2)利用勾股定理全等三角形的性质求解.【解答】解:(1)如图, 点F即为所求.(2)∵四边形ABCD是正方形,∴AD=AB=3,∵△ABE∽△DF A,∴=,∴=,∴DF=.【点评】本题考查作图﹣相似变换, 正方形的性质等知识, 解题的关键是灵活运用所学知识解决问题, 属于中考常考题型.17.如图, 点F是平行四边形ABCD的边AD上的一点, 直线CF交线段BA的延长线于点E.(1)求证:△AEF∽△DCF;(2)若AF:DF=1:2, AE=, S△AEF=.①求AB的长;②求△EBC的面积.【分析】(1)根据平行四边形的性质, 可以得到BA∥CD, 然后即可得到∠E=∠FCD, ∠EAF=∠CDF, 从而可以得到结论成立;(2)①根据相似三角形的性质和题目中的数据, 平行四边形的性质, 可以计算出AB的长;②根据相似三角形面积比等于相似比的平方, 可以计算出△EBC的面积.【解答】(1)证明:∵四边形ABCD是平行四边形,∴BA∥CD,∴∠E=∠FCD, ∠EAF=∠CDF,∴△AEF∽△DCF;(2)解:①由(1)知△AEF∽△DCF,∴,∵AF:DF=1:2, AE=,∴,∴DC=2,∵四边形ABCD是平行四边形,∴AB=DC,∴AB=2;②∵四边形ABCD是平行四边形,∴AD∥BC,∴△EAF∽△EBC,∴=()2,∵S△AEF=, AB=2, AE=,∴EB=EA+AB=3,∴==,∴,解得S△EBC=6,即△EBC的面积是6.【点评】本题考查相似三角形的判定与性质、平行四边形的性质, 解答本题的关键是明确题意, 利用数形结合的思想解答.18.如图, 在矩形ABCD中, E为CD边上一点, 把△ADE沿AE翻折, 使点D恰好落在BC 边上的点F处.(1)求证:△ABF∽△FCE;(2)若, 求EC的长.【分析】(1)利用同角的余角相等, 先说明∠BAF=∠EFC, 再利用相似三角形的判定得结论;(2)先利用勾股定理求出BF, 再利用相似三角形的性质得方程, 求解即可.【解答】(1)证明:∵四边形ABCD是矩形,∴∠B=∠C=∠D=90°.∵△ADE沿AE翻折得到△AFE,∴∠D=∠AFE=90°.∵∠BAF+∠AFB=180°, ∠AFB+∠EFC=90°,∴∠BAF=∠EFC.又∵∠B=∠C,∴△ABF∽△FCE.(2)解:∵四边形ABCD是矩形,∴AB=CD=3.∵△ADE沿AE翻折得到△AFE,∴AD=AF=6, DE=EF.在Rt△ABF中,BF==3.设CE的长为x, 则DE=EF=3﹣x.∵△ABF∽△FCE,∴=.∴CE•AF=BF•EF,即x×6=3×(3﹣x).∴x=, 即EC=.【点评】本题主要考查了矩形的性质、折叠的性质、相似三角形的判定和性质, 掌握“矩形的四个角都是直角、矩形的对边相等”、“折叠前后的两个图形全等”、“两角对应相等的两个三角形相似”及“相似三角形的对应边的比相等”是解决本题的关键.19.如图1, 在△ABC中, 已知AB=6, AC=8, BC=10.点D是边BC上一动点, 过点D作DE⊥BC交射线CA于点E, 把△CDE沿DE翻折, 点C落在点G处, AD和GE相交于点F.(1)若点G和点B重合, 请在图2中画出相应的图形, 并求CE的长.(2)在(1)的条件下, 求证:△AFB∽△EFD.(3)是否存在这样的点D, 使得△ABG是等腰三角形?若存在, 请直接写出这时∠CAD 的正切值;若不存在, 请说明理由.【分析】(1)先由勾股定理的逆定理证明△ABC是直角三角形, 且∠BAC=90°, 再证明△CDE∽△CAB, 得=, 则CE==;(2)由DE垂直平分BC, 得BE=CE, 则∠DEF=∠DEC, 由△CDE∽△CAB, 得∠DEC =∠ABC, 由AD=BD=BC, 得∠ABC=∠BAF, 则∠BAF=∠DEF, 而∠AFB=∠EFD, 即可证明△AFB∽△EFD;(3)作DI⊥AC于点I, 先由△DIC∽△BAC, 求得ID:IC:DC=3:4:5, 再分四种情况分别求出DC的长, 并且求出相应的ID和AI的长, 即可由tan∠CAD=, 求出∠CAD的正切值, 一是△ABG是等腰三角形, 且AG=AB=6, 作AH⊥BC于点H, 由×10AH=×6×8=S△ABC, 求得AH=, 再由勾股定理求得GH=BH=, 则CD=;二是△ABG是等腰三角形, 且BG=AB=6, 则CD=×(10﹣6)=2;三是△ABG 是等腰三角形, 且BG=AG, 则CG=AG=BG=BC=5, 所以CD=CG=;四是△ABG是等腰三角形, 点G在CB的延长线上, 且BG=AB=6, DC=×(10+6)=8.【解答】(1)解:∵AB=6, AC=8, BC=10,∴AB2+AC2=BC2=100,∴△ABC是直角三角形, 且∠BAC=90°,由翻折得DG=DC,∵DE⊥BC,∴∠GDE=∠CDE=∠BDE=90°,∴点G在射线CB上,如图2, 点G和点B重合, 则DB=DC=BC=5,∵∠CDE=∠CAB=90°, ∠C=∠C,∴△CDE∽△CAB,∴=,∴CE===,∴CE的长是.(2)证明:如图2,∵DE垂直平分BC,∴BE=CE,∴∠DEF=∠DEC,∵△CDE∽△CAB,∴∠DEC=∠ABC,∴AD=BD=BC,∴∠ABC=∠BAF,∴∠BAF=∠ABC=∠DEC=∠DEF,∵∠AFB=∠EFD,∴△AFB∽△EFD.(3)解:存在,作DI⊥AC于点I, 则∠DIC=∠AID=∠BAC=90°, ∵∠C=∠C,∴△DIC∽△BAC,∴==,∴===, ===,∴ID:IC:DC=3:4:5,如图3, △ABG是等腰三角形, 且AG=AB=6,作AH⊥BC于点H, 则∠AHB=90°,∵×10AH=×6×8=S△ABC,∴AH=,∴GH=BH==,∴DC=CG=×(10﹣2×)=,∴ID=DC=×=, IC=DC=×=,∴AI=8﹣=,∴tan∠CAD===;如图4, △ABG是等腰三角形, 且BG=AB=6,∴CD=×(10﹣6)=2,∴ID=×2=, IC=×2=,∴AI=8﹣=,∴tan∠CAD===;如图5, △ABG是等腰三角形, 且BG=AG, 则∠GAB=∠B, ∵∠GAC+∠GAB=90°, ∠C+∠B=90°,∴∠GAC=∠C,∴CG=AG=BG=BC=5,∴CD=CG=,∴ID=×=, IC=×=2,∴AI=8﹣2=6,∴tan∠CAD===;如图6, △ABG是等腰三角形, 点G在CB的延长线上, 且BG=AB=6, ∴DC=×(10+6)=8,∴ID=×8=, IC=×8=,∴AI=8﹣=,∴tan∠CAD===3,综上所述, ∠CAD的正切值为或或或3.【点评】此题重点考查勾股定理及其逆定理的应用、轴对称的性质、相似三角形的判定与性质、等腰三角形的性质、等角的余角相等、线段的垂直平分线的性质、根据面积等式求线段的长度、数形结合与分类讨论数学思想的运用等知识与方法, 此题综合性强, 难度较大, 正确地作出所需要的辅助线是解题的关键.20.定义:一般地, 如果两个相似多边形任意一组对应顶点P, P'所在的直线都经过同一点O, 且有OP'=k⋅OP(k≠0), 那么这样的两个多边形叫做位似多边形, 点O叫做位似中心,(1)如图, 在△ABC中, ∠ACB=90°, ∠A=30°, AB=6cm.点P在AB上, 点Q在AC上, 以PQ为边作菱形PQMN, 点N在线段PB上且∠APQ=120°, 在△ABC及其内部, 以点A为位似中心, 请画出菱形PQMN的位似菱形P'Q'M'N', 且使菱形P'Q'M'N'的面积最大(不要求尺规作图);(2)求(1)中作出的菱形P'Q'M'N'的面积;(3)如图, 四边形ABCD、AEFG是全等的两个菱形, CD、EF相交于点M, 连接BG、CF.请用定义证明:△ABG与△MCF位似.【分析】(1)根据定义画出图形即可;(2)当M'点在BC上时, 菱形P'Q'M'N'的面积最大, 判定出△M'BN'是等边三角形, 在Rt △CM'Q'中求出BM'的长, 再求菱形的面积即可;(3)延长GF、BC交于O点, 连接AO, 先求出OF=OC, OG=BO, 连接OM, 通过证明△MOF≌△MOC(SAS), 得∠FOM=∠COM, △AGO≌△ABO(SAS), 得∠FOA=∠BOA, 证明出A、M、O三点共线, 即GF、BC、AM的延长线交于一点O, 再由平行线的性质得到==, 即可证明△ABG与△MCF位似.【解答】解:(1)如图:(2)∵四边形P'Q'M'N'在△ABC内,∴当M'点在BC上时, 菱形P'Q'M'N'的面积最大,∵四边形PQMN是菱形, 四边形P'Q'M'N'是菱形,∴Q'M'∥AB, M'N'∥PQ,∵∠APQ=120°,∴∠QPB=∠M'N'B=60°,∵∠CAB=30°, ∠ACB=90°,∴∠B=60°,∴△BM'N'是等边三角形,∴M'B=M'N'=Q'M',∵AB=6cm,∴BC=3cm,∴CM'=3﹣BM',在Rt△CM'Q'中, ∠CQ'M'=30°,∴Q'M'=2CM',∴BM'=2(3﹣BM'),解得BM'=2,在△BM'N'中, 过点M'作M'E⊥BN'交于点E, ∵BM'=2, ∠B=60°,∴M'E=,∴菱形P'Q'M'N'的面积=2;(3)延长GF、BC交于O点, 连接AO,∵四边形ABCD、AEFG是全等的两个菱形, ∴AG=AB, ∠AGF=∠ABC,∴∠OGB=∠OBG,∴OG=BO,∵GF=BC,∴OF=OC,∴=,连接OM,∵∠GFE=∠BCD,∴∠MFO=∠MCO,∵∠OFC=∠FCO,∴∠MCF=∠FCM,∴CM=FM,∴△MOF≌△MOC(SAS),∴∠FOM=∠COM,∵AG=AB, ∠AGO=∠ABO, GO=BO,∴△AGO≌△ABO(SAS),∴∠FOA=∠BOA,∴MO与AO重合,∴A、M、O三点共线,∴GF、BC、AM的延长线交于一点O,∴MF∥AG,∴=,∵CM∥AB,∴=,∴==,∴△ABG与△MCF位似.【点评】本题考查相似的综合应用, 掌握位似图形的定义, 平行线的定义, 菱形的性质, 直角三角形的性质, 等边三角形的性质是解题的关键.21.如图, l1∥l2∥l3, AB=7, DE=6, EF=12, 求AC的长.【分析】根据平行线分线段成比例定理得到比例式, 把已知数据代入比例式计算即可.【解答】解:∵l1∥l2∥l3,∴,即,∴BC=14,∴AC=AB+BC=7+14=21.【点评】本题考查的是平行线分线段成比例定理, 灵活运用定理、找准对应关系是解题的关键.。
专题27.43《相似》全章复习与巩固(知识讲解)【学习目标】1、了解比例的基本性质,线段的比、成比例线段;2、通过具体实例认识图形的相似,探索相似图形的性质,理解相似多边形对应角相等、对应边成比例、周长的比等于相似比、面积的比等于相似比的平方,探索并掌握相似三角形的判定方法,并能利用这些性质和判定方法解决生活中的一些实际问题;3、了解图形的位似,能够利用位似将一个图形放大或缩小,在同一直角坐标系中,感受位似变换后点的坐标的变化;4、结合相似图形性质和判定方法的探索和证明,进一步培养推理能力,发展逻辑思维能力和推理论证的表达能力,以及综合运用知识的能力,运用学过的知识解决问题的能力.【要点梳理】【知识点一】成比例线段1、定义:四条线段,,,a b c d 中,如果a 与b 的比等于c 与d 的比,即a cb d=,那么这四条线段,,,a b c d 叫做成比例线段,简称比例线段。
2、性质:(1)基本性质:如果a cb d=,那么ad bc =;反之,若ad bc =(),,,0a b c d 都不等于,那么a c b d =(2)等比性质:如果()==0a c m b d n b d n =+++≠ ,那么a c m a b d n b +++=+++ (3)合比性质:如果a c b d =,那么a b c d b d ++=,a b c d b d --=【知识点二】平行线分线段成比例1、定理:两条直线被一组平行线所截,所得的对应线段成比例2、推论:平行于三角形一边的直线与其他两边相交,截得的对应线段成比例【知识点三】相似多边形1、定义:各角分别相等,各边成比例的两个多边形叫做相似多边形。
