第二十九章投影与视图
- 格式:doc
- 大小:85.00 KB
- 文档页数:4
2024九年级春季数学下册听课笔记:第二十九章投影与视图- 课题学习:制作立体模型教师行为导入(1.1)•情境引入:教师首先展示几个精美的立体模型图片(如建筑物、动物雕塑等),引导学生观察并思考:“这些模型是如何从二维图纸变为三维实物的?”通过提问激发学生的好奇心和探索欲。
•明确目标:简要介绍本节课的学习目标——理解投影与视图的概念,掌握利用视图制作立体模型的基本方法,培养空间想象能力和动手实践能力。
教学过程(1.2)•理论讲解:•投影基础:详细解释正投影、斜投影的概念,通过多媒体展示不同角度下的投影效果,帮助学生直观理解。
•视图介绍:介绍主视图、左视图、俯视图的概念及绘制方法,强调视图在表达立体结构中的重要性。
•示范操作:•选择一个简单的立体图形(如正方体)作为示例,逐步演示如何从三个视图(主视图、左视图、俯视图)绘制出发,使用纸板或黏土等材料制作立体模型的过程。
•强调在制作过程中,如何根据视图中的线条关系确定立体模型的各个面和棱。
•分组实践:•将学生分成小组,每组分配不同的立体图形(如长方体、圆柱体、圆锥体等)的视图图纸。
•指导学生按照视图图纸,讨论并制定制作方案,然后动手制作立体模型。
•教师在学生制作过程中巡回指导,解答疑问,鼓励创新思维和团队合作。
板书设计(提纲式)作业布置•完成课后习题,巩固投影与视图的基本概念。
•设计并制作一个复杂程度适中的立体模型(如组合体),要求包含至少两种基本几何体,并附上详细的制作过程和思路说明。
课堂小结•总结投影与视图的基本概念及其在立体模型制作中的应用。
•表扬学生在制作过程中的积极表现和创意点,鼓励大家继续探索和实践。
•强调空间想象能力和动手实践能力的重要性,鼓励学生在日常生活中多观察、多思考、多动手。
学生活动•观察思考:认真观察教师展示的立体模型图片,积极思考如何从二维到三维的转变。
•理论学习:认真听讲,做好笔记,理解投影与视图的概念。
•分组讨论:在小组内积极讨论制作方案,分工合作,共同解决问题。
第二十九章投影与视图一、课标导航二、核心纲要l.投影(1)投影:用光线照射物体,在某个平面(地面、墙壁等)上得到的影子叫做物体的投影,照射光线叫做投影线,投影所在的平面叫做投影面.(2)中心投影:由同一点(点光源发出的光线)形成的投影叫做中心投影(如下左图所示).(3)平行投影:由平行光线形成的投影是平行投影(如下中图所示).(4)正投影:投影线垂直于投影面产生的投影叫做正投影(如下右图所示).2.平行投影与中心投影的区别和联系(如下表所示)3.三视图是指从兰个不间位置观察间一个空间几何体而画出的图形,包括主视图、俯视图、左视图(如下图所示)(1)主视图:从物体的前面向后面投射所得的视图称主视图——能反映物体的前面形状.(2)俯视图:从物体的上面向下面投射所得的视图称俯视图——能反映物体的上面形状.(3)左视图:从物体的左面向右面投射所得的视图称左视图-- 能反映物体的左面形状.注:画三视图时应注意三视图的位置要准确,看得见部分的轮廓线通常画成实线,看不见部分的轮廓线通常画成虚线,主俯长对正、主左高平齐、俯左宽相等.即主视图和俯视图的长要相等;主视图和左视图的高要相等;左视图和俯视图的宽要相等.本节重点讲解:三个投影,三个视图.三 .全能突破基础演练1.下列说法正确的是( ).A.物体在阳光下的投影只与物体的高度有关B.小明的个子比小亮高,我们可以肯定,不论什么情况,小明的影子一定比小亮的影子长.C.物体在阳光照射下,不同时刻,影长可能发生变化,方向也可能发生变化.D.物体在阳光照射下,影子的长度和方向都是固定不变的.2.下图是一根电线杆在一天中不同时刻的影长图,试按其一天中发生的先后顺序排列,正确的是( ).A.①②③④ B.④①③② C.④②③① D.④③②①3.把一个正五棱柱按下图摆放,当投射线由正前方射到后方时,它的正投影是( ).4.(1)如下左图所示,位似图形由三角尺与其灯光照射下的中心投影组成,相似比为2:5,且三角尺的一边长为8cm,则投影三角尺的对应边长为( ).C2.3.cmD10..cmB20cmA8.cm(2)如下右图所示,在一间黑屋子里用一盏白炽灯照一个球,球在地面上阴影的形状是一个圆,当把白炽灯向远移时,圆形阴影的大小变化情况是( ).A.越来越小 B.越来越大 C.大小不变 D.不能确定5.(1)左下图所示的几何体中主视图、左视图、俯视图都相同的是( ).(2)右下图所示的物体由两个紧靠在一起的圆柱组成,小刚准备画出它的三视图,那么他所画的三视图中的俯视图应该是( ).A.两个外切的圆 B.两个内切的圆 C.两个相交的圆 D.两个外离的圆6.由7个大小相同的正方体搭成的几何体如右图所示,则关于它的视图说法正确的是( ).A.正视图的面积最大 B.俯视图的面积最大C.左视图的面积最大 D.三个视图的面积一样大7.(1)左下图表示一个由相同小立方块搭成的几何体的俯视图,小正方形中的数字表示该位置上小立方块的个数,那么该几何体的主视图为( ).(2)右下图是由一些大小相同的小立方体组成的几何体的主视图和左视图,则组成这个几何体的小立方体的个数不可能是( ).A.3个 B .4个 C .5个 D .6个8.在安装太阳能热水器时,主要考虑太阳光线与热水器斜面间的角度(垂直时最佳).如下图所示,当太阳光线与水平面成35角照射时,热水器的斜面与水平面的夹角最好应为9.在平面直角坐标系内,一点光源位于A(O ,4)处,线段CD ⊥x 轴,D 为垂足,C(3,1),则CD 在x 轴上的影子长为__________,点C 的影子坐标为 .能 力 提 升10.太阳光线与地面成60的角,照射在地面上的一只皮球上,皮球在地面上的投影长是,310cm 则皮球 的直径是( ) cm .35.A 38.B 15.C 20.D11.(1)如果用口表示1个立方体,用图表示两个立方体叠加,用■表示三个立方体叠加,左下图是由7个立方体叠成的几何体,从正前方观察,可画出的平面图形是( ).(2)右下图是由27个相同的小立方块搭成的几何体,它的三个视图都是3×3的正方形,若拿掉若干个小立方块后(几何体不倒掉),其三个视图仍都为3×3的正方形,则最多能拿掉小立方块的个数为( ).11.A 12.B 13.C 14.D12. (1)-个几何体的三视图如下左图所示,其中主视图、左视图都是长为4、宽为x 的矩形,这个几何体 的表面积为l87c ,则x 的值为( ).2.A 21.B 4.C 8.D(2)右下图是某几何体的三视图及相关数据,则下面判断正确的是( ).c a A >. c b B >. 2224.c b a C =+ 222.c b a D =+13.下图是一个上下底密封纸盒的三视图,请根据图中数据,计算这个密封纸盒的表面积为 2cm (结果可保留根号).14.右图是一个几何体的三视图. (1)写出这个几何体的名称.(2)根据所示数据计算这个几何体的表面积.(3)如果一只蚂蚁要从这个几何体中的点B 出发,沿表面爬到AC 的中点D ,请你求出这个线路的最短路程.15.用小立方体搭一个几何体,它的主视图和俯视图如下图所示,俯视图中小正方形中的字母表示在该位置小立方体的个数,请解答下列问题: (l)a ,b ,c 各表示几?(2)这个几何体最少由几个小立方体搭成?最多由几个小立方体搭成? (3)当2,1===f e d 时,画出这个几何体的左视图.16.下图所示电线杆上有一盏路灯0,电线杆与三个等高的标杆整齐排列在马路一侧的一条直线上,AB 、CD 、EF 是三个标杆,相邻的两个标杆之间的距离都是2m ,已知AB 、CD 在灯光下的影长分别为.6.0,6.1m DN m BM ==(1)请画出路灯0的位置和标杆EF 在路灯灯光下的影子. (2)求标杆EF 的影长,中 考 链 接17.(2012.湖北成宁)中央电视台有一个非常受欢迎的娱乐节目:墙来了!选手需按墙上的空洞造型摆出相同姿势,才能穿墙而过,否则会被墙推入水池,类似地,有一个几何体恰好无缝隙地以三个不同形状的“姿势”穿过“墙”上的三个空洞,如下左图所示,则该几何体为( ).18.(2013.湖北荆门)过正方体上底面的对角线和下底面一顶点的平面截去一个三棱锥所得到的几何体如下左图所示,则它的俯视图为( ).19.(2012.湖南衡阳)一个圆锥的三视图如下图所示,则此圆锥的底面积为( ).230.cm A π 225.cm B π 250.cm C π 2100.cm D π巅 峰 突 破20.如下图所示,一根直立于水平地面上的木杆AB 在灯光下形成影子,当木杆绕A 按逆时针方向旋转直至到达地面时,影子的长度发生变化.设AB 垂直于地面时的影长为AC (假定AC>AB ),影长的最大值为m ,最小值为n ,那么下列结论:;;;AB n AC m AC m ==>③②①④影子的长度先增大后减小.其中,正确的结论的序号是21.学习投影后,小明、小颖利用灯光下自己的影子长度来测量一路灯的高度,并探究影子长度的变化规律,如下图所示,在同一时间,身高为1.6m 的小明(AB)的影子BC 长是3m ,而小颖(EH)刚好在路灯灯泡的正下方H 点,并测得HB=6m.(1)请在图中画出形成影子的光线,并确定路灯灯泡所在的位置G . (2)求路灯灯泡的垂直高度GH. (3)如果小明沿线段BH 向小颖(点H)走去,当小明走到BH 中点1B 处时,求其影子11C B 的长;当小明继续走剩下路程的31到2B 处时,求其影子22C B 的长;当小明继续走剩下路程的41到3B 处,……按此规律继续走下去,当小明走剩下路程的11+n 到n B 处时,其影子n n C B 的长为 m(直接用n的代数式表示).。
第二十九章投影与视图29.1投影(1)学习目标1、经历实践探索,了解投影、投影面、平行投影和中心投影的概念;2、了角平行投影和中心投影的区别。
3、使学生学会关注生活中有关投影的数学问题,提高数学的应用意识。
学习重点理解平行投影和中心投影的特征;学习难点在投影面上画出平面图形的平行投影或中心投影。
教学互动设计备注(一)创设情境你看过皮影戏吗?皮影戏又名“灯影子”,是我国民间一种古老而奇特的戏曲艺术,在关中地区很为流行。
皮影戏演出简便,表演领域广阔,演技细腻,活跃于广大农村,深受农民的欢迎。
(二)你知道吗北京故宫中的日晷闻名世界,是我国光辉出灿烂文化的瑰宝.它是我国古代利用日影测定时刻的仪器,它由“晷面”与“晷针”组成,当太阳光照在日晷中轴上产生投影,晷针的影子就会投向晷面,随着时间的推移,晷针的影的长度发生变化,晷针的影子在晷面上慢慢移动,聪明的古人以此来显示时刻.问题:那什么是投影呢?出示投影让学生感受在日常生活中的一些投影现象。
