六年级数学解含有两个未知数的方程1-P
- 格式:pdf
- 大小:446.10 KB
- 文档页数:10
列方程解答含有两个未知数的应用问题-冀教版五年级数学上册教案一、教学目标1.了解含有两个未知数的应用问题的解法。
2.掌握列方程解决问题的方法。
3.通过例题的练习,提高学生解决具体问题的能力。
二、教学重点1.掌握列方程解决含有两个未知数的应用问题的方法。
2.通过较为复杂的例题的练习,提高学生的解题能力。
三、教学难点1.对学生进行列方程的讲解。
2.理解含有两个未知数的应用问题的解决方法。
四、教学方法通过课堂讲解、板书、小组讨论等多种形式进行教学。
五、教学过程1. 引入通过一个简单的例子引入本节课的内容:假如带上一个馒头要7元,带上一个鸡蛋要3元,那么带上一个馒头和一个鸡蛋需要花费多少钱?请同学们自己思考一下这个问题应该怎么解决。
2. 阐述列方程的思路在解决含有两个未知数的应用问题时,通常需要列方程解决。
请同学们思考一下,什么是方程?在什么情况下需要列方程解决问题?列方程是解决含有两个未知数的应用问题的一种有效方法,也是数学中非常重要的一个思维方式。
在列方程的过程中,我们需要先分析问题,确定未知量,然后根据问题中提供的条件和关系进行方程的列举,最终求解未知量。
3. 练习列方程请同学们做以下练习:买苹果和桃子,苹果每个1元,桃子每个2元,一共花了6元,请问买了多少个苹果和桃子?解题思路:假设买了x个苹果和y个桃子,则有x + 2y = 6,因为每个苹果1元,每个桃子2元,所以x + 2y = 6。
再设x + y = n,则y = n - x,代入前面的方程中,得到x + 2(n - x) = 6。
化简后得到x = 2 - n,y = n - 2。
因为x和y都必须是正整数,所以n只能是2或3,且n=2时x、y都不是正整数,所以n=3时,x=1,y=2,即买了1个苹果和2个桃子。
4. 拓展思考请同学们思考:(1)有一个长方形,长和宽的长度分别为x厘米和y厘米,它的面积等于24平方厘米,试求长和宽各多少厘米?(2)有两个数,它们的和是20,而且其中一个数是另一个数的3倍,试求这两个数各是多少?(3)解题思路:在这个问题中,我们已知长和宽的乘积是24平方厘米,设长为x厘米,宽为y厘米,则有xy=24,即一个关系式。
《⽤⽅程解答含两个未知数的问题》教学反思《⽤⽅程解答含有两个未知数的问题》是五年级数学上册第四单元的最后⼀课内容,这是⼀节新授课。
这节课是在学⽣已经会解⽅程并掌握了简单的⽅程应⽤题的基础上进⾏的。
教学⽬标是“初步学会设⼀个未知数,列⽅程解答含两个未知数的实际问题”,尤其是通过学习,培养学⽣的⽐较、分析能⼒和类⽐学习的能⼒。
本课时的难点有两个,第⼀是如何设未知数列⽅程,第⼆是如何解⽅程。
为能很好地解决这两个难点。
我这样设计:本课时例题如下:地球表⾯积为5.1亿平⽅⽶,其中海洋⾯积是陆地⾯积的2.4倍,陆地⾯积和海洋⾯积各是多少?如果直接出⽰例题,学⽣很难找出两个条件之间的直接联系,并且两个未知量也会让学⽣感到不知所措。
但正是这两个看似没有直接联系的调节,给学⽣提供了思考的空间。
如何引导学⽣运⽤已有经验把两个条件联系起来,列出⽅程呢?在这⾥设计了⼀个学⽣熟悉的练习:“学校科技组有⼥同学X⼈,男同学是⼥同学的4倍,男同学有()⼈,男⼥同学⼀共有()⼈,男同学⽐⼥同学多()⼈。
”通过学⽣已经掌握的知识引⼊,易于接受,同时⼜引导学⽣⼀步步思考,找出两个未知量之间的关系,让学⽣掌握如何⽤⼀个字母表⽰两个未知数的⽅法。
为上新的内容做好准备。
应⽤题的教学,关键是理清思路,教给⽅法,启迪思维,提⾼解题能⼒。
教学例3时,我先让学⽣分析好题⽬的意思以及题⽬中所涉及到的重点词句,让他们分析题⽬的条件和问题之间的联系,我再通过⽤线段图表⽰数量关系的⽅式帮助学⽣理清思路,引导学⽣找出题⽬中的“⼀倍量”,从⽽根据⼀倍量设未知数。
