初一数学竞赛试题
- 格式:doc
- 大小:125.00 KB
- 文档页数:4
初一下数学竞赛试题及答案【试题一】题目:一个数的平方根是另一个数的立方根,求这个数。
【答案】设这个数为 \( x \),则根据题意,我们有 \( \sqrt{x} =\sqrt[3]{y} \),其中 \( y \) 是另一个数。
将等式两边立方,得到\( x = y^{1/3} \)。
由于 \( y \) 可以是任意数,\( x \) 也可以是任意数的立方。
例如,如果 \( y = 8 \),则 \( x = 2 \)。
【试题二】题目:一个直角三角形的两条直角边分别为 \( 3 \) 厘米和 \( 4 \) 厘米,求斜边的长度。
【答案】根据勾股定理,直角三角形的斜边长度 \( c \) 可以通过公式 \( c = \sqrt{a^2 + b^2} \) 计算,其中 \( a \) 和 \( b \) 是直角边的长度。
将 \( a = 3 \) 和 \( b = 4 \) 代入公式,得到 \( c = \sqrt{3^2 + 4^2} = \sqrt{9 + 16} = \sqrt{25} = 5 \) 厘米。
【试题三】题目:如果一个数的 5 倍加上 12 等于这个数的 3 倍减去 8,求这个数。
【答案】设这个数为 \( x \),根据题意,我们有 \( 5x + 12 = 3x - 8 \)。
将等式两边的 \( x \) 项移项,得到 \( 2x = -20 \)。
解得 \( x = -10 \)。
【试题四】题目:一个圆的半径是 7 厘米,求这个圆的面积。
【答案】圆的面积 \( A \) 可以通过公式 \( A = \pi r^2 \) 计算,其中\( r \) 是圆的半径。
将 \( r = 7 \) 代入公式,得到 \( A = \pi \times 7^2 = 49\pi \) 平方厘米。
【试题五】题目:一个分数的分子和分母的和是 21,且这个分数等于\( \frac{3}{4} \),求这个分数。
初一数学竞赛试题一. 选择题(每小题5分,共50分)以下每题的四个结论中,仅有一个是正确的,请将表示正确答案的英文字母填在每题后面的圆括号内。
1. 数a 的任意正奇数次幂都等于a 的相反数,则( ) A. a =0B. a =-1C. a =1D. 不存在这样的a 值2. 如图所示,在数轴上有六个点,且AB BC CD DE EF ====,则与点C 所表示的数最接近的整数是( )A B C D E F-5 11 xA. -1B. 0C. 1D. 2(根据深圳市南山区蛇口中学王远征供题改编)3. 我国古代伟大的数学家祖冲之在1500年以前就已经相当精确地算出圆周率π是在3.1415926和3.1415927之间,并取355113为密率、227为约率,则( ) A. 31415333106.<<π B. 355113227<<πC. 333106355113<<πD. 2271429<<π. 4. 已知x 和y 满足235x y +=,则当x =4时,代数式31222x xy y ++的值是( )A. 4B. 3C. 2D. 15. 两个正整数的和是60,它们的最小公倍数是273,则它们的乘积是( )A. 273B. 819C. 1911D. 35496. 用一根长为a 米的线围成一个等边三角形,测知这个等边三角形的面积为b 平方米。
现在这个等边三角形内任取一点P ,则点P 到等边三角形三边距离之和为( )米 A.2baB.4b aC.6b aD.8b a7. If we let <a> be the greatest prime number not more than a ,then the result of the expression <<3>×<25>×<30>> is ( ) A. 1333B. 1999C. 2001D. 2249(英汉词典:greatest prime number 最大的质数;result 结果;expression 表达式) 8. 古人用天干和地支记次序,其中天干有10个:甲乙丙丁戊己庚辛壬癸。