一般地.用光线照射物体.在某个平面(地面、墙壁等)上得到的影子叫做物体的投影.照射光线叫做投影线,投影所在的平面叫做投影面.有时光线是一组互相平行的射线.例如太阳光或探照灯光的一束光中的光线(如图).由平行光线形成的投影是平行投影.例如.物体在太阳光的照射下形成的影子(简称日影)就是平行投影.由同一点(点光源)发出的光线形成的投影叫做中心投影.例如.物体在灯泡发出的光照射下形成影子就是中心投影.(三)问题探究(在课前布置,以数学学习小组为单位)探究平行投影和中心投影和性质和区别1、以数学习小组为单位,观察在太阳光线下,木杆和三角形纸板在地面的投影。
2、不断改变木杆和三角形纸板的位置,什么时候木杆的影子成为一点,三角形纸板的影子是一条线段?当木杆的影子与木杆长度相等时,你发现木杆在什么位置?三角形纸板在什么位置时,它的影子恰好与三角形纸板成为全等图形?还有其他情况吗?(四)应用新知:(1)地面上直立一根标杆AB如图,杆长为2cm。
第二十九章投影与视图29.1投影01教学目标1.通过观察、实验、探索、想象,了解投影、投影线、投影面、平行投影、中心投影的概念.2.能够确定物体在平行光线和点光源发出的光线在某一平面上的投影.3.掌握正投影的概念,了解中心投影、平行投影和正投影的关系.4.掌握线段、正方形、正方体的正投影的特征.02预习反馈阅读教材P87~91,完成下列问题.1.用光线照射物体,在某个平面(地面或墙壁等)上得到的影子叫做物体的投影,照射光线叫做投影线,投影所在的平面叫做投影面.2.由平行光线形成的投影叫做平行投影,由同一点(点光源)发出的光线形成的投影叫做中心投影.3.投影线垂直于投影面产生的投影叫做正投影.4.当物体的某个面平行于投影面时,这个面的正投影与这个面的形状、大小完全相同.5.皮影戏是利用中心投影(填“平行投影”或“中心投影”)的一种表演艺术.6.一根笔直的小木棒(记为线段AB),它的正投影为线段CD,则下列各式中一定成立的是(D)A.AB=CDB.AB≤CDC.AB>CDD.AB≥CD03名校讲坛例1(教材补充例题)如图1,2分别是两根木杆及其影子的图形.(1)哪个图形反映了太阳光下的情形?哪个图形反映了路灯下的情形?(2)请你画出图中表示小树影长的线段.【解答】(1)图2为太阳光下的情形,图1为路灯下的情形.(2)略.【点拨】识别平行投影和中心投影的方法:作直线:分别过两物体及其影子的顶端作两条直线,若这两条直线相交于一点,则为中心投影;若这两条直线平行,则为平行投影.【跟踪训练1】(《名校课堂》29.1习题)如图,小华、小军、小丽同时站在路灯下,其中小军和小丽的影子分别是AB,CD.(1)请你在图中画出路灯灯泡所在的位置;(用点P表示)(2)画出小华此时在路灯下的影子.(用线段EF表示)解:如图所示.例2(教材P90例变式)如图,工件的底面与投影面平行,画出工件在投影面上的正投影.【解答】如图所示.【点拨】在判断一个投影是不是正投影或进行正投影作图时,应把握以下几点:(1)投影线与投影面一定要垂直(太阳光与地面不一定垂直,所以以太阳光为投影线、以地面为投影面的投影不一定是正投影).(2)当物体的某个平面平行于投影面时,这个面的正投影与这个面是全等形.(3)画图时,应先判断投影线与物体的相对位置,然后依据正投影的性质画出物体的正投影.【跟踪训练2】(《名校课堂》29.1习题)如图是一个三棱柱,它的正投影是下图中的②.(填序号)04巩固训练1.下列各种现象属于中心投影现象的是(B)A.上午10点时,走在路上的人的影子B.晚上八点时,走在路灯下的人的影子C.中午用来乘凉的树影D.升国旗时,地上旗杆的影子2.底面与投影面垂直的圆锥体的正投影是(B)A.圆B.三角形C.矩形D.正方形3.如图,在一间黑屋子里用一盏白炽灯照一个球,球在地面上的阴影的形状是一个圆,当把白炽灯向远移时,圆形阴影的面积的变化情况是(A)A.越来越小B.越来越大C.大小不变D.不能确定4.画出下列立体图形投影线从上方射向下方的正投影.解:如图所示:05课堂小结1.投影线垂直于投影面的投影叫做正投影.注意,正投影是特殊的平行投影,中心投影不可能是正投影.2.几种基本图形(线段、正方形、圆、正方体)的正投影分几种情况.3.当物体的某个面平行于投影面时,这个面的正投影与这个面全等;物体正投影的形状、大小与它相对于投影面的位置有关.29.2三视图第1课时几何体的三视图01教学目标1.了解视图的概念,明确视图与投影的关系.2.理解三视图中主视图、左视图、俯视图的概念.明确三视图与我们从三个方向看物体所得到的图象的联系与区别,会画立体图形的三视图.3.画三视图时,要使主视图与俯视图的长对正,主视图与左视图的高平齐,左视图与俯视图的宽相等.02预习反馈阅读教材P94~97,完成下列问题.1.当我们从某一方向观察一个物体时,所看到的平面图形叫做物体的一个视图,也可以看作物体在某一方向光线下的正投影.2.主视图是在正面内得到的由前向后观察物体的视图;俯视图是在水平面内得到的由上向下观察物体的视图;左视图是在侧面内得到的由左向右观察物体的视图.3.主视图与俯视图的长对正,主视图与左视图的高平齐,左视图与俯视图的宽相等.4.三视图一般规定主视图要在左上边,俯视图在正下方,左视图在右边,其中主视图反映物体的长和高,左视图反映物体的高和宽,俯视图反映物体的长和宽.5.如图是一个由五个小正方体组成的立体图形,请你画出从三个不同的方向看这个立体图形所得到的平面图形.解:如图所示.6.在下列几何体中,主视图是圆的是(D)A B C D03名校讲坛例1画出图中基本几何体的三视图.圆柱正三棱柱球(1)(2)(3)【分析】画这些基本几何体的三视图时,要注意从三个方面观察它们.具体方法为:(1)确定主视图的位置,画出主视图;(2)在主视图正下方画出俯视图,注意与主视图“长对正”;(3)在主视图正右方画出左视图,注意与主视图“高平齐”,与俯视图“宽相等”;(4)为表示圆柱、圆锥等的对称轴,规定在视图中加画点划线(———)表示对称轴.【解答】如图所示.圆柱正三棱柱球(1)(2)(3)【跟踪训练1】(《名校课堂》29.2第1课时习题)下列四个立体图形中,左视图为矩形的是(B)①长方体②球③圆锥④圆柱A.①③B.①④C.②③D.③④例2画出如图所示的支架(一种小零件)的三视图,其中支架的两个台阶的高度和宽度相等.【分析】支架的形状是由两个大小不等的长方体构成的组合体,画三视图时要注意这两个长方体的上下、前后位置关系.【解答】如是支架的三视图.【点拨】对于由几种基本几何体组合而成的组合体,其各种视图可以分解为基本几何体的视图再组合,画三视图时要注意各几何体的上、下、前、后、左、右位置关系.【跟踪训练2】(《名校课堂》29.2第1课时习题)一位美术老师在课堂上进行立体模型素描教学时,把由圆锥与圆柱组成的几何体(如图所示,圆锥在圆柱上底面正中间放置)摆在讲桌上,请你画出这个几何体的三视图.解:如图.04巩固训练1.小明从正面观察如图所示的两个物体,看到的是(C)A B C D2.左下图表示一个用于防震的L 形包装泡沫塑料,当俯视这一物体时,看到的图形形状是(B)A B C D3.如图,从不同方向看下面左图中的物体,下图中三个平面图形分别是从哪个方向看到的?正面 从上面看 从前面看 从左面看4.如图是由5个大小相同的小正方体组合成的简单几何体.请在下面方格纸中画出它的三个视图.解:如图所示.05 课堂小结1.画物体的三视图时,先确定主视图的位置,在主视图的右边画左视图,在主视图的正下方画俯视图.2.画物体的三视图时,看得见部分的轮廓线画成实线,看不见部分的轮廓线画成虚线.3.画简单组合体的三视图时,要把组合体分割成规则的几何图形.第2课时由三视图确定几何体01教学目标进一步明确三视图的意义,由三视图想象出实物原型.02预习反馈阅读教材P98~99,完成下列问题.1.由三视图想象立体图形时,要分别根据主视图、俯视图、左视图想象立体图形前面、上面、左侧面,然后再结合起来考虑整体图形.2.一个立体图形的俯视图是圆,则这个图形可能是圆柱.3.下列几何体中,其主视图、左视图与俯视图均相同的是(A)A.正方体B.三棱柱C.圆柱D.圆锥03名校讲坛例1如图,分别根据三视图(1)(2)说出立体图形的名称.【分析】由三视图想象立体图形时,首先分别根据主视图、俯视图和左视图想象立体图形的前面、上面和左侧面,然后综合起来考虑整体图形.【解答】(1)从三个方向看立体图形,视图都是矩形,可以想象这个立体图形是长方体,如图(1)所示.(2)从正面、侧面看立体图形,视图都是等腰三角形;从上面看,视图是圆;可以想象这个立体图形是圆锥,如图(2)所示.【点拨】由三视图想象出几何体后,再回过头来考虑一下该几何体的三视图是否与题目给出的相符.【跟踪训练1】(《名校课堂》29.2第2课时习题)如图是某个几何体的三视图,则该几何体的形状是(D)A.长方体B.圆锥C.圆柱D.三棱柱例2(教材P98例4变式)如图是一个几何体的三视图,则该几何体是(C)A B C D【点拨】(1)观察三视图,看其可分解为哪些简单几何体的三视图;(2)想象出各简单几何体;(3)根据三视图反映的位置关系组合简单几何体便得物体原形;(4)可对想象出的物体作三视图检验正误.注意虚线与实线的区别.【跟踪训练2】(《名校课堂》29.2第2课时习题)一个几何体的三视图如图所示,那么这个几何体是(D)A B C D04巩固训练1.一个几何体的三视图如图所示,则这个几何体是(B)A.三棱锥B.三棱柱C.圆柱D.长方体2.如图是某个几何体的三视图,则该几何体是(A)A.长方体B.三棱柱C.圆柱D.圆台3.如图是一个几何体的三视图,则此三视图所对应的直观图是(B)A B C D4.已知一个几何体的三视图如图所示,想象出这个几何体.解:根据三视图想象出的几何体是一个长方体上面正中部竖立一个小圆柱体,如图.05课堂小结学生试述:这节课你学到了些什么?第3课时 由三视图确定几何体的表面积或体积01 教学目标能根据几何体的三视图求几何体的侧面积、表面积、体积等,进而解决实际生活中的面积、体积方面的用料问题.02 预习反馈阅读教材P99~100,完成下列问题.1.圆锥沿它的一条母线剪开的侧面展开图是扇形.2.圆柱沿它的一条母线剪开的侧面展开图是矩形.3.正方体、长方体的六个面展开的平面图的面积等于它的表面积.(填“大于”“小于”或“等于”)4.如图是一个几何体的三视图,则这个几何体是(B)A.正方体B.长方体C.三棱柱D.三棱锥 5.如下左图是一个长方体包装盒,则它的平面展开图是(A)A B C D03 名校讲坛例 (教材P99例5变式)根据如图所示的三视图求几何体的表面积,并画出物体的展开图.【解答】 由三视图可知,该几何体由上部分是底面直径为10,高为5的圆锥和下部分是底面直径为10,高为20的圆柱组成.则圆锥,圆柱底面半径为r =5. 