根据刚才的练习,很容易联想到海洋⾯积和陆地⾯积的总和,即地球表⾯积。
根据数量关系得出⽅x 2.4x=5.1。
由实际问题引⼊⽅程,在教师的引导下,学⽣通过探索尝试,交流互动,掌握了解⽅程的思路和⽅法。
从解决问题的⽅法到设哪⼀个量为x,再到另⼀个未知量的求法,最后到检验的⽅法,整个学习过程中,学⽣充分展⽰⾃⼰的思维,在此基础上的交流,使学⽣丰富了数学思维,完成了知识的⾃我构建,提⾼了数学学习的能⼒。
《列方程解含有两个未知数的应用题》一、填空题1.“姐姐和弟弟一共有180张邮票,其中姐姐的邮票数是弟弟的3倍,弟弟有多少张邮票?(列方程解答)”淘气在解决这道题时这样设未知数并列方程.解:设弟弟有x张邮票,姐姐有3x张邮票①这样设未知数并列方程是否正确?在括号内填“正确”或“不正确”.②如果不正确,请指出原因,并填在括号里..2.李叔叔买2张桌子和8把椅子共花1200元,已知4张椅子的价钱可以买1张桌子,每把椅子元,每张桌子元.3.甲、乙两人存款若干元,甲存款是乙的3倍,如甲取出240元,乙取出40元,那么两人存款相等,甲、乙原来各自存款分别是元和元.4.一家汽车销售店有若干部福特汽车和丰田汽车等待销售.福特汽车的数量是丰田汽车的3倍.如果每周销售2辆丰田汽车和4辆福特汽车,丰田汽车销售时还剩下30辆福特汽车.请问:原有丰田汽车和福特汽车各是辆.5.水果店运来西瓜的个数是白兰瓜个数的2倍.如果每天卖白兰瓜40个,西瓜50个,若干天后卖完了白兰瓜,西瓜还剩360个.水果店运来的西瓜和白兰瓜共个.6.100个和尚分100个馒头,大和尚1人分3个,小和尚3人分1个,正好分完,这样看大和尚有个.7.春风小学原计划栽种杨树、柳树和槐树共1500棵.植树开始后,当栽了杨树总数的35和30棵柳树后,又临时运来15棵槐树,这时剩下的三种树的棵数正好相等.原计划栽杨树棵,槐树棵,柳树棵.二、解决问题1.学校买了5个排球和8个篮球,共用了300元,已知一个篮球的价钱比一个排球的价钱便宜8元,一个排球和一个篮球各多少元?2.甲乙两个学生原计划每天自学的时间相同,若甲每天自学时间增加40分钟,乙每于自学时间减少40分钟,则乙5天的自学时间仅等于甲1天的自学时间,求甲乙原订每天自学时间是多少?(用算术、方程两种方法解答)3.李叔今年在他的78公顷的土地上种植了黄瓜和茄子,其中黄瓜的种植面积是茄子种植面积的14.黄瓜和茄子的种植面积分别是多少公顷?4.小明把720毫升果汁倒入5个小杯和2个大杯,正好都倒满.一个大杯的容量比一个小杯多45毫升.一个小杯和一个大杯的容量各是多少毫升?5.希望小学四、五年级共有学生450人,五年级人数是四年级人数的1.5倍.四、五年级各有学生多少人?(用方程解)6.有一根红彩带和一根绿彩带,红彩带的长是绿彩带的3倍,比绿彩带长2.4米.这两根彩带各长多少米?(用方程解)7.2筐苹果和3筐梨共重95千克,每筐苹果比每筐梨多10千克.苹果和梨每筐各重多少千克?8.小海妈妈的水果店里有榴莲、丑橘共80箱,榴莲每箱500元,丑橘每箱300元,全部卖出后,榴莲比丑橘收入多16000元.问:两种水果各多少箱?9.学校买来一批体育用品,羽毛球拍是乒乓球拍的2倍,分给同学们,每组分乒乓球拍5副,余乒乓球拍15副,每组分羽毛球拍14副,则差30副,问:学而思学校买来羽毛球拍、乒乓球拍各多少副?10.水果店批发市场里苹果的存量是橘子的3倍,每天从市场里运出2.5吨的苹果和1.5吨的橘子,若干天后这批橘子运完了,苹果还剩10吨.这批橘子有多少吨?苹果有多少吨?11.王军的张数是李明张数的3倍,如果王军拿60张邮票送给李明,两人的邮票张数一样多,王军有邮票多少张?(列方程解)12.小明买6支铅笔和5支钢笔共花了24.6元,已知每支钢笔比铅笔贵3.6元,铅笔和钢笔每支各多少元?13.