三相桥式全控整流电路的设计与仿真
- 格式:doc
- 大小:252.50 KB
- 文档页数:19
三相桥式全控整流电路的设计1 主电路的设计与原理说明1.1 主电路图的确定习惯将其中阴极连接在一起的3个晶闸管(VT 1、VT 3、 VT 5)称为共阴极组;阳极连接在一起的3个晶闸管(VT 4、VT 6、VT 2)称为共阳极组。
此外,习惯上希望晶闸管按从1至6的顺序导通,为此将晶闸管按图示的顺序编号,即共阴极组中与a 、b 、c 三相电源相接的3个晶闸管分别为VT 1、VT 3、VT 5, 共阳极组中与a 、b 、c 三相电源相接的3个晶闸管分别为VT 4、VT 6、VT 2。
从后面的分析可知,按此编号,晶闸管的导通顺序为 VT 1-VT 2-VT 3-VT 4-VT 5-VT 6。
此主电路要求带反电动势负载,此反电动势E=60V ,电阻R=10Ω,电感L 无穷大使负载电流连续。
其原理如图1所示。
1.2 主电路原理为说明此原理,假设将电路中的晶闸管换作二极管,这种情况就也就相当于晶闸管触发角α=0o 时的情况。
此时,对于共阴极组的三个晶闸管,阳极所接交流电压值最高的一个导通。
而对于共阳极组的三个晶闸管,则是阴极所接交流电压值最低(或者说负得最多)的一个导通。
这样,任意时刻共阳极组和共阴极组中各有1个晶闸管处于导通状态,施加于负载上的电压为某一线电压。
α=0o 时,各晶闸管均在自然换相点处换相。
由图中变压器二绕组相电压与线电压波形的对应关系看出,各自然换相点既是相电压的交点,同时也是线电压的交点。
在分析d u 的波形时,既可从相电压波形分析,也可以从线电压波形分析。
从相电压波形看,以变压器二次侧的中点n 为参考点,共阴极组晶闸管导通时,整流输出电压 1d u 为相电压在正半周的包络线;共阳极组导通时,整流输出电压2d u 为相电压在负半周的包络线,总的整流输出电压d u =1d u -2d u是两条包络线间的差值,将其对应到线电压波形上,即为线电压在正半周的包络线。
从线电压波形看,由于共阴极组中处于通态的晶闸管对应的最大的相电压,而共阳极组中处于通态的晶闸管对应的是最小的相电压,输出整流电压 d u 为这两个相电压相减,是线电压中最大的一个,因此输出整流电压d u 波形为线电压在正半周的包络线。
基于Matlab/Simulink的三相桥式全控整流电路的建模与仿真摘要本文在对三相桥式全控整流电路理论分析的基础上,建立了基于Simulink的三相桥式全控整流电路的仿真模型,并对其带电阻负载时的工作情况进行了仿真分析与研究。
通过仿真分析也验证了本文所建模型的正确性。
关键词Simulink建模仿真三相桥式全控整流对于三相对称电源系统而言,单相可控整流电路为不对称负载,可影响电源三相负载的平衡性和系统的对称性。
故在负载容量较大的场合,通常采用三相或多相整流电路。
三相或多相电源可控整流电路是三相电源系统的对称负载,输出整流电压的脉动小、控制响应快,因此被广泛应用于众多工业场合。
本文在Simulink仿真环境下,运用PowerSystemBlockset的各种元件模型建立三相桥式全控整流电路的仿真模型,并对其进行仿真研究。
一、三相桥式全控整流电路的工作原理三相桥式全控整流原理电路结构如图1所示。
三相桥式全控整流电路是应用最广泛的整流电路,完整的三相桥式整流电路由整流变压器、6个桥式连接的晶闸管、负载、触发器和同步环节组成(见图1-1)。
6个晶闸管以次相隔60度触发,将电源交流电整流为直流电。
三相桥式整流电路必须采用双脉冲触发或宽脉冲触发方式,以保证在每一瞬时都有两个晶闸管同时导通(上桥臂和下桥臂各一个)。
整流变压器采用三角形/星形联结是为了减少3的整倍次谐波电流对电源的影响。
元件的有序控制,即共阴极组中与a、b、c三相电源相接的三个晶闸管分别为VT1、VT3、VT5,共阳极组中与a、b、c三相电源相接的三个晶闸管分别为VT、VT。
它们可构成电源系统对负载供电的6条整流回路,各整流回路的交流电源电压为两元件所在的相间的线电压。
图1-1 三相桥式全控整流原理电路二、基于Simulink三相桥式全控整流电路的建模三相桥式全控整流电路在Simulink环境下,运用PowerSystemBlockset的各种元件模型建立了三相桥式全控整流电路的仿真模型,仿真结构如图2-1所示:图2-1 三相桥式全控整流电路的仿真模型在模型的整流变压器和整流桥之间接入一个三相电压-电流测量单元V-I是为了观测方便。
三相桥式全控整流电路仿真专业:班级:姓名:学号:指导教师:摘要:三相桥式全控整流电路在现代电力电子技术中具有非常重要的作用。
本文在研究全控整流电路理论基础上,采用Matlab的可视化仿真工具Simulink建立三相桥式全控整流电路的仿真模型,对三相电源电压、电流以及负载特性进行了动态仿真与研究,并且对三相电源电流以及负载电流、电压进行FFT分析。
仿真结果表明建模的正确性,并证明了该模型具有快捷、灵活、方便、直观等一系列特点,从而为电力电子技术课程实验提供了一种较好的辅助工具。
关键词:Matlab;整流电路;动态仿真;建模三相桥式全控整流电路分析(电阻负载)1 主电路结构及工作原理1.1 原理图u d4622图1 三相桥式全控整流电路原理图(电阻负载)1.2工作原理三相桥式全控整流电路原理图如图1所示。
三相桥式全控整流电路是由三相半波可控整流电路演变而来的,它由三相半波共阴极接法(VT1,VT3,VT5)和三相半波共阳极接法(VT4,VT6,VT2)的串联组合。
其工作特点是任何时刻都有不同组别的两只晶闸管同时导通,构成电流通路,因此为保证电路启动或电流断续后能正常导通,必须对不同组别应到导通的一对晶闸管同时加触发脉冲,所以触发脉冲的宽度应大于π/3的宽脉冲。
宽脉冲触发要求触发功率大,易使脉冲变压器饱和,所以可以采用脉冲列代替双窄脉冲;每隔π/3换相一次,换相过程在共阴极组和共阳极组轮流进行,但只在同一组别中换相。
接线图中晶闸管的编号方法使每个周期6个管子的组合导通顺序是VT1-VT2-VT3-VT4-VT5-VT6;共阴极组VT1,VT3,VT5的脉冲依次相差2π/3;同一相的上下两个桥臂,即VT1和VT4,VT3和VT6,VT5和VT2的脉冲相差π,给分析带来了方便;当α=0°时,输出电压Ud一周期的波形是6个线电压的包络线,所以输出脉动直流电压频率是电源频率的6倍,比三相半波电路高1倍,脉动减小,而且每次脉动的波形都一样,故该电路又可称为6脉动整流电路。