由勾股定理,得圆锥母线长R =5 2. S 圆锥侧面积=12lR =12×10π×52=252π.∴S 表面积=π×52+10π×20+252π=25π+200π+252π =225π+252π =(225+252)π.该物体的展开图如图所示.【点拨】 由物体三视图求它的表面积: (1)由三视图想象出物体的形状;(2)画出物体的展开图;(3)根据几何体的表面积计算公式求表面积. 由展开图确定三视图:(1)由表面展开图确定物体的形状; (2)画出物体的三视图;(3)图或题中所给数据的合理转化.【跟踪训练】 (《名校课堂》29.2第3课时习题)一个几何体的三视图如图所示,它的俯视图为菱形.请写出该几何体的形状,并根据图中所给的数据求出它的侧面积.解:该几何体的形状是直四棱柱.由三视图知,棱柱底面菱形的对角线长分别为4 cm ,3 cm. ∴菱形的边长为(32)2+(42)2=52(cm), 棱柱的侧面积为52×8×4=80(cm 2).04 巩固训练1.一个几何体的三视图如下:其中主视图都是腰长为4、底边为2的等腰三角形,则这个几何体的侧面展开图的面积为(C)A.2πB.12π C.4π D.8π2.长方体的主视图与俯视图如图所示,则这个长方体的体积是(C)A.52B.32C.24D.93.如图是一个几何体的三视图(含有数据),则这个几何体的展开图侧面积等于(A)A.2πB.12π C.4 D.24.如图是一个立体图形的三视图,请写出这个立体图形的名称,并计算这个立体图形的体积.(结果保留π)解:这个立体图形为圆柱,其中高是10,底面圆的半径为5,所以体积为π×52×10=250π.05课堂小结1.由三视图求几何体的表面积和体积,可首先根据三视图想象出几何体,然后进行几何体的相关计算.2.利用几何体的表面展开图可以计算几何体的表面积以确定实际生产中的用料问题,还可以解决一些最优化问题,可以起到化曲折为平直的作用;用到“空间问题平面化”的数学思想.。
人教版九年级数学下册《第二十九章投影与视图》教案一. 教材分析《人教版九年级数学下册》第二十九章《投影与视图》是学生在学习了平面几何、立体几何的基础上,进一步研究三视图、投影等知识。
这一章节的内容既巩固了学生以前所学的几何知识,又为后续的立体几何学习打下基础。
本章主要包括以下几个知识点:1.投影的概念和分类2.正投影和斜投影3.视图的概念和分类4.一视图、二视图、三视图的画法5.几何体的三视图二. 学情分析学生在学习本章内容前,已经掌握了平面几何的基本知识,对几何图形的认知有一定的基础。
但投影与视图的概念对于他们来说比较抽象,需要通过具体的实例和实践活动来理解和掌握。
另外,学生对于空间想象能力的培养还不够,需要在教学过程中加强训练。
三. 教学目标1.让学生理解投影的概念,掌握正投影和斜投影的性质。
2.让学生掌握视图的分类,学会画一视图、二视图、三视图。
3.培养学生空间想象能力,提高他们解决实际问题的能力。
四. 教学重难点1.投影的概念和分类2.正投影和斜投影的性质3.视图的画法4.空间想象能力的培养五. 教学方法1.采用直观演示法,通过实物和模型展示投影与视图的概念和性质。
2.采用实践操作法,让学生动手画一视图、二视图、三视图,培养空间想象能力。
3.采用问题驱动法,引导学生思考和探讨,提高他们解决问题的能力。
六. 教学准备1.准备投影仪、实物、模型等教学道具。
2.准备相关的练习题和测试题。
3.准备黑板和粉笔。
七. 教学过程1. 导入(5分钟)教师通过展示实物和模型,引导学生观察和思考,让学生初步认识投影和视图的概念。
2. 呈现(10分钟)教师通过投影仪展示PPT,详细讲解投影的分类、正投影和斜投影的性质,以及视图的分类和画法。
3. 操练(10分钟)学生分组进行实践活动,每组选择一个几何体,分别画出它的三视图。
教师巡回指导,解答学生疑问。
4. 巩固(10分钟)教师出示一些练习题,让学生独立完成,检查他们对于投影与视图知识的掌握程度。
第二十九章投影与视图投影第1课时平行投影与中心投影教学目标【知识与技能】1.经历实践探索,了解投影、平行投影和中心投影的概念;2.了解平行投影和中心投影的区别.【过程与方法】经历观察、思考的过程,感受生活中的投影广泛存在着,从中体会平行投影与中心投影的联系和区别.【情感态度】使学生学会关注生活中有关投影的数学问题,提高数学应用意识.【教学重点】掌握投影的含义,体会中心投影与平行投影的联系和区别.【教学难点】中心投影与平行投影的联系与区别.教学过程一、情境导入,初步认识物体在日光或灯光的照射下,会在地面、墙壁等处形成影子.请观察下面三幅图片,感受日常生活中的一些投影现象,并引入教材练习以加深理解.二、思考探究,获取新知一般地,用光线照射物体,在某个平面(地面、墙壁等)上得到的影子叫做物体的投影,照射光线叫做投影线,投影所在的平面叫做投影面.有时光线是一组互相平行的射线,如太阳光或探照灯光的一束光中的光线.由平行光线形成的投影是平行投影,例如物体在太阳光的照射下形成的影子(简称日影)就是平行投影.由同一点(点光源)发出的光线形成的投影叫做中心投影,如物体在灯泡发出的光照射下形成影子就是中心投影.如图所示的是三角尺在灯光(点光源)下的投影.由此可以看出点光源下物体的投影是物体的放大图形,这两个图形是位似图形.【思考】如何判断一个物体的投影是平行投影还是中心投影呢?【教学说明】学生间相互交流,进一步体验平行投影和中心投影的关系.【归纳结论】如果投影与物体的对应点连线互相平行,则此时的投影是平行投影,如果对应点的连线交于一点,则此时的投影为中心投影.三、典例精析,掌握新知(2) 当乙木杆移动到什么位置时,其影子刚好不落在墙上?(3)在(2)的情况下,如果测得甲、乙木杆的影子长分别为和1m,那么你能求出甲木杆的高度吗?例2 请举出生活中的投影现象,说说它们是平行投影还是中心投影?【教学说明】本环节的两个问题都可让学生自主探究或相互交流.教师巡视指导,听取学生的观点,加深对知识的理解.四、师生互动,课堂小结通过这节课的学习你有哪些收获?你还有什么疑问?【教学说明】师生共同回顾本节知识,在相互交流中巩固新知.当堂测评2. 下面属于中心投影的是 ( )A. 太阳光下的树影B. 皮影戏C. 月光下房屋的影子D. 海上日出3. 晚上,人在马路上走过一盏路灯的过程中,其影子长度的变化情况是( )A. 先变短后变长B. 先变长后变短C. 逐渐变短D. 逐渐变长4. 小玲和小芳两人身高相同,两人站在灯光下的不同位置,已知小玲的影子比小芳的影子长,则可以判定小芳离灯光较______.(填“远”或“近”) .5.小亮在上午8时、9时30分、10时、12时四次到室外的阳光下观察广场的旗杆随太阳转动的情况,无意之中,他发现这四个时刻广场的旗杆在地面上的影子的长度各不相同,那么影子最长的时刻为-----综合应用:如图,路灯(P点)距地面8米,身高米的小明从距路灯的底部(O点)20米的A点沿OA所在的直线行走14米到B点时,影子的长度是变长了还是变短了?变长或变短了多少米?教学反思本课时通过引入具体情境,让学生感受平行投影与中心投影的特征,进而探讨中心投影与平行投影的区别与联系,这进一步发展了学生的抽象概括能力.。
班级姓名学号分数第二十九章投影与视图(A卷·知识通关练)核心知识1. 投影1.下列各种现象属于中心投影的是()A.晚上人走在路灯下的影子B.中午用来乘凉的树影C.上午人走在路上的影子D.阳光下旗杆的影子【分析】根据中心投影的性质,找到是灯光的光源即可.【解答】解:中心投影的光源为灯光,平行投影的光源为阳光与月光,在各选项中只有A选项得到的投影为中心投影.故选:A.【点评】此题主要考查了中心投影的性质,解决本题的关键是理解中心投影的形成光源为点还是平行光线.2.如图,小亮居住的小区内有一条笔直的小路,小路的正中间有一路灯,晚上小亮由A处径直走到B处,他在灯光照射下的影长l与行走的路程S之间的变化关系用图象刻画出来,大致图象是()A.B.C.D.【分析】根据中心投影的性质得出小亮在灯下走的过程中影长随路程之间的变化,进而得出符合要求的图象.【解答】解:小路的正中间有一路灯,晚上小亮由A处径直走到B处,他在灯光照射下的影长l与行走的路程S之间的变化关系应为:当小亮走到灯下以前:l随S的增大而减小;当小亮走到灯下以后再往前走时:l 随S 的增大而增大,∴用图象刻画出来应为B .故选:B .【点评】此题主要考查了函数图象以及中心投影的性质,得出l 随S 的变化规律是解决问题的关键.3.如图,11A B 是线段AB 在投影面P 上的正投影,20AB cm =,170ABB ∠=︒,则投影11A B 的长为( )A .20sin70cm ︒B .20cos70cm ︒C .20tan70cm ︒D .20sin 70cm ︒【分析】如图,过点A 作1AH BB ⊥于点H ,则四边形11AHB A 是矩形,解直角三角形求出AH ,可得结论.【解答】解:如图,过点A 作1AH BB ⊥于点H ,则四边形11AHB A 是矩形,11AH A B ∴=,在Rt ABH ∆中,sin7020sin70()AH AB cm =⋅︒=⋅︒,1120sin 70()A B AH cm ∴==︒.故选:A .【点评】本题考查平行投影,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.4.如图所示,表示两棵小树在同一时刻阳光下的影子的图形可能是( )A.B.C.D.【分析】平行投影特点:在同一时刻,不同物体的影子同向,且不同物体的物高和影长成比例.【解答】解:A、影子的方向不相同,故本选项错误;B、影子平行,且较高的树的影子长度大于较低的树的影子,故本选项正确;C、相同树高与影子是成正比的,较高的树的影子长度小于较低的树的影子,故本选项错误;D、影子的方向不相同,故本选项错误;故选:B.【点评】本题考查了平行投影特点,难度不大,注意结合选项判断.5.人从路灯下走过时,影子的变化是()A.长→短→长B.短→长→短C.长→长→短D.短→短→长【分析】由题意易得,离光源是由远到近再到远的过程,根据中心投影的特点,即可得到身影的变化特点.【解答】解:因为人在路灯下行走的这一过程中离光源是由远到近再到远的过程,所以人在地上的影子先变短后变长.故选:A.【点评】本题综合考查了中心投影的特点和规律.中心投影的特点是:①等高的物体垂直地面放置时,在灯光下,离点光源近的物体它的影子短,离点光源远的物体它的影子长.②等长的物体平行于地面放置时,在灯光下,离点光源越近,影子越长;离点光源越远,影子越短,但不会比物体本身的长度还短.6.由四个相同小立方体拼成的几何体如图所示,当光线由上向下垂直照射时,该几何体在水平投影面上的正投影是()A.B.C.D.【分析】根据平行投影的定义进行判定即可得出答案.