希望小学买了1只篮球和8个皮球,正好用去330元.皮球的单价是篮球的13,皮球和篮球的单价各是多少元?14.100名师生绿化校园,老师每人栽3棵树,学生每2人栽1棵树,总共栽了100棵,老师栽多少棵,学生栽多少棵?15.某公园对团体游园购买门票的规定如下表:购票人数50人以下51~100人100人以上每人门票价12元10元8元今有甲、乙两个旅游团,若分别购票,两团总计应付门票费1142元.如合在一起作为一个团体购票,总计只应付门票费864元.问:这两个旅游团各有多少人?16.已知一张桌子的价钱是一把椅子的10倍,又知一张桌子比一把椅子多288元,一张桌子和一把椅子各多少元?17.上海科技馆上月参观人数达到13.78万人次,其中少年儿童参观者是成人的1.6倍.上月参观科技馆的少年儿童和成人各有多少人次?(用方程解)18.由奶糖和巧克力糖混合成的一堆糖中,如果增加10颗奶糖后,巧克力糖占总数的60%,再增加30颗巧克力糖后,巧克力糖占总数的75%,那么原来混合糖中有奶糖、巧克力糖各多少颗?19.星期天王老师看见张老师和李老师每人买了一袋大米就问:“你们每人买了多少千克大米?”张老师笑笑说:“我买的大米重量李老师米的2倍,如果我倒出5千克给李老师,这两袋就一样重了,你算算看!”请你帮助王老师算一算吧!20.一群公猴、母猴、小猴共38只,每天摘桃266个.已知1只公猴每天摘桃10个,1只母猴每天摘桃8个,1只小猴每天摘桃5个.又知公猴比母猴少4只,那么这群猴子中,小猴有多少只?21.一套西装180元,其中裤子的价格是上衣的35,上衣和裤子的价钱分别是多少元?(用方程解)答案一、填空题1.不正确,没列方程,再添加上方程3180x x +=.2.75,300.3.300,100.4.30、90.5.1440.6.25.7.原计划栽杨树825棵,槐树315棵,柳树360棵.二、解决问题1.解:设每个排球的单价为x 元,则每个篮球的单价为(8)x -元,58(8)300x x +-=5864300x x +-=136********x -+=+13364x =131336413x ÷=÷28x =28820-=(元)答:一个排球28元,一个篮球20元.2.解:(1)算术法:(4040)(51)40+÷-+80440=÷+2040=+60=(分钟)(2)设甲乙原计划每天自学的时间相同是x 分钟,则变化后的甲每天自学时间为40x +分钟,乙自学时间是40x -分钟,根据题意可得方程:5(40)40x x -=+,520040x x -=+,4240x =,60x =,答:甲乙原订每天自学时间是60分钟.3.解:设茄子的种植面积是x 公顷,则黄瓜的种植面积是14x 公顷,1748x x +=5748x =54744585x ⨯=⨯710x =71710440⨯=(公顷)答:茄子的种植面积是710公顷,黄瓜的种植面积是740公顷.4.解:设一个小杯的容量为x 毫升,则一个大杯的容量为(45)x +毫升,5(45)2720x x ++⨯=5290720x x ++=790720x +=7909072090x +-=-776307x ÷=÷90x =.9045135+=(毫升),答:一个小杯的容量是90毫升,一个大杯的容量是135毫升.5.解:设四年级有x 人,则五年级有1.5x 人,1.5450x x +=2.5450x=x÷=÷2.5 2.5450 2.5x=180180 1.5270⨯=(人)答:四年级有学生180人,五年级有学生270人.6.解:设绿长度长x米,则红彩带长3x米,x x-=3 2.4x=2 2.4x÷=÷22 2.42x=.1.2+=(米)1.22.43.6答:红彩带长3.6米,绿彩带长1.2米.x+千克,根据题意列方程为:7.