摘要随着微电子技术和电子计算机的技术的迅猛发展,电子电路的分析与设计方法发生了巨大的变革,通用电路的分析与设计已有许多软件,而目前国内外流行最广的电路分析软件是Pspice。
Pspice软件具有强大的电路图绘制功能、电路模拟仿真功能、图形后处理功能和元器件符号制作功能,以图形方式输入,自动进行电路检查,生成图表,模拟和计算电路。
它的用途非常广泛,不仅可以用于电路分析和优化设计,还可用于电子线路、电路和信号与系统等课程的计算机辅助教学。
与印制版设计软件配合使用,还可实现电子设计自动化。
被公认是通用电路模拟程序中最优秀的软件,具有广阔的应用前景。
本论文主要通过Pspice强大的仿真能力来实现对三相全控桥式电路的设计,应用该软件建立实时仿真模型,进行瞬态分析。
根据仿真结果对其电路特性进行分析、比较,加深了对三相全控桥式整流电路工作原理和电路特性的理解。
关键词:Pspice;三相全控桥式整流电路;仿真;瞬态分析AbstractWith the rapid development of microelectronics technology and electronic computer technology,electronic circuit analysis and design has undergone tremendous changes, general-purpose circuit analysis and design of many existing software, the most widely popular circuit analysis software at home and abroad is Spice.Pspice software has powerful function schematic drawing, circuit simulation, functional, graphic post-processing functions and components production function symbols to graphically input, the circuit automatically checks, generate charts, simulation and calculation circuit. Its use is very extensive, not only can be used for circuit analysis and optimization of design, can also be used in electronic circuits, circuits and signals and systems courses in computer aided instruction. And PCB design software with the use of electronic design automation can be achieved. Be recognized as general-purpose circuit simulation program of the best software, have broad application prospects.This thesis through Pspice powerful simulation capability to realize the three-phase fully-controlled bridge circuit,using the software to set up a real-time simulation model, then transient analysis . According to the simulation results of the characteristics of their circuit analysis, comparison, better control of three-phase full bridge rectifier circuit theory and circuit characteristics of understanding.Key words: Pspice; Three-phase fully-controlled bridge rectifier circuit; Simulation; Transient analysis目录1绪论 (1)1.1 仿真是设计电气电路和系统的有效手段 (1)1.2 仿真软件的应用 (1)1.3 本课题的研究内容及意义 (2)2 Pspice仿真软件概述 (3)2.1 Pspice的起源与发展 (3)2.2 Pspice仿真软件的优越性 (3)2.3 Pspice的基本组成 (5)2.4 Pspice可执行的仿真分析 (6)2.4.1 基本分析 (6)2.4.2 高级分析 (6)2.5 Pspice软件基本使用步骤 (7)3 三相全控桥式整流电路的电路分析 (8)3.1 整流电路的分类 (8)3.2 三相全控桥式整流电路 (8)3.2.1 电阻性负载 (9)3.2.2 电感性负载 (16)4 基于Pspice的三相全控桥式整流电路的仿真与设计 (21)4.1 介绍 (21)4.2 单相半波可控整流电路仿真与设计 (21)4.3 单相全波可控整流电路 (25)4.4 三相半波可控整流电路 (28)4.5 三相半控桥式整流电路 (28)4.6 三相全控桥式整流电路设计 (29)5结束语 (37)参考文献 (38)致谢 (39)附录 (40)附录1 单相半波可控整流电路及波形图 (40)附录2 并联续流二极管的单相桥式半控整流电路及其波形图 (42)附录3 三相半波电感性负载接续流二极管时的电路及波形 (43)附录4 输出文本文件4.5.OUT部分内容 (44)1绪论计算机仿真具有效率高、精度高、可靠性高和成本低等特点,已经广泛应用于电力电子电路或系统的分析和设计中。
运动控制仿真实验报告——晶闸管三相全控桥式整流仿真实验——实用Buck 变换仿真实验晶闸管三相全控桥式整流仿真实验(大电感负载)原理电路R2晶闸管三相可控整流仿真实验2原理电路框图输入三相交流电,额定电压380 伏(相电压220 伏),额定频率50Hz,星型联接。