【解答】解:根据题意可得,当光线由上向下垂直照射时,该几何体在水平投影面上的正投影有4个小正方形组成,如图.故选:A.【点评】本题主要考查了平行投影,熟练掌握平行投影的应用进行求解是解决本题的关键.7.太阳发出的光照在物体上是(),路灯发出的光照在物体上是()A.平行投影,中心投影B.中心投影,平行投影C.平行投影,平行投影D.中心投影,中心投影【分析】根据平行投影与中心投影的定义判断即可.【解答】解:太阳发出的光照在物体上是平行投影,路灯发出的光照在物体上是中心投影.故选:A.【点评】本题考查中心投影,平行投影等知识,解题的关键是理解中心投影,平行投影的定义,属于中考常考题型.8.下列现象是物体的投影的是()A.灯光下猫咪映在墙上的影子B.小明看到镜子里的自己C .自行车行驶过后车轮留下的痕迹D .掉在地上的树叶【分析】利用投影的定义确定答案即可.【解答】解:A 、灯光下猫咪映在墙上的影子是投影,符合题意;B 、小明看到镜子里的自己是镜面对称,不是投影,不符合题意;C 、自行车行驶过后车轮留下的痕迹不是投影,不符合题意;D 、掉在地上的树叶不是投影,不符合题意,故选:A .【点评】考查了中心投影和中心对称的知识,判断投影是中心投影的方法是看光线是否相交于一点,如果光线是相交于一点,那么所得到的投影就是中心投影.9.如图,在平面直角坐标系中,点光源位于(2,2)P 处,木杆AB 两端的坐标分别为(0,1),(3,1).则木杆AB 在x 轴上的影长CD 为( )A .3B .5C .6D .7【分析】利用中心投影,作PE x ⊥轴于E ,交AB 于M ,如图,证明PAB CPD ∆∆∽,然后利用相似比可求出CD 的长.【解答】解:过P 作PE x ⊥轴于E ,交AB 于M ,如图,(2,2)P ,(0,1)A ,(3,1)B .1PM ∴=,2PE =,3AB =,//AB CD ,∴AB PM CD PE =, ∴312CD =, 6CD ∴=,故选:C .【点评】本题考查了中心投影:中心投影的光线特点是从一点出发的投射线.物体与投影面平行时的投影是放大(即位似变换)的关系.10.如图,EB 为驾驶员的盲区,驾驶员的眼睛点P 处与地面BE 的距离为1.6米,车头FACD 近似看成一个矩形,且满足32FD FA =,若盲区EB 的长度是6米,则车宽FA 的长度为( )米.A .117B .127C .137D .2 【分析】通过作高,利用相似三角形的对应高的比等于相似比,列方程求解即可.【解答】解:如图,过点P 作PM BE ⊥,垂足为M ,交AF 于点N ,则 1.6PM =,设FA x =米,由32FD FA =得,23FD x MN ==, 四边形ACDF 是矩形,//AF CD ∴, PAF PBE ∴∆∆∽,∴PN FA PM EB=, 即1.66PN x =, 415PN x ∴=, PN MN PM +=,∴42 1.6153x x +=, 解得,127x =, 故选:B .【点评】本题考查视点、视角、盲区的意义,此类问题可以转化为相似三角形的知识进行解答.核心知识2.简单几何体的三视图11.下列几何体中,从左面看到的形状为三角形的是()A.B.C.D.【分析】四个几何体的左视图:长方体是长方形,圆锥是等腰三角形,圆柱是矩形,三棱锥是长方形,由此可确定答案.【解答】解:因为圆柱、三棱锥的左视图是矩形,圆锥的左视图是等腰三角形,长方体的左视图是长方形,故左视图是三角形的几何体是圆锥;故选:B.【点评】本题主要考查三视图的左视图的知识;考查了学生的空间想象能力,属于基础题.12.如图所示,下列几何体中主视图是圆的是()A.B.C.D.【分析】根据球体、圆锥、圆柱、正方体的主视图的形状进行判断即可.【解答】解:球体的主视图是圆,圆锥体的主视图是三角形,圆柱的主视图是长方形,正方体的主视图是正方形,故选:A.【点评】本题考查简单几何体的三视图,掌握圆柱、圆锥、正方体、球的三视图的形状是正确判断的前提.13.如图的四个几何体,它们各自从正面,上面看得到的形状图不相同的几何体的个数是()A.1 B.2 C.3 D.4【分析】根据三视图的定义一一判断即可.【解答】解:正方体的主视图,俯视图相同,都是正方形;三棱柱的主视图是矩形(包括中间的一条虚线),俯视图是三角形.圆柱的主视图是矩形,俯视图是圆.圆锥的主视图是三角形,俯视图是圆(包括圆心).故选:C.【点评】本题考查简单几何体的三视图,解题的关键是理解三视图的定义,属于中考常考题型.14.襄阳牛杂面因襄阳籍航天员聂海胜的一句“最想吃的还是我们襄阳的牛杂面”火爆出圈,引发了全国人民的聚焦和关注.襄阳某品牌牛杂面的包装盒及对应的立体图形如图所示,则该立体图形的主视图为()A.B.C.D.【分析】根据主视图的意义,从正面看该立体图形所得到的图形进行判断即可.【解答】解:从正面看,是一个矩形,故选:A.【点评】本题考查简单几何体的主视图,理解视图的意义,掌握三视图的画法是正确判断的前提.15.下面立体图形中,从左面看到的平面图形与其他三个不一样的是()A.B.C.D.【分析】A,B,D从左面看到的图形为三角形,C从左面看到的图形为长方形.【解答】解:A,B,D从左面看到的图形为三角形,C从左面看到的图形为长方形,故选:C.【点评】本题考查了常见几何体三视图的相关知识,关键在于要知道从哪个方位进行观察.16.分别观察如图所示几何体,其中主视图、左视图和俯视图完全相同的有()A.1个B.2个C.3个D.4个【分析】根据主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形解答即可.【解答】三棱柱的主视图和俯视图是矩形,左视图是三角形;球的三视图都是圆;圆柱的主视图和左视图是矩形,俯视图是圆;正方体的三视图都是正方形.所以主视图、左视图和俯视图完全相同的有2个.故选:B.【点评】本题考查的是几何体的三视图,理解主视图、左视图、俯视图是分别从物体正面、左面和上面看所得到的图形是解题的关键.17.如图,从左面观察这个立体图形,得到的平面图形是()A.B.C.D.【分析】根据解答组合体的三视图的画法画出左视图即可.【解答】解:这个组合体的左视图如下:故选:A.【点评】本题考查简单组合体的三视图,理解视图的定义,掌握简单组合体的三视图的画法及形状是正确解答的前提.18.如图是由6块相同的小正方体组成的立体图形,从左面看到的形状是()A.B.C.D.【分析】根据简单组合体的三视图得出结论即可.【解答】解:根据题意知,组合体的左视图为,故选:B.【点评】本题主要考查简单组合体的三视图,熟练掌握简单组合体的三视图是解题的关键.19.如图,将一个规则几何体的上半部分钻一个圆孔,则该几何体的俯视图是()A.B.C.D.【分析】根据几何体的俯视图得出结论即可.【解答】解:由题意知,几何体的俯视图为,故选:A.【点评】本题主要考查几何体的三视图,熟练掌握几何体的三视图是解题的关键.20.图所示的几何体的左视图是()A.B.C.D.【分析】根据简单组合体的三视图得出结论即可.【解答】解:由题意知,几何体的左视图为,故选:B.【点评】本题主要考查简单组合体的三视图,熟练掌握简单组合体的三视图是解题的关键.21.如图,该几何体的左视图是()A.B.C.D.【分析】根据几何体的左视图得出结论即可.【解答】解:根据题意知,几何体的左视图为,故选:D.【点评】本题主要考查简单组合体的三视图,熟练掌握简单组合体的三视图是解题的关键.22.如图,是由两个正方体组成的几何体,则从上面看该几何体的形状图为()A.B.C.D.【分析】找到从上面看所得到的图形即可.【解答】解:从上面看到的几何体的形状图是C,故选:C.【点评】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.23.如图所示的几何体的左视图()A.B.C.D.【分析】根据从左边看得到的图形是左视图,可得答案.【解答】解:从左边看,是一个矩形,矩形的中间有一条横向的虚线,故选:C.【点评】本题考查了简单组合体的三视图,从左边看得到的图形是左视图.24.一个圆柱和正三棱柱组成的几何体如图水平放置,其主视图是()A.B.C.D.【分析】根据简单组合体的三视图的定义画出其主视图即可.【解答】解:这个组合体的主视图如下:故选:B.【点评】本题考查简单组合体的三视图,理解视图的定义掌握简单组合体三视图的画法是正确解答的前提.核心知识3.由三视图判断几何体25.已知圆锥的三视图及相关数据如图所示,则这个圆锥的侧面展开图(扇形)的圆心角度数为( )A .270︒B .216︒C .108︒D .135︒【分析】根据展开图的扇形的弧长等于圆锥底面周长计算.【解答】解:观察三视图得:圆锥的底面半径为3cm ,高为4cm ,所以圆锥的母线长为5cm ,56180n ππ=, 解得216n =︒.故选:B .【点评】考查了圆锥的计算,圆锥的侧面展开图是一个扇形,此扇形的弧长等于圆锥底面周长,扇形的半径等于圆锥的母线长.本题就是把的扇形的弧长等于圆锥底面周长作为相等关系,列方程求解.26.一个几何体由大小相同的小立方块搭成,它的俯视图如图所示,其中小正方形中的数字表示在该位置小立方块的个数,则该几何体的左视图为( )A .B .C.D.【分析】由已知条件可知,左视图有3列,每列小正方形数目分别为3,2,1.据此可作出判断.【解答】解:该几何体的左视图为.故选:A.【点评】本题考查了几何体的三视图的画法,从正面看的图形是主视图,从左面看到的图形是左视图,从上面看到的图形是俯视图.27.用3个大小相同的小正方体搭成的几何体,从三个方向看到的形状图如图所示,则这个几何体可能是( )A.B.C.D.【分析】在俯视图上摆小立方体,确定每个位置上摆小立方体的个数,得出答案.【解答】解:在俯视图标出相应位置摆放小立方体的个数,如图所示:则这个几何体可能是.故选:B.【点评】本题考查了学生对三视图的掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,主视图疯狂盖,左视图拆违章”就更容易得到答案.28.如图是从三个方向看到的由一些相同的小正方体构成的几何体的形状图,则构成这个几何体的小正方体的个数是()A.8 B.7 C.6 D.5【分析】由主视图易得这个几何体共有2层,由俯视图可得第一层立方体的个数,由主视图和左视图可得第二层立方体的个数,相加即可.【解答】解:由三视图易得最底层有6个正方体,第二层有2个正方体,那么共有628+=个正方体组成.故选:A.【点评】此题主要考查了学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.29.如图四个由小正方体拼成的立体图形中,从正面看是的是()A.B.C.D.【分析】先画出各个图形从正面看的视图,再判断即可.