初一竞赛数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是最小的正整数?A. 0B. 1C. -1D. 2答案:B2. 计算下列哪个算式的结果最大?A. 3 + 4B. 2 × 5C. 6 ÷ 2D. 8 - 3答案:B3. 一个数的平方是36,这个数是多少?A. 6B. -6C. 6 或 -6D. 36答案:C4. 一个长方体的长、宽、高分别是2cm、3cm、4cm,其体积是多少立方厘米?A. 24B. 12C. 8D. 6答案:A5. 一个圆的直径是10cm,那么它的半径是多少?A. 5cmB. 10cmC. 20cmD. 15cm答案:A6. 一个数的3倍加上4等于21,这个数是多少?A. 5B. 6C. 7D. 8答案:B7. 一个数的一半减去3等于6,这个数是多少?A. 15B. 12C. 10D. 9答案:A8. 一个数的2倍减去它的一半等于10,这个数是多少?A. 10B. 20C. 30D. 40答案:B9. 一个数的3倍加上它的一半等于18,这个数是多少?A. 6B. 4C. 5D. 3答案:A10. 一个数加上它的3倍等于24,这个数是多少?A. 6B. 8C. 12D. 16答案:B二、填空题(每题4分,共20分)11. 一个数的4倍加上5等于25,这个数是______。
答案:512. 一个数的5倍减去2等于18,这个数是______。
答案:4.613. 一个数的平方加上8等于37,这个数是______。
答案:±5√314. 一个数的立方等于27,这个数是______。
答案:315. 一个数的倒数是2,这个数是______。
答案:1/2三、解答题(每题10分,共50分)16. 一个数的2倍加上3倍等于30,求这个数。
答案:设这个数为x,则有2x + 3x = 30,解得x = 6。
17. 一个数的4倍减去它的2倍等于20,求这个数。
七年级数学竞赛试题及答案一、选择题1. 已知a = 3,b = -4,则下列哪一个式子是正确的?A. a + b = 7B. a - b = -1C. a × b = -12D. a ÷ b = -3答案:B2. 如果a × b = 20,且b = 5,求a的值。
A. 4B. 5C. 10D. 25答案:C3. 打折前售价为120元的商品现以原价的95%出售,打折后的价格是多少?A. 108元B. 114元C. 119元D. 123元答案:B4. 若一边长为5的正方形的面积是矩形的面积的四分之一,则矩形的长为多少?A. 5B. 10C. 15D. 20答案:C5. 以下哪个数不是素数?A. 17B. 19C. 21D. 23答案:C二、解答题1. 一个数减去13等于19,求这个数是多少?解答:设这个数为x,根据题目可得方程x - 13 = 19,将方程两边同时加上13,则x = 32。
因此,这个数是32。
2. 计算1/4 + 2/3的值,结果用最简分数表示。
解答:首先计算通分,得到3/12 + 8/12 = 11/12。
因此,1/4 + 2/3 = 11/12。
3. 六边形ABCDEF的周长是42 cm,已知AB = CD = EF = 5 cm,BC = DE = 6 cm。
求六边形的面积。
解答:六边形由三个边长相等的正三角形组成,而正三角形的面积公式为S = (边长^2 * √3) / 4。
根据题目可得六边形的面积为3 * [(5^2 * √3) / 4] = (75√3) / 4。
因此,六边形的面积为(75√3) / 4。
4. 如图所示,一个长方体的表面积为94 cm²,其中长、宽和高的比为1:2:3。
求长方体的体积。
解答:设长、宽和高分别为x、2x和3x,则根据长方体的表面积公式2(x * 2x + 2x * 3x + x * 3x) = 94,化简为14x^2 = 94,解得x =√(94/14) = √(47/7)。