相似多边形对应边的比叫做相似比2、性质:相似多边形的周长比等于相似比,面积比等于相似比的平方【知识点四】相似三角形1、定义:三角分别相等,三边成比例的两个三角形叫做相似三角形2、判定:(1)两角分别相等的两个三角形相似(2)两边成比例且夹角相等的两个三角形相似(3)三边成比例的两个三角形相似3、性质:(1)相似三角形的对应角相等,对应边成比例(2)相似三角形对应高的比,对应中线的比,对应角平分线的比都等于相似比(3)相似三角形的周长比等于相似比,面积比等于相似比的平方【知识点五】黄金分割点C 把线段AB 分成两条线段AC 和BC ()AC BC >,如果AC BC AB AC=,那么称线段AB 被点C 黄金分割,点C 叫做线段AB 的黄金分割点,AC 与AB 的比叫做黄金比,即:0.618:1AC AB ≈【知识点六】位似图形1、定义:一般的,如果两个相似多边形任意一组对应顶点P ,'P 所在的直线都经过同一点O ,且有'OP =()0k OP k ⋅≠,那么这样的两个多边形叫做位似多边形,点O 叫做位似中心2、性质:位似图形上任意一对对应点到位似中心的距离之比等于相似比3、画图步骤:(1)尺规作图法:①确定位似中心;②确定原图形中的关键点关于中心的对应点;③描出新图形(2)坐标法:在平面直角坐标系中,将一个多边形每个顶点的横坐标、纵坐标都乘于同一个数()0k k ≠,所对应的图形与原图形位似,位似中心是坐标原点,它们的相似比为k【典型例题】类型一、成比例线段和平行线分线段成比例1.已知三条线段a b c ,,满足1324a b c +==,且17a b c ++=.(1)求a b c ,,的值;(2)若线段d 是线段a 和b 的比例中项,求d 的值.【点拨】本题考查了比例的性质,比例线段,利用“设k 法”用k 表示出a 、b 、c 可以使计算更加简便.【变式1】已知:2:3,:3:4a b b c ==,且26a b c +-=,求,,a b c 的值【答案】4a =,6b =,8c =.【分析】根据比的性质,可得a ,b ,c 用k 表示,根据解方程,可得k 的值,即可得答案.解:∵:2:3a b =,:3:4b c =,∴设2a k =,3b k =,4c k =,∴()22346k k k ⋅+-=,整理得:36k = ,解得:2k =,∴24a k ==,36b k ==,48c k ==.【点拨】本题考查了比例的性质,利用比例的性质得出2a k =,3b k =,4c k =是解题关键.【变式2】如图所示,以长为2的定线段AB为边作正方形ABCD,取AB的中点P,连接PD,在BA的延长线上取点F,使PF PD=,以AF为边作正方形AMEF,点M在AD上.,的长;(1)求AM DM(2)点M是AD的黄金分割点吗?为什么?【点拨】此题综合考查了正方形的性质、勾股定理和黄金分割的概念.先求得线段AM,DM的长,然后求得线段AM和AD,DM和AM之间的比,根据黄金分割的概念进行判断.2.如图,已知AD∥BE∥CF,它们以此交直线l1、l2于点A、B、C和D、E、F.若25DE EF =,AC=14,(1)求AB 的长.(2)如果AD=7,CF=14,求BE 的长.【点拨】本题考查平行线分线段成比例的知识,解题的关键是掌握三条平行线截两条直线,所得的对应线段成比例.【变式1】如图,已知AD//BE//CF,它们依次交直线1l、2l于点A、B、C和点D、E、F,且AB=6,BC=8.(1)求DEDF的值;(2)当AD=5,CF=19时,求BE的长.【点拨】本题考查了平行线分线段成比例:三条平行线截两条直线,所得的对应线段成比例;熟练掌握平行线分线段成比例,通过作辅助线运用平行线分线段成比例求出BH 是解决问题的关键.【变式2】如图,在ABC ∆中,点D 是边AB 上的一点.(1)请用尺规作图法,在ABC ∆内,求作ADE ∠,使ADE B ∠=∠,DE 交AC 于E ;(不要求写作法,保留作图痕迹)(2)在(1)的条件下,若2AD DB =,求AE EC的值.【点拨】本题考查了作一个角等于已知角,平行线分线段成比例定理,熟练掌握利用尺规作一个角等于已知角的作图方法是解题的关键.类型二、相似三角形判定和性质3.如图,在ABC 中,90ACB ∠=︒,CD 是边AB 上的中线,EF 垂直平分CD ,分别交AC ,BC 于E ,F ,连接DE ,DF .(1)求证:OCE OFD ∽△△.(2)当7AE =,24BF =时,求线段EF 的长.【答案】(1)见分析(2)25EF =【分析】(1)如图(见分析),先根据线段垂直平分线的性质可得90EOC DOF ∠=∠=︒,ED EC =,FD FC =,再根据三角形全等的判定定理证出EDF ECF ≅ ,根据全等三角形的性质可得12∠=∠,从而可得421∠=∠=∠,然后根据相似三角形的判定即可得证;(2)如图(见分析),延长FD 至G ,使DG DF =,连接AG ,EG ,先根据线段垂直平分线的判定与性质可得EG EF =,再根据三角形全等的判定定理证出ADG BDF ≅△△,根据全等三角形的性质可得24AG BF ==,7B ∠=∠,然后根据平行线的判定与性质可得90EAG ∠=︒,最后在Rt AEG △中,利用勾股定理即可得.(1)证明:∵EF 垂直平分CD ,∴90EOC DOF ∠=∠=︒,ED EC =,FD FC =,在EDF 和ECF △中,ED EC FD FC EF EF =⎧⎪=⎨⎪=⎩,∴()EDF ECF SSS ≅ ,∴12∠=∠,∵90ACB ∠=︒,90EOC ∠=︒,∴233490∠+∠=∠+∠=︒,∴421∠=∠=∠,在OCE △和OFD △中,9014EOC DOF ∠=∠=︒⎧⎨∠=∠⎩,∴OCE OFD .(2)解:如图,延长FD 至G ,使DG DF =,连接AG ,EG .则ED 垂直平分FG ,【点拨】本题考查了相似三角形的判定、三角形全等的判定定理与性质、线段垂直平分线的判定与性质等知识点,较难的是题(2),构造全等三角形和直角三角形是解题关键.【变式1】如图,四边形ABCD 中,AC 平分∠DAB ,∠ADC=∠ACB=90°,E 为AB 的中点,(1)求证:AC 2=AB•AD ;(2)求证:CE ∥AD ;(3)若AD=4,AB=6,求的值.=.∴AF4【变式2】如图,在△ABC中,(1)求作:∠BAD=∠C,AD交BC于D.(用尺规作图法,保留作图痕迹,不要求写作法).(2)在(1)条件下,求证:AB2=BD•BC.【点拨】本题考查了基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了相似三角形的判定与性质.中,过点C作CD//AB,E是AC的中点,连接DE并延长,4.如图,在ABC交AB于点F,交CB的延长线于点G,连接AD,CF()1求证:四边形AFCD是平行四边形.()2若GB3=,BC6=,3BF=,求AB的长.2【变式1】已知:如图6,菱形ABCD,对角线AC、BD交于点O,BE⊥DC,垂足为E,交AC于点F.求证:(1)△ABF∽△BED;(2)求证:AC BD BE DE=.【变式2】如图,已知▱ABCD.(1)用直尺和圆规在BC边上取一点E,使AB=AE,连结AE;(保留作图痕迹,不写作法)(2)在(1)的前提下,求证:AE=CD;∠EAD=∠D;(3)若点E为BC的中点,连接BD,交AE于F,直接写出EF:FA的值.【答案】(1)见分析(2)证明见分析(3)1:2分析:(1)以点A为圆心,AB为半径作圆,该圆与BC的交点即为所求的点E;(2)根据平行四边形的对边互相平行可得AD∥BC,再根据两直线平行,内错角相等可得∠AEB=∠EAD,根据等边对等角可得∠ABE=∠AEB,即可得证;(3)由四边形ABCD是平行四边形,可证得△BEF∽△AFD即可求得EF∶FA的值.解:(1)如图所示:;(2)证明:在平行四边形ABCD中,AD∥BC,∴∠AEB=∠EAD,∵AE=AB,∴∠ABE=∠AEB,∴∠B=∠EAD,∵∠B=∠D,∴∠DAE=∠D;(3)解:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴△BEF ∽△AFD ,∴=,∵E 为BC 的中点,∴BE=BC=AD ,∴EF :FA=1:2.【点拨】此题考查了相似三角形的判定与性质与平行四边形的性质,熟练掌握平行四边形的性质是关键.5.如图,在ABC 中,点D 、点E 分别在AC 、AB 上,点P 是BD 上的一点,联结EP 并延长交AC 于点F ,且A EPB ECB ∠=∠=∠.(1)求证:BE BA BP BD ⋅=⋅;(2)若90ACB ∠=︒,求证:CP BD ⊥.【变式1】已知ADE C ∠=∠,AG 平分BAC ∠交DE 于F ,交BC 于G .(1)求证:ADF ∽ACG ;(2)连接DG ,若DG AC ∥,25AF AG =,6AD =,求CE 的长度.【点拨】本题考查了相似三角形的判定和性质、角平分线的性质、平行线的性质、等腰三角形的判定和性质,解决本题的关键是掌握以上的定理并熟练的运用.【变式2】如图,∠A=∠C=∠EDF,CF=4,CD=AD=6;(1)求AE的长.(2)求证:△ADE∽△DFE.【点拨】此题考查了相似三角形的判定和性质,掌握相似三角形的判定方法以及根据相似三角形性质列出比例式进行求解是解题的关键.类型三、相似三角形拓展与提升6.已知△ABC中,∠ACB=90°,AC=BC=4cm,点P从点A出发,沿AB方向cm的速度向终点B运动,同时动点Q从点B出发沿BC方向以每秒1cm的速度向终点C运动,设运动的时间为t秒.(1)如图①,若PQ⊥BC,求t的值;(2)如图②,将△PQC沿BC翻折至△P′QC,当t为何值时,四边形QPCP′为菱形?【点拨】此题是相似形综合题,主要考查的是菱形的性质、等腰直角三角形的性质,线段垂直平分线的性质,用方程的思想解决问题是解本题的关键.【变式1】已知,点E 、F 、G 、H 分别在正方形ABCD 的边AB 、BC 、CD 、AD 上.(1)如图1,当四边形EFGH 是正方形时,求证:AE AH AB +=;(2)如图2,已知AE AH =,CF CG =,当AE 、CF 的大小有_________关系时,四边形EFGH 是矩形;(3)如图3,AE DG =,EG 、FH 相交于点O ,:4:5OE OF =,已知正方形ABCD 的边长为16,FH 长为20,当OEH △的面积取最大值时,判断四边形EFGH 是怎样的四边形?证明你的结论.【答案】(1)见分析(2)AE CF =(3)平行四边形,证明见分析【分析】(1)利用平行四边形的性质证得BEF AHE ∠=∠,根据角角边证明AEH BFE △≌△.(2)当AE CF =,证得AEH FCG △≌△,EBF △是等腰直角三角形,∠HEF =∠EFG =90°,即可证得四边形EFGH 是矩形.(3)利用正方形的性质证得AEGD 为平行四边形,过点H 作HM BC ⊥,垂足为点M ,交EG 于点N ,由平行线分线段成比例,设4OE x =,5OF x =,HN h =,则可表示出HN ,从而把△OEH 的面积用x 的代数式表示出来,根据二次函数求出最大值,则可得OE =OG ,OF =OH ,即可证得平行四边形.解:(1)∵四边形ABCD 为正方形,∴90A B ∠=∠=︒,∴90AEH AHE ∠+∠=°.∵四边形EFGH 为正方形,∴EH EF =,90HEF ∠=︒,∴90AEH BEF ∠+∠=︒,∴BEF AHE ∠=∠.在AEH △和BFE △中,∵90A B ∠=∠=︒,AHE BEF ∠=∠,EH FE =,∴AEH BFE △≌△.∴AH BE =.∴AE AH AE BE AB +=+=;(2)AE CF =;证明如下:∵四边形ABCD 为正方形,∴90A B ∠=∠=︒,AB =BC =AD =CD ,∵AE =AH ,CF =CG ,AE =CF ,∴AH =CG ,∴AEH FCG △≌△,∴EH =FG .∵AE =CF ,∴AB -AE =BC -CF ,即BE =BF ,∴EBF △是等腰直角三角形,∴∠BEF =∠BFE =45°,∵AE =AH ,CF =CG ,∴∠AEH =∠CFG =45°,∴∠HEF =∠EFG =90°,∴EH ∥FG ,∴四边形EFGH 是矩形.(3)∵四边形ABCD 为正方形,∴AB CD ∥.