解:设梨每筐重x千克,则苹果每筐重(10)x x++=2(10)395x+=52095x=575x=15+=(千克)151025答:苹果每筐重25千克,梨每筐重15千克.8.】解:设榴莲有x箱,则丑橘有(80)x-箱,x x--⨯=500(80)30016000x x-+=5002400030016000x-=8002400016000x-+=+8002400024000160002400080040000x=x÷=÷80080040000800x=.50-=(箱),805030答:榴莲有50箱,丑橘有30箱.9.解:设学生的组数是x组,则:x x+⨯=-(515)21430x x+=-10301430-=+x x14103030x=460x=15乒乓球拍:⨯+15515=+7515=(副)90羽毛球拍:141530⨯-=-21030=(副)180答:学校买来羽毛球拍180副、乒乓球拍90副.10.解:设运了x天橘子运完了,苹果还剩10吨.x x+=⨯2.510 1.53x x+=2.510 4.5-=x x4.5 2.510x=21022102x÷=÷x=5⨯+苹果的总质量:2.5510=+12.510=(吨)22.5⨯=(吨)橘子的质量:1.557.5答:这批橘子有7.5吨,苹果有22.5吨.11.解:设李明有x 张,则王军有3x 张,36060x x -=+2120x =60x =603180⨯=(张)答:王军有邮票180张.12.解:先设每支铅笔x 元,则每支钢笔( 3.6)x +元,由题意可得方程:65( 3.6)24.6x x +⨯+=,651824.6x x ++=,1124.618x =-,11 6.6x =,0.6x =,0.6 3.6 4.2+=(元);答:每支铅笔1.5元,每支钢笔4.2元.13.解:设篮球单价是x 元,183303x x +⨯=,83303x x +=,111111330333x ÷=÷,90x =;190303⨯=(元);答:皮球单价是30元,篮球单价是90元.14.解:设老师有x 人,则学生有(100)x -人,由题意得:13(100)1002x x +-=,13501002x x +-=,5502x =,20x =,学生有:1002080-=(人),则老师栽的棵数:20360⨯=(棵),学生栽的棵数:180402⨯=(棵);答:老师栽60棵,学生栽40棵.15.解:两个团的总人数;8648108÷=(人),设甲团有x 人,则乙团有(108)x -人,12(108)101142x x +-⨯=,121080101142x x +-=,210801142x +=,21080108011421080x +-=-,262x =,22622x ÷=÷,31x =;1083177-=(人);答:甲旅游团有31人,乙旅游团有77人或甲旅游团有77人,乙旅游团有31人.16.解:设一把椅子的价格是x元,则一张桌子的价格就是10x元,根据题意可得方程:x x-=10288x=9288x=32⨯=(元)则桌子的价格是:3210320答:一张桌子320元,一把椅子32元.17.解:设成年人有x人,则儿童的人数就是1.6x,根据题意得:x x+=,1.613.78x=,2.613.78x÷=÷,2.6 2.613.78 2.6x=,5.3⨯=(万人).1.6 5.38.48答:上月参观科技馆的少年儿童有8.48万人,成人有5.3万人.18.解:设原来混合糖中有奶糖和巧克力糖共x颗,根据题意可得方程:+=++-,x x60%(10)75%(1030)30+=+-,0.660.753030x xx=,0.156x=,40+⨯=(颗),巧克力糖:(4010)60%30-=(颗),奶糖:403010答:原来巧克力糖有30颗,奶糖有10颗.19.