衢州数学竞赛初一试题及答案一、选择题(每题3分,共30分)1. 一个数的平方等于它本身,这个数是()A. 1B. -1C. 0D. 1或-12. 如果一个三角形的三边长分别为a、b、c,且满足a^2 + b^2 = c^2,那么这个三角形是()A. 锐角三角形B. 直角三角形C. 钝角三角形D. 不能确定3. 下列哪个数是质数?()A. 4B. 9C. 13D. 164. 一个数的绝对值是它本身,这个数是()A. 正数B. 负数C. 零D. 正数或零5. 一个数的倒数是它本身,这个数是()A. 1B. -1C. 0D. 不存在6. 如果x^2 - 5x + 6 = 0,那么x的值是()A. 2B. 3C. 2或3D. 1或27. 一个圆的半径是5,那么它的周长是()A. 10πB. 20πC. 30πD. 50π8. 一个数的平方根是它本身,这个数是()A. 1B. -1C. 0D. 1或09. 如果一个数的立方等于它本身,那么这个数是()A. 0B. 1C. -1D. 0, 1或-110. 一个数的相反数是它本身,这个数是()A. 0B. 1C. -1D. 0或1二、填空题(每题3分,共15分)1. 若一个数的平方是16,那么这个数是______。
2. 直角三角形的斜边长度为13,两直角边长度分别为5和12,那么斜边上的高是______。
3. 一个数的绝对值是5,这个数可以是______。
4. 一个数的倒数是1/2,那么这个数是______。
5. 如果一个圆的直径是14,那么它的面积是______。
三、解答题(每题5分,共55分)1. 证明:如果a、b、c是三角形的三边长,且a^2 + b^2 = c^2,那么这个三角形是直角三角形。
2. 解方程:2x + 5 = 3x - 2。
3. 一个长方形的长是宽的两倍,如果它的周长是24厘米,求长方形的长和宽。
4. 一个数列的前三项是1, 1, 2,从第四项开始,每一项都是前三项的和。
全国初一初中数学竞赛测试班级:___________ 姓名:___________ 分数:___________一、选择题1.船在江中顺水航行与逆水航行的速度之比为7:2,那么它在两港间往返一次的平均速度与顺水速度之比为( )。
A.B.C.D.。
2.如右图所示,三角形ABC的面积为1cm2。
AP垂直ÐB的平分线BP于P。
则与三角形PBC的面积相等的长方形是( )。
3.设a,B是常数,不等式+>0的解集为x<,则关于x的不等式bx-a>0的解集是( )。
A.x>B.x<-C.x> -D.x<。
4.下图所示的五角星是用螺栓将两端打有孔的5根木条连接构成的图形,它的形状不稳定。
如果在木条交叉点打孔加装螺栓的办法使其形状稳定,那么至少需要添加( )个螺栓。
A.1B.2C.3D.4 。
5.对四堆石子进行如下“操作”:每次允许从每堆中各拿掉相同个数的石子,或从任一堆中取出一些石子放入另一堆中。
若四堆石子的个数分别为2011,2010,2009,2008,则按上述方式进行若干次“操作”后,四堆石子的个数可能是( )。
A.0, 0, 0, 1B.0, 0, 0, 2C.0, 0, 0, 3D.0, 0, 0, 4 。
二、填空题1.对整数按以下方法进行加密;每个数字的数字变为与7乘积的个位数字,再把每个数位上的数字a变为10-a。
如果一个数按照上面的方法加密后为473392,则该数为。
2.老师问A、B、C、D、E五位学生:“昨天你们有几个人玩过游戏?”他们的回答分别为A:没有人;B:一个人;C:二个人;D;三个人;E:四个人。
老师知道:他们之中有人玩过游戏,也有人没有玩过游戏。
若没有玩过游戏的人说的是真话,那么他们5个人中有个人玩过游戏。
3.公交车的线路号是由数字显示器显示的三位数,其中每个数字是由横竖放置的七支荧光管显示,如下图所示:由于坏了一支荧光管,某公交线路号变成“351”。