【点拨】此题考查了正方形的性质,矩形的判定和平行四边形的性质与判定,平行线分线段成比例定理,全等三角形的判定与性质,等腰三角形的性质,二次函数的最值,有一定的综合性,解题的关键是熟悉这些知识并灵活运用.【变式2】已知点E在正方形ABCD的对角线AC上,正方形AFEG与正方形ABCD有公共点A.(1)如图1,当点G 在AD 上,F 在AB(2)将正方形AFEG 绕A 点逆时针方向旋转9(0)0αα︒<<︒,如图2,求:CE DG 的值为多少;(3)AB =AG AD =,将正方形AFEG 绕A 逆时针方向旋转(0360)αα︒<<︒,当C ,G ,E 三点共线时,请直接写出DG 的长度.正方形AFEG 绕A 点逆时针方向旋转DAG CAE∴∠=∠12AG AD AE AC == GAD EAC ∴ ∽ 82AB =,22AG =82AD AB ∴==,AG =,,G E C 三点共线,Rt AGC △中,GC AC =由(2)知△ADG∽△【点拨】本题考查了平行线分线段成比例,相似三角形的性质与判定,正方形的性质,勾股定理,旋转的性质,综合运用以上知识是解题的关键.类型三、位似7.如图,在6×8的网格图中,每个小正方形边长均为1,点O和△ABC的顶点均为小正方形的顶点.⑴以O为位似中心,在网格图中作△A′B′C′,使△A′B′C′和△ABC位似,且位似比为1:2⑵连接⑴中的AA′,求四边形AA′C′C的周长.(结果保留根号)【点拨】此题主要考查了位似图形的画法以及勾股定理等知识,利用位似比得出对应点位置是解题关键.【变式一】如图,在平面直角坐标系中,已知△ABC三个顶点的坐标分别为A(2,4),B(1,1),C(5,2).(1)以点B为位似中心,在网格内画出△ABC的位似△A1BC1,使得△A1BC1与△ABC的位似比为2;(2)直接写出点A1的坐标和△A1BC1的面积.(2)如图所示1A :()3,7;11Δ116846222A BC S =⨯-⨯⨯-⨯【点拨】此题考查了位似变换和三角形面积求法,【变式二】如图,ABC 在平面直角坐标系内,三个顶点的坐标分别为()1,3A ,()2,1B ,()5,2C (正方形网格中,每个小正方形的边长为1),以点O 为位似中心,把ABC 按相似比2:1放大,得到对应A B C '''V .(1)请在第一象限内画出A B C '''V ;(2)若以点A 、B 、C 、D 为顶点的四边形是平行四边形,请直接写出满足条件的点D 的坐标.【答案】(1)见分析(2)()14,4D ;()26,0D ;()32,2D -【分析】(1)根据点O 为位似中心,()1,3A ,()2,1B ,()5,2C ,把ABC 按相似比2:1放大,得到对应A B C '''V ,求出点'A ,'B ,'C 的坐标,在网格中描点顺次连线即得;C(2)设D(x,y),∵平行四边形的对角线互相平分,且综上,()14,4D ;()26,0D ;()32,2D -.【点拨】本题主要考查了位似三角形,平行四边形,解决问题的关键是熟练掌握位似三角形的定义及画法,平行四边形对角线的性质和线段中点坐标公式.。
备战中考数学(北师大版)专项练习图形的相似(含解析)一、单选题1.如图,点G、F分别是△BCD的边BC、CD上的点,BD的延长线与GF的延长线相交于点A ,DE∥BC交GA于点E,则下列结论错误的是()A.B.C. D.2.如图,△ABC中,D,E两点分别在AB,AC边上,且DE∥BC,假如,AC=6,那么AE的长为()A.3B.4C.9D.123.一只蚂蚁沿直角三角形的边长爬行一周需2秒,假如将直角三角形的边长扩大1倍,那么这只蚂蚁再沿边长爬行一周需()A.6秒B.5秒C.4秒D.3秒4.如图,△ABC中,∠BAC=90°,AD⊥BC于D,若AB=2,BC=4,则CD的长是()A.1B.4C.3D.25.假如两个相似三角形的周长比为1:4,那么这两个三角形的相似比为()A.1:2B.1:4C.1:8D.1:166.如图,已知在△ABC中,点D、E、F分别是边AB、AC、BC上的点,DE=BF,EF=BD,且AD:DB=3:5,那么CF:CB等于()A.3:5B.3:8C.5:8D.2:57.如图,在△ABC中,点D、E分别在边AB、AC上,且DE不行于B C,则下列条件中不能判定△ABC∽△ADE的是()A.∠AED=∠BB.∠ADE=∠CC.=D.=8.一张等腰三角形纸片,底边长15cm,底边上的高长22.5cm.现沿底边依次从下往上裁剪宽度均为3cm的矩形纸条,如图所示.已知剪得的纸条中有一张是正方形,则这张正方形纸条是()A.第4张B.第5张C.第6张D.第7张二、填空题9.在平面直角坐标系中,点A(2,3),B(5,﹣2),以原点O为位似中心,位似比为1:2,把△ABO缩小,则点B的对应点B′的坐标是___ _____10.如图,△ABC的内接正方形EFGH中,EH∥BC,其中BC=4,高A D=6,则正方形的边长为________.11.位似图形的相似比也叫做________12.如图,矩形中,点是边的中点,交对角线于点,则与的面积比等于________.13.如图,以点O为位似中心,将△ABC放大得到△DEF,若AD=OA,则△ABC与△DEF的面积之比为________14.如图,Rt△ABC中,∠A=90°,AB=6,AC=8,点E为边AB上一点,AE=2,点F为线段AB上一点,且BF=3,过点E作AC的平行线交B C于点D,作直线FD交AC于点G,则FG=________.15.如图,已知图中的每个小方格差不多上边长为1的小正方形,每个小正方形的顶点称为格点.若△ABC与△A1B1C1是位似图形,且顶点都在格点上,则位似中心的坐标是________.16.如图是小明在建筑物AB上用激光仪测量另一建筑物CD高度的示意图,在地面点P处水平放置一平面镜,一束激光从点A射出经平面镜上的点P反射后刚好射到建筑物CD的顶端C处,已知AB⊥BD,CD⊥BD,且测得AB=15米,BP=20米,PD=32米,B、P、D在一条直线上,那么建筑物CD的高度是________米.三、解答题17.如图,在正方形ABCD中,E为边AD的中点,点F在边CD上,且CF=3FD,△ABE与△DEF相似吗?什么缘故?18.如图,△ABC中,点D在边AB上,满足∠ACD=∠ABC,若AC=,AD=1,求DB的长.四、综合题19.小明利用灯光下自己的影子长度来测量路灯的高度.如图,CD和E F是两等高的路灯,相距27m,身高1.5m的小明(AB)站在两路灯之间(D、B、F共线),被两路灯同时照耀留在地面的影长BQ=4m,BP=5m.(1)小明距离路灯多远?(2)求路灯高度.20.如图,在△ABC中,∠C=90°,AC=4,BC=3,点P从点A动身,以每秒4个单位长度的速度沿折线AC-CB运动,到点B停止.当点P不与△ABC的顶点重合时,过点P作其所在直角边的垂线交AB 于点Q,再以PQ为斜边作等腰直角三角形△PQR,且点R与△ABC的另一条直角边始终在PQ同侧,设△PQR与△ABC重叠部分图形的面积为S(平方单位).点P的运动时刻为t(秒).(1)求点P在AC边上时PQ的长,(用含t的代数式表示);(2)求点R到AC、PQ所在直线的距离相等时t的取值范畴;(3)当点P在AC边上运动时,求S与t之间的函数关系式;(4)直截了当写出点R落在△ABC高线上时t的值.21.如图,在平面直角坐标系xOy中,△ABC三个顶点坐标分别为A(1,2),B(7,2),C(5,6).(1)请以图中的格点为顶点画出一个△A1B1C ,使得△A1B1C ∽△ABC ,且△A1B1C与△ABC的周长比为1:2;(每个小正方形的顶点为格点)(2)依照你所画的图形,直截了当写出顶点A1和B1的坐标.22.如图,梯形ABCD中,AB∥DC ,∠B=90°,E为BC上一点,且AE⊥ED .若BC=12,DC=7,BE:EC=1:2,(1)求AB的长.(2)求△AED的面积答案解析部分一、单选题1.【答案】C【考点】平行线分线段成比例【解析】解答:∵DE∥BC交GA于点E ,∴,,,A,B,D正确,故选C.分析:利用平行线分线段成比例定理即可得到答案.2.【答案】B【考点】平行线分线段成比例【解析】【解答】解:∵DE∥BC,∴,又AC=6,∴AE=4,故选:B.【分析】依照平行线分线段成比例定理,得到比例式,把已知数据代入运算即可.3.【答案】C【考点】相似三角形的应用【解析】【分析】本题依照放大后的三角形与三角形相似,故可依照相似三角形的性质求解,两个相似三角形对应边之比的比值叫做相似比.【解答】直角三角形各边的长度扩大一倍,周长扩大1倍,故爬行时刻扩大一倍.故只蚂蚁再沿边长爬行一周需4秒.故选C.【点评】熟练运用相似三角形的性质.4.【答案】C【考点】相似三角形的判定与性质【解析】【分析】先由∠BAC=90°,AD⊥BC,∠B=∠B证得△AB D∽△CBA,再依照相似三角形的性质求得BD的长,即可求得结果。
第二十五讲图形的对称、平移、旋转与位似命题点1 轴对称图形与中心对称图形类型一轴对称图形与中心对称图形的识别1.(2021•黄石)下列几何图形中,是轴对称图形但不是中心对称图形的是()A.梯形B.等边三角形C.平行四边形D.矩形【答案】B【解答】解:A.梯形不一定是轴对称图形,不是中心对称图形,故此选项不合题意;B.等边三角形是轴对称图形,不是中心对称图形,故此选项符合题意;C.平行四边形不是轴对称图形,是中心对称图形,故此选项不合题意;D.矩形既是轴对称图形,又是中心对称图形,故此选项不合题意;故选:B.2.(2021•天津)在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是()A.B.C.D.【答案】A【解答】解:A.是轴对称图形,故此选项符合题意;B.不是轴对称图形,故此选项不合题意;C.不是轴对称图形,故此选项不合题意;D.不是轴对称图形,故此选项不合题意;故选:A.3.(2021•山西)为推动世界冰雪运动的发展,我国将于2022年举办北京冬奥会,在此之前进行了冬奥会会标的征集活动,以下是部分参选作品,其文字上方的图案既是轴对称图形又是中心对称图形的是()A.B.C.D.【答案】B【解答】解:A.不是轴对称图形,也不是中心对称图形,故此选项不合题意;B.既是轴对称图形又是中心对称图形,故此选项符合题意;C.是轴对称图形,不是中心对称图形,故此选项不合题意;D.不是轴对称图形,也不是中心对称图形,故此选项不合题意.故选:B.4.(2021•枣庄)将如图的七巧板的其中几块,拼成一个多边形,为轴对称图形的是()A.B.C.D.【答案】D【解答】解:A.不是轴对称图形,故本选项不合题意;B.不是轴对称图形,故本选项不合题意;C.不是轴对称图形,故本选项不合题意;D.是轴对称图形,故本选项符合题意;故选:D.5.(2021•济宁)一个圆柱体如图所示,下面关于它的左视图的说法其中正确的是()A.既是轴对称图形,又是中心对称图形B.既不是轴对称图形,又不是中心对称图形C.是轴对称图形,但不是中心对称图形D.是中心对称图形,但不是轴对称图形【答案】A【解答】解:圆柱体的左视图是长方形,而长方形既是轴对称图形,也是中心对称图形,故选:A.6.(2021•广安)下列几何体的主视图既是轴对称图形又是中心对称图形的是()A.B.C.D.【答案】B【解答】解:A、主视图是等腰三角形,是轴对称图形,不是中心对称图形,故不合题意;B、主视图是是矩形,是轴对称图形,也是中心对称图形,故符合题意;C、主视图是等腰梯形,是轴对称图形,不是中心对称图形,故不合题意;D、主视图是等腰三角形,是轴对称图形,不是中心对称图形,故不合题意;故选:B.7.(2021•自贡)下列图形中,是轴对称图形且对称轴条数最多的是()A.B.C.D.【答案】D【解答】解:A.是轴对称图形,共有1条对称轴;B.不是轴对称图形,没有对称轴;C.不是轴对称图形,没有对称轴;D.是轴对称图形,共有2条对称轴.故选:D.类型二与轴对称有关的判断8.(2021•嘉兴)将一张三角形纸片按如图步骤①至④折叠两次得图⑤,然后剪出图⑤中的阴影部分,则阴影部分展开铺平后的图形是()A.等腰三角形B.直角三角形C.矩形D.菱形【答案】D【解答】解:如图,由题意可知,剪下的图形是四边形BACD,由折叠可知CA=AB,∴△ABC是等腰三角形,又△ABC和△BCD关于直线BC对称,∴四边形BACD是菱形,故选:D.9.