【解答】解:A、图形从正面看得出的图形为,故本选项不符合题意;B、图形从正面看得出的图,故本选项不符合题意;C、图形从正面看得出的图形为,故本选项符合题意;D、图形从正面看得出的图形为,故本选项不符合题意;故选:C.【点评】本题考查了简单组合体的三视图,能理解三视图的定义是解此题的关键.30.一个几何体是由7个完全相同的小正方体搭建而成的,从上面看到的形状图如图所示,则从正面看到的形状图不可能是()A.B.C.D.【分析】根据俯视图可知最下面一层有6个小正方体,所以第二层有1个,即可判断出答案.【解答】解:根据俯视图可知最下面一层有6个小正方体,所以第二层有1个,所以主视图不可能为C.故选:C.【点评】本题考查了简单组合体的三视图,利用了主视图的定义.考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.31.一个立体图形,从上面看到的平面图形,从左面看到的平面图形,搭成这样的几何体所需要的小正方体个数为()A.5 B.6 C.7 D.5或6【分析】根据从上面看到的图形结合从左面看到的图形,可以确定这个立体图形需要小正方体的个数.【解答】解:如图,这个几何体需要的小正方体个数为21115+++=(个)或22116+++=(个).故选:D.【点评】本题考查由三视图判定几何体,简单的三视图等知识,解题的关键是理解三视图的定义,属于中考常考题型.32.一个长方体,从左面、上面看得到的图形及相关数据如图,则从正面看该几何体所得到的图形的面积为()A.6 B.8 C.12 D.9【分析】先根据从左面、从上面看到的形状图的相关数据可得,从正面看到的形状图是长为4宽为2的长方形,再根据长方形的面积公式计算即可.【解答】解:根据从左面、从上面看到的形状图的相关数据可得:从正面看到的形状图是长为4宽为2的长方形,则从正面看到的形状图的面积是428⨯=;故选:B.【点评】此题考查了由三视图判断几何体,关键是根据从左面、从上面看到的形状图的相关数据得出从正面看到的形状图是长为4宽为2的长方形.33.如图,三视图所对应的立体图形是下面的()A.圆柱B.正方体C.三棱柱D.长方体【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,根据给出的三视图,分析、判定出即可.【解答】解:根据题意,从俯视图中知,这个立体图形有3条棱,底面为三角形,从左视图中可知,侧面是长方形,从主视图可知,正面是长方形,因此,符合条件的几何体是三棱柱.故选:C .【点评】本题主要考查了由三视图判定几何体,主要考查了学生的抽象思维能力和空间想象能力.34.一个几何体的三视图如图所示,其中俯视图为正三角形,则该几何体的左视图中a 的值为()A .1.8B .1.7C 3D .2【分析】根据三视图的定义以及正三角形的性质进行计算即可.【解答】解:如图,由图形中所标识的数据可知,在俯视图中,2AB =,ABC ∆是正三角形,过点C 作CM AB ⊥于M ,112AM BM AB ∴===,33CM AM ∴==,即左视图中a 3故选:C .【点评】本题考查由三视图判断几何体,简单几何体的三视图,理解视图的定义,掌握简单几何体三视图的形状以及正三角形的性质是解决问题的前提.35.一个圆锥体容器的主视图如图1所示,向其中注入一部分水后,水的高度如图2所示,则图2中,上水面所在圆的半径长为( )A .1cmB .2cmC .3cmD .6cm【分析】根据相似三角形的性质列出算式计算即可求解.【解答】解:设上水面所在圆的半径长为为x cm ,依题意有:2123812x -=, 解得3x =.故选:C .【点评】本题考查了由三视图判断几何体,关键是得到上水面所在三角形与主视图所在三角形相似.。
人教版九年级数学下册《第二十九章投影与视图》教学设计一. 教材分析人教版九年级数学下册《第二十九章投影与视图》是学生在学习了平面几何、立体几何等相关知识后,对三维空间进行进一步探索的一章。
本章主要内容有:三视图、斜二测画法、简单几何体的直观图等。
通过本章的学习,使学生掌握投影的基本原理,提高学生的空间想象能力,培养学生运用几何知识解决实际问题的能力。
二. 学情分析九年级的学生已经具备了一定的几何知识基础,对平面几何、立体几何有一定的了解。
但学生在空间想象力方面存在差异,部分学生对三维空间的认知仍较为困难。
此外,学生在学习过程中,往往对理论知识较感兴趣,但对实际操作、动手能力培养方面略显不足。
三. 教学目标1.理解投影的概念,掌握正投影、斜投影的性质及作法。
2.学会用三视图观察几何体,提高空间想象力。
3.掌握斜二测画法,能运用斜二测画法画出简单几何体的直观图。
4.能运用投影与视图的知识解决实际问题。
四. 教学重难点1.投影的基本原理及正投影、斜投影的性质。
2.三视图的作法及应用。
3.斜二测画法的原理及应用。
五. 教学方法1.采用讲授法,讲解投影的基本原理,正投影、斜投影的性质。
2.采用示范法,展示三视图的作法,引导学生动手实践。
3.采用案例分析法,分析实际问题,培养学生运用投影与视图知识解决问题的能力。
4.采用小组讨论法,分组探讨,提高学生的合作能力。
六. 教学准备1.准备投影仪、几何模型等教具。
2.制作多媒体课件,包括投影原理、三视图作法等教学内容。
3.准备实际问题案例,用于课堂讨论。
七. 教学过程1.导入(5分钟)利用投影仪展示几何模型,引导学生观察,提出问题:“请大家思考,这个几何体在投影过程中,会呈现出哪些特点?”从而引出投影的概念。
2.呈现(10分钟)讲解正投影、斜投影的性质,通过多媒体课件展示各种几何体在正投影、斜投影下的图像,让学生直观地理解投影的性质。
3.操练(10分钟)讲解三视图的作法,引导学生动手实践,尝试绘制简单几何体的三视图。
九年级数学(下)第二十九章《投影与视图》全章测试题一、选择题1.平行投影中的光线是( )A.平行的B.聚成一点的C.不平行的D.向四面八方发散2.正方形在太阳光下的投影不可能是( )A.正方形B.一条线段C.矩形D.三角形3.如图1,将一块正方形纸片沿对角线折叠一次,然后在得到的三角形的三个角上各挖去一个圆洞,最后将正方形纸片展开,得到的图案是( )4.由一些完全相同的小立方块搭成的几何体的三视图如图所示,那么搭成这个几何体所用的小立方块的个数是( )第4题图A.8 B.7 C.6 D.5 5.如图是某几何体的三视图及相关数据,则判断正确的是( )第5题图A.a>c B.b>cC.4a2+b2=c2D.a2+b2=c26.若干个正方体形状的积木摆成如图所示的塔形,平放于桌面上,上面正方体的下底四个顶点是下面相邻正方体的上底各边中点,最下面的正方体棱长为1,如果塔形露在外面的面积超过7,则正方体的个数至少是( )A.2 B.3C.4 D.5二、填空题7.一个圆柱的俯视图是______,左视图是______.8.如果某物体的三视图如图所示,那么该物体的形状是______.第8题图9.一空间几何体的三视图如图所示,则这个几何体的表面积是______cm2.第9题图10.如图,水平放置的长方体的底面是边长为2和4的矩形,它的左视图的面积为6,则长方体的体积等于______.三、解答题11.楼房、旗杆在路灯下的影子如图所示.试确定路灯灯炮的位置,再作出小树在路灯下的影子.(不写作法,保留作图痕迹)12.画出图中的九块小立方块搭成几何体的主视图、左视图和俯视图.13.如图是由几个小立方块所搭几何体的俯视图,小正方形中的数字表示该位置小立方块的个数,请画出这个几何体的主视图和左视图.14.如图是一个几何体的主视图和俯视图,求该几何体的体积( 取3.14).15.拿一张长为a,宽为b的纸,作一圆柱的侧面,用不同的方法作成两种圆柱,画出图形并求这两种圆柱的表面积.答案与提示第二十九章 投影与视图全章测试1.A . 2.D . 3.A . 4.A . 5.D . 6.B . 7.圆;矩形. 8.三棱柱. 9.48π. 10.24. 11.如图:12.如图:13.如图:14.体积为π×102×32+30×25×40≈40 048(cm 3).15.第一种:高为a ,表面积为;π221b ab S +=第二种:高为b ,表面积为⋅+=π222a ab S。
第29章投影与三视图一、目标与要求1.会从投影的角度理解视图的概念2.会画简单几何体的三视图3.通过观察探究等活动使学生知道物体的三视图与正投影的相互关系及三视图中位置关系、大小关系4.明确正投影与三视图的关系5.经历探索简单立体图形的三视图的画法,能识别物体的三视图6.培养动手实践能力,发展空间想象能力。
二、知识框架四、重点、难点重点:从投影的角度加深对三视图的理解和会画简单的三视图,能够做出简单立体图形的三视图的画法。
难点:对三视图概念理解的升华及正确画出三棱柱的三视图,三视图中三个位置关系的理解。
四、中考所占分数及题型分布本章在中考中会出1道选择或者填空,也有可能不出。
在简答题中会在几何题中穿插应用,本章约占3-5分。
第29章 投影与三视图29.1 投影1.投影:用光线照射物体,在某个平面(地面、墙壁等)上得到的影子叫做物体的投影,照射光线叫做投影线,投影所在的平面叫做投影面。
2.平行投影:有时光线是一组互相平行的射线,例如太阳光或探照灯光的一束光中的光线。
由平行光线形成的投影是平行投影.3.中心投影:由同一点(点光源发出的光线)形成的投影叫做中心投影。
4.正投影:投影线垂直于投影面产生的投影叫做正投影。
例.把一根直的细铁丝(记为线段AB)放在三个不同位置:(1)铁丝平行于投影面;(2)铁丝倾斜于投影面;(3)铁丝垂直于投影面(铁丝不一定要与投影面有公共点).三种情形下铁丝的正投影各是什么形状?通过观察、测量可知:(1)当线段AB 平行于投影面P 时,它的正投影是线段11A B ,线段与它的投影的大小关系为11AB A B =;(2)当线段AB 倾斜于投影面P 时,它的正投影是线段22A B ,线段与它的投影的大小关系为22AB A B =;(3)当线段AB 垂直于投影面P 时,它的正投影是一个点3A .例.把一正方形硬纸板P (记正方形ABCD )放在三个不同位置:(1)纸板平行于投影面;(2)纸板倾斜于投影面;(3)纸板垂直于投影面。
第二十九章投影与视图一、投影1、投影、投影面:一般地.用光线照射物体。
在某个平面(地面、墙壁等)上得到的影子叫做物体的投影.照射光线叫做投影线,投影所在的平面叫做投影面。