输入变压器可省略。
为便于理解电路原理,要求用 6 只晶闸管搭建全控桥。
实验内容1、根据原理框图构建Matlab 仿真模型。
所需元件参考下表:仿真元件库:Simulink Library Browser示波器Simulink/sink/Scope要观察到整个仿真时间段的结果波形必须取消对输出数据的5000 点限制。
要观察波形的FFT 结果时,使能保存数据到工作站。
仿真结束后即可点击仿真模型左上方powergui 打开FFT 窗口,设定相关参数:开始时间、分析波形的周期数、基波频率、最大频率等后,点Display 即可看到结果。
交流电源SimPowerSystems/Electrical Sources/AC Voltage Source设定频率、幅值、相角,相位依次滞后120 度。
晶闸管SimPowerSystems/Power Electronics/Thyristor6 脉冲触发器SimPowerSystems/Extra Library/Control Blocks/Synchronized 6-Pulse Generator设定为50Hz,双脉冲利用电压检测构造线电压输入。
Block 端输入常数0.输出通过信号分离器分为 6 路信号加到晶闸管门极,分离器输出脉冲自动会按顺序从1 到 6排列,注意按号分配给主电路对应晶闸管。
电阻、电容、电感SimPowerSystems/Elements/Series RLC Branch设定参数负载切换开关SimPowerSystems/Elements/Breaker设定动作时间信号合成、分离Simulink/Signal Routing/Demux,Mux电流傅立叶分解SimPowerSystems/Extra Library/Discrete Measurements/Discrete Fourier设定输出为50Hz,基波有效值SimPowerSystems/Extra Library/Discrete Measurements/Discrete RMS value 设定为50Hz位移功率因数计算Simulink/User-Difined Functions/Fcn将度转换为弧度后计算余弦常数Simulink/Sources/Constant增益Simulink/Math Operations/Gain乘除运算Simulink/Math/Divide显示Simulink/sinks/Display电压检测SimPowerSystems/Measurements/Voltage Measurement电流检测SimPowerSystems/Measurements/Current Measurement2、带阻感负载,电感0.1H, 设定触发角为30 度:起动时基本负载20 欧,0.3 秒后并联一个2 欧姆电阻。
毕业设计说明书系(专业): 电气工程及其自动化专业题目: 三相全控桥式整流电路的仿真设计毕业设计(论文)原创性声明和使用授权说明原创性声明本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。
尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。
对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。
作者签名:日期:指导教师签名:日期:使用授权说明本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。
作者签名:日期:学位论文原创性声明本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。
除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。
对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。
本人完全意识到本声明的法律后果由本人承担。
作者签名:日期:年月日学位论文版权使用授权书本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。
本人授权大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。
涉密论文按学校规定处理。
作者签名:日期:年月日导师签名:日期:年月日注意事项1.设计(论文)的内容包括:1)封面(按教务处制定的标准封面格式制作)2)原创性声明3)中文摘要(300字左右)、关键词4)外文摘要、关键词5)目次页(附件不统一编入)6)论文主体部分:引言(或绪论)、正文、结论7)参考文献8)致谢9)附录(对论文支持必要时)2.论文字数要求:理工类设计(论文)正文字数不少于1万字(不包括图纸、程序清单等),文科类论文正文字数不少于1.2万字。
三相桥式全控整流电路仿真建模分析一、三相桥式全控整流电路(电阻性负载)工作原理1.电路的结构与1.1电路结构[[image:http://10.2.3.67/moodle/pluginfile.php/4106/mod_wiki/attachments/150//6GE%5BHDCV FE7KB9SMYR%5B338.jpg?forcedownload=1|alt]]1.2 工作原理在wt1~wt2区间:u相电压最高,VT1被触发导通,v相电压最低,VT6被触发导通,加在负载上的输出电压ud=Uu-Uv=Uuv。
在wt2~wt3区间:u相电压最高,VT1被触发导通,w相电压最低,VT2被触发导通,加在负载上的输出电压ud=Uu-Uw=Uuw。
在wt3~wt4区间:v相电压最高,VT3被触发导通,w相电压最低,VT2被触发导通,加在负载上的输出电压ud=Uv-Uw=Uvw。
在wt4~wt5区间:v相电压最高,VT3被触发导通,u相电压最低,VT4被触发导通,加在负载上的输出电压ud=Uv-Uu=Uvu。
在wt5~wt6区间:w相电压最高,VT5被触发导通,u相电压最低,VT4被触发导通,加在负载上的输出电压ud=Uw-Uu=Uwu。
在wt6~wt7区间:w相电压最高,VT5被触发导通,v相电压最低,VT6被触发导通,加在负载上的输出电压ud=Uw-Uv=Uwv。