数学竞赛试题及答案初一【试题一】题目:计算下列表达式的值:\[ 2^3 + 3 \times 4 - 5^2 \]【答案】首先计算指数部分:\[ 2^3 = 8 \]\[ 5^2 = 25 \]然后进行乘法运算:\[ 3 \times 4 = 12 \]接下来,按照运算顺序,先进行加法和减法:\[ 8 + 12 - 25 = 20 - 25 = -5 \]所以,表达式的值为 -5。
【试题二】题目:如果一个数的平方等于该数的两倍,求这个数。
【答案】设这个数为 \( x \),根据题意,我们有:\[ x^2 = 2x \]将等式两边同时除以 \( x \)(注意 \( x \neq 0 \)):\[ x = 2 \]所以,这个数是 2。
但我们还应该检查 \( x = 0 \) 的情况,因为 0 的平方也是 0 的两倍:\[ 0^2 = 2 \times 0 \]所以,这个数也可以是 0。
【试题三】题目:一个长方形的长是宽的两倍,如果长和宽都增加 2 米,那么面积增加了 24 平方米。
求原长方形的长和宽。
【答案】设原长方形的宽为 \( w \) 米,那么长为 \( 2w \) 米。
根据题意,长和宽都增加 2 米后,新的长为 \( 2w + 2 \) 米,新的宽为 \( w + 2 \) 米。
新的面积与原面积的差为 24 平方米:\[ (2w + 2)(w + 2) - 2w \times w = 24 \]展开并简化:\[ 2w^2 + 4w + 2w + 4 - 2w^2 = 24 \]\[ 6w + 4 = 24 \]\[ 6w = 20 \]\[ w = \frac{20}{6} = \frac{10}{3} \]所以原长方形的宽为 \( \frac{10}{3} \) 米,长为 \( 2 \times \frac{10}{3} = \frac{20}{3} \) 米。
【试题四】题目:一个班级有 40 名学生,其中 25% 的学生是男生。
初一数学奥林匹克竞赛题(含答案)初一奥数题一甲多开支100元,三年后负债600元.求每人每年收入多少?S的末四位数字的和是多少?4.一个人以3千米/小时的速度上坡,以6千米/小时的速度下坡,行程12千米共用了3小时20分钟,试求上坡与下坡的路程.5.求和:6.证明:质数p除以30所得的余数一定不是合数.8.若两个整数x,y使x2+xy+y2能被9整除,证明:x和y能被3整除.9.如图1-95所示.在四边形ABCD中,对角线AC,BD的中点为M,N,MN的延长线与AB边交于P点.求证:△PCD的面积等于四边形ABCD的面积的一半.解答:所以x=5000(元).所以S的末四位数字的和为1+9+9+5=24.3.因为a-b≥0,即a≥b.即当b≥a>0或b≤a<0时,等式成立.4.设上坡路程为x千米,下坡路程为y千米.依题意则有由②有2x+y=20,③由①有y=12-x.将之代入③得 2x+12-x=20.所以x=8(千米),于是y=4(千米).5.第n项为所以6.设p=30q+r,0≤r<30.因为p为质数,故r≠0,即0<r<30.假设r 为合数,由于r<30,所以r的最小质约数只可能为2,3,5.再由p=30q+r 知,当r的最小质约数为2,3,5时,p不是质数,矛盾.所以,r一定不是合数.7.设由①式得(2p-1)(2q-1)=mpq,即(4-m)pq+1=2(p+q).可知m<4.由①,m>0,且为整数,所以m=1,2,3.下面分别研究p,q.(1)若m=1时,有解得p=1,q=1,与已知不符,舍去.(2)若m=2时,有因为2p-1=2q或2q-1=2p都是不可能的,故m=2时无解.(3)若m=3时,有解之得故 p+q=8.8.因为x2+xy+y2=(x-y)2+3xy.由题设,9|(x2+xy+y2),所以3|(x2+xy +y2),从而3|(x-y)2.因为3是质数,故3|(x-y).进而9|(x-y)2.由上式又可知,9|3xy,故3|xy.所以3|x或3|y.若3|x,结合3(x-y),便得3|y;若3|y,同理可得,3|x.9.连结AN,CN,如图1-103所示.因为N是BD的中点,所以上述两式相加另一方面,S△PCD =S△CND+S△CNP+S△DNP.