(2021•连云港)如图,将矩形纸片ABCD沿EF折叠后,点D、C分别落在点D1、C1的位置,ED1的延长线交BC于点G,若∠EFG=64°,则∠EGB等于()A.128°B.130°C.132°D.136°【答案】A【解答】解:如图,在矩形ABCD中,AD∥BC,∴∠DEF=∠EFG=64°,∠EGB=∠DEG,由折叠可知∠GEF=∠DEF=64°,∴∠DEG=128°,∴∠EGB=∠DEG=128°,故选:A.10.(2021•河北)如图,直线l,m相交于点O.P为这两直线外一点,且OP=2.8.若点P 关于直线l,m的对称点分别是点P1,P2,则P1,P2之间的距离可能是()A.0B.5C.6D.7【答案】B【解答】解:连接OP1,OP2,P1P2,∵点P关于直线l,m的对称点分别是点P1,P2,∴OP1=OP=2.8,OP=OP2=2.8,OP1+OP2>P1P2,0<P1P2<5.6,故选:B.11.(2021•台州)如图,将长、宽分别为12cm,3cm的长方形纸片分别沿AB,AC折叠,点M,N恰好重合于点P.若∠α=60°,则折叠后的图案(阴影部分)面积为()A.(36)cm2B.(36)cm2C.24cm2D.36cm2【答案】A【解答】解:根据翻折可知,∠MAB=∠BAP,∠NAC=∠P AC,∴∠BAC=∠P AB+∠P AC=(∠MAB+∠BAP+∠NAC+∠P AC)=180°=90°,∵∠α=60°,∴∠MAB=180°﹣∠BAC﹣∠α=180°﹣90°﹣60°=30°,∴AB==6(cm),AC==2(cm),∴阴影部分的面积=S长方形﹣S△ABC=12×3﹣6×=(36﹣6)(cm2),故选:A.12.(2021•衡阳)如图,矩形纸片ABCD,AB=4,BC=8,点M、N分别在矩形的边AD、BC上,将矩形纸片沿直线MN折叠,使点C落在矩形的边AD上,记为点P,点D落在G处,连接PC,交MN于点Q,连接CM.下列结论:①四边形CMPN是菱形;②点P 与点A重合时,MN=5;③△PQM的面积S的取值范围是4≤S≤5.其中所有正确结论的序号是()A.①②③B.①②C.①③D.②③【答案】C【解答】解:∵PM∥CN,∴∠PMN=∠MNC,∵∠MNC=∠PNM,∴∠PMN=∠PNM,∴PM=PN,∵NC=NP,∴PM=CN,∵MP∥CN,∴四边形CNPM是平行四边形,∵CN=NP,∴四边形CNPM是菱形,故①正确;如图1,当点P与A重合时,设BN=x,则AN=NC=8﹣x,在Rt△ABN中,AB²+BN²=AN²,即4²+x²=(8﹣x)²,解得x=3,∴CN=8﹣3=5,∵AB=4,BC=8,∴AC==4,∴CQ=AC=2,∴QN==,∴MN=2QN=2,故②不正确;由题知,当MN过点D时,CN最短,如图2,四边形CMPN的面积最小,此时S=S菱形CMPN=×4×4=4,当P点与A点重合时,CN最长,如图1,四边形CMPN的面积最大,此时S=×5×4=5,∴4≤S≤5正确,故选:C.13.(2021•海南)如图,在矩形ABCD中,AB=6,AD=8,将此矩形折叠,使点C与点A 重合,点D落在点D′处,折痕为EF,则AD′的长为,DD′的长为.【答案】6,【解答】解:∵四边形ABCD是矩形,∴CD=AB=6,∵AD′=CD,∴AD′=6;连接AC,∵AB=6,BC=AD=8,∠ABC=90°,∴AC===10,∵∠BAF=∠D′AE=90°,∴∠BAE=∠D′AF,在△BAE和△D′AF中,∴△BAE≌△D′AF(ASA),∴D′F=BE,∠AEB=∠AFD′,∴∠AEC=∠D′FD,由题意知:AE=EC;设BE=x,则AE=EC=8﹣x,在Rt△ABE中,∠B=90°,由勾股定理得:(8﹣x)2=62+x2,解得:x=,∴BE=,AE=8﹣=,∴=,∴=,∵∠AD′F=∠D′AE=90°,∴D′F∥AE,∵DF∥EC,∴△DD′F∽△CAE,∴==,∴DD′=×10=,故答案为6,.14.(2021•江西)如图,将▱ABCD沿对角线AC翻折,点B落在点E处,CE交AD于点F,若∠B=80°,∠ACE=2∠ECD,FC=a,FD=b,则▱ABCD的周长为.【答案】4a+2b【解答】解:∵∠B=80°,四边形ABCD为平行四边形.∴∠D=80°.由折叠可知∠ACB=∠ACE,又AD∥BC,∴∠DAC=∠ACB,∴∠ACE=∠DAC,∴△AFC为等腰三角形.∴AF=FC=a.设∠ECD=x,则∠ACE=2x,∴∠DAC=2x,在△ADC中,由三角形内角和定理可知,2x+2x+x+80°=180°,解得:x=20°.∴由三角形外角定理可得∠DFC=4x=80°,故△DFC为等腰三角形.∴DC=FC=a.∴AD=AF+FD=a+b,故平行四边形ABCD的周长为2(DC+AD)=2(a+a+b)=4a+2b.故答案为:4a+2b.15.(2021•重庆)如图,三角形纸片ABC中,点D,E,F分别在边AB,AC,BC上,BF =4,CF=6,将这张纸片沿直线DE翻折,点A与点F重合.若DE∥BC,AF=EF,则四边形ADFE的面积为.【答案】5【解答】解:∵纸片沿直线DE翻折,点A与点F重合,∴DE垂直平分AF.∴AD=DF,AE=EF.∵DE∥BC,∴DE为△ABC的中位线.∴DE=BC=(BF+CF)=×(4+6)=5.∵AF=EF,∴△AEF为等边三角形.∴∠F AC=60°.在Rt△AFC中,∵tan∠F AC=,∴AF==2.∴四边形ADFE的面积为:DE×AF=×5×2=5.故答案为:5.16.(2021•河南)小华用一张直角三角形纸片玩折纸游戏,如图1,在Rt△ABC中,∠ACB =90°,∠B=30°,AC=1.第一步,在AB边上找一点D,将纸片沿CD折叠,点A 落在A'处,如图2;第二步,将纸片沿CA'折叠,点D落在D′处,如图3.当点D′恰好落在原直角三角形纸片的边上时,线段A′D′的长为.【答案】或2﹣【解答】解:①点D′恰好落在直角三角形纸片的AB边上时,设A′C交AB边于点E,如图,由题意:△ADC≌△A′DC≌△A′D′C,A′C垂直平分线段DD′.则∠D′A′C=∠DA′C=∠A=60°,A′C=AC=1.∵∠ACB=90°,∠B=30°,AC=1,∴BC=AC•tan A=1×tan60°=.AB=2AC=2,∵,∴CE=.∴A′E=A′C﹣CE=1﹣.在Rt△A′D′E中,∵cos∠D′A′E=,∴,∴A′D′=2A′E=2﹣.②点D′恰好落在直角三角形纸片的BC边上时,如图,由题意:△ADC≌△A′DC≌△A′D′C,∠ACD=∠A′CD=∠A′CD′=∠ACB =30°;则∠D′A′C=∠DA′C=∠A=60°,A′C=AC=1.∵∠D′A′C=60°,∠A′CD′=30°,∴∠A′D′C=90°,∴A′D′=′C=.综上,线段A′D′的长为:或2﹣.故答案为:或2﹣.17.(2020•南通)矩形ABCD中,AB=8,AD=12.将矩形折叠,使点A落在点P处,折痕为DE.(1)如图①,若点P恰好在边BC上,连接AP,求的值;(2)如图②,若E是AB的中点,EP的延长线交BC于点F,求BF的长.【答案】(1)==.(2)BF=3【解答】解:(1)如图①中,取DE的中点M,连接PM.∵四边形ABCD是矩形,∴∠BAD=∠C=90°,由翻折可知,AO=OP,AP⊥DE,∠2=∠3,∠DAE=∠DPE=90°,在Rt△EPD中,∵EM=MD,∴PM=EM=DM,∴∠3=∠MPD,∴∠1=∠3+∠MPD=2∠3,∵∠ADP=2∠3,∴∠1=∠ADP,∵AD∥BC,∴∠ADP=∠DPC,∴∠1=∠DPC,∵∠MOP=∠C=90°,∴△POM∽△DCP,∴===,∴==.解法二:证明△ABP和△DAE相似,==.(2)如图②中,过点P作GH∥BC交AB于G,交CD于H.则四边形AGHD是矩形,设EG=x,则BG=4﹣x∵∠A=∠EPD=90°,∠EGP=∠DHP=90°,∴∠EPG+∠DPH=90°,∠DPH+∠PDH=90°,∴∠EPG=∠PDH,∴△EGP∽△PHD,∴====,∴PH=3EG=3x,DH=AG=4+x,在Rt△PHD中,∵PH2+DH2=PD2,∴(3x)2+(4+x)2=122,解得x=(负值已经舍弃),∴BG=4﹣=,在Rt△EGP中,GP==,∵GH∥BC,∴△EGP∽△EBF,∴=,∴=,∴BF=3.18.(2021•青海)在我们学习过的数学教科书中,有一个数学活动,若身旁没有量角器或三角尺,又需要作60°,30°,15°等大小的角,可以采用如下方法:操作感知:第一步:对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展开(如图1 ).第二步:再一次折叠纸片,使点A落在EF上,并使折痕经过点B,得到折痕BM,同时得到线段BN(如图2).猜想论证:(1)若延长MN交BC于点P,如图3所示,试判定△BMP的形状,并证明你的结论.拓展探究:(2)在图3中,若AB=a,BC=b,当a,b满足什么关系时,才能在矩形纸片ABCD 中剪出符合(1)中结论的三角形纸片BMP?【答案】(1)△BMP是等边三角(2)b≥a【解答】解:(1)△BMP是等边三角形,理由如下:如图3,连接AN,由折叠的性质可得AE=BE,EF⊥AB,AB=BN,∠ABM=∠NBM,∠BAM=∠BNM=90°,∴AN=BN,∴AN=BN=AB,∴△ABN是等边三角形,∴∠ABN=60°,∴∠ABM=∠NBM=30°=∠PBN,∴∠BMN=∠BPM=60°,∴△BMP是等边三角形;(2)∵AB=a,∠ABM=30°,∴BM==a,∵△BMP是等边三角形,∴BP=BM=a,∵在矩形纸片ABCD中剪出符合(1)中结论的三角形纸片BMP,∴BC≥BP,∴b≥a.命题点3 图形的平移及其相关计算19.(2021•长春)如图,在平面直角坐标系中,等腰直角三角形AOB的斜边OA在y轴上,OA=2,点B在第一象限.标记点B的位置后,将△AOB沿x轴正方向平移至△A1O1B1的位置,使A1O1经过点B,再标记点B1的位置,继续平移至△A2O2B2的位置,使A2O2经过点B1,此时点B2的坐标为.【答案】(3,1)【解答】解:如图所示,过点B作BP⊥y轴于点P,∵△ABO是等腰直角三角形,OA=2,∴AP=OP=1,∠AOB=45°,∴△BPO是等腰直角三角形,∴BP=PO=1,由题意知点B2的坐标为(3,1),故答案为:(3,1).20.(2021•金华)如图,菱形ABCD的边长为6cm,∠BAD=60°,将该菱形沿AC方向平移2cm得到四边形A′B′C′D′,A′D′交CD于点E,则点E到AC的距离为cm.【答案】2【解答】解:如图,连接BD,过点E作EF⊥AC于点F,∵四边形ABCD是菱形,∴AD=AB,BD⊥AC,∵∠BAD=60°,∴三角形ABD是等边三角形,∵菱形ABCD的边长为6cm,∴AD=AB=BD=6cm,∴AG=GC=3(cm),∴AC=6(cm),∵AA′=2(cm),∴A′C=4(cm),∵AD∥A′E,∴=,∴=,∴A′E=4(cm),∵∠EA′F=∠DAC=DAB=30°,∴EF=A′E=2(cm).故答案为:2.命题点4 图形的旋转及其相关计算21.(2021•苏州)如图,在方格纸中,将Rt△AOB绕点B按顺时针方向旋转90°后得到Rt△A′O′B,则下列四个图形中正确的是()A.B.C.D.【答案】B【解答】解:A选项是原图形的对称图形,故A不正确;B选项是Rt△AOB绕点B按顺时针方向旋转90°后得到Rt△A′O′B,故B正确;C选项旋转后的对应点错误,即形状发生了改变,故C不正确;D选项是按逆时针方向旋转90°,故D不正确;故选:B.22.(2021•邵阳)如图,在△AOB中,AO=1,BO=AB=.将△AOB绕点O逆时针方向旋转90°,得到△A′OB′,连接AA′.则线段AA′的长为()A.1B.C.D.【答案】B【解答】解:由旋转性质可知,OA=OA'=1,∠AOA'=90°,则△AOA'为等腰直角三角形,∴AA'===.故选:B.23.(2021•河南)如图,▱OABC的顶点O(0,0),A(1,2),点C在x轴的正半轴上,延长BA交y轴于点D.