解:设李老师米为x千克,则张老师的米为2x千克,根据题意得-=+,255x x255x x -=+,10x =,101020+=;答:张老师买了20千克,李老师买了10千克.20.解:设母猴有x 只,公猴就有(4)x -只,小猴就有[38(4)]x x ---只,由题意得:8(4)10[38(4)]5266x x x x +-⨯+---⨯=,8104010210266x x x +--+=,896x =,12x =,小猴有:3812(124)3812818---=--=(只);答:这群猴子中,小猴有18只.21.解:设裤子的价钱x 元,上衣的价钱是35x 元,31805x x +=,81805x =,888180555x ÷=÷,112.5x =,裤子的价钱:3112.567.55⨯=(元).答:上衣和裤子的价钱分别是112.5元、67.5元.。
期末知识大串讲苏教版数学六年级上册期末章节考点复习讲义第四单元《解决问题的策略》知识点01:用“假设”的策略解决含有两个未知量的实际问题利用“假设”的策略解决倍数关系的问题的关键是找准代换后数量的变化情况。
知识点02:用“假设”的策略解决相差问题利用“假设”的策略解决相差关系的问题时,先根据解题的需要对已知条件作出假设,通过假设引出差量,然后分析产生差量的原因,把原因分析清楚后,找到差量对应的数量来解决问题。
考点01:列方程解含有两个未知数的应用题1.(2021秋•鲁山县期末)学校买来5个足球和10个篮球,共计700元。
每只足球比每只篮球便宜10元,足球的单价是()元,篮球的单价是()元。
()A.40,50 B.30,40 C.50,40 D.40,30【思路引导】根据题意可知,5个足球的总价+10个篮球的总价=700元,设每个足球的价格为x元,则每个篮球的价格为(x+10)元,据此列方程解答。
【完整解答】解:设每个足球的价格为x元,则每个篮球的价格为(x+10)元,5x+(x+10)×10=7005x+10x+100=70015x+100=70015x+100﹣100=700﹣10015x=60015x÷15=600÷15x=4040+10=50(元)答:足球的单价是40元,篮球的单价是50元。
故选:A。
【考察注意点】此题属于含有两个未知数的应用题,这类题用方程解答比较容易,关键是找准数量间的相等关系,设一个未知数为x,另一个未知数用含x的式子来表示,进而列并解方程即可。
2.(2022春•成武县期末)篮球比赛中,3分线外投中一球得3分,3分线内投中一球得2分.在一场比赛中,王明总共投中9个球(没有罚球),得了20分,他投中()个2分球.A.7 B.4 C.5【思路引导】根据题干,设王明投进了x个3分球,则投进了9﹣x个2分球,根据等量关系:3分球个数×3+2分球个数×2=20分,列出方程解决问题.【完整解答】解:设王明投进了x个3分球,则投进了9﹣x个2分球,根据题意可得方程:3x+2(9﹣x)=20,3x+18﹣2x=20,x=2,9﹣2=7(个),答:投进了7个2分球.故选:A。
【数学知识点】二元一次方程详细解法及应用题含有两个未知数,并且含有未知数的项的次数都是1的整式方程叫做二元一次方程。
二元一次方程常见的解法有带入消元法和加减消元法。
代入消元法(1)等量代换:从方程组中选一个系数比较简单的方程,将这个方程中的一个未知数(例如y),用另一个未知数(如x)的代数式表示出来,即将方程写成y=ax+b的形式;(2)代入消元:将y=ax+b代入另一个方程中,消去y,得到一个关于x的一元一次方程;(3)解这个一元一次方程,求出x的值;(4)回代:把求得的x的值代入y=ax+b中求出y的值,从而得出方程组的解;(5)把这个方程组的解写成x=c y=d的形式。