1.3基本数量关系a.输出电压平均值当α<=60度时,Ud=1.35*U21*cosα当α>60度时,Ud=2.34*U2*【1+cos(π/3+α)】2.建模模型建立如下图[[image:http://10.2.3.67/moodle/pluginfile.php/4106/mod_wiki/attachments/150//%7B%24311XP MD%28%401%7DE1I6F3M0%295.jpg?forcedownload=1|alt]]2.1模型参数设置a.交流电源参数电源1[[image:http://10.2.3.67/moodle/pluginfile.php/4106/mod_wiki/attachments/150//dianyuan1.jpg?f orcedownload=1|alt]]电源2[[image:http://10.2.3.67/moodle/pluginfile.php/4106/mod_wiki/attachments/150//2.jpg?forcedown load=1|alt]]电源3[[image:http://10.2.3.67/moodle/pluginfile.php/4106/mod_wiki/attachments/150//3.jpg?forcedown load=1|alt]]b.同步脉冲信号发生器参数触发器1[[image:http://10.2.3.67/moodle/pluginfile.php/4106/mod_wiki/attachments/150//a.jpg?forcedown load=1|alt]]触发器2[[image:http://10.2.3.67/moodle/pluginfile.php/4106/mod_wiki/attachments/150//b.jpg?forcedown load=1|alt]]触发器3[[image:http://10.2.3.67/moodle/pluginfile.php/4106/mod_wiki/attachments/150//c.jpg?forcedown load=1|alt]]触发器4[[image:http://10.2.3.67/moodle/pluginfile.php/4106/mod_wiki/attachments/150//d.jpg?forcedown load=1|alt]]触发器5[[image:http://10.2.3.67/moodle/pluginfile.php/4106/mod_wiki/attachments/150//e.jpg?forcedown load=1|alt]]触发器6[[image:http://10.2.3.67/moodle/pluginfile.php/4106/mod_wiki/attachments/150//f.jpg?forcedown load=1|alt]]c.示波器参数示波器五个通道信号依次是:①电源电压Vabc;②负载两端电压Ud;③通过晶闸管VT1电压UT1;④通过晶闸管VT1电流IT1;⑤通过负载电流Id。
中北大学朔州校区电力电子技术课程设计说明书2015 年 1月 14 日1. 概述 (1)1.1 设计目的 (1)1.2 设计目标及设计要求 (1)1.3 设计进度 (1)1.4 分工 (1)2. 系统方案及主电路设计 (2)2.1方案的选择 (2)2.2 系统流程框图 (2)2.3 主电路设计 (3)3.控制、驱动电路设计 (6)3.1触发电路简介 (6)3.2触发电力设计要求 (7)3.3过电压保护 (8)3.4过电流保护 (10)4.系统MATLAB仿真 (12)4.1MATLAB软件介绍 (12)4.2系统建模与参数设置 (12)4.3系统仿真结果及分析 (19)5.设计体会 (12)6.参考文献 (120)1. 概述1.1 设计目的三相桥式全控整流电路在现代电力电子技术中具有很重要的作用和很广泛的应用。
这里结合全控整流电路理论基础,采用Matlab的仿真工具Simulink对三相桥式全控整流电路进行仿真,对输出参数进行仿真及验证,进一步了解三相桥式全控整流电路的工作原理。
1.2 设计目标及要求设计要求2.1设计任务设计一个三相可控整流电路使其输入电压:(1)三相交流380伏、频率为50赫兹、(2)输出功率2KW、负载为阻感性负载。
(3)移相范围:0°~ 90°2.2 设计要求(1)设计出总体结构框图,以说明本课题由哪些相对独立的部分组成,并以文字对原理作辅助说明;(2)设计各个部分的电路图,并加上原理说明;(3)MATLAB仿真实验。
1.3 设计进度(1) 1月14日—1月15日对实验进行理论分析、论证;(2) 1月15日—1月16日进行主电路、触发电路、保护电路的设计及理论分析;(3) 1月19日—1月21日用MATLAB软件对实验进行建模仿真并对仿真结果进行分析;(4) 1月22日—1月23日对本次实验进行分析总结,分享实验心得体会。
1.4 分工(1)系统方案选择及主电路设计:范铮、张艺;(2)控制、驱动电路设计:崔少东、于亮;(3)系统MATLAB仿真:家登辉、李昂、王新嘉。
基于三相桥式全控整流电路Matlab仿真实验报告13351040 施定邦一、电路仿真原理及仿真电路图:图1图21、带电阻负载时当a≤60°时,电压波形均连续,对于电阻负载,电流波形与电压波形形状相同,也连续。
当a>60°时,电压波形每60°中的后一部分为零,电压波形因为晶闸管不能反向导通而不出现负值。
分析可知α角的移相范围是0°--120°。
2、带阻感负载时a≤60°时,电压波形连续,输出整流电压电压波形和晶闸管承受的电压波形与带电阻负载时十分相似,但得到的负载电流波形却有差异。
电容的容值越大电流波形就越平缓,近于水平直线。
a >60°时,电压波形则出现负值,是因为环流的作用使得电压反向。
分析可知α角的移相范围是0°--90°。
二、仿真过程与结果:设置三个交流电压源Va,Vb,Vc相位差均为120°,得到桥式全控的三相电源。
6个信号发生器产生整流电路的触发脉冲,六个晶闸管的脉冲按VT1-VT2-VT3-VT4-VT5-VT6的顺序依次给出,相位差依次为60°。