2、平行投影:由平行光线形成的投影是平行投影(太阳光或探照灯光是平行光线)3、中心投影:由同一点(点光源)发出的光线形成的投影叫做中心投影.例如.物体在灯泡发出的光照射下形成影子就是中心投影.5、下图表示一块三角尺在光线照射下形成投影,其中哪个是平行投影哪个是中心投影?图(2) (3)的投影线与投影面的位置关系有什么区别?1()2()3()结论:图(1)中的投影线集中于一点,形成中心投影;图(2) (3)中,投影线互相平行,形成平行投影;图(2)中,投影线斜着照射投影面;图(3)中投影线垂直照射投影面〔即投影线正对着投影面).指出:在平行投影中,如果投射线垂直于投影面,那么这种投影就称为正投影。
图(3)是正投影。
练习一1.皮影戏是在哪种光照射下形成的()A.灯光 B.太阳光 C.平行光 D.都不是2.下列各种现象属于中心投影现象的是()A.上午10点时,走在路上的人的影子 B.晚上10点时,走在路灯下的人的影子 C.中午用来乘凉的树影 D.升国旗时,地上旗杆的影子3.小刚走路时发现自己的影子越走越长,这是因为()A.从路灯下走开,离路灯越来越远 B.走到路灯下,离路灯越来越近C.人与路灯的距离与影子长短无关 D.路灯的灯光越来越亮4.两个物体映在地上的影子有时在同侧,有时在异侧,则这可能是________投影.5.如图1,AB和DE是直立在地面上的两根立柱,AB=5米,某一时刻AB•在阳光下的投影BC=3米,在测量AB的投影时,同时测量出DE在阳光下的投影长为6米,则DE的长为_ .6.如图2,AB,CD是两根木杆,它们在同一平面内的同一直线M N上,则下列有关叙述正确的是 ( ) A .若射线BN 正上方有一盏路灯,则AB ,CD 的影子都在射线BN 上;B .若线段BD 正上方有一盏路灯,则AB 的影子在射线B M 上,CD 的影子在射线DN 上;C .若在射线DN 正上方有一盏路灯,则AB ,CD 的影子都在射线BN 上; D .若太阳处在线段BD B 中相同.7.在一盏路灯的周围有一圈栏杆,则下列叙述中不正确的是 ( ) A .若栏杆的影子落在围栏里,则是在太阳光照射下形成的 B .若这盏路灯有影子,则说明是在白天形成的影子C .若所有的栏杆的影子都在围栏外,则是在路灯照射下形成的D .若所有的栏杆的影子都在围栏外,则是在太阳光照射下形成的8.如图3,BE ,DF 是甲,乙两人在路灯下形成的影子,•请在图中画出灯泡的位置。
第二十九章投影与视图教材简析本章的主要内容有:(1)平行投影、中心投影的概念和简单应用以及正投影的成像规律;(2)三视图的概念、画法以及根据三视图描述基本几何体或实物原型;(3)直棱柱、圆锥的侧面展开图,以及根据平面展开图判断和制作立体模型.本章内容在数学学习中起着承上启下的作用,学生已经学习过“图形的初步知识”“图形和变换”等几何知识,在此基础上本章继续研究“投影与视图”,它是反映空间观念的重要内容,也为高中学习立体几何作了铺垫.教学指导【本章重点】1.掌握平行投影和中心投影的简单应用.2.会画简单图形的三视图.3.能根据三视图描述基本几何体或实物的原型.【本章难点】根据三视图描述基本几何体或实物原型,理解基本几何体与其三视图、展开图之间的联系,通过典型实例知道这种关系在现实生活中的应用.【本章思想方法】1.体会转化思想.在本章的学习中,把立体图形的问题通过三视图转化为平面图形的问题,实物的投影也是立体图形与平面图形的相互转化,这都体现了转化思想.同时还要注重空间想象力的培养.2.体会方程思想.在根据平行投影或中心投影的性质,结合三角形建立比例式构造方程进行相关计算时,体现了方程思想的应用.课时计划29.1投影2课时29.2三视图3课时29.3课题学习制作立体模型1课时29.1投影第1课时投影教学目标一、基本目标【知识与技能】1.通过实践探索,了解投影、投影面、平行投影和中心投影的概念.2.能够确定物体在平行光线和点光源发出的光线在某一平面上的投影.【过程与方法】通过联系生活实际,初步感受平行投影和中心投影,体会数学与生活之间的密切联系.【情感态度与价值观】使学生学会关注生活中有关投影的数学问题,提高数学的应用意识,增强学好数学的信心.二、重难点目标【教学重点】理解平行投影和中心投影的特征.【教学难点】在投影面上画出平面图形的平行投影或中心投影.教学过程环节1自学提纲,生成问题【5 min阅读】阅读教材P87~P88的内容,完成下面练习.【3 min反馈】1.一般地,用光线照射物体,在某个平面(地面、墙壁等)上得到的影子,叫做物体的投影,照射光线叫做投影线,投影所在的平面叫做投影面.2.由平行光线形成的投影叫做平行投影,由同一点(点光源)发出的光线形成的投影叫做中心投影.3.皮影戏是利用平行投影(填“平行投影”或“中心投影”)的一种表演艺术.4.如图,在灯光下,四个选项中,灯光与物体的影子最合理的是(A)环节2合作探究,解决问题活动1小组讨论(师生互学)【例1】晚上小亮在路灯下散步,在小亮从远处走到灯下,再远离路灯这一过程中,他在地上的影子()A.逐渐变短B.先变短后变长C.先变长后变短D.逐渐变长【互动探索】(引发学生思考)灯光的照射属于中心投影还是平行投影?其投影有什么特征?【分析】晚上小亮在路灯下散步,当小亮从远处走到灯下的时候,他在地上的影子由长变短,当他再远离路灯的时候,他在地上的影子由短变长.故选B.【答案】B【互动总结】(学生总结,老师点评)中心投影的光线特点是从一点出发的投射线.物体与投影面平行时的投影是放大(即位似变换)的关系.【例2】如图所示,AB和DE是直立在地面上的两根立柱,AB=5 m,某一时刻AB在阳光下的投影BC=3 m.(1)请在图中画出此时DE在阳光下的投影;(2)在测量AB的投影时,同时测量出DE在阳光下的投影长为6 m,请你计算DE的长.【互动探索】(引发学生思考)阳光下的投影属于中心投影还是平行投影?其投影有什么特征?【解答】(1)如图所示,连结AC,过点D作DF∥AC,交直线BC于点F,线段EF即为DE的投影.(2)∵AC∥DF,∴∠ACB=∠DFE.又∵∠ABC=∠DEF=90°,∴△ABC∽△DEF,∴ABDE=BCEF,即5DE=36,∴DE=10 m.【互动总结】(学生总结,老师点评)在同一时刻的物体高度与影长的关系:物体高度物体影长=另一物体的高度另一物体的影长.活动2 巩固练习(学生独学) 1.下列结论正确的有( B )①同一时刻物体在阳光照射下影子的方向是相同的; ②物体在任何光线照射下影子的方向都是相同的; ③物体在路灯照射下,影子的方向与路灯的位置有关; ④物体在光线照射下,影子的长短仅与物体的长短有关. A .1个 B .2个 C .3个D .4个2.如图所示,光源P 在横杆AB 的正上方,AB 在灯光下的影子为CD ,AB ∥CD ,AB =2 m ,CD =6 m ,点P 到CD 的距离是2.7 m ,则AB 与CD 之间的距离是1.8m.3.李航想利用太阳光测量楼高,他带着皮尺来到一栋楼下,发现对面墙上有这栋楼的影子,针对这种情况,他设计了一种测量方案,具体测量方法如下:如示意图,李航边移动边观察,发现站到点E 处时,可以使自己落在墙上的影子与这栋楼落在墙上的影子重叠,且高度恰好相同.此时,测得李航落在墙上的影子高度CD =1.2 m ,CE =0.6 m ,CA =30 m(点A 、E 、C 在同一直线上).已知李航的身高EF 是1.6 m ,请你帮李航求出楼高A B.解:如图,过点D 作DN ⊥AB ,垂足为N ,交EF 于点M ,则四边形CDME 、ACDN 是矩形.∴AN =ME =CD =1.2 m ,DN =AC =30 m ,DM =CE =0.6 m , ∴MF =EF -ME =1.6-1.2=0.4(m). ∵EF ∥AB , ∴△DFM ∽△DBN , ∴DM DN =MF BN ,即0.630=0.4BN, ∴BN =20 m ,∴AB =BN +AN =20+1.2=21.2(m).即楼高为21.2 m.环节3 课堂小结,当堂达标 (学生总结,老师点评)1.投影:一般地,用光线照射物体,在某个平面(地面、墙壁等)上得到的影子,叫做物体的投影.2.⎩⎪⎨⎪⎧平行投影:由平行光线形成的投影中心投影:由同一点(点光源)发出的光线形 成的投影练习设计请完成本课时对应练习!第2课时正投影教学目标一、基本目标【知识与技能】1.掌握正投影的概念,了解中心投影、平行投影和正投影的关系.2.掌握线段、正方形、正方体的正投影的特征.【过程与方法】1.通过动手操作画图形的正投影,培养学生动手实践能力,发展空间想象能力.2.通过探究生活中有关正投影的数学问题,体会数学与实际生活的紧密联系,提高学生的数学应用意识.【情感态度与价值观】感受日常生活中的一些投影现象,体会数学与生活实际密不可分,激发学生学习数学的兴趣.二、重难点目标【教学重点】1.正投影的概念.2.能根据正投影的性质画出简单的平面图形的正投影.【教学难点】归纳正投影的性质,正确画出简单平面图形的正投影.教学过程环节1自学提纲,生成问题【5 min阅读】阅读教材P88~P91的内容,完成下面练习.【3 min反馈】1.(1)投影线垂直于投影面产生的投影叫做正投影.(2)正投影是一种特殊的平行投影,它区别于一般的平行投影的不同之处是投影线垂直于投影面.(3)平行投影与中心投影的主要区别是光线是平行还是交于一点.(4)平行投影有两种情况:一种是投影线倾斜着照射投影面;另一种是投影线垂直照射投影面,这种投影就是正投影.教师点拨:注意区分正投影与平行投影之间的区别与联系,掌握正投影是特殊的平行投影,是光线垂直于投影面的特殊情况.2.线段的正投影是(D)A.直线B.线段C.射线D.线段或点环节2合作探究,解决问题活动1小组讨论(师生互学)(一)关于线段的正投影【例1】如图,把一根直的细铁丝(记为线段AB)放在三个不同位置:(1)铁丝平行于投影面;(2)铁丝倾斜于投影面;(3)铁丝垂直于投影面(铁丝不一定要与投影面有公共点).三种情况下铁丝的正投影各是什么形状?【互动探索】(引发学生思考)(1)铁丝平行于投影面时,它的正投影的形状跟大小与它本身完全相等;(2)铁丝倾斜于投影面,它的正投影仍然是一条线段,但长度变短了;(3)铁丝垂直于投影面,它的正投影变成了一个点.【解答】(1)当线段AB平行于投影面P时,它的正投影是线段A1B1,线段与它的投影的大小关系为AB=A1B1.(2)当线段AB倾斜于投影面P时,它的正投影是线段A2B2,线段与它的投影的大小关系为AB>A2B2.(3)当线段AB垂直于投影面P时,它的正投影是一个点A3.【教师点拨】以上的规律可以通过用铅笔作投影试验得出.(二)关于平面的正投影【例2】如图,把一块正方形硬纸板Q(记为正方形ABCD)放在三个不同位置:(1)纸板平行于投影面;(2)纸板倾斜于投影面;(3)纸板垂直于投影面.三种情况下纸板的正投影各是什么形状?【互动探索】(引发学生思考)(1)纸板Q平行于投影面P时,Q的正投影与Q形状、大小一样(即全等);(2)纸板Q倾斜于投影面P时,Q的正投影与Q的形状、大小发生变化(面积变小);(3)纸板Q垂直于投影面P时,Q的正投影成为一条线段.