加减消元法(1)变换系数:利用等式的基本性质,把一个方程或者两个方程的两边都乘以适当的数,使两个方程里的某一个未知数的系数互为相反数或相等;(2)加减消元:把两个方程的两边分别相加或相减,消去一个未知数,得到一个一元一次方程;(3)解这个一元一次方程,求得一个未知数的值;(4)回代:将求出的未知数的值代入原方程组的任何一个方程中,求出另一个未知数的值;(5)把这个方程组的解写成x=c y=d的形式。
1.用白铁皮做罐头盒,每张铁皮可制盒身25个或者盒底40个,一个盒身与两个盒底配成一套罐头盒.现有36张白铁皮,问:用多少张制作盒身?多少张制作盒底可以使盒身和盒底正好配套?可以制成多少个罐头盒?2.甲乙两人练习跑步,如果甲让乙先跑10米,那么甲5秒后可以追上乙,如果让乙先跑2秒,那么甲4秒可以追上乙,求甲乙的速度?3.汽车从甲地到乙地,若每小时行驶45千米,就要延误30分钟到达;若每小时行驶50千米,就可以提前30分钟到达,求甲乙两地之间的距离?4.一次篮、排球比赛,共有48个队,520名运动员参加,其中篮球队每队10名,排球队每队12名,求篮、排球各有多少队参赛?5.某单位甲、乙两人,去年共分得现金9000元,今年共分得现金12700元。
二元一次方程的解法在数学中,二元一次方程是指含有两个未知数的一次方程,其一般形式为ax + by = c。
解决二元一次方程可以采用代入法、消元法、图解法等不同的方法。
下面将逐一介绍这些解法。
1. 代入法代入法是解决二元一次方程的常用方法之一。
假设有两个二元一次方程:(1) 方程1:ax + by = c1(2) 方程2:dx + ey = c2其中,a、b、c1、d、e、c2为已知常数。
首先,从其中一个方程中解出x(或y),然后将所得到的x(或y)的值代入另一个方程中求解另一个未知数。
具体步骤如下:(1) 从方程1中解出x,得到x = (c1 - by) / a。
(2) 将x的值代入方程2中,即将x的值替换到方程2中的x位置,然后解出y。
(3) 将求得的y的值代入方程1或方程2中,计算出x的值。
2. 消元法消元法也是解决二元一次方程的常用方法之一。
它通过逐步消去一个未知数,最终得到另一个未知数的值。
具体步骤如下:假设有两个二元一次方程:(1) 方程1:ax + by = c1(2) 方程2:dx + ey = c2首先,通过将两个方程中的某一项乘以适当的系数,使得两个方程中的某一项的系数相等或相差一个常数倍。
然后将两个方程相加或相减,得到含有一个未知数的一次方程。
解出这个未知数的值后,将其代入原来的方程中求解另一个未知数。
3. 图解法图解法是通过在平面直角坐标系中画出方程的图像,并求解图像的交点来得到方程的解。
具体步骤如下:假设有两个二元一次方程:(1) 方程1:ax + by = c1(2) 方程2:dx + ey = c2首先,将方程转化为y关于x的函数形式,即将方程表示为y = f(x)的形式。
然后在坐标系中画出方程的图像,可以得到两个直线。
二元一次方程的解即为两条直线的交点的坐标。
总结:二元一次方程的解法有代入法、消元法和图解法。
根据具体问题的要求和方程的形式,选择合适的解法进行求解。
这些方法可以帮助我们解决实际问题中的二元一次方程,进而得到未知数的值。
沪教版六年级:二元一次方程及方程组一、基础导航知识要点1:二元一次方程及方程组1.含有两个未知数,且所含未知数的项的次数都是1的方程叫做二元一次方程。
2.二元一次方程的解:使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解。
3.二元一次方程的解集:二元一次方程的解有无数个,二元一次方程的解的全体叫做这个二元一次方程的解集。
4.两个二元一次方程合在一起,就组成了二元一次方程组。
5.使二元一次方程组中的两个方程左、右两边的值都相等的两个未知数的值,叫做二元一次方程组的解。
