常用可控整流电路及其参数表
- 格式:doc
- 大小:395.00 KB
- 文档页数:5
第6章可控整流电路6.1 学习要求(1)了解晶闸管的基本结构、工作原理、特性曲线和主要参数。
(2)了解单相可控整流电路的可控原理和整流电压与电流的波形。
(3)了解单结晶体管及触发电路的工作原理。
6.2 学习指导本章重点:(1)晶闸管的基本结构、工作原理、特性曲线和主要参数。
(2)单相可控整流电路的可控原理和整流电压与电流的波形。
(3)单结晶体管及触发电路的工作原理。
本章难点:(1)单相半控桥式整流电路中晶闸管的选取。
(2)单相可控整流电路接电感性负载输出电压与电流的分析。
(3)单结晶体管触发电路的工作原理。
本章考点:(1)单相可控整流电路输出直流电压的计算。
(2)单相可控整流电路接电阻性负载输出电压的分析。
(3)单相半控桥式整流电路中晶闸管的选取。
6.2.1 晶闸管晶闸管又称可控硅,是一种可控的单向导通元件,有阳极A、阴极K和控制极G三个电极。
晶闸管的导通条件为:(1)在阳极和阴极之间加适当的正向电压U A K。
(2)在控制极和阴极之间加适当的正向触发电压U G K。
晶闸管一旦导通后,控制极就失去控制作用而维持阳极与阴极之间的导通,管压降约为1V左右。
晶闸管由导通变截止称为关断,关断条件为:(1)晶闸管阳极电流小于维持电流I H。
电子技术学习指导与习题解答120 (2)或将阳极与电源断开或给阳极与阴极之间加反向电压。
晶闸管的主要参数有:额定正向平均电流I F ,维持电流I H ,正向重复峰值电压U FR M ,反向重复峰值电压U R R M 。
若晶闸管工作时通过的电流为I V S O ,承受的最高正向电压为U F M ,最高反向电压为U R M ,则应按照下列各式选取晶闸管:I F ≥I V S OU FR M ≥FM )3~2(UU R R M ≥RM )3~2(U6.2.2 单相可控整流电路 1.单相可控半波整流电路(1)电阻性负载:电路及其电压与电流波形如图 6.1所示,导通角αθ-=180,控制角α的调整范围为0~180°。
1.三相半波可控整流电路(电阻性负载)1.1三相半波可控整流电路(电阻性负载)电路结构为了得到零线变压器二次侧接成星形得到零线,为了给三次谐波电流提供通路,减少高次谐波的影响,变压器一次绕组接成三角形,为△/Y接法。
三个晶闸管分别接入a、b、c三相电源,其阴极连接在一起为共阴极接法。
如图1.du R1VT3VTd i2VTr T图1.三相半波可控整流电路原理图(电阻性负载)1.2三相半波可控整流电路工作原理(电阻性负载)1)在ωt1-ωt2区间,有Uu>Uv,Uu>Uw,U相电压最高,VT1承受正向电压,在ωt1时刻触发VT1导通,导通角θ=120°,输出电压Ud=Uu。
其他两个晶闸管承受反向电压而不能导通。
VT1通过的电流It1与变压器二次侧u相电流波形相同,大小相等,可在负载电阻R两端测试。
2)在ωt2-ωt3区间,有Uv>Uu,V相电压最高,VT2承受正向电压,在ωt2时刻触发VT2导通,Ud=Uv。
VT1两端电压Ut1=Uu-Uv=Uuv<0,晶闸管VT1承受反向电压关断。
3)在ωt3-ωt4区间,有Uw>Uv,W相电压最高,VT3承受正向电压,在ωt3时刻触发VT3导通,Ud=Uw。
VT2两端电压Ut2=Uv-Uw=Uvw<0,晶闸管VT2承受反向电压关断。
在VT3导通期间VT1两端电压Ut1=Uu-Uw=Uuw<0。
这样在一个周期内,VT1只导通120°,在其余240°时间承受反向电压而处于关断状态。
1.3三相半波可控整流电路仿真模型(电阻性负载)根据原理图用matalb软件画出正确的三相半波可控整流电路(电阻性负载)仿真电路图如图2所示:图2.三相半波可控整流电路仿真模型(电阻性负载)脉冲参数,振幅3V,周期0.02,占空比10%,时相延迟分别为(α+30)/360*0.02,(α+120+30)/360*0.02,(α+240+30)/360*0.02。