【教师点拨】用作业本做一个投影试验就可得出结论.【互动总结】(学生总结,老师点评)当物体的某个面平行于投影面时,这个面的正投影与这个面的形状、大小完全相同.(三)有关立体图形的正投影【例3】画出如图摆放的正方体在投影面上的正投影.(1)正方体的一个面ABCD平行于投影面,如图1;(2)正方体的一个面ABCD倾斜于投影面,上底面ADEF垂直于投影面,并且上底面的对角线AE垂直于投影面,如图2.【互动探索】详细见教材P90~P91分析.【解答】(1)如图1,正方体的正投影为正方形A′B′C′D′,它与正方体的一个面是全等关系.(2)如图2,正方体的正投影为矩形F′G′C′D′,这个矩形的长等于正方体的底面对角线长,矩形的宽等于正方体的棱长.矩形上、下两边中点连线A′B′是正方体的侧棱AB 及它所对的另一条侧棱EH的投影.【互动总结】(学生总结,老师点评)因为影子是光线被物体遮挡所形成的,所以要考虑到面与面,线与线的遮挡问题.【例4】如图所示,水杯的杯口与投影面平行,投影线的方向如箭头所示,它的正投影图是()【互动探索】(引发学生思考)依题意,光线是垂直照下的,故只有D符合.【答案】D【互动总结】(学生总结,老师点评)当投影面垂直于入射光线时,球体的投影是圆形,否则为椭圆形;若投影面不是平面,则投影形状要复杂得多.活动2巩固练习(学生独学)1.把一个正五棱柱按如图所示的方式摆放,当投影线由正前方射到后方时,它的正投影是如图所示的(B)2.若木棒长1.2米,则它的正投影的长一定(D)A.大于1.2米B.小于1.2米C.等于1.2米D.小于或等于1.2米活动3拓展延伸(学生对学)【例5】在长、宽都为4 m,高为3 m的房间正中央的天花板上悬挂着一只白炽灯泡,为了集中光线,加上了灯罩(如图所示).已知灯罩深AN=8 cm,灯泡离地面2 m,为了使光线恰好照在相对的墙角D、E处,灯罩的直径BC应为多少?(结果保留两位小数,2≈1.414)【互动探索】根据题意可知,AN=0.08 m,AM=2 m,由房间的地面为边长为4 m的正方形可算出DE的长,再根据△ABC∽△ADE利用相似三角形对应边成比例解答.【解答】如图,光线恰好照在墙角D、E处.由题意可知,AN=0.08 m,AM=2 m.∵房间的地面为边长为4 m的正方形,∴DE=4 2 m.∵BC∥DE,∴△ABC∽△ADE,∴BCDE=ANAM,即BC42=0.082,∴BC≈0.23 m.即灯罩的直径BC约为0.23 m.【互动总结】(学生总结,老师点评)解此题的关键是画出图形,合理使用相似的知识进行有关计算,计算时注意单位要统一.环节3课堂小结,当堂达标(学生总结,老师点评)1.投影线垂直于投影面的投影叫做正投影.注意,正投影是特殊的平行投影,中心投影不可能是正投影.2.几种基本图形(线段、正方形、圆、正方体)的正投影分几种情况.3.当物体的某个面平行于投影面时,这个面的正投影与这个面全等;物体正投影的形状、大小与它相对于投影面的位置有关.练习设计请完成本课时对应练习!29.2三视图第1课时几何体的三视图教学目标一、基本目标【知识与技能】1.了解视图的概念,明确视图与投影的关系.2.理解三视图中主视图、左视图、俯视图的概念,明确三视图与我们从三个方向看物体所得到的图象的联系与区别,会画立体图形的三视图.3.画三视图时,要使主视图与俯视图的长对正,主视图与左视图的高平齐,左视图与俯视图的宽相等.【过程与方法】通过观察、操作、猜想、讨论、合作等活动,使学生体会到三视图中各部分之间位置及大小的对应关系,积累数学活动的经验.【情感态度与价值观】通过探究物体的三视图,学会多角度看问题,激发学生学习数学的热情.二、重难点目标【教学重点】从投影的角度理解三视图的概念,会画简单的三视图.【教学难点】对三视图概念理解的升华及正确画出三棱柱的三视图.教学过程环节1自学提纲,生成问题【5 min阅读】阅读教材P94~P97的内容,完成下面练习.【3 min反馈】1.当我们从某一角度观察一个物体时,所看到的图象叫做物体的一个视图,也可以看作物体在某一角度的光线下的投影.2.主视图是在正面内得到的由前向后观察物体的视图;俯视图是在水平面内得到的由上向下观察物体的视图;左视图是在侧面内得到的由左向右观察物体的视图.3.主视图与俯视图的长对正,主视图与左视图的高平齐,左视图与俯视图的宽相等.4.三视图一般规定主视图要在左上边,俯视图在主视图下方,左视图在主视图的右边,其中主视图反映物体的长和高,左视图反映物体的高和宽,俯视图反映物体的长和宽.环节2合作探究,解决问题活动1小组讨论(师生互学)【例1】画出如图所示一些基本几何体的三视图.【互动探索】(引发学生思考)根据三视图的定义解决问题.【解答】如图所示:【互动总结】(学生总结,老师点评)画这些基本几何体的三视图时,要注意从三个方面观察它们,具体画法如下:确定主视图的位置,画出主视图;在主视图下方画出俯视图,注意与主视图“长对正”;在主视图的正右方画出左视图,注意与主视图“高平齐”、与俯视图“宽相等”.【例2】画出如图所示的支架(一种小零件)的三视图,其中支架的两个台阶的高度和宽度相等.【互动探索】(引发学生思考)支架的形状是由两个大小不等的长方体构成的组合体,画三视图时要注意这两个长方体的上下、前后位置.【解答】如图是支架的三视图.【互动总结】(学生总结,老师点评)对于由几种基本几何体组合而成的几何体,其各种视图可以分解为基本几何体的视图再组合,画三视图时要注意各几何体的上、下、前、后、左、右位置关系.活动2巩固练习(学生独学)1.如图所示的物体的主视图为(B)2.下列几何体中,左视图是圆的是(D)3.在下列几何体:①长方体;②球;③圆锥;④竖放的圆柱;⑤竖放的正三棱柱中,其主视图、左视图、俯视图都完全相同的是②.(填序号)4.如图所示的是由6个同样大小的正方体摆成的几何体,将正方体①移走后,所得几何体的主视图改变,左视图不变,俯视图改变.(填“改变”或“不变”)活动3拓展延伸(学生对学)【例3】如图是一根钢管的直观图,画出它的三视图.【互动探索】钢管有内外壁,从一定角度看它时,看不见内壁,为全面地反映立体图形的形状,画图时规定:看得见部分的轮廓线画成实线,因被其他部分遮挡而看不见部分的轮廓线画成虚线.【解答】如图是钢管的三视图,其中的虚线表示钢管的内壁.【互动总结】(学生总结,老师点评)画三视图的步骤如下:(1)确定主视图位置,画出主视图;(2)在主视图的正下方画出俯视图,注意与主视图“长对正”;(3)在主视图的正右方画出左视图,注意与主视图“高平齐”、与俯视图“宽相等”.要注意几何体看得见部分的轮廓线画成实线,被其他部分遮挡而看不见部分的轮廓线画成虚线.环节3课堂小结,当堂达标(学生总结,老师点评)1.主视图、俯视图和左视图的概念.2.三视图的画法.练习设计请完成本课时对应练习!第2课时由三视图确定几何体教学目标一、基本目标【知识与技能】1.学会根据物体的三视图描述出几何体的基本形状或实物原型.2.体会三视图与实物原型之间的关系.【过程与方法】经历探索由简单的几何体的三视图还原几何体的过程,进一步发展空间想象力.【情感态度与价值观】通过对三视图的学习,逐步养成严谨、细致、规范的行为习惯,同时激发学生热爱生活、热爱数学的情感.二、重难点目标【教学重点】根据物体的三视图描述出几何体的基本形状或实物原型.【教学难点】根据物体的三视图想象几何体的形状.教学过程环节1自学提纲,生成问题【5 min阅读】阅读教材P98~P99的内容,完成下面练习.【3 min反馈】1.由三视图想象立体图形时,要分别根据主视图、俯视图、左视图想象立体图形的前面、上面、侧面,然后再结合起来考虑整体图形.2.下列几何体中,其主视图、左视图与俯视图均相同的是(A)A.正方体B.三棱柱C.圆柱D.圆锥3.如图所给的三视图表示的几何体是(B)A.长方体B.圆柱C.圆锥D.圆台环节2合作探究,解决问题活动1小组讨论(师生互学)【例1】分别根据三视图(1)(2)说出立体图形的名称.【互动探索】(引发学生思考)由三视图想象立体图形时,首先分别根据主视图、俯视图和左视图想象立体图形的前面、上面和左侧面,然后综合起来考虑整个图形.【解答】详细内容见教材P98例3.【例2】见教材P98~P99例4.【例3】一个物体的三视图如下图所示,请描述该物体的形状.【互动探索】(引发学生思考)由一个物体的三视图描述该物体的形状,关键是能想象出三视图和立体图形之间的联系,从而描述该物体的形状.【解答】该物体是一个圆柱体被左右两侧平面及水平平面切成缺口面形成的几何图形,它的形状如图所示.【互动总结】(学生总结,老师点评)根据主视图、俯视图和左视图想象几何体的正面、上面和左面的形状以及几何体的长、宽、高;从实线和虚线想象几何体看得见的部分和看不见的部分的轮廓线.活动2巩固练习(学生独学)1.由下列三视图想象出实物形状.解:A是四棱锥,B是球,C是三棱柱.2.已知一个几何体的三视图如图所示,想象出这个几何体.解:根据三视图想象出的几何体是一个长方体上面正中部竖立一个小圆柱,如图.活动3拓展延伸(学生对学)【例4】某几何体的主视图和俯视图如图.(1)请你画出符合如图所示的几何体的两种左视图;(2)若组成这个几何体的小正方体的块数为n,请你写出n的所有可能值.【互动探索】(1)由俯视图可得该几何体有2行,则左视图应有2列.由主视图可得该几何体共有3层,那么其中一列必有3个正方体,另一列最少是1个,最多是3个;(2)由俯视图可得该几何体有3列,2行,以及最底层正方体的个数及摆放形状,由主视图结合俯视图可得该几何体从左边数第2列第2层最少有1个正方体,最多有2个正方体,第3列第2层最少有1个正方体,最多有2个正方体,第3层最少有1个正方体,最多有2个正方体,分别相加得到组成该几何体的最少个数及最多个数,即可得到n的可能值.【解答】(1)如图所示:(2)∵俯视图有5个正方形,∴最底层有5个正方体.由主视图可得第2层最少有2个正方体,第3层最少有1个正方体;或第2层最多有4个正方体,第3层最多有2个正方体,∴该几何体最少有5+2+1=8(个)正方体,最多有5+4+2=11(个)正方体,∴n可能为8或9或10或11.【互动总结】(学生总结,老师点评)解决本题要明确俯视图中正方形的个数是几何体最底层正方体的个数.环节3课堂小结,当堂达标(学生总结,老师点评)由三视图确定几何体的步骤:(1)根据主视图、俯视图和左视图想象几何体的正面、上面和左面以及几何体的长、宽、高;(2)从实线和虚线想象几何体看得见的部分和看不见部分的轮廓线.练习设计请完成本课时对应练习!第3课时由三视图确定几何体的表面积教学目标一、基本目标【知识与技能】1.根据三视图求几何体的侧面积、表面积和体积等.2.解决实际生活中的面积、体积方面的用料问题.【过程与方法】通过探究由物体的三视图还原出物体的形状,进一步认识物体与其三视图之间的关系,提高学生的空间想象力.