设置电源频率为50Hz:三、仿真结果1、带电阻负载:R=100Ω,无电容(1)α=0°时各波形如下:(2)α=30°各波形如下:(3)α=60°各波形如下:(4)α=90°各波形如下:2、带阻感负载:R=100Ω,H=1H (1)α=0°各波形如下:(2)α=30°各波形如下:(3)α=60°各波形如下:(4)α=90°各波形如下:(可以看到,和理论符合得很好,说明各参数设置合理,电路的工作状态接近于理想情况)实验总结:通过此次仿真实验,让自己对相关电路工作原理了解得更加详细和印象深刻,反正就是熟能生巧,然后多动手操作设置各种参数组合观察实验结果以得到比较理想的波形。
三相桥式全控整流电路的研究及触发电路设计三相桥式全控整流电路是一种常见的电力电子转换器,广泛应用于交流电转直流电的场合,如电机驱动、电力调节和换流器等。
其主要特点是可以实现对输出电压的调节,从而实现对负载的精确控制。
本文将对三相桥式全控整流电路的研究及触发电路设计进行详细介绍。
首先,我们来了解三相桥式全控整流电路的基本原理。
该电路通过与交流电源相连的三个可控硅组成的桥式整流器来完成交流电的转换。
根据负载的要求,通过控制可控硅的导通角度,可以实现对负载电压和电流的调节。
对于三相桥式全控整流电路,触发电路的设计十分重要。
触发电路的作用是控制可控硅的导通角度,从而实现对输出电压的调整。
常用的触发方式有脉冲触发、调相触发和零点触发等。
脉冲触发方式是最常用的触发方式之一、其原理是通过脉冲信号的控制,使可控硅在特定的时间点上导通。
在三相桥式全控整流电路中,脉冲触发电路一般由脉冲生成电路和脉冲控制电路两部分组成。
脉冲生成电路负责产生一系列的脉冲信号,而脉冲控制电路则根据需要将脉冲信号传输给可控硅,实现其导通控制。
调相触发方式是另一种常见的触发方式。
其原理是通过改变可控硅的导通时间,实现对输出电压的调节。
调相触发电路一般由相位比较器、比例积分器和触发器等组成。
相位比较器负责将电网电压与可控硅导通信号进行比较,得到相位差信号;比例积分器将相位差信号转化为控制信号,并根据需要进行放大和积分处理;触发器则根据控制信号来控制可控硅的导通。
零点触发方式是在交流电源的零点时刻触发可控硅的导通。
其原理是在零点期间,通过触发电路产生的信号来控制可控硅的导通。
零点触发电路由延时电路和触发控制电路组成。
延时电路负责延迟一定时间后输出特定的脉冲信号,而触发控制电路则负责将脉冲信号传输给可控硅,实现其导通控制。
在三相桥式全控整流电路的设计中,需要考虑到电路的稳定性、可靠性和效率等因素。
为此,我们可以采用模拟电路设计方法,结合计算分析和实际测试,对电路进行合理选择和优化。
引言 (1)1三相桥式全控整流电路工作原理 (2)1.1三相桥式全控整流电路特性分析 (2)1.2带电阻负载时的工作情况 (4)1.3晶闸管及输出整流电压的情况 (5)1.4 三相桥式全控整流电路定量分析 (7)2仿真实验 (8)2.1电阻负载仿真 (10)2.2阻感负载仿真 (12)2.3带反电动势阻感负载仿真 (15)3仿真结果分析 (18)4小结 (20)5参考文献 (20)引言随着社会生产和科学技术的发展,整流电路在自动控制系统、测量系统和发电机励磁系统等领域的应用日益广泛。
常用的三相整流电路有三相桥式不可控整流电路、三相桥式半控整流电路和三相桥式全控整流电路。
三相全控整流电路的整流负载容量较大,输出直流电压脉动较小,是目前应用最为广泛的整流电路。
它是由半波整流电路发展而来的。
由一组共阴极的三相半波可控整流电路和一组共阳极接法的晶闸管串联而成。
六个晶闸管分别由按一定规律的脉冲触发导通,来实现对三相交流电的整流,当改变晶闸管的触发角时,相应的输出电压平均值也会改变,从而得到不同的输出。
由于整流电路涉及到交流信号、直流信号以及触发信号,同时包含晶闸管、电容、电感、电阻等多种元件,采用常规电路分析方法显得相当繁琐,高压情况下实验也难顺利进行。
Matlab提供的可视化仿真工具Simulink可直接建立电路仿真模型,随意改变仿真参数,并且立即可得到任意的仿真结果,直观性强,进一步省去了编程的步骤。
本文利用Simulink对三相桥式全控整流电路进行建模,对不同控制角、桥故障情况下进行了仿真分析,既进一步加深了三相桥式全控整流电路的理论,同时也为现代电力电子实验教学奠定良好的实验基础。
1三相桥式全控整流电路工作原理1.1三相桥式全控整流电路特性分析图1是电路接线图。
三相桥式全控整流电路图是应用最为广泛的整流电路,其电路图如下:图1在三相桥式全控整流电路中,对共阴极组和共阳极组是同时进行控制的,控制角都是α。
三相桥式全控整流电路仿真三相桥式全控整流电路是应用最广泛的整流电路,完整的三相桥式全控整流电路由整流变压器、6个桥式连接的晶闸管、负载、触发器和同步环节组成(见图1-1)。
6个晶闸管依次相隔600触发,将电源交流电整流为直流电。
三相桥式整流电路必须采用双脉冲触发或宽脉冲触发方式,以保证在每一瞬时都有两个晶闸管同时导通(上桥臂和下桥臂各一个),整流变压器采用三角形/星形联结。
图1整流电路原理图三相桥式整流电路的仿真使用simpowersystems模型库中的三相桥和触发器的集成模块,用它们组成的三相桥式整流电路的仿真模型如图2所示。
在有的模型库中6-pulsethyristorbridge模块仍使用信号端,这时需要用psbupdate函数转换为电路端口6-pulsethyristorbridge模型没有测量端,需要时可打开其子电路,引出晶闸管的测量端口,模型中用多路测量multimeter观察变压器和负载的电压电流波形,并且用rms模块计算整流变压器二次电压的有效值,meanvalue模块计算整流器输出电压和电流的平均值,用powergui模块进行谐波分析。
图2三相桥式整流电路仿真模型仿真模型中整流器工作中保证触发脉冲与主电路同步很重要,仿真使用的六脉冲发生器是在同步电压过零时作为控制角??00的位置,因此在整流变压器采用△/丫-11联结时,同步变压器也可以采用△/丫-l1联结,同步信号的连接如图2所示。
在同步信号关系难于确定时,可以利用仿真的优点,将三相同步电压信号以不同的顺序连接到六脉冲发生器的ab、bc、ca三个同步输入端,然后运行该模,观察整流器输出电压波形,如果电压波形在一周期中6个波头连续规则,则该整流器的同步是正确的。
负载和控制角可以按需要设定。
三相桥式全控整流电路,电源相电压为220V,整流变压器输出电压为100V(相电压)。
观察整流器在不同负载和不同控制角度下的输出电压和电流波形,测量其平均值,观察整流器的电流波形,分析其主要谐波。