因此只需证明S△AND =S△CNP+S△DNP.由于M,N分别为AC,BD的中点,所以S△CNP =S△CPM-S△CMN=S△APM-S△AMN=S△ANP.又S△DNP =S△BNP,所以S△CNP+S△DNP=S△ANP+S△BNP=S△ANB=S△AND.初一奥数题二1.已知3x2-x=1,求6x3+7x2-5x+2000的值.2.某商店出售的一种商品,每天卖出100件,每件可获利4元,现在他们采用提高售价、减少进货量的办法增加利润,根据经验,这种商品每涨价1元,每天就少卖出10件.试问将每件商品提价多少元,才能获得最大利润?最大利润是多少元?3.如图1-96所示.已知CB⊥AB,CE平分∠BCD,DE平分∠CDA,∠1+∠2=90°.求证:DA⊥AB.4.已知方程组的解应为一个学生解题时把c抄错了,因此得到的解为求a2+b2+c2的值.5.求方程|xy|-|2x|+|y|=4的整数解.6.王平买了年利率7.11%的三年期和年利率为7.86%的五年期国库券共35000元,若三年期国库券到期后,把本息再连续存两个一年期的定期储蓄,五年后与五年期国库券的本息总和为47761元,问王平买三年期与五年期国库券各多少?(一年期定期储蓄年利率为5.22%)7.对k,m的哪些值,方程组至少有一组解?8.求不定方程3x+4y+13z=57的整数解.9.小王用5元钱买40个水果招待五位朋友.水果有苹果、梨子和杏子三种,每个的价格分别为20分、8分、3分.小王希望他和五位朋友都能分到苹果,并且各人得到的苹果数目互不相同,试问他能否实现自己的愿望?解答:1.原式=2x(3x2-x)+3(3x2-x)-2x+2000 =2x×1+3×1-2x+2000=2003.2.原来每天可获利4×100元,若每件提价x元,则每件商品获利(4+x)元,但每天卖出为(100-10x)件.如果设每天获利为y元,则y =(4+x)(100-10x)=400+100x-40x-10x2=-10(x2-6x+9)+90+400=-10(x-3)2+490.所以当x=3时,y最大=490元,即每件提价3元,每天获利最大,为490元.3.因为CE平分∠BCD,DE平分∠ADC及∠1+∠2=90°(图1-104),所以∠ADC+∠BCD=180°,所以AD∥BC.①又因为 AB⊥BC,②由①,② AB⊥AD.4.依题意有所以a2+b2+c2=34.5.|x||y|-2|x|+|y|=4,即|x|(|y|-2)+(|y|-2)=2,所以(|x|+1)(|y|-2)=2.因为|x|+1>0,且x,y都是整数,所以所以有6.设王平买三年期和五年期国库券分别为x元和y元,则因为y=35000-x,所以 x(1+0.0711×3)(1+0.0522)2+(35000-x)(1+0.0786×5)=47761,所以 1.3433x+48755-1.393x=47761,所以 0.0497x=994,所以 x=20000(元),y=35000-20000=15000(元).7.因为 (k-1)x=m-4,①m为一切实数时,方程组有唯一解.当k=1,m=4时,①的解为一切实数,所以方程组有无穷多组解.当k=1,m≠4时,①无解.所以,k≠1,m为任何实数,或k=1,m=4时,方程组至少有一组解.8.由题设方程得z=3m-y.x=19-y-4(3m-y)-m =19+3y-13m.原方程的通解为其中n,m取任意整数值.9.设苹果、梨子、杏子分别买了x,y,z个,则消去y,得12x-5z=180.它的解是x=90-5t,z=180-12t.代入原方程,得y=-230+17t.故x=90-5t,y=-230+17t,z=180-12t.x=20,y=8,z=12.因此,小王的愿望不能实现,因为按他的要求,苹果至少要有1+2+3+4+5+6=21>20个.初一奥数题三1.解关于x的方程2.解方程其中a+b+c≠0.3.求(8x3-6x2+4x-7)3(2x5-3)2的展开式中各项系数之和.4.