三相桥式全控整流电路⽬录摘要 (1)1 概述 (2)2 三项桥式全控整流电路 (3)2.1电阻性负载 (3)2.1.1 ⼯作原理 (3)2.2 感性负载 (5)2.2.1 原理 (5)3仿真 (7)3.1 MATLAB 介绍 (7)3.2 电路仿真模型建⽴和参数设置 (8)3.2.1 三相桥式全控整流电路的分析 (8)3.3三相桥式整流电路的仿真 (8)3.3.1 带阻感性负载的仿真 (8)3.4 仿真设置及仿真结果 (14)3.5 带阻感性负载三相桥式全控整流电路的仿真分析 (15)3.6 纯电阻负载三相桥式全控整流电路的仿真 (18)⼩结 (19)参考⽂献 (20)带电阻负载的三相桥式全控整流电路设计摘要整流电路就是把交流电能转换成直流电能的电路。
⼤多数整流电路由变压器、整流主电路和滤波器组成。
它在直流电机的调速、发电机的激励调节电解、电镀等领域得到⼴泛应⽤。
整流电路主要有主电路、滤波器、变压器组成。
20世纪70年代以后,主电路多⽤硅整流⼆极管和晶闸管组成。
滤波器接在主电路和负载之间,⽤于滤除波动直流电压中的交流部分。
变压器设置与否视情况⽽定。
变压器的作⽤是实现交流输⼊电压与直流输出电压间的匹配以及交流电⽹与整流电路间的电隔离。
整流电路的种类有很多,半波整流电路、单项桥式半控整流电路、单项桥式全控整流电路、三项桥式半控整流电路、三项桥式全控整流电路。
关键词:整流、变压、触发、电感1 概述在电⼒系统中,电压和电流应是完好的正弦波.但是在实际的电⼒系统中,由于⾮线性负载的影响,实际的电⽹电压和电流波形总是存在不同程度的畸变,给电⼒输配电系统及附近的其它电⽓设备带来许多问题,因⽽就有必要采取措施限制其对电⽹和其它设备的影响。
随着电⼒电⼦技术的迅速发展,各种电⼒电⼦装置在电⼒系统、⼯业、交通、家庭等众多领域中的应⽤⽇益⼴泛,⼤量的⾮线性负载被引⼊电⽹,导致了⽇趋严重的谐波污染.电⽹谐波污染的根本原因在于电⼒电⼦装置的开关⼯作⽅式,引起⽹侧电流、电压波形的严重畸变.⽬前,随着功率半导体器件研制与⽣产⽔平的不断提⾼,各种新型电⼒电⼦变流装置不断涌现,特别是⽤于交流电机凋速传动的变频器性能的逐步完善,为⼯业领域节能和改善⽣产⼯艺提供了⼗分⼴阔的应⽤前景.相关资料表明,电⼒电⼦装置⽣产量在未来的⼗年中将以每年不低于10%的速度递增,同时,由这类装置所产⽣的⾼谐谐波约占总谐波源的70%以上。
常见的几种二极管整流电路解析,可控硅整流电路波形分析常见的几种二极管整流电路解析:二极管半波整流电路实际上利用了二极管的单向导电特性。
当输入电压处于交流电压的正半周时,二极管导通,输出电压vo=vi-vd。
当输入电压处于交流电压的负半周时,二极管截止,输出电压vo=0。
半波整流电路输入和输出电压的波形如图所示。
对于使用直流电源的电动机等功率型的电气设备,半波整流输出的脉动电压就足够了。
但对于电子电路,这种电压则不能直接作为半导体器件的电源,还必须经过平滑(滤波)处理。
平滑处理电路实际上就是在半波整流的输出端接一个电容,在交流电压正半周时,交流电源在通过二极管向负载提供电源的同时对电容充电,在交流电压负半周时,电容通过负载电阻放电。
通过上述分析可以得到半波整流电路的基本特点如下:(1)半波整流输出的是一个直流脉动电压。
(2)半波整流电路的交流利用率为50%。
(3)电容输出半波整流电路中,二极管承担最大反向电压为2倍交流峰值电压(电容输出时电压叠加)。
(3)实际电路中,半波整流电路二极管和电容的选择必须满足负载对电流的要求。
全波整流当输入电压处于交流电压的正半周时,二极管D1导通,输出电压V o=vi-VD1。
当输入电压处于交流电压的负半周时,二极管D2导通,输出电压V o=vi-VD2。
由上述分析可知,二极管全波整流电路输出的仍然是一个方向不变的脉动电压,但脉动频率是半波整流的一倍。
晶体二极管组成的各种整流电路。
一、半波整流电路。
单相全波可控整流电路、单相桥式半控整流电路一.单相全波可控整流电路单相全波可控整流电路(Single Phase Full Wave Controlled Rectifier),又称单相双半波可控整流电路。
图1 单相全波可控整流电路及波形单相全波与单相全控桥从直流输出端或从交流输入端看均是基本一致的。
变压器不存在直流磁化的问题。
单相全波与单相全控桥的区别是:单相全波中变压器结构较复杂,材料的消耗多。
单相全波只用2个晶闸管,比单相全控桥少2个,相应的,门极驱动电路也少2个;但是晶闸管承受的最大电压是单相全控桥的2倍。
单相全波导电回路只含1个晶闸管,比单相桥少1个,因而管压降也少1个。