三相桥式全控整流及有源逆变电路一、实验目的(1)加深理解三相桥式全控整流及有源逆变电路的工作原理。
(2)了解KC系列集成触发器的调整方法和各点的波形。
(3)整流电路MATLAB的仿真方法,会设置各模块的参数。
二、实验原理在三相桥式有源逆变电路中,电阻、电感与整流的一致,而三相不可控整流及心式变压器可在实验装置上获得。
三相桥式全控整流电路的计算公式如下:Ud=2.34U2cosa (0~60o))] (60~120o)Ud=2.34U2[1+cos(α+π3三相桥式有源逆变电路计算公式如下:Ud=2.34U2cos(180o-β)三、实验内容(1)三相桥式全控整流电路。
(2)三相桥式有源逆变电路。
(3)在整流或有源逆变状态下,当触发电路出现故障(人为模拟)时观测主电路的各电压波形。
四、实验仿真三相桥式全控整流系统模型图相关参数设置:(1)交流电压源的参数设置:三相电源的相位互差120o,设置交流峰值相电压为141.4V、频率为50Hz。
(2)负载的参数设置:R=45Ω,L=0H,C=inf(3)通用变换桥参数设置:(4)同步6脉冲触发器的参数设置:(5)常数模块参数设置:观察三相电源电压,三相电源电流,触发信号,负载电流,负载端电压的波形:1.带电阻性负载的仿真(1)控制角为60o时的波形图:(2)控制角为90o时的波形图:(3)控制角为120o时的波形图:2.带电阻电感性负载的仿真负载参数设置:R=45Ω,L=1H,C=inf(1)控制角为60o时的波形图:(2)控制角为90o时的波形图:(3)控制角为120o时的波形图:3.有源逆变带电阻电感性负载的仿真负载参数设置如下:R=45Ω,L=1H,C=inf与负载串联的反电势DC设置为100V(1)控制角为120o时(2)控制角为150o时4.计算Id有效值:5.计算功率因数:6.编写程序,绘制u d(α)曲线:程序:a0=1:5:91;Vd=[];for ii=1:1:19;a=a0(ii);sim('shiyan5',[0,0.1]);Vd=[Vd,Ud(end)];endplot(a0,Vd);负载为电阻电感性负载时u d(α)曲线图(α为0~90o):。
1三相桥式全控整流电路(电阻性负载)1.1电路结构为了得到零线变压器二次侧接成星形得到零线,为了给三次谐波电流提供通路,减少高次谐波的影响,变压器一次绕组接成三角形,为△/Y 接法。
三个晶闸管分别接入a 、b 、c 三相电源,其阴极连接在一起为共阴极接法 。
如图1-1VT4VT6VT2TR图1 . 三相桥式全控整流电路原理图(电阻性负载)工作原理:1)在ωt1-ωt2区间,有Uu >Uv ,Uu >Uw ,U 相电压最高,VT1承受正向电压, 在ωt1时刻触发VT1导通,导通角θ=120°,输出电压Ud=Uu 。
其他两个 晶闸管承受反向电压而不能导通。
VT1通过的电流It1与变压器二次侧u 相电流波形相同,大小相等,可在负载电阻R 两端测试。
2)在ωt2-ωt3区间,有Uv >Uu ,V 相电压最高,VT2承受正向电压,在ωt2时 刻触发VT2导通,Ud=Uv 。
VT1两端电压Ut1=Uu-Uv=Uuv <0,晶闸管VT1承受反向电压关断。
3)在ωt3-ωt4区间,有Uw >Uv ,W 相电压最高,VT3承受正向电压,在ωt3 时刻触发VT3导通,Ud=Uw 。
VT2两端电压Ut2=Uv-Uw=Uvw <0,晶闸管 VT2承受反向电压关断。
在VT3导通期间VT1两端电压Ut1=Uu-Uw=Uuw <0。
这样在一个周期内,VT1只导通120°,在其余240°时间承受反向电 压而处于关断状态。
1.2仿真建模及参数设置根据原理图用matalb 软件画出正确的三相桥式全控整流电路(电阻性负载)仿真电路图如图1-2所示:Continuous pow erguiv+-Voltage Measurement3v+-Voltage Measurement2v+-Voltage Measurement1v +-Voltage Measurementg A B C+-Universal Bridgealpha_degAB BC CA BlockpulsesSynchronized 6-Pulse Generator+Series RLC BranchScopei +-Current Measurement3i+-Current Measurement2i +-Current Measurement1i +-Current Measurement0Constant130ConstantAC Voltage Source3AC Voltage Source2AC Voltage Source1图2三相桥式全控整流电路仿真模型(电阻性负载)图3三相桥式全控整流电路仿真模型(谐波分析)脉冲参数:振幅3V,周期0.02,占空比10%,时相延迟分别为(α+30)/360*0.02,(α+120+30)/360*0.02,(α+240+30)/360*0.02。
班级:电力工程与管理1101 姓名:李渊琴 学号:201110822 I 新能源与动力工程学院
论文 电能质量分析与控制
专业 电力工程与管理
班级 1101班
姓名 李渊琴 学号 201110822
指导教师 董海燕 班级:电力工程与管理1101 姓名:李渊琴 学号:201110822 II 2014年 10 月 目录