【情感态度与价值观】培养学生自主学习与合作交流的学习方式,加强学生从生活中发现数学的能力.二、重难点目标【教学重点】根据三视图求几何体的侧面积、表面积和体积.【教学难点】解决实际生活中的面积、体积方面的用料问题.教学过程环节1自学提纲,生成问题【5 min阅读】阅读教材P99~P100的内容,完成下面练习.【3 min反馈】1.圆锥沿它的一条母线剪开的侧面展开图是扇形.2.圆柱沿它的一条母线剪开的侧面展开图是矩形.3.正方体、长方体的六个面展开的平面图的面积等于它的表面积.(填“大于”“小于”或“等于”)环节2合作探究,解决问题活动1小组讨论(师生互学)【例1】某工厂要加工一批密封罐,设计者给出了密封罐的三视图(如图).请按照三视图确定制作每个密封罐所需钢板的面积.(图中尺寸单位:mm)【温馨提示】详细解答过程见教材P99~P100例5.【例2】如图是两个长方体组合而成的一个立体图形的三视图,根据图中所标尺寸(单位:mm),求这个几何体的表面积.【互动探索】(引发学生思考)先由三视图得到两个长方体的长、宽、高,再分别表示出每个长方体的表面积,最后减去上面的长方体与下面的长方体的接触面面积即可.【解答】根据三视图,得上面的长方体长6 mm、高6 mm、宽3 mm,下面的长方体长10 mm、宽8 mm、高3 mm,∴这个几何体的表面积为2×(3×8+3×10+8×10)+2×(3×6+6×6)=376( mm2).【互动总结】(学生总结,老师点评)由三视图求几何体的表面积,首先要根据三视图分析几何体的形状,然后根据三视图的投影规律——“长对正,高平齐,宽相等”,确定几何体的长、宽、高等相关数据值,再根据相关公式计算几何体的面积.另外,求组合体的表面积时重叠部分不应计算在内.活动2巩固练习(学生独学)1.某工厂要加工一批茶叶罐,设计者给出了茶叶罐的三视图,如图所示(单位:mm),按照三视图制作每个密封罐所需钢板的面积至少是20 000π mm2.2.如图所示的是一个几何体的三视图,其中主视图、左视图都是腰长为13 cm,底边长为10 cm的等腰三角形,则这个几何体的侧面积是65π cm2.3.如图所示的是一个几何体的三视图,则这个几何体的表面积是 5π+3π.4.已知某几何体的三视图如图所示,求该几何体的表面积.解:由三视图可知,该几何体的下面是长、宽、高分别为4,4,2的长方体,上面为四棱锥,且高是2,底面为边长是4的正方形,∴S 表面积=4×2×4+4×4+4×12×4×22=48+16 2.活动3 拓展延伸(学生对学)【例3】杭州某零件厂刚接到要铸造5000件铁质工件的订单,下面给出了这种工件的三视图.已知铸造这批工件的原料是生铁,待工件铸成后还要在表面涂一层防锈漆,那么完成这批工件需要原料生铁多少吨?涂完这批工件要消耗多少千克防锈漆(铁的密度为7.8 g/cm 3,1 kg 防锈漆可以涂4 m 2的铁器面,三视图单位为cm)?。
第二十九章“投影与视图”教材分析课程教材研究所田载今一、教科书内容和课程学习目标(一)教科书内容本章的主要内容包括:1.投影的基础知识,包括投影、平行投影、中心投影、正投影等概念,正投影的成像规律;2.视图、三视图等概念,三视图的位置和度量规定,一些基本几何体的三视图,简单立体图形(包括相应的表面展开图)与它的三视图的相互转化;3.课题学习:制作立体模型。
这是由三视图向立体图形转化的实践活动。
全章共包括三节:29.1 投影29.2 三视图29.3 课题学习制作立体模型29.1 节首先从物体在日光或灯光下的影子说起,引出投影、平行投影、中心投影、正投影等概念;然后以铁丝和正方形纸板的影子为例,讨论当直线和平面多边形与投影面成三种不同的位置关系时的正投影,归纳出其中蕴涵的正投影的一般规律;最后以正方体为例,讨论立体图形与投影面成不同位置关系时的正投影。
可以发现,整个讨论过程是按照一维、二维和三维的顺序发展的。
29.2节讨论的重点是三视图,其中包括三视图的成像原理、三视图的位置和度量规定、一些基本几何体的三视图等,最后通过6道例题讨论简单立体图形(包括相应的表面展开图)与它的三视图的相互转化。
这一节是全章的重点内容,它不仅包括了有关三视图的基本概念和规律,而且包括了反映立体图形和平面图形的联系与转化的内容,与培养空间想象能力有直接的关系。
29.3节安排了观察、想象、制作相结合的实践活动──“课题学习制作立体模型”,这是结合实际动脑与动手并重的学习内容。
进行这个课题学习既可以采用独立完成的形式,也可以采用合作式学习的方式。
应该把这个课题学习看作对前面学习的内容是否切实理解掌握以及能否灵活运用的一次联系实际的检验。
本章内容与其他章有较为明显的区别,它与直观图形的关系密切,需要在图形形状方面进行想象和判断,要完成的题目多是识图、画图、制作模型等类型的问题,而很少涉及定量的计算。
(二)本章知识结构框图(三)课程学习目标1.以分析实际例子为背景,认识投影和视图的基本概念和基本性质;2.通过讨论简单立体图形(包括相应的表面展开图)与它的三视图的相互转化,使学生经历画图、识图等过程,分析立体图形和平面图形之间的联系,提高空间想象能力;3.通过制作立体模型的课题学习,在实际动手中进一步加深对投影和视图知识的认识,加强在实践活动中手脑结合的能力.(四)课时安排本章教学时间约需11课时,具体分配如下(仅供参考):29.1 投影2课时29.2 三视图5课时29.3 课题学习制作立体模型2课时数学活动小结2课时二、本章的编写特点本章教科书在编写中力图体现以下两个特点。
第二十九章投影与视图
知识点1投影
1.平行投影:由平行光线形成的投影叫做平行投影.
2.中心投影:由同一点(点光源)发出的光线形成的投影叫做中心投影.
3.正投影:投影线垂直于投影面产生的投影叫做正投影,正投影是一种特殊的平行投影.
知识点2三视图
三视图主视图在正面内得到的由前向后观察物体的视图,叫做主视图.左视图在侧面内得到的由左向右观察物体的视图,叫做左视图.俯视图在水平面内得到的由上向下观察物体的视图,叫做俯视图.
三视图的画法(1)主视图与俯视图的长对正,主视图与左视图高平齐,左视图与俯视图的宽相等:
(2)在画图时,看得见的轮廓线画成实线,看不见的轮廓线画成虚线.
附:常见几何体的三视图
续表
知识点3立体图形的展开和折叠
1.常见几何体的展开图:
(1)正方体的展开图:
①“1-4-1”型
②“2-3-1”型
③“2-2-2”及“3-3”型
(2)圆柱、圆锥、三棱柱的展开图:
2.立体图形上两点之间的最短距离的求法:
将立体图形展开转化为平面图形或将曲面转化为平面图形,然后运用“两点之
间,线段最短”结合勾股定理求解.
蚂蚁要吃到蜂蜜的最短路线长是圆柱的侧面展开图中线段AB的长度.。
主视图左视图
俯视图
A B C
D
①②
第二十九章投影与视图
班级___________ 姓名___________
一.选择题。
〔8小题,每题4分,共32分〕
1.圆柱对应的主视图是〔〕。
A B C D
2.小明在操场上练习双杠时,在练习的过程中他发觉在地上双杠的两横杠的影子〔〕。
A.相交B.平行C.垂直D.无法确定3.某同学把如下图的几何体的三种视图画出如下〔不考虑尺寸〕:
这三种视图正确的选项是〔〕。
A.主视图和左视图B.主视图和俯视图
C.左视图和俯视图D.全部正确
4.一个四棱柱的俯视图如以下图所示,那么那个四棱柱的主视图和左视图可能是〔〕
5
看到大楼的两个侧面,小红应站在哪个区域〔〕
A.A区域B.区域
C.C区域D.三区域都能够
6、太阳光照耀一扇矩形的窗户,投在平行于窗户的墙上的影子的形状是〔〕。
A.与窗户全等的矩形B.平行四边形
C.比窗户略小的矩形D.比窗户略大的矩形
7、在太阳光下,转动一个正方体,观看正方体在地上投下的影子,那么那个影子最多可能
主视图俯视图左视图是几边形〔〕。
A.四边形B.五边形C.六边形D.七边形
8、如图:这是圆桌正上方的灯泡〔看作一个点〕发出的光线照耀桌面后,在地面上形成阴
影〔圆形〕的示意图,桌面的直径为1.2米,桌面距离地面1米,假设灯泡距离地面3米,那么地面上阴影部分的面积为〔〕
A.π
36
.0平方米 B.π
81
.0平方米
C.π2平方米
D.π
24
.3平方米
二、填空题〔8小题,每题3分,共24分〕
9.平行投影是由光线形成的。
10.一个物体的俯视图是圆,那个物体的可能形状是、 .
11.某一时刻甲木杆高2米,它的影长是1.5米,小颖身高1.6米,那么现在她的影长为米。
12.依照以下物体的三视图,填出几何体名称:
该几何体是__________
13.以下图是小红在某天四个时候看到一根要棒及其影子的情形,那么她看到的先后顺序是_______________。
14.如图,5个边长为1的正方体摆在桌子上,那么露在表表面的部分的面积为__________ 15.如图,一根电线杆的接线部分AB在阳光下的投影CD的长1.2m,太阳光与地面的夹角∠ACD=60°,那么AB的长为_________m〔精确到0.1m,参考数据:732
.1
3
,
414
.1
2=
=〕16.如图,王华晚上由路灯A下的B处走到C处时,测得影子CD的长为1米,连续往前走3米到达E处时,测得影子EF的长为2米,王华的身高1.5米(图中向上的箭头),那么路灯A的高度AB等于_____________
F
14题图 15题图 16题图
三、作图题〔共10分,每题5分〕
17.如图是由几个小方块所搭几何体的俯视图,小正方形中的数字表示在该位置的小立方块的个数,请画出那个几何体的主视图和左视图。
18.现有一个圆柱形瓶子,一个长方体的皮鞋盒子,放在桌上,请你摆一种形状,画出从上向下的下投影。
四、解答题〔共34分〕
19.〔8分〕有一个正方体,在它的各个面上分不标上数字1、2、3、4、5、
6。
小明、小刚、小红三人从不同的角度去观看此正方体,、观看结果如下图,咨询那个正方体各个面上的数字对面各是什么数字?
20.〔8分〕如图,〔1〕中左面的圆锥,下好能通过右边图中的两个空泛,正好能通过〔2〕、〔3〕中右面两个空泛的可能是什么样的主体图形?请画出它们的草图。
〔1〕
〔2〕
______________
(3)
_____________
21.〔8分〕以下图为一个物体的正视图,这是由五个小正方体搭成的物体,同时上、下两层正方体对齐,同一层的下态度体也对齐,你能找出几种搭法?画出其中的三种搭法的俯视图。
22.〔10分〕如图,小明家楼房旁立了一根长4米的竹杆,小明在测量竹杆的影子时,发觉影子不全落在地面上,有一部分落在楼房的墙壁上,小明测出它落在地面上的影子长为2米,落在墙壁上的影子长为1米,现在,小明想把竹杆移动位置,使其影子刚好不落在墙上。
试咨询,小明应把竹杆移到什么位置〔要求竹杆移动的距离尽可能小〕。