例1:1、在⎩⎨⎧==⎩⎨⎧==⎩⎨⎧==448118y x y x y x 这三组数中, 是方程2023=+y x 的解, 是方程2032=+y x 的解.2、当m = ,n = 时,方程()03122=++--n y x x m 是一个二元一次方程。
3、下列方程组中,二元一次方程组一共有( )个(1)⎩⎨⎧=+-=x y y x 51(2)⎩⎨⎧=+=-032y x y x (3)⎪⎩⎪⎨⎧=-=-1231y x y x (4)⎩⎨⎧-==-532x y y x A .1个 B. 2个 C. 3个 D. 4个小试牛刀11、在二元一次方程652=+y x 的解中,如果x 和y 互为相反数,那么这个方程的解是 .2、二元一次方程32=+x y 的正整数解是 。
3、下列判断中,正确的是 ( )A .方程y x =不是二元一次方程B .任何一个二元一次方程都有一组解C .方程52=-y x 有无数个解,任何一对x 、y 的值都是该方程的解D .⎩⎨⎧-==12y x 既是方程42=-y x 的解,又是方程132=+y x 的解4、已知11x y =⎧⎨=⎩是方程组23ax by x by +=⎧⎨-=⎩的解,求a 、b 的值知识要点2:用代入消元法解二元一次方程组运用代入消元法解方程组的一般步骤:(1)从方程组中选出一个系数较为简单的方程,将这个方程中的某个未知数用含有另一个未知数的代数式表示出来。
列方程解含有两个未知数的应用题教学内容:第九册第118页例6教学重点:1、根据条件中的倍数关系的句子确定设哪个量为X,哪个量用含有字母的式子来表示2、在条件中找出等量关系的句子列出方程教学难点:1、确定要求的两个量中谁为X,另一个量该怎样表示2、哪一句话是设X的依据,哪一句话是列方程的依据。
教学目标:1、初步学会列方程解答含有两个未知数的应用题2、用数学解决生活实际问题的能力。
3、培养比较、分析和归纳概括能力。
(说课)学生在三年级,已经学过已知甲数是乙数的几倍以及乙数的是多少,求甲乙两数的和或差的两步应用题。
本课所讲的实际上是上述两步应用题的逆思考题。
这种应用题的特点是,题里含有两个未知数,一般有两个已知条件说明两个未知数间的关系,如给出两个数的和或差,以及两个数的倍数关系。
在这以前,学生还没接触过。
这样的应用题,在算术中称“和倍”、“差倍”问题,若用算术方法解,思路特殊,而且“和倍”、“差倍”需要分别教学。
改用方程解,可归结为解形如ax±bx=c的方程,思路统一,解法一致,学会其中一种题的解法,另一种题的解法就很容易类推。
这种问题在实际中有一定用处,而且是学习分数应用题的重要基础。
因此,要重视这部分内容的教学。
为切合学生的生活实际,创设一个具体情境让学生乐于参与。
我没有使用教材里的例题,而是以本人和女儿的体重作为材料编题。
首先,出示女儿的照片,让学生猜一猜是谁。
学生很快猜到了。
虽然是一张小小的照片,但由于是关于老师的事情,还是一个很可爱的BB,同学们很容易参与到课堂的学习中。
接着,老师出示两组提示,让同学们猜老师和女儿各有多重?(提示一:老师和老师的女儿一共重60千克,老师的体重是女儿的5倍。
提示二:老师比老师的女儿重40千克,老师的体重是女儿的5倍。
)学生根据两个提示猜的时候,感受到是通过两个条件,猜两个未知数,有不少学生觉得有难度。
当然,有个别学生会猜到。
在这个情境下,把两个提示以应用题的形式出示,引出课题。
3.3 解方程(小考复习精编专项练习)六年级数学小升初复习系列:第三章式与方程(含知识点、练习与答案)一、方程,是指含有未知数的等式。
方程必须具备以下两个要素:一是含有未知数;二是等式。
式子同时具备这两个因素,才能称为方程。
二、解方程,是求出方程中未知数的值的过程,是求方程的解的具体方法。
其步骤是:(1)写“解”字;(2)方程最终化为ax=b(a≠0)的形式;(3)方程两边同时除以a,求出未知数的值。