液态农药一桶,倒出8升后用水灌满,再倒出混合溶液4升,再用水灌满,这时农药的浓度为72%,求桶的容量.5.满足[-1.77x]=-2x的自然数x共有几个?这里[x]表示不超过x的最大整数,例如[-5.6]=-6,[3]=3.6.设P是△ABC内一点.求:P到△ABC三顶点的距离和与三角形周长之比的取值范围.7.甲乙两人同时从东西两站相向步行,相会时,甲比乙多行24千米,甲经过9小时到东站,乙经过16小时到西站,求两站距离.8.黑板上写着三个数,任意擦去其中一个,将它改写成其他两数的和减1,这样继续下去,最后得到19,1997,1999,问原来的三个数能否是2,2,2?9.设有n个实数x1,x2,…,xn,其中每一个不是+1就是-1,且求证:n是4的倍数.解答:1.化简得6(a-1)x=3-6b+4ab,当a≠1时,2.将原方程变形为由此可解得x=a+b+c.3.当x=1时,(8-6+4-7)3(2-1)2=1.即所求展开式中各项系数之和为1.依题意得去分母、化简得7x2-300x+800=0,即7x-20)(x-40)=0,5.若n为整数,有[n+x]=n+[x],所以[-1.77x]=[-2x+0.23x]=-2x+[0.23x].由已知[-1.77x]=-2x,所以-2x=-2x+[0.23x],所以 [0.23x]=0.又因为x为自然数,所以0≤0.23x<1,经试验,可知x可取1,2,3,4,共4个.6.如图1-105所示.在△PBC中有BC<PB+PC,①延长BP交AC于D.易证PB+PC<AB+AC.②由①,② BC<PB+PC<AB+AC,③同理 AC<PA+PC<AC+BC,④AB<PA+PB<AC+AB.⑤③+④+⑤得AB+BC+CA<2(PA+PB+PC)<2(AB+BC+CA).所以7.设甲步行速度为x千米/小时,乙步行速度为y千米/小时,则所求距离为(9x+16y)千米.依题意得由①得16y2=9x2,③由②得16y=24+9x,将之代入③得即 (24+9x)2=(12x)2.解之得于是所以两站距离为9×8+16×6=168(千米).8.答案是否定的.对于2,2,2,首先变为2,2,3,其中两个偶数,一个奇数.以后无论改变多少次,总是两个偶数,一个奇数(数值可以改变,但奇偶性不变),所以,不可能变为19,1997,1999这三个奇数.。
全国初一初中数学竞赛测试班级:___________ 姓名:___________ 分数:___________一、填空题1.如果x,y满足2x+3y=15,6x+13y=41,则x+2y的值是。
A.5B.7C.D.9 。
2.-2和2对应的点将数轴分成3段,如果数轴上任意n个不同的点中至少有3个在其中之ㄧ段,那么n的最小值是。
A.5B.6C.7D.8 。
3.满足 || x-1 |-| x ||-| x-1 +| x |=1的x的值是。
A.0B.±C.D.±。
4.乘积为-240的不同五个整数的平均值最大是。
A.B.C.7D.9 。
5.如果x+y+z=a,++=0,那么x2+y2+z2的值为。
6.如图,甲,乙两人分别从A、B两地同时出发去往C地,在距离C地2500米处甲追上乙;若乙提前10分钟出发,则在距离C地1000米处甲追上乙。
已知,乙每分钟走60米,那么甲的速度是每分钟米。
7.在2001、2002、…、2010这10个数中,不能表示成两个平方数差的数有个。
8.如图,某风景区的沿湖公路AB=3千米,BC=4千米,CD=12千米,AD=13千米,其中AB^BC,图中阴影是草地,其余是水面。
那么乘游艇游点C出发,行进速度为每小时11千米,到达对岸AD最少要用小时。
二、解答题用甲乙两种饮料按照x:y(重量比)混合配制成一种新饮料,原来两种饮料成本是:甲每500克5元,乙每500克4元。
现甲成本上升10%,乙下降10%,而新饮料成本恰好保持不变,则x:y= 。
A.4:5B.3:4C.2:3D.1:2 。
三、选择题一个立方体的每一个面都写有一个自然数,并且相对的两个面内的两数之和都相等,下图是这个立方体的平面展开图,若20、0、9的对面分别写的是a、b、c,则a2+b2+c2-ab-bc-ca的值为。