摘 要 ............................................................................................................................ 1 概述 .................................................................................................................................. 1 1 三相桥式全控整流电路(纯电阻负载) ....................................................................... 2 1.1电路的结构与工作原理 .................................................................................... 2 1.2建模 .................................................................................................................... 2 1.3仿真结果与分析 ................................................................................................ 3 1.4 FFT分析 ............................................................................................................ 5 1.5小结 .................................................................................................................... 9 2三相桥式全控整流电路(阻感性负载) ..................................................................... 10 2.1电路的结构与工作原理 .................................................................................. 10 2.2建模 ................................................................................................................... 11 2.3仿真结果与分析 ............................................................................................... 11 2.4 FFT分析 .......................................................................................................... 13 2.5小结 .................................................................................................................. 17 参考文献 ........................................................................................................................ 18 班级:电力工程与管理1101 姓名:李渊琴 学号:201110822
1 第一章 绪 言 1.1设计背景 目前,各类电力电子变换器的输入整流电路输入功率级一般采用不可控整流或相控整流电路。这类整流电路结构简单,控制技术成熟,但交流侧输入功率因数低,并向电网注入大量的谐波电流。据估计,在发达国家有60%的电能经过变换后才使用,而这个数字在本世纪初达到95%。 电力电子技术在电力系统中有着非常广泛的应用。据估计,发达国家在用户最终使用的电能中,有60%以上的电能至少经过一次以上电力电子变流装置的处理。电力系统在通向现代化的进程中,电力电子技术是关键技术之一。可以毫不夸张地说,如果离开电力电子技术,电力系统的现代化就是不可想象的。 而电能的传输中,直流输电在长距离、大容量输电时有很大的优势,其送电端的整流阀和受电端的逆变阀都采用晶闸管变各种电子装置一般都需要不同电压等级的直流电源供电。通信设备中的程控交换机所用的直流电源以前用晶闸管整流电源,现在已改为采用全控型器件的高频开关电源。大型计算机所需的工作电源、微型计算机内部的电源现在也都采用高频开关电源。在各种电子装置中,以前大量采用线性稳压电源供电,由于高频开关电源体积小、重量轻、效率高,现在已逐渐取代了线性电源。因为各种信息技术装置都需要电力电子装置提供电源,所以可以说信息电子技术离不开电力电子技术。近年发展起来的柔性交流输电(FACTS)也是依靠电力电子装置才得以实现的。 随着社会生产和科学技术的发展,整流电路在自动控制系统、测量系统和发电机励磁系统等领域的应用日益广泛。常用的三相整流电路有三相桥式不可控整流电路、三相桥式半控整流电路和三相桥式全控整流电路,由于整流电路涉及到交流信号、直流信号以及触发信号,同时包含晶闸管、电容、电感、电阻等多种元件,采用常规电路分析方法显得相当繁琐,高压情况下实验也难顺利进行。Matlab提供的可视化仿真工具Simulink可直接建立电路仿真模型,随意改变仿真参数,并且立即可得到任意的仿真结果,直观性强,进一步省去了编程的步骤。本文利用Simulink对三相桥式全控整流电路进行建模,对不同控制角、桥故障情况下进行了仿真分析,既进一步加深了三相桥式全控整流电路的理论,同时也为现代电力电子实验教学奠定良好的实验基础。 此次课程设计要求设计晶闸管三相桥式可控整流电路,与三相半波整流电路相比,三相桥式整流电路的电源利用率更高,应用更为广泛。
1.2 设计任务
《晶闸管三相桥式可控整流电路设计与仿真》 一 、设计内容及技术要求: 计算机仿真具有效率高、精度高、可靠性高和成本低等特点,已经广泛应用于电力电子电路(或系统)的分析和设计中。计算机仿真不仅可以取代系统的许多繁琐的人工分析,减轻劳动强度,提高分析和设计能力,避免因为解析法在近似处理中带来的较大误差,还可以与实物试制和调试相互补充,最大限度地降低设计成本,缩短系统研制周期。可以说,电路的计算机仿真技术大大加速了电路的设计和试验过程。通过本次仿真,学生可以初步认识电力电子计算机仿真的优 2