将△ODA绕点O顺时针旋转得到△OD′A′,当点D的对应点D′落在OA上时,D′A′的延长线恰好经过点C,则点C的坐标为()A.(2,0)B.(2,0)C.(2+1,0)D.(2+1,0)【答案】B【解答】解:延长A′D′交y轴于点E,延长D′A′,由题意D′A′的延长线经过点C,如图,∵A(1,2),∴AD=1,OD=2,∴OA=.由题意:△OA′D′≌△OAD,∴A′D′=AD=1,OA′=OA=,OD′=OD=2,∠A′D′O=∠ADO=90°,∠A′OD′=∠DOD′.则OD′⊥A′E,OA平分∠A′OE,∴△A′OE为等腰三角形.∴OE=OA′=,ED′=A′D′=1.∵EO⊥OC,OD′⊥EC,∴△OED′∽△CEO.∴.∴.∴OC=2.∴C(2,0).故选:B.24.(2021•天津)如图,在△ABC中,∠BAC=120°,将△ABC绕点C逆时针旋转得到△DEC,点A,B的对应点分别为D,E,连接AD.当点A,D,E在同一条直线上时,下列结论一定正确的是()A.∠ABC=∠ADC B.CB=CD C.DE+DC=BC D.AB∥CD【答案】D【解答】解:由旋转的性质得出CD=CA,∠EDC=∠BAC=120°,∵点A,D,E在同一条直线上,∴∠ADC=60°,∴△ADC为等边三角形,∴∠DAC=60°,∴∠BAD=60°=∠ADC,∴AB∥CD,故选:D.25.(2021•吉林)如图,在平面直角坐标系中,点A的坐标为(0,3),点B的坐标为(4,0),连接AB,若将△ABO绕点B顺时针旋转90°,得到△A′BO′,则点A′的坐标为.【答案】(7,4)【解答】解:作A'C⊥x轴于点C,由旋转可得∠O'=90°,O'B⊥x轴,∴四边形O'BCA'为矩形,∴BC=A'O'=OA=3,A'C=O'B=OB=4,∴点A'坐标为(7,4).故答案为:(7,4).26.(2021•上海)定义:在平面内,一个点到图形的距离是这个点到这个图上所有点的最短距离,在平面内有一个正方形,边长为2,中心为O,在正方形外有一点P,OP=2,当正方形绕着点O旋转时,则点P到正方形的最短距离d的取值范围为.【答案】2﹣≤d≤1【解答】解:如图:设AB的中点是E,OP过点E时,点O与边AB上所有点的连线中,OE最小,此时d=PE最大,OP过顶点A时,点O与边AB上所有点的连线中,OA最大,此时d=P A最小,如图①:∵正方形ABCD边长为2,O为正方形中心,∴AE=1,∠OAE=45°,OE⊥AB,∴OE=1,∵OP=2,∴d=PE=1;如图②:∵正方形ABCD边长为2,O为正方形中心,∴AE=1,∠OAE=45°,OE⊥AB,∴OA=,∵OP=2,∴d=P A=2﹣;∴d的取值范围为2﹣≤d≤1.故答案为:2﹣≤d≤1.27.(2021•南京)如图,将▱ABCD绕点A逆时针旋转到▱AB′C′D′的位置,使点B′落在BC上,B′C′与CD交于点E.若AB=3,BC=4,BB′=1,则CE的长为.【答案】【解答】解:法一、如图,过点A作AM⊥BC于点M,过点B作BN⊥AB′于点N,过点E作EG⊥BC,交BC的延长线于点G.由旋转可知,AB=AB′=3,∠ABB′=∠AB′C′,∴∠ABB′=∠AB′B=∠AB′C′,∵BB′=1,AM⊥BB′,∴BM=B′M=,∴AM==,∵S△ABB′==,∴××1=•BN×3,则BN=,∴AN===,∵AB∥DC,∴∠ECG=∠ABC,∵∠AMB=∠EGC=90°,∴△AMB∽△EGC,∴===,设CG=a,则EG=a,∵∠ABB′+∠AB′B+∠BAB′=180°,∠AB′B+∠AB′C′+∠C′B′C=180°,又∵∠ABB′=∠AB′B=∠AB′C′,∴∠BAB′=∠C′B′C,∵∠ANB=∠EGC=90°,∴△ANB∽△B′GE,∴===,∵BC=4,BB′=1,∴B′C=3,B′G=3+a,∴=,解得a=.∴CG=,EG=,∴EC===.故答案为:.法二、如图,连接DD',由旋转可知,∠BAB′=∠DAD′,AB′=AB=3,AD′=AD=4,∴△BAB′∽△DAD′,∴AB:BB′=AD:DD′=3:1,∠AD′D=∠AB′B=∠B,∴DD′=,又∵∠AD′C′=∠AB′C′=∠B,∠AD′D=∠B=∠AB′B,∴∠AD′C′=∠AD′D,即点D′,D,C′在同一条直线上,∴DC′=,又∠C′=∠ECB′,∠DEC′=∠B′EC,∴△CEB′∽△C'ED,∴B′E:DE=CE:C′E=B′C:DC′,即B′E:DE=CE:C′E=3:,设CE=x,B'E=y,∴x:(4﹣y)=y:(3﹣x)=3:,∴x=.故答案为:.法三、构造相似,如图,延长B′C到点G,使B′G=B′E,连接EG,∴∠B′EG=∠B′GE,由旋转可知,AB=AB′,∴∠B=∠AB′B=∠AB′C′,∴∠BAB′=∠EB′G,∴∠B=∠G,又AB∥CD,∴∠ECG=∠B=∠G,∴△ABB′∽△B′EG∽△ECG,∴,设CG=m,∴EC=3m,∴B′G=3+m,∴,解得m=,∴3m=.故答案为:.解法四:如图,过点C作CF∥C′D′,交B′C′于点F,∵AB=AB′,∴∠B=∠AB′B,由∵∠AB′C′=∠B,由三角形内角和可知,∠FB′C=∠BAB′,∵AB′∥FC,∴∠B′CF=∠AB′B,由∵AB=3,BB′=1,BC=4,∴AB=B′C,∴△ABB′≌△B′CF,∴FC=B′B=1,由旋转可知,△ABB′∽△ADD′,∴,∴DD′=∴C′D=,又由CF∥C′D,∴△C′DE∽△FCE,∴=,∴=,∴,∴EC=.故答案为:.28.(2021•新疆)如图,已知正方形ABCD边长为1,E为AB边上一点,以点D为中心,将△DAE按逆时针方向旋转得△DCF,连接EF,分别交BD,CD于点M,N.若,则sin∠EDM=.【答案】【解答】解:如图,过点E作EG⊥BD于点G,设AE=2x,则DN=5x,由旋转性质得:CF=AE=2x,∠DCF=∠A=90°,∵四边形ABCD是正方形,∴∠DCB=90°,∠ABC=90°,∠ABD=45°,∴∠DCB+∠DCF=180°,∠DCB=∠ABC,∴点B,C,F在同一条直线上,∵∠DCB=∠ABC,∠NFC=∠EFB,∴△FNC∽△FEB,∴,∴,解得:x1=﹣1(舍去),x2=,∴AE=2×=,∴ED===,EB=AB﹣AE=1﹣=,在Rt△EBG中,EG=BE•sin45°=×=,∴sin∠EDM===,故答案为:.29.(2021•衡阳)如图,点E为正方形ABCD外一点,∠AEB=90°,将Rt△ABE绕A点逆时针方向旋转90°得到△ADF,DF的延长线交BE于H点.(1)试判定四边形AFHE的形状,并说明理由;(2)已知BH=7,BC=13,求DH的长.【答案】(1)矩形AFHE是正方(2)DH=12+5=17【解答】解:(1)四边形AFHE是正方形,理由如下:∵Rt△ABE绕A点逆时针方向旋转90°得到△ADF,∴Rt△ABE≌Rt△ADF,∴∠AEB=∠AFD=90°,∴∠AFH=90°,∵Rt△ABE≌Rt△ADF,∴∠DAF=∠BAE,又∵∠DAF+∠F AB=90°,∴∠BAE+∠F AB=90°,∴∠F AE=90°,在四边形AFHE中,∠F AE=90°,∠AEB=90°,∠AFH=90°,∴四边形AFHE是矩形,又∵AE=AF,∴矩形AFHE是正方形;(2)设AE=x.则由(1)以及题意可知:AE=EH=FH=AF=x,BH=7,BC=AB=13,在Rt△AEB中,AB2=AE2+BE2,即132=x2+(x+7)2,解得:x=5,∴BE=BH+EH=5+7=12,∴DF=BE=12,又∵DH=DF+FH,∴DH=12+5=17.命题点5 图形的位似及其相关计算30.(2021•东营)如图,△ABC中,A、B两个顶点在x轴的上方,点C的坐标是(1,0),以点C为位似中心,在x轴的下方作△ABC的位似图形△A'B'C,并把△ABC的边长放大到原来的2倍,设点B的横坐标是a,则点B的对应点B′的横坐标是()A.﹣2a+3B.﹣2a+1C.﹣2a+2D.﹣2a﹣2【答案】A【解答】解:设点B′的横坐标为x,则B、C间的水平距离为a﹣1,B′、C间的水平距离为﹣x+1,∵△ABC放大到原来的2倍得到△A′B′C,∴2(a﹣1)=﹣x+1,解得:x=﹣2a+3,故选:A.31.(2021•重庆)如图,△ABC与△DEF位似,点O是它们的位似中心,其中OE=2OB,则△ABC与△DEF的周长之比是()A.1:2B.1:4C.1:3D.1:9【答案】A【解答】解:∵△ABC与△DEF位似,∴△ABC∽△DEF,BC∥EF,∴△OBC∽△OEF,∴==,即△ABC与△DEF的相似比为1:2,∴△ABC与△DEF的周长之比为1:2,故选:A.命题点6 网络作图及其相关计算32.(2021秋•牧野区校级期中)如图,在每个小正方形的边长为1个单位的网格中,△ABC 的顶点均在格点(网格线的交点)上.(1)将△ABC向右平移5个单位得到△A1B1C1,画出△A1B1C1;(2)将(1)中的△A1B1C1绕点C1逆时针旋转90°得到△A2B2C1,画出△A2B2C1;(3)连接A1B2,则A1B2=.【答案】(1)如图(2)A1B2==3(3)3.【解答】解:(1)如图,△A1B1C1即为所求;(2)如图,△A2B2C1即为所求;(3)连接A1B2,A1B2==3,故答案为:3.33.(2021•安徽)如图,在每个小正方形的边长为1个单位的网格中,△ABC的顶点均在格点(网格线的交点)上.(1)将△ABC向右平移5个单位得到△A1B1C1,画出△A1B1C1;(2)将(1)中的△A1B1C1绕点C1逆时针旋转90°得到△A2B2C1,画出△A2B2C1.【答案】(1)略(2)略【解答】解:(1)如图,△A1B1C1即为所求作.(2)如图,△A2B2C1即为所求作.34.(2021•绥化)如图所示,在网格中,每个小正方形的边长均为1个单位长度,把小正方形的顶点叫做格点,O为平面直角坐标系的原点,矩形OABC的4个顶点均在格点上,连接对角线OB.(1)在平面直角坐标系内,以原点O为位似中心,把△OAB缩小,作出它的位似图形,并且使所作的位似图形与△OAB的相似比等于;(2)将△OAB以O为旋转中心,逆时针旋转90°,得到△OA1B1,作出△OA1B1,并求出线段OB旋转过程中所形成扇形的周长.【答案】(1)略(2)4+π.【解答】解:(1)如图,△OA′B′或△OA″B″即为所求.(2)如图,△OA1B1即为所求.OB==2,线段OB旋转过程中所形成扇形的周长=2×2+=4+π.。