因此,单相全波电路有利于在低输出电压的场合应用1.电路结构图2.单相桥式半控整流电路,有续流二极管,阻感负载时的电路及波形单相全控桥中,每个导电回路中有2个晶闸管,1个晶闸管可以用二极管代替,从而简化整个电路。
如此即成为单相桥式半控整流电路(先不考虑VDR)。
单相全控桥式整流电路带电阻性负载的电路图如2所示,四个晶间管组成整流桥,其中vTl、vT4组成一对桥臂,vT 2、vT3组成另一对桥臂,vTl和vT3两只晶闸管接成共阴极,VT2和VT 4两只品间管接成共阳极,变压器二次电压比接在a、b两点,u2=1.414U2sin(wt)2.电阻负载半控电路与全控电路在电阻负载时的工作情况相同。
其工作过程如下:a)在u2正半周,u2经VT1和VD4向负载供电。
b) u2过零变负时,因电感作用电流不再流经变压器二次绕组,而是由VT1和VD2续流。
c)在u2负半周触发角a时刻触发VT3,VT3导通,u2经VT3和VD2向负载供电。
d)u2过零变正时,VD4导通,VD2关断。
VT3和VD4续流,u d又为零。
3.续流二极管的作用1)避免可能发生的失控现象。
2)若无续流二极管,则当a突然增大至180 或触发脉冲丢失时,会发生一个晶闸管持续导通而两个二极管轮流导通的情况,这使u d成为正弦半波,其平均值保持恒定,称为失控。
1三相桥式全控整流电路(电阻性负载)
三相桥式全控整流电路是由三相半波可控整流电路演变而来的,它由三相半波共阴极接法(VT1,VT3,VT5)和三相半波共阳极接法(VT1,VT6,VT2)的串联组合。
1-1三相桥式全控整流电路(电阻性负载)
1-1三相桥式全控整流电路
n
d
VT VT VT 462d 2
d
2-1三相桥式全控整流电路(电阻性负载)仿真图2.2三相桥式全控整流电路(电阻性负载)电源参数
电源220V.相位分别为0︒,120︒,-120︒,频率50HZ
设置控制脚a为0︒,30︒,60︒,90︒与其相印的波形
3-1三相桥式全控整流电路(电阻性负载)a为0︒
3-2三相桥式全控整流电路(电阻性负载)a为30︒
3-3三相桥式全控整流电路(电阻性负载)a为60︒
3-4三相桥式全控整流电路(电阻性负载)a为90︒
4总结
2个晶闸管同时导通形成供电回路,其中共阴极组和共阳极组各1个,且不能为同一相器件。
同一相的上下两个桥臂,即VT1与VT4,VT3与VT6,VT5与VT2,脉冲相差180 。
电力电子技术课程设计说明书单相桥式可控整流电路设计院、部:电气与信息工程学院学生姓名:何鹏辉指导教师:肖文英职称教授专业:电气工程及其自动化班级:电气本1304班完成时间: 2016年 6月4日学号: 1330140437摘要单相桥式可控整流电路是一种能将交流转换为直流的电路,其转换效率高,原理及结构简单,因此它在单相整流电路中有着很广泛的应用。
设计一个单相桥式可控控整流电路,我首先先确定设计总体方案,比较了单相桥式半控整流电路和单相桥式全控整流电路的优劣之后,因此最终选择了单相桥式全控整流电路。
单相桥式全控整流电路由一个变压器,4个可控晶闸管,和一个阻感负载组成。
然后根据总体方案分别设计了各个单元电路,如触发电路、保护电路等;还根据要求计算了参数,包括触发角的选择,输出平均电压,输出平均电流,输出有功功率计算,输出波形分析,器件额定参数确定等;完成这些后,将各个单元电路衔接起来就完成了主电路的设计;然后再用MATLAB软件仿真调试。
设计完成后,用MATLAB软件进行仿真调试,调试结果满足设计要求。
关键词:单相桥式可控整流电路;触发电路;保护电路;MATLAB软件仿真目录1设计方案选择及论证 (2)1.1设计任务和要求 (2)1_ 2总体方案的选择和确定 (2)1.3整流电路方案的确定 (3)2.雜总体设计 (4)2. 1系统原理方框图 (4)2.2主电路设计 (5)3_驱动电路和保护电路的设计 (7)3.1触发fe路 (7)3.2保护电路的设计 (9)4元器件和电路参数计算 (11)4-1元件选取——晶闸管(SCR) (11)4.2晶闸管的选型 (15)4. 3整流变压器额定参数计算 (15)个4设计结果分析 (16)5 ,系统调试3仿真 (16)6设计总结 (22)参考文献1.设计方案选择及论证1.1设计任务和要求1.1.1设计任务本次设计的任务是设计一个单相桥式全控整流电路。