势,并掌握电力电子计算机仿真的基本方法。 晶闸管三相桥式可控整流电路的电路,参数要求: 电网频率 f=50hz 电网额定电压 U=380v 电网电压波动 正负10% 阻感负载电压0——250V 连续可调。 2、设计内容 (1)制定设计方案; (2)主电路设计及主电路元件选择; (3)驱动电路和保护电路设计及参数计算;器件选择; (4)绘制电路原理图; (5)总体电路原理图及其说明。 3、仿真任务要求 (1)熟悉matlab/simulink/power system中的仿真模块用法及功能; (2)根据设计电路搭建仿真模型; (3)设置参数并进行仿真 (4)给出不同触发角时对应电压电流的波形; 4、设计的总体要求 (1)熟悉整流和触发电路的基本原理,能够运用所学的理论知识分析设计任务; (2)掌握基本电路的数据分析、处理;描绘波形并加以判断; (3)能正确设计电路,画出线路图,分析电路原理; (4)广泛收集相关技术资料;
第二章 方案选择论证
2.1方案分析 单相可控电路与三相可控电路相比,有结构简单,输出脉动大,脉动频率低的特点,其不适于容量要求高的情况,而三相可控整流电路有与之基本相反的特点,对于相当于反电动势负载的电动机来说,它能满足其电流容量较大,电流脉动小且连续不断的要求。
2.2方案选择 课设题目中给出的正是要求为220V、20A的直流电动机供电,它的容量为S= kw,属于高容量,所以应选用三相可控整流电路整流。另外三相桥式整流电压的脉动频率比三相半波高一倍,因而所需平波电抗器的电感量也减小约一半。三相半波虽具有接线简单的特点,但由于其只采用三个晶闸管,所以晶闸管承受的反向峰值电压较高,并且电流是单方向的,存在直流磁化问题。基于以上原因,最终我选择三相桥式全控电路为电机整流。 三相可控整流电路的控制量可以很大,输出电压脉动较小,易滤波,控制滞后时间短,因此在工业中几乎都是采用三相可控整流电路。在电子设备中有时也会遇到功率较大的电源,例如几百瓦甚至超过1—2kw的电源,这时为了提高变压器的利用率,减小波纹系数,也常采用三相整流电路。另外由于三相半波可控整流电路的主要缺点在于其变压器二次侧电流中含有直流分量,为此在应用中较 3
少。而采用三相桥式全控整流电路,可以有效的避免直流磁化作用。虽然三相桥式全控整流电路的晶闸管的数目比三相半波可控整流电路的少,但是三相桥式全控整流电路的输出电流波形便得平直,当电感足够大时,负载电流波形可以近似为一条水平线。在实际应用中,特别是小功率场合,较多采用单相可控整流电路。当功率超过4KW时,考虑到三相负载的平衡,因而采用三相桥式全控整流电路。
第三章 电路设计
3.1 主电路原理分析
晶闸管按从1至6的顺序导通,为此将晶闸管按图示的顺序编号,即共阴极组中与a、b、c三相电源相接的3个晶闸管分别为VT1、VT3、VT5, 共阳极组中与a、b、c三相电源相接的3个晶闸管分别为VT4、VT6、VT2。编号如图示,晶闸管的导通顺序为 VT1-VT2-VT3-VT4-VT5-VT6。
图3-1 主电路原理图 其工作特点是任何时刻都有不同组别的两只晶闸管同时导通,构成电流通路,因此为保证电路启动或电流断续后能正常导通,必须对不同组别应到导通的一对晶闸管同时加触发脉冲,所以触发脉冲的宽度应大于π/3的宽脉冲。宽脉冲触发要求触发功率大,易使脉冲变压器饱和,所以可以采用脉冲列代替双窄脉冲;每隔π/3换相一次,换相过程在共阴极组和共阳极组轮流进行,但只在同一组别中换相。接线图中晶闸管的编号方法使每个周期内6个管子的组合导通顺序是VT1-VT2-VT3-VT4-VT5-VT6;共阴极组T1,T3,T5的脉冲依次相差2π/3;同一相的上下两个桥臂,即VT1和VT4,VT3和VT6,VT5和VT2的脉冲相差π,给分析带来了方便;当α=O时,输出电压Ud一周期内的波形是6个线电压的包络线。所以输出脉动直流电压频率是电源频率的6倍,比三相半波电路高l倍,脉动减小,而且每次脉动的波形都一样,故该电路又可称为6脉动整 4
流电路。同理,三相半波整流电路称为3脉动整流电路。α>0时,Ud的波形出现缺口,随着α角的增大,缺口增大,输出电压平均值降低。当α=2π/3时,输出电压为零,所以电阻性负载时,α的移相范围是O~2π/3;当O≤α≤π/3时,电流连续,每个晶闸管导通2π/3;当π/3≤α≤2π/3时,电流断续,个晶闸管导通小于2π/3。23α=π/3是电阻性负载电流连续和断续的分界点。
第四章 仿真分析 4.1 建立仿真模型 (1)首先建立一个仿真的新文件,命名为EQ。 (2)提取电路与器件模块,组成上述电路的主要元件有三相交流电源,晶闸管、 RLC负载等。 表4-1 三相整流电路模型主要元器件 元器件名称 提取元器件路径 交流电源 Electrical source/AC voltage source 三相电压-电流测量单元 Measurements/Three-phaseV-I measurement
三相晶闸管整流器 Extra library/three-phase library/6-pulse thyristor bridge RLC负载 Elements/series RLC bridge 6脉冲发生器 Extralibrary/controlblocks/synchronized6-pulsegenerator 触发角设定 Simulink/sources/constans (3)将器件建立系统模型图如下 根据三相桥式全控整流电路的原理可以利用Simulink内的模块建立仿真模型如图2所示,设置三个交流电压源Va,Vb,Vc相位角依次相差120°,得到整流桥的三相电源。用6个Thyristor构成整流桥,实现交流电压到直流电压的转换。6个PULSE generator产生整流桥的触发脉冲,且从上到下分别给1~6号晶闸管触发脉冲。 5
图4-1 三相桥式全控整流电路仿真模型 4.2仿真参数的设置 1) 电源参数设置:三相电源的电压峰值为220V×2,可表示为“220*sqrt(2)”,频率为50Hz,相位分别为0、-120°、-240°。 2)三相晶闸管整流器参数设置:使用默认值。 3)6脉冲发生器设置:频率为50Hz,脉冲宽度取1°,取双脉冲触发方式。 4) 触发角设置:可以根据需要将alph设置为30°、60°、90°。 5)采用变步长算法ode23tb(stiff/TR.BDF2)。 6)负载可以根据需要设成纯电阻、纯电感、阻感等,本次仿真中为电阻负载R=10Ω,阻感负载R=10Ω,L=1H 。 4.3 仿真结果及波形分析 设置仿真时间0.06s,数值算法采用ode23tb(stiff/TR.BDF2)。启动仿真,