1中考数学人教版专题复习:位似图形和相似三角形的应用一、教学内容位似图形和相似三角形的应用1. 了解位似图形的概念、画法和性质.2. 会利用相似三角形的知识测量物体的高度或宽度.3. 能利用位似图形和相似三角形的性质解决一些简单的实际问题.二、知识要点1. 位似图形(1)定义:两个相似多边形,如果它们对应顶点所在的直线相交于一点,我们就把这样的两个图形叫做位似图形,这个交点叫做位似中心,这时的相似比又叫位似比.ABC DEA'B'C'D'E'(2)画法:画位似图形的方法根据位似中心与图形的位置关系可以分为三种:①位似中心在图形的一侧;②两个图形分居在位似中心的两侧;③位似中心在两个图形的内部.OADC BC'D'A'B'ABCDA'B'C'D'O A BC DA'B'C'D'O22. 测量物体的高度 (1)利用阳光下的影子A B C A'B'C'人的影长(可测)人被测物体的影长(可测)被测物体(2)利用标杆A BCDEFM N旗杆标杆(3)利用镜子的反射A BCDE人旗杆三、重点难点本讲重点是位似图形的概念和性质、相似三角形的应用. 难点是应用相似三角形解决实际问题.四、考点分析从历届中考题来看,相似形在中考中的位置越来越重要,试题分值也逐渐增加,特别是相似三角形的判定和性质的应用,在解答题中出现的频率较高,近两年来,相似形在实际生活中的应用性问题也开始出现.3【典型例题】例1. 如图所示,试回答下列问题,并说明理由.(1)分别在△ABC 的边AB 、AC 上取点D 、E ,使DE ∥BC ,那么△ADE 与△ABC 是位似图形吗?若是,是放大了还是缩小了;(2)分别在△ABC 的边AB 、AC 的反向延长线上取点D 、E ,使DE ∥BC ,那么△ADE 与△ABC 是位似图形吗?若是,是放大了还是缩小了?ABCDE ABCED(1) (2)分析:解答此题的关键是正确理解位似图形的定义,即(1)必须是相似图形;(2)所有对应顶点的连线都经过同一点. 这两条缺一不可. 若再要判定是放大了还是缩小了,就看位似比是大于1还是小于1就行了.解:(1)是,缩小了. 理由是△ADE ∽△ABC ,且对应点的连线都经过一点A ,位似比AD AB <1.(2)是,无法确定放大还是缩小,理由是△ADE ∽△ABC ,且对应点的连线都经过一点A . 但ADAB 的值可能大于1,也可能小于1,无法确定.例2. 如图所示,分别按下列要求作出四边形ABCD 以O 点为位似中心的位似四边形A'B'C'D'.(1)沿OA 方向放大为原图形的2倍; (2)沿AO 方向放大为原图形的2倍.ABC DO分析:此题两问都是将原图形放大2倍,也就是位似比为2∶1,而(1)问是沿OA方向,即从O点向A点的方向,而(2)问是沿AO方向,即从A点向O点的方向放大.解:如图1所示.①连接OA,并延长OA到A',使AA'=OA;②连接OB,并延长OB到B',使BB'=OB;③连接OC,并延长OC到C',使CC'=OC;④连接OD,并延长OD到D',使DD'=OD;⑤连接A'B',B'C',C'D',D'A'.则四边形A'B'C'D'是四边形ABCD关于O点的位似图形,且位似比为2∶1.A'B'C'D'A BC DO图1(2)如图2所示.①连接AO,并延长AO到A',使OA'=2OA;②连接OB、OC、OD,并延长BO、CO、DO到B'、C'、D',使OB'=2OB,OC'=2OC,OD'=2OD.③连接A'B',B'C',C'D',D'A'.则四边形A'B'C'D'是四边形AB CD关于O点的位似图形,且位似比为2∶1.45A'B'C'D'图2ABC DO例3. 如图所示,AB 是斜靠在墙壁上的长梯,梯脚B 距墙1.60m ,梯上点D 距墙1.4m ,BD 长0.55m ,则梯子的长为( )A . 3.85mB . 4.00mC . 4.40mD . 4.50mABCD E分析:找出图中的相似三角形,列出相应的比例式AD AB =DEBC ,代入求值即可. BC =1.6m ,DE =1.4m ,DE ∥BC ,BD =0.55m ,设AB =x m ,则AD =(x -0.55)m . 由△ADE ∽△ABC ,可得AD AB =DEBC ,即x -0.55x =1.41.6,解得x =4.40,故选C . 解:C例4. 如图所示,小明为了测量一高楼MN 的高度,在离N 点20m 的A 处放了一个平面镜,小明沿NA 后退到C 点,正好从镜中看到楼顶M 点,若AC =1.5m ,小明的眼睛离地面的高度为1.6m ,请你帮助小明计算一下楼房的高度. (精确到0.1m )ABCMN分析:根据物理学定律:光线的入射角等于反射角,这样△BCA 与△MNA 的相似关系就明确了.6解:因为BC ⊥CA ,MN ⊥AN ,∠BAC =∠MAN ,所以△BCA ∽△MNA ,所以MN BC =ANAC , 即MN ∶1.6=20∶1.5,所以MN =1.6×20÷1.5≈21.3(m ).评析:这是一道实际应用题,利用了两角对应相等的两个三角形相似,且相似三角形对应边成比例.例5. 一条河的两岸是平行的,两岸岸边各有一排树,每排树相邻两棵的间隔都是10m ,在这岸离开岸边16m 处看对岸,看到对岸的两棵树的树干恰好被这岸两棵树的树干遮住,这岸的两棵树之间有1棵树,但对岸被遮住的两棵树之间有4棵树,则河宽是多少米? 分析:先按题意画图,如图所示,可得AD =16m ,DE =20m ,BC =50m ,由题意可知△ADE ∽△ACB ,从而AD AC =DECB ,可求河宽.ABCDE解:如图所示,AD =16m ,DE =20m ,BC =50m ,CB 、DE 表示互相平行的河两岸,AD ⊥DE ,图中CB 、DE 两端的点表示树木,本题求DC 的长,因为DE ∥CB ,所以△ADE ∽△ACB .所以AD AC =DE CB ,即AD AD +DC =DE CB ,则1616+CD =2050,解得CD =24(m ),所以河宽为24m .评析:有关测量问题的计算,要应用相似三角形的性质——相似三角形的对应边成比例,这是解决实际问题的重要方法之一.【方法总结】71. 关于位似图形和相似图形:①位似图形一定是相似图形;②两个相似形,当对应点的连线交于同一点时,这两个图形又叫做位似图形;③位似比即相似形的相似比;④位似图形具有相似形的性质.2. 能够把实际问题转化成数学问题,利用影长计算或测量时,注意同一时刻:物体的实际高度影长=被测物体的实际高度被测物体的影长.【模拟试题】(答题时间:50分钟) 一、选择题1. 如图所示,正五边形FGHMN 是由正五边形ABCDE 经过位似变换得到的,若AB ∶FG =2∶3,则下列结论正确的是( )ABCDEFG HMNA . 2DE =3MNB . 3DE =2MNC . 3∠A =2∠FD . 2∠A =3∠F 2. 图中的两个三角形是位似图形,它们的位似中心是( ) A . 点PB . 点OC . 点MD . 点NPO MN3. 小刚身高1.7m ,测得他站立在阳光下的影子长为0.85m ,紧接着他把手臂竖直举起,测得影子长为1.1m ,那么小刚举起的手臂超出头顶( )A . 0.5mB . 0.55mC . 0.6mD . 2.2m4. 如图所示,身高为1.6m 的某学生测量一棵大树的高度,她沿着树影BA 由B 向A 走8去,当走到C 点时,她的影子顶端正好与树的影子顶端重合,测得BC =3.2m ,CA =0.8m ,则树的高度为( )ABE DA . 4.8mB . 6.4mC . 8mD . 10m*5. 下列命题中真命题的个数是( ) ①两个相似多边形的面积之比等于相似比的平方; ②两个相似三角形的对应高之比等于它们的相似比;③在△ABC 与△A'B'C'中,AB A'B'=ACA'C',∠A =∠A',那么△ABC ∽△A'B'C'; ④已知△ABC 及位似中心O ,能够作一个且只能作一个三角形,使位似比为0.5. A . 1个B . 2个C . 3个D . 4个*6. 如图,小“鱼”与大“鱼”是位似图形,已知小“鱼”上一个“顶点”的坐标为(a ,b ),那么大“鱼”上对应“顶点”的坐标为( )xyA . (-a ,-2b )B . (-2a ,-b )C . (-2a ,-2b )D . (-2b ,-2a )二、填空题91. 如图,△ABC 与△A ’B ’C ’是位似图形,且顶点都在格点上,则位似中心的坐标是__________.19876543210119876543211011O A'B'C'A B C yx2. 要测量河两岸相对的两点A 、B 的距离,先在AB 的垂线BF 上取两点C 、D ,使CD ∶BC =5∶4,再定出BF 的垂线DE ,使A 、C 、E 在一条直线上(如图所示),量得DE 的长为30m ,则AB 的距离为__________m .ABCDEF3. 为了测量校园水平地面上一棵不可攀的树的高度,学校数学兴趣小组做了如下的探索:根据光的反射定律,利用一面镜子和一根皮尺,设计如下图所示的测量方案:把一面很小的镜子放在离树底(B )8.4米的点E 处,然后沿着直线BE 后退到点D ,这时恰好在镜子里看到树梢顶点A ,再用皮尺量得DE =2.4米,观察者目高CD =1.6米,则树(AB )的高度约为__________米(精确到0.1米).EDCB4. 如图,火焰的光线穿过小孔O ,在竖直的屏幕上形成倒立的实像,像的高度为4.5cm ,OA =16cm ,OD =48cm ,那么火焰的高度是__________cm .10*5. 如图,一条河的两岸有一段是平行的,在河的南岸边每隔5米有一棵树,在北岸边每隔50米有一根电线杆. 小丽站在离南岸岸边15米的点P 处看北岸,发现北岸相邻的两根电线杆恰好被南岸的两棵树遮住,并且在这两棵树之间还有三棵树,则河宽为__________米.**6. 如图,正方形ABCD 和正方形OEFG 中,点A 和点F 的坐标分别为(3,2),(-1,-1),则两个正方形的位似中心的坐标是_________.ABCDO E FGx y三、解答题1. 如图所示,把图(1)中的图形在图(2)中放大(形状完全一样).(1) (2)2.正方形网格中有一条简笔画“鱼”,请你以点O为位似中心放大,使新图形与原图形的对应线段的比是2∶1(不要求写作法).OABCD3.用一桶农药给果树防虫,桶高0.7米,桶内有一斜放的木棒,一端在桶底,另一端恰好在桶盖小口处,抽出木棒量得木棒的总长为1米,上面浸有农药部分长0.7米,你能求出桶内药液的高度是多少吗?4.如图所示,小明手拿一把刻有厘米刻度的尺子,站在距电线杆30m的地方,把手臂向前伸直,小尺竖直,看到尺子上12cm的长度恰好遮住电线杆,已知手臂长60cm,求电线杆的高度.**5.马戏团让狮子和公鸡表演跷跷板节目.跷跷板支柱AB的高度为1.2米.(1)若吊环高度为2米,支点A为跷跷板PQ的中点,狮子能否将公鸡送到吊环上?为什么?(2)若吊环高度为3.6米,在不改变其他条件的前提下移动支柱,当支点A移到跷跷板PQ的什么位置时,狮子刚好能将公鸡送到吊环上?ACQ1112【试题答案】一、选择题1. B2. A3. A4. C5. C6. C二、填空题1.(9,0)2. 243. 5.64. 1.55. 22.56.(1,0)或(-5,-2)三、解答题1.如图所示:2.下图中的A’B’C’D’就是所求.OABCD B'D'3.设桶内药液高度为x米,则0.7-x0.7=1-0.71,解得x=0.49米4.设电线杆的高度为x米,则603000=12x,解得x=600(cm)=6(米)5.(1)狮子能将公鸡送到吊环上.当狮子将跷跷板P端按到底时可得到R t△PHQ,∵点A是PQ的中点,∴△PAB∽△PQH,且相似比是1∶2,AB=1.2(米)∴QH=2.4>2(米).13(2)支点A移到跷跷板PQ的三分之一处(PA=13PQ),狮子刚好能将公鸡送到吊环上,△PAB∽△PQH,∴QH=3AH=3.6(米).14。
第28讲 图形的相似与位似1.比例线段(1)比例线段:已知四条线段a ,b ,c ,d ,若a b =cd 或a∶b =c ∶d ,那么a ,b ,c ,d 叫做成比例线段,a ,d叫做比例外,b ,c 叫做比例内项;若有a b =bc ,则b 叫做a ,c 的比例中项.(2)比例的基本性质及定理 ①a b =cd ⇒ad =bc ; ②a b =c d ⇒a±b b =c±d d; ③a b =c d =…=m n (b +d +…+n≠0)⇒a +c +…+m b +d +…+n =a b . 4.相似三角形的性质及判定 (1)相似三角形的性质相似三角形的对应角相等,对应边成比例,对应高、对应中线、对应角平分线的比都等于相似比,周长比等于相似比,面积比等于相似比的平方. (2)相似三角形的判定①平行于三角形一边的直线和其他两边(或两边的延长线)相交,所截得的三角形与原三角形相似; ②两角对应相等,两三角形相似;③两边对应成比例且夹角相等,两三角形相似; ④三边对应成比例,两三角形相似;⑤两个直角三角形的斜边和一条直角边对应成比例,两直角三角形相似; ⑥直角三角形中被斜边上的高分成的两个三角形都与原三角形相似. 5.射影定理如图,△ABC 中,∠ACB=90°,CD 是斜边AB 上的高,则有下列结论.(1)AC 2=AD·AB; (2)BC 2=BD·AB; (3)CD 2=AD·BD; (4)AC 2∶BC 2=AD∶BD; (5)AB·CD=AC·BC.6.相似三角形的实际应用(1)运用三角形相似的判定条件和性质解决实际问题的方法步骤: ①将实际问题所求线段长放在三角形中; ②根据已知条件找出一对可能相似的三角形; ③证明所找两三角形相似;④根据相似三角形的性质,表示出相应的量;并求解.(2)运用相似三角形的有关概念和性质解决现实生活中的实际问题.如利用光的反射定律求物体的高度,利用影子计算建筑物的高度.同一时刻,物高与影长成正比,即身高影长=建筑物的高度建筑物的影长.7.相似多边形的性质(1)相似多边形对应角相等,对应边成比例.(2)相似多边形周长之比等于相似比,面积之比等于相似比的平方. 8.