A.481B.301C.602D.962 。
全国初一初中数学竞赛测试答案及解析一、填空题1.如果x,y满足2x+3y=15,6x+13y=41,则x+2y的值是。
2017年上初一数学竞赛试题 ( 考试时间:90分钟 满分:100分) 一、选择题(每题3分,共24分) 1、若m 是有理数,则m m -一定是( ) A .零 B .非负数 C .正数 D .负数 2、如果022=-+-x x ,那么x 的取值范围是( ) A .2>x B .2<x C .2≥x D .2≤x 3.下列说法正确..的是 ( ) A .平方等于它本身的数只有0 B .立方等于本身的数只有±1 C .绝对值等于它本身的数只有正数 D .倒数等于它本身的数只有±1 4、若和的代数和中不含二次项,则为( ) A .-8 B .-4 C .4 D .8 5、计算:的结果是:( ) A . B . C . D .0
、当2=x 时, 整式13++qx px 的值等于2002,那么当2-=x 时, 整式13++qx px 的值为( ) 、2001 B 、-2001 C 、2000 D 、-2000 7、计算机是将信息转换成二进制数进行处理的,二进制即“逢2进1”,如(1101)2表示二进制数,将它转换成十进制形式是1×23+1×22+0×21+1×20=13,那么将二进制数(1111)2转换成十进制形式是数(注意:20=1) ( ) .8 B .15 C .20 D .30 8、一个多位数的个位数字设为a ,而这个多位数的任何次幂的个位数字仍为a ,
那么数字a ( ) A.只能是1 B.除1以外还有1个 C.共有3个 D.共有4个 二、填空题(每题3分,共18分) 9.观察下列等式:111122⨯=-,222233⨯=-,333344⨯=-,……则第n 个等式为____________ .
10.点A 、B 、C 在同一条数轴上,其中点A 、B 表示的数分别为﹣3、1,若BC=2,则AC 等于__________. 11、小方利用计算机设计了一个计算程序,输入和输出的数据如下表: 那么,当输入数据为8时,输出的数据为 .
12、现对某商品降价20%促销,为了使销售总金额不变,
销售量要比按原价销售时增加的百分数为__________. 13. 填在下面各正方形中的四个数之间都有相同的规律,根据这种规律,m
的值是 .
14.已知231x y =-⎧⎨=⎩是二元一次方程组11ax by bx ay +=⎧⎨+=⎩
的解,则()()a b a b +-的值是 .
三、解答题(共计58分)
15、计算(6分):()321236893⎡
⎤⎛⎫---++---- ⎪⎢⎥⎝⎭⎣⎦
16.(6分)如图, 数轴上三点A 、B 、C 分别表示有理数a 、b 、c,
化简|a -b|-|a+c|+|b -c|.
17.(6分)设
当时
求:的值。
考号:______
18.(6分)解方程组199519975989199719955987x y x y +=⎧⎨
+=⎩
19.(6分)若()4360,2700,x y z x y z xyz --=+-=≠求代数式
z y x z y x 103225++-+的值.
20.(8分)已知:有理数m 所表示的点到表示数3的点的距离4个单位,a,b 互为相反数,且都不为
零,c,d 互为倒数。
求:m cd b
a b a --++)3(
22的值
21.(10分)“水是生命之源”,市自来水公司为鼓励用户节约用水,按以下规定收取水费:
(1)某用户1月份共交水费65元,问1月份用水多少吨?
(2)若该用户水表有故障,每次用水只有60%记入用水量,这样在2月份交水费43.2元,该用户2月份实际应交水费多少元?
22.(10分)有铅笔、圆珠笔、钢笔三种学习用品。
若购买铅笔3支、圆珠笔7支、钢笔1支共需35元,若购买铅笔4支、圆珠笔10支、钢笔1支共需42元。
现购买铅笔、圆珠笔、钢笔各1支共需多少元?。