类型一:简单的方程(1) 4x-5=27 (2) 1.6x=4.8-1.6(3) 1.5X-1.5=7.5 (4) 3x+5=20(5) 5x-2x=90 (6) 28-3x=10(7) 32+4x=48 (8) 3.5-2x=2.1类型二:含括号的方程(9) 3x+(2.2+2.3)=11.2(10) 4x-(0.8+1.2)=5.2(11)(32-x)+5=35(12) 3x+(2x-5)=125(13)(x-3)×6=24(14) 18+24÷x=66类型三:较复杂的方程(15)x ÷2+2×8=16(16)22-10+4÷x =32(17)4×(3.2+x )=20(18)3×(4x -5)=12x(19)6.2x +32=3.4x +40.4(20)133x =269(21)13x +25=34(22)712x÷25 =4.2(23)5+4.5÷x=190÷2(24)4×(1.5+x)=32×14×(x-3)=3x (25)2.5×75(26)16x÷8-1.5×4=36类型一:简单的方程(1)4x-5=27解:4x=27+54x=32x=8(2)1.6x=4.8-1.6解:1.6x=3.2x=3.2÷1.6x=2(3)1.5x-1.5=7.5解:1.5x=7.5+1.51.5x=9x=9÷1.5x=6(4)3x+5=20解:3x=20-53x=15x=15÷3x=5(5)5x-2x=90解:3x=90x=90÷3x=30(6)28-3x=10解:28-10=3x18=3xx=18÷3x=6(7)32+4x=48解:4x=48-324x=16x=16÷4x=4(8)3.5-2x=2.1解:3.5-2.1=2x1.4=2xx=1.4÷2x=0.7类型二:含括号的方程(9)3x+(2.2+2.3)=11.2解:3x+5.5=11.23x=11.2-5.53x=5.7x=1.9(10)4x-(0.8+1.2)=5.2解:4x-2=5.24x=5.2+24x=7.2x=1.8(11)(32-x)+5=35解:32+5-x=3537-x=3537-35=x2=xx=2(12)3x+(2x-5)=125解:3x+2x-5=1255x-5=1255x=125+55x=130x=26(13)(x-3)×6=24解:x-3=24÷6x-3=4x=4+3x=7(14)18+24÷x=66解:24÷x=66-1824÷x=4824÷48=x0.5=xx=0.5类型三:较复杂的方程(15)x÷2+2×8=16解:x÷2+16=16x÷2=16-16x÷2=0x=0(16)22-10+4÷x=32 解:12+4÷x=324÷x=32-124÷x=204÷x=204÷20=xx=0.2(17)4×(3.2+x)=20 解:3.2+x=32÷43.2+x=8x=8-3.2x=4.8(18)3×(4x-5)=12x 解:4x-5=12x÷44x-5=3x4x-3x=5x=5(19)6.2x+32=3.4x+40.4 解:6.2x-3.4x=40.4-32 2.8x=8.4x=3(20)133x=269解:÷133×313(21)13x+25=34解:1x-25 1x×3(22)712x÷25=4.2解:712x=4.2×25712x=1.68x=1.68×127x=2.88(23)5+4.5÷x=190÷2 解:4.5÷x=95-54.5÷x=904.5÷90=x0.05=xx=0.05(24)4×(1.5+x)=32×14解:6+4x=84x=8-24x=6x=6÷4x=1.5×(x-3)=3x (25)2.5×75解:3.5×(x-3)=3x3.5x-10.5=3x3.5x-3x=10.50.5x=10.5x=10.5÷0.5x=21(26)16x÷8-1.5×4=36 解:2x-6=362x=36+62x=42x=42÷2x=21。