图形的位似(1)概念:如果两个多边形不仅相似,而且对应顶点的连线相交于一点,这样的图形叫做位似图形.这个点叫做位似中心.(2)性质:位似图形上任意一对对应点到位似中心的距离之比等于位似比.(3)在平面直角坐标系中,如果位似变换是以原点为中心,相似比为k ,那么位似图形对应点的坐标比等于k 或-k.(4)利用位似变换将一个图形放大或缩小,其步骤为:①确定位似中心;②确定原图形中各顶点关于位似中心的对应点;③依次连接各对应点描出新图形考点1: 相似三角形的性质【例题1】(2019湖南常德3分)如图,在等腰三角形△ABC 中,AB =AC ,图中所有三角形均相似,其中最小的三角形面积为1,△ABC 的面积为42,则四边形DBCE 的面积是( )A.20 B.22 C.24 D.26【答案】D利用△AFH∽△ADE得到,所以S△AFH=9x,S△ADE=16x,则16x﹣9x=7,解得x=1,从而得到S△ADE=16,然后计算两个三角形的面积差得到四边形DBCE的面积.【解答】解:如图,根据题意得△AFH∽△ADE,设S△AFH=9x,则S△ADE=16x,∴16x﹣9x=7,解得x=1,∴S△ADE=16,∴四边形DBCE的面积=42﹣16=26.故选:D.归纳:1.在三角形问题中计算线段的长度时,若题中已知两角对应相等或给出的边之间存在比例关系,则考虑证明三角形相似,通过相似三角形对应边成比例列关于所求边的比例式求解.2.判定三角形相似的五种基本思路:(1)若已知平行线,可采用相似三角形的基本定理;(2)若已知一对等角,可再找一对等角或再找该角的两边对应成比例; (3)若已知两边对应成比例,可找夹角相等; (4)若已知一对直角,可考虑再找一对等角或证明斜边、直角边对应成比例; (5)若已知等腰三角形,可找顶角相等,或找一对底角相等,或找底和腰对应成比例.考点2:相似三角形的判定【例题2】在正方形ABCD中,AB=4,点P,Q分别在直线CB与射线DC上(点P不与点C,点B重合),且保持∠APQ=90°,CQ=1,求线段BP的长.解:分三种情况:设BP=x.①当P在线段BC上时,如图1,∵四边形ABCD是正方形,∴∠B=∠C=90°.∴∠BAP+∠APB=90°.∵∠APQ=90°,∴∠APB+∠CPQ=90°.∴∠BAP=∠CPQ,∴△ABP∽△PCQ.∴ABBP=PCCQ,∴4x=4-x1,∴x1=x2=2.∴BP=2;②当P在CB的延长线上时,如图2,同理,得BP=22-2;③当P在BC的延长线上时,如图3,同理,得BP=2+2 2. 归纳:基本图形(1)斜边高图形有以下基本结论:①∠BAD=∠C,∠B=∠DAC;②△ADB∽△CDA∽△CAB.(2)一线三等角有以下基本结论:①∠B=∠C,∠BDE=∠DFC;②△BDE ∽△CFD.特殊地:若点D 为BC 中点,则有△BDE ∽△CFD ∽△DFE. 考点3:相似三角形的综合应用【例题3】(2017·河北模拟)修建某高速公路,需要通过一座山,指挥部决定从E ,D 两点开挖一个涵洞.工程师从地面选取三个点A ,B ,C ,且A ,B ,D 三点在一条直线上,A ,C ,E 也在同一条直线上,若已知AB =27米,AD =500米,AC =15米,AE =900米,且测得BC =22.5米. (1)求DE 的长;(2)现有甲、乙两个工程队都具备打通能力,且质量相当,指挥部派出相关人员分别到这两个工程队了解情况,获得如下信息:信息一:甲工程队打通这个涵洞比乙工程队打通这个涵洞多用25天; 信息二:乙工程队每天开挖的米数是甲工程队每天开挖的米数的1.5倍; 信息三:甲工程队每天需要收费3 500元,乙工程队每天需要收费4 000元. 若仅从费用角度考虑问题,试判断选用甲、乙哪个工程队比较合算.【解析】:(1)连接DE. ∵AB =27米,AD =500米, AC =15米,AE =900米, ∴AB AE =AC AD =3100. 又∵∠A =∠A , ∴△ABC ∽△AED. ∴BC DE =22.5DE =3100,即DE =750米. (2)设甲工程队每天开挖涵洞x 米,则乙工程队每天开挖涵洞1.5x 米,依据题意,得 750x -7501.5x =25,解得x =10. 经检验,x =10是原方程的解.则1.5x =15.∴甲工程队打通这个涵洞的时间为75010=75(天),甲工程队打通这个涵洞所需的费用为 75×3 500=262 500(元); 乙工程队打通这个涵洞的时间为 7501.5x =75015=50(天), 乙工程队打通这个涵洞所需的费用为 50×4 000=200 000. ∵200 000<262 500, ∴选用乙工程队较合算.一、选择题:1. (2018•玉林)两三角形的相似比是2:3,则其面积之比是( ) A .:B .2:3C .4:9D .8:27【答案】C【解答】解:∵两三角形的相似比是2:3, ∴其面积之比是4:9, 故选:C .2. (2018•临沂)如图.利用标杆BE 测量建筑物的高度.已知标杆BE 高1.2m ,测得AB=1.6m .BC=12.4m .则建筑物CD 的高是( )A .9.3mB .10.5mC .12.4mD .14m 【答案】B【解答】解:∵EB ∥CD , ∴△ABE ∽△ACD ,∴=,即=,∴CD=10.5(米).故选:B.3. (2019,四川巴中,4分)如图▱ABCD,F为BC中点,延长AD至E,使DE:AD=1:3,连结EF交DC于点G,则S△DEG:S△CFG=()A.2:3 B.3:2 C.9:4 D.4:9【答案】D【解答】解:设DE=x,∵DE:AD=1:3,∴AD=3x,∵四边形ABCD是平行四边形,∴AD∥BC,BC=AD=3x,∵点F是BC的中点,∴CF=BC=x,∵AD∥BC,∴△DEG∽△CFG,∴=()2=()2=,故选:D.4. (2019▪贵州毕节▪3分)如图,在一块斜边长30cm的直角三角形木板(Rt△ACB)上截取一个正方形CDEF,点D在边BC上,点E在斜边AB上,点F在边AC上,若AF:AC=1:3,则这块木板截取正方形CDEF后,剩余部分的面积为()A.100cm2B.150cm2C.170cm2D.200cm2【答案】A【解答】解:设AF=x,则AC=3x,∵四边形CDEF为正方形,∴EF=CF=2x,EF∥BC,∴△AEF∽△ABC,∴EFBC=AFAC=13,∴BC=6x,在Rt△ABC中,AB2=AC2+BC2,即302=(3x)2+(6x)2,解得,x=25,∴AC=65,BC=125,∴剩余部分的面积=×125×65﹣45×45=100(cm2),故选:A.5. (2018•泸州)如图,正方形ABCD中,E,F分别在边AD,CD上,AF,BE相交于点G,若AE=3ED,DF=CF,则的值是()A. B. C. D.【答案】C【解答】解:如图作,FN∥AD,交AB于N,交BE于M.∵四边形ABCD是正方形,∴AB∥CD,∵FN∥AD,∴四边形ANFD是平行四边形,∵∠D=90°,∴四边形ANFD是解析式,∵AE=3DE,设DE=a,则AE=3a,AD=AB=CD=FN=4a,AN=DF=2a,∵AN=BN,MN∥AE,∴BM=ME,∴MN=a,∴FM=a,∵AE∥FM,∴===,故选:C.二、填空题:6.如图,△OAB与△OCD是以点O为位似中心的位似图形,相似比为1:2,∠OCD=90°,CO=CD,若B(1,0),则点C的坐标为.【答案】(1,-1)【解答】:连接BC,∵△OAB与△OCD是以点O为位似中心的位似图形,相似比为1:2,且B(1,0),即OB=1,∴OD=2,即B为OD中点,∵OC=DC,∴CB⊥OD,在Rt△OCD中,CB为斜边上的中线,∴CB=OB=BD=1,则C坐标为(1,-1),故答案为:(1,-1)7. (2019•山东省滨州市•5分)在平面直角坐标系中,△ABO三个顶点的坐标分别为A(﹣2,4),B(﹣4,0),O(0,0).以原点O为位似中心,把这个三角形缩小为原来的,得到△CDO,则点A的对应点C的坐标是(﹣1,2)或(1,﹣2).【答案】(﹣1,2)或(1,﹣2)【解答】解:以原点O为位似中心,把这个三角形缩小为原来的,点A的坐标为(﹣2,4),∴点C的坐标为(﹣2×,4×)或(2×,﹣4×),即(﹣1,2)或(1,﹣2),故答案为:(﹣1,2)或(1,﹣2).8. (2018•江西)如图,在△ABC中,AB=8,BC=4,CA=6,CD∥AB,BD是∠ABC的平分线,BD交AC于点E,则AE的长为.【答案】4【解答】解:∵BD为∠ABC的平分线,∴∠ABD=∠CBD,∵AB∥CD,∴∠D=∠ABD,∴∠D=∠CBD,∴BC=CD,∵BC=4,∴CD=4,∵AB∥CD,∴△ABE∽△CDE,∴=,∴=,∴AE=2CE,∵AC=6=AE+CE,∴AE=4.9. (2018•遵义)如图,四边形ABCD中,AD∥BC,∠ABC=90°,AB=5,BC=10,连接AC、BD,以BD为直径的圆交AC于点E.若DE=3,则AD的长为 .【答案】2,【解答】解:如图,在Rt△ABC中,AB=5,BC=10,∴AC=5过点D作DF⊥AC于F,∴∠AFD=∠CBA,∵AD∥BC,∴∠DAF=∠ACB,∴△ADF∽△CAB,∴,∴,设DF=x,则AD=x,在Rt△ABD中,BD==,∵∠DEF=∠DBA,∠DFE=∠DAB=90°,∴△DEF∽△DBA,∴,∴,∴x=2,∴AD=x=2,三、解答题:10. (2018·江西)如图,在△ABC中,AB=8,BC=4,CA=6,CD∥AB,BD是∠ABC的平分线,BD交AC于点E,求AE的长.【解析】:∵BD为∠ABC的平分线,∴∠ABD=∠CBD. ∵AB∥CD,∴∠D=∠ABD.∴∠D=∠CBD.∴BC=CD.∵BC=4,∴CD=4.∵AB∥CD,∴△ABE∽△CDE.∴ABCD=AECE.∴84=AECE.∴AE=2CE.∵AC=AE+CE=6,∴AE=4.11. (2019湖北荆门)(10分)如图,为了测量一栋楼的高度OE,小明同学先在操场上A处放一面镜子,向后退到B处,恰好在镜子中看到楼的顶部E;再将镜子放到C处,然后后退到D处,恰好再次在镜子中看到楼的顶部E(O,A,B,C,D在同一条直线上),测得AC=2m,BD=2.1m,如果小明眼睛距地面髙度BF,DG 为1.6m,试确定楼的高度OE.【分析】设E关于O的对称点为M,由光的反射定律知,延长GC、FA相交于点M,连接GF并延长交OE于点H,根据GF∥AC得到△MAC∽△MFG,利用相似三角形的对应边的比相等列式计算即可.【解答】解:设E关于O的对称点为M,由光的反射定律知,延长GC、FA相交于点M,连接GF并延长交OE于点H,∵GF∥AC,∴△MAC∽△MF G,∴,,即:,∴,∴OE=32,答:楼的高度OE为32米.12. (2018·福建)如图,在Rt△ABC中,∠C=90°,AB=10,AC=8.线段AD由线段AB绕点A按逆时针方向旋转90°得到,△EFG由△ABC沿CB方向平移得到,且直线EF过点D.(1)求∠BDF的大小;(2)求CG的长.【解析】:(1)∵线段AD是由线段AB绕点A按逆时针方向旋转90°得到,∴∠DAB=90°,AD=AB=10.∴∠ABD=45°.∵△EFG是△ABC沿CB方向平移得到,∴AB∥EF.∴∠BDF=∠ABD=45°.(2)由平移的性质,得AE∥CG,AB∥EF,∴∠DEA =∠DFC =∠ABC ,∠ADE +∠DAB =180°.∵∠DAB =90°,∴∠ADE =90°.∵∠ACB =90°,∴∠ADE =∠ACB.∴△ADE ∽△ACB. ∴AD AC =AE AB. ∵AC =8,AB =AD =10,∴AE =12.5,由平移的性质,得CG =AE =12.5.13.△ABC 中,AB =AC ,D 为BC 的中点,以D 为顶点作∠MDN =∠B.(1)如图1,当射线DN 经过点A 时,DM 交边AC 于点E ,不添加辅助线,写出图中所有与△ADE 相似的三角形; (2)如图2,将∠MDN 绕点D 沿逆时针方向旋转,DM ,DN 分别交线段AC ,AB 于点E ,F(点E 与点A 不重合),不添加辅助线,写出图中所有的相似三角形,并证明你的结论;(3)在图2中,若AB =AC =10,BC =12,当S △DEF =14S △ABC 时,求线段EF 的长. 