确定设计总体方案,通过总体方案来设计各个单元电路,如触发电路、保护电路等;根据要求计算参数,包括触发角的选择,输出平均电压,输出平均电流,输出有功功率计算;输出波形分析,器件额定参数确定等;完成这些后,将各个单元电路衔接起来就完成主电路的设计;然后再用MATLAB软件仿真调试。
带平衡电抗器的双反星形可控整流电路在电解电镀等工业中,常用到低电压大电流(例如几十伏,几千至几万安)可调直流电源。
图2-28 为带平衡电抗器的双反星形可控整流电路。
其变压器二次侧为两组匝数相同极性相反的绕阻,分别接成两组三相半波电路。
变压器二次侧两绕组的极性相反可消除图2-28 带平衡电抗器的双反星形可控整流电路图2-29 双反星形电路,a=0°时两组整流电压、电流波形铁芯的直流磁化,设置电感量为Lp的平衡电抗器是为保证两组三相半波整流电路能同时导电。
与三相桥式电路相比,在采用相同晶闸管的条件下,双反星形电路的输出电流可大一倍。
平衡电抗器的作用:两个直流电源并联时,只有当电压平均值和瞬时值均相等时,才能使负载均流,⌝双反星形电路中,两组整流电压平均值相等,但瞬时值不等,⌝两个星形的中点n1和n2间的电压等于ud1和ud2之差。
该电压加在Lp上,产生电流ip,它通过两组星形自成回路,不流到负载中去,称为环流或平衡电流,⌝考虑到ip后,每组三相半波承担的电流分别为⌝。
为了使两组电流尽可能平均分配,一般使Lp值足够大,以便限制环流在负载额定电流的1%~2%以内。
图2-30 平衡电抗器作用下输出电压的波形和平衡电抗器上电压的波形双反星形电路中如不接平衡电抗器,即成为六相半波整流电路,只能有一个晶闸管导电,其余五管均阻断,每管最大导通角60o ,平均电流Id/6。
当α=0时,Ud 为1.35U2,比三相半波时的1.17U2略大些。
六相半波整流电路因晶闸管导电时间短,变压器利用率低,极少采用。
双反星形电路与六相半波电路的区别就在于有无平衡电抗器,对平衡电抗器作用的理解是掌握双反星形电路原理的关键。
由于平衡电抗器的作用使得两组三相半波整流电路同时导电的,平衡电抗器Lp承担了n1、n2间的电位差,它补偿了ub`和ua的电动势差,使得两相的晶闸管能同时导电将图2-29中ud1和ud2的波形用傅氏级数展开,可得当a =0°时的ud1、ud2,即ud中的谐波分量比直流分量要小得多,且最低次谐波为六次谐波。
电力电子技术实验报告实验名称:单相半波可控整流电路的仿真与分析班级:自动化091 组别: 08 成员:金华职业技术学院信息工程学院年月日一. 单相半波可控整流电路(电阻性负载) ................................................ 错误!未定义书签。
1. 电路的结构与工作原理 (8)2. 单相半波整流电路建模................................................................... 错误!未定义书签。
3. 仿真结果与分析 (5)4. 小结 (8)二. 单相半波可控整流电路(阻-感性负载) ............................................... 错误!未定义书签。
1. 电路的结构与工作原理................................................................... 错误!未定义书签。
2. 单相半波整流电路建模................................................................... 错误!未定义书签。
3. 仿真结果与分析............................................................................... 错误!未定义书签。
4. 小结................................................................................................... 错误!未定义书签。
三. 单相半波可控整流电路(阻-感性负载加续流二极管) ....................... 错误!未定义书签。
1. 电路的结构与工作原理................................................................... 错误!未定义书签。