【点拨】(1)由题意得AD ⊥BD ,DE ⊥AC ,可考虑从两角对应相等的两个三角形相似来探究;(2)依据三角形内角和定理及平角定义,结合等式的性质,得∠BFD =∠CDE ,又由∠B =∠C ,可得△BDF ∽△CED ;由相似三角形的性质得BD CE =DF ED ,进而有CD CE =DF ED,从而△CED ∽△DEF ;(3)首先利用△DEF 的面积等于△ABC 的面积的14,求出点D 到AB 的距离,进而利用S △DEF 的值求出EF 即可. 【解答】解:(1)图1中与△ADE 相似的有△ABD ,△ACD ,△DCE.(2)△BDF ∽△CED ∽△DEF.证明:∵∠B +∠BDF +∠BFD =180°,∠EDF +∠BDF +∠CDE =180°,又∵∠EDF =∠B ,∴∠BFD =∠CDE.由AB =AC ,得∠B =∠C ,∴△BDF ∽△CED.∴BD CE =DF ED . ∵BD =CD ,∴CD CE =DF ED. 又∵∠C =∠EDF ,∴△BDF ∽△CED ∽△DEF.(3)连接AD ,过点D 作DG ⊥EF ,DH ⊥BF ,垂足分别为G ,H.∵AB =AC ,D 是BC 的中点,∴AD ⊥BC ,BD =12BC =6. 在Rt △ABD 中,AD 2=AB 2-BD 2,∴AD =8.∴S △ABC =12BC ·AD =48.S △DEF =14S △ABC =12. 又∵12AD ·BD =12AB ·DH ,∴DH =4.8. ∵△BDF ∽△DEF ,∴∠DFB =∠EFD.∵DG ⊥EF ,DH ⊥BF ,∴DH =DG =4.8.∵S △DEF =12EF ·DG =12,∴EF =5. 14. (2019•湖南常德•10分)在等腰三角形△ABC 中,AB =AC ,作CM⊥AB 交AB 于点M ,BN⊥AC 交AC 于点N .(1)在图1中,求证:△BMC≌△CNB;(2)在图2中的线段CB 上取一动点P ,过P 作PE∥AB 交CM 于点E ,作PF∥AC 交BN 于点F ,求证:PE+PF =BM ;(3)在图3中动点P 在线段CB 的延长线上,类似(2)过P 作PE∥AB 交CM 的延长线于点E ,作PF∥AC 交NB 的延长线于点F ,求证:AM•PF+OM•BN=AM•PE.【分析】(1)根据等腰三角形的性质得到∠ABC=∠ACB,利用AAS 定理证明;(2)根据全等三角形的性质得到BM =NC ,证明△CEP∽△CMB、△BFP∽△BNC,根据相似三角形的性质列出比例式,证明结论;(3)根据△BMC≌△CNB,得到MC=BN,证明△AMC∽△OMB,得到=,根据比例的性质证明即可.【解答】证明:(1)∵AB=AC,∴∠A BC=∠ACB,∵CM⊥AB,BN⊥AC,∴∠BMC=∠CNB=90°,在△BMC和△CNB中,,∴△BMC≌△CNB(AAS);(2)∵△BMC≌△CNB,∴BM=NC,∵PE∥AB,∴△CEP∽△CMB,∴,∵PF∥AC,∴△BFP∽△BNC,∴,∴,∴PE+PF=BM;(3)同(2)的方法得到,PE﹣PF=BM,∵△BMC≌△CNB,∴MC=BN,∵∠ANB=90°,∴∠MAC+∠ABN=90°,∵∠OMB=90°,∴∠MOB+∠ABN=90°,∴∠MAC=∠MOB,又∠AMC=∠OMB=90°,∴△AMC∽△OMB,∴∴AM•MB=OM•MC,∴AM×(PE﹣PF)=OM•BN,∴AM•PF+OM•BN=AM•PE.。
第28讲 图形的相似与位似
1.比例线段
(1)比例线段:已知四条线段a ,b ,c ,d ,若a b =c
d 或a∶b =c ∶d ,那么a ,b ,c ,d 叫做成比例线段,a ,d
叫做比例外,b ,c 叫做比例内项;若有a b =b
c ,则b 叫做a ,c 的比例中项.
(2)比例的基本性质及定理 ①a b =c
d ⇒ad =bc ; ②a b =c d ⇒a±b b =c±d d
; ③a b =c d =…=m n (b +d +…+n≠0)⇒a +c +…+m b +d +…+n =a b . 4.相似三角形的性质及判定 (1)相似三角形的性质
相似三角形的对应角相等,对应边成比例,对应高、对应中线、对应角平分线的比都等于相似比,周长比等于相似比,面积比等于相似比的平方. (2)相似三角形的判定
①平行于三角形一边的直线和其他两边(或两边的延长线)相交,所截得的三角形与原三角形相似; ②两角对应相等,两三角形相似;
③两边对应成比例且夹角相等,两三角形相似; ④三边对应成比例,两三角形相似;
⑤两个直角三角形的斜边和一条直角边对应成比例,两直角三角形相似; ⑥直角三角形中被斜边上的高分成的两个三角形都与原三角形相似. 5.射影定理
如图,△ABC 中,∠ACB=90°,CD 是斜边AB 上的高,则有下列结论.
(1)AC 2
=AD·AB; (2)BC 2
=BD·AB; (3)CD 2
=AD·BD; (4)AC 2
∶BC 2
=AD∶BD; (5)AB·CD=AC·BC .
6.相似三角形的实际应用
(1)运用三角形相似的判定条件和性质解决实际问题的方法步骤:
①将实际问题所求线段长放在三角形中;
②根据已知条件找出一对可能相似的三角形;
③证明所找两三角形相似;
④根据相似三角形的性质,表示出相应的量;并求解.
(2)运用相似三角形的有关概念和性质解决现实生活中的实际问题.
如利用光的反射定律求物体的高度,利用影子计算建筑物的高度.同一时刻,物高与影长成正比,即身高影长
=建筑物的高度建筑物的影长
.
7.相似多边形的性质
(1)相似多边形对应角相等,对应边成比例.
(2)相似多边形周长之比等于相似比,面积之比等于相似比的平方.
8.图形的位似
(1)概念:如果两个多边形不仅相似,而且对应顶点的连线相交于一点,这样的图形叫做位似图形.这个点叫做位似中心.
(2)性质:位似图形上任意一对对应点到位似中心的距离之比等于位似比.
(3)在平面直角坐标系中,如果位似变换是以原点为中心,相似比为k,那么位似图形对应点的坐标比等于k或-k.
(4)利用位似变换将一个图形放大或缩小,其步骤为:①确定位似中心;②确定原图形中各顶点关于位似中心的对应点;③依次连接各对应点描出新图形
考点1:相似三角形的性质
【例题1】(2019湖南常德3分)如图,在等腰三角形△ABC中,AB=AC,图中所有三角形均相似,其中最小的三角形面积为1,△ABC的面积为42,则四边形DBCE的面积是()
A.20 B.22 C.24 D.26
归纳:1.在三角形问题中计算线段的长度时,若题中已知两角对应相等或给出的边之间存在比例关系,则考虑证明三角形相似,通过相似三角形对应边成比例列关于所求边的比例式求解.2.判定三角形相似的五种基本思路:(1)若已知平行线,可采用相似三角形的基本定理;
(2)若已知一对等角,可再找一对等角或再找该角的两边对应成比例; (3)若已知两边对应成比例,可找夹角相等; (4)若已知一对直角,可考虑再找一对等角或证明斜边、直角边对应成比例; (5)若已知等腰三角形,可找顶角相等,或找一对底角相等,或找底和腰对应成比例.
考点2:相似三角形的判定
【例题2】在正方形ABCD中,AB=4,点P,Q分别在直线CB与射线DC上(点P不与点C,点B重合),且保持∠APQ=90°,CQ=1,求线段BP的长.
考点3:相似三角形的综合应用
【例题3】(2017·河北模拟)修建某高速公路,需要通过一座山,指挥部决定从E,D两点开挖一个涵洞.工程师从地面选取三个点A,B,C,且A,B,D三点在一条直线上,A,C,E也在同一条直线上,若已知AB =27米,AD=500米,AC=15米,AE=900米,且测得BC=22.5米.
(1)求DE的长;
(2)现有甲、乙两个工程队都具备打通能力,且质量相当,指挥部派出相关人员分别到这两个工程队了解情况,获得如下信息:
信息一:甲工程队打通这个涵洞比乙工程队打通这个涵洞多用25天;
信息二:乙工程队每天开挖的米数是甲工程队每天开挖的米数的1.5倍;
信息三:甲工程队每天需要收费3 500元,乙工程队每天需要收费4 000元.
若仅从费用角度考虑问题,试判断选用甲、乙哪个工程队比较合算.
一、选择题:
1. (2018•玉林)两三角形的相似比是2:3,则其面积之比是()
A.:B.2:3 C.4:9 D.8:27
2. (2018•临沂)如图.利用标杆BE测量建筑物的高度.已知标杆BE高1.2m,测得AB=1.6m.BC=12.4m.则建筑物CD的高是()
A.9.3m B.10.5m C.12.4m D.14m
3. (2019,四川巴中,4分)如图▱ABCD,F为BC中点,延长AD至E,使DE:AD=1:3,连结EF交DC于点G,则S△DEG:S△CFG=()
A.2:3 B.3:2 C.9:4 D.4:9
4. (2019▪贵州毕节▪3分)如图,在一块斜边长30cm的直角三角形木板(Rt△ACB)上截取一个正方形CDEF,点D在边BC上,点E在斜边AB上,点F在边AC上,若AF:AC=1:3,则这块木板截取正方形CDEF后,剩余部分的面积为()
A.100cm2B.150cm2C.170cm2D.200cm2
5. (2018•泸州)如图,正方形ABCD中,E,F分别在边AD,CD上,AF,BE相交于点G,若AE=3ED,DF=CF,则的值是()
A. B. C. D.
二、填空题:
6.如图,△OAB与△OCD是以点O为位似中心的位似图形,相似比为1:2,∠OCD=90°,CO=CD,若B(1,0),则点C的坐标为.
7. (2019•山东省滨州市•5分)在平面直角坐标系中,△ABO三个顶点的坐标分别为A(﹣2,4),B(﹣4,0),O(0,0).以原点O为位似中心,把这个三角形缩小为原来的,得到△CDO,则点A的对应点C的坐标是.
8. (2018•江西)如图,在△ABC中,AB=8,BC=4,CA=6,CD∥AB,BD是∠ABC的平分线,BD交AC于点E,则AE的长为.
9. (2018•遵义)如图,四边形ABCD中,AD∥BC,∠ABC=90°,AB=5,BC=10,连接AC、BD,以BD为直径的圆交AC于点E.若DE=3,则AD的长为 .
三、解答题:
10. (2018·江西)如图,在△ABC中,AB=8,BC=4,CA=6,CD∥AB,BD是∠ABC的平分线,BD交AC于点E,求AE的长.
11. (2019湖北荆门)(10分)如图,为了测量一栋楼的高度OE,小明同学先在操场上A处放一面镜子,向后退到B处,恰好在镜子中看到楼的顶部E;再将镜子放到C处,然后后退到D处,恰好再次在镜子中看到楼的顶部E(O,A,B,C,D在同一条直线上),测得AC=2m,BD=2.1m,如果小明眼睛距地面髙度BF,DG 为1.6m,试确定楼的高度OE.
12. (2018·福建)如图,在Rt△ABC中,∠C=90°,AB=10,AC=8.线段AD由线段AB绕点A按逆时针方向旋转90°得到,△EFG由△ABC沿CB方向平移得到,且直线EF过点D.
(1)求∠BDF的大小;
(2)求CG 的长.
13.△ABC 中,AB =AC ,D 为BC 的中点,以D 为顶点作∠MDN =∠B.
(1)如图1,当射线DN 经过点A 时,DM 交边AC 于点E ,不添加辅助线,写出图中所有与△ADE 相似的三角形;
(2)如图2,将∠MDN 绕点D 沿逆时针方向旋转,DM ,DN 分别交线段AC ,AB 于点E ,F(点E 与点A 不重合),不添加辅助线,写出图中所有的相似三角形,并证明你的结论;
(3)在图2中,若AB =AC =10,BC =12,当S △DEF =1
4S △ABC 时,求线段EF 的长.
14. (2019•湖南常德•10分)在等腰三角形△ABC 中,AB =AC ,作CM⊥AB 交AB 于点M ,BN⊥AC 交AC 于点N . (1)在图1中,求证:△BMC≌△CNB;
(2)在图2中的线段CB 上取一动点P ,过P 作PE∥AB 交CM 于点E ,作PF∥AC 交BN 于点F ,求证:PE+PF =BM ;
(3)在图3中动点P 在线段CB 的延长线上,类似(2)过P 作PE∥AB 交CM 的延长线于点E ,作PF∥AC 交NB 的延长线于点F ,求证:AM•PF+OM•BN=AM•PE.。