焊接电弧
- 格式:pptx
- 大小:952.66 KB
- 文档页数:62
焊接电弧的动特性名词解释一、引言焊接电弧是一种在焊接过程中产生的强烈光辐射和高温的等离子体现象,其动特性是指电弧在焊接中所表现出的各种物理和化学特性。
理解电弧的动特性对于掌握焊接工艺和提高焊接质量具有重要意义。
二、电弧长度电弧长度是指焊接电弧的摆动范围,通常以电弧焊接过程中两电极之间的距离衡量。
电弧长度的控制对于焊接过程的稳定性和熔深的控制至关重要。
较大的电弧长度可使焊缝充满,提高焊接质量,但同时也会降低焊接速度。
较小的电弧长度可以加快焊接速度,但有时会导致焊缝不充分的问题。
三、电弧功率密度电弧功率密度是指单位面积上电弧所输出的功率。
它的大小决定了焊接热量的分布和焊接效果。
较高的电弧功率密度可产生较高的焊接温度,有助于更好地熔化焊材和基材,但同时也会带来较大的熔散和气孔的形成。
适当控制电弧功率密度是保证焊接质量的关键。
四、电弧稳定性电弧稳定性是指电弧在焊接过程中的稳定性能。
稳定的电弧有利于焊缝的均匀成形和气孔的排除,其输出的热量也会更加均匀。
电弧的稳定性受到多种因素的影响,如电弧长度、电弧电流和焊接材料的性质等。
良好的焊接参数的选择和提高焊工的操作技术都可以提高电弧的稳定性。
五、电弧形态电弧形态是指焊接电弧在形态上的表现。
电弧形态可以通过感知电弧辉光的形状、颜色和闪烁频率等进行判断。
不同的电弧形态对焊接过程有着不同的影响。
一般来说,稳定的直流等离子体电弧形态有利于均匀的熔化焊材和基材,而闪烁频率高、形态不稳定的电弧则可能导致焊接质量问题。
六、电弧电流电弧电流是指焊接电弧传递的电流大小。
电弧电流的选择直接影响着焊接的热量和熔深。
过大的电弧电流会导致焊接过程中热量过大,容易产生焊缝熔穿等问题,而过小的电弧电流则可能导致焊缝不充分的现象。
合理选择电弧电流是协调熔化和焊接速度的关键。
七、电弧温度电弧温度是指焊接电弧的温度高低。
电弧温度的升高会导致更高的焊接温度,有助于焊接金属的熔化,但同时也可能对金属的组织产生不利影响。
焊接电弧的分类及特点焊接电弧可以根据其性质和特点进行分类。
下面将介绍几种常见的焊接电弧分类及其特点。
1. 直流电弧焊(DC ARC welding)直流电弧焊是指电流在焊接过程中只沿一个方向流动。
直流电弧焊具有电弧稳定、温度均匀、焊缝质量高的特点。
由于直流电流可以根据其极性的不同而进行变化,因此直流电弧焊可分为直流正极性(DCEP)和直流负极性(DCEN)两种。
直流正极性焊接时,电流主要通过焊丝流向焊件,适用于焊接大型构件;直流负极性焊接时,电流主要通过焊件流向焊丝,适用于焊接具有良好导电性质的金属。
2. 交流电弧焊(AC ARC welding)交流电弧焊是指电流在焊接过程中反复改变流动方向。
交流电弧焊具有热量可控、焊缝均匀、适用于厚板焊接等特点。
相比直流电弧焊,交流电流的结构更为复杂,焊接效率较低。
交流电弧焊通常使用频率较高且波形更稳定的电源进行。
3. 气体保护电弧焊(Gas Shielded ARC welding)气体保护电弧焊是指在焊接过程中,通过向焊缝区域提供保护气体来防止氧气、氮气等有害气体对焊缝的影响。
常见的气体保护电弧焊包括二氧化碳保护焊(CO2 welding)、氩弧焊(argon welding)以及氩气和氦气混合气体保护焊等。
气体保护电弧焊具有焊缝质量高、焊接速度快、操作方便等特点。
4.特殊气体保护电弧焊特殊气体保护电弧焊是指在保护电弧焊的基础上使用了特殊气体来改变焊接过程中气体环境。
常见的特殊气体包括活性气体(如氢气、氮气)和惰性气体(如氦气、氩气)。
特殊气体保护电弧焊具有焊丝溶敷率高、返修率低、适用于高速焊接等特点。
5. 手工电弧焊(Manual ARC welding)手工电弧焊是指焊工通过手持焊接枪对焊接工件进行焊接的一种电弧焊方法。
手工电弧焊具有操作简单、灵活性高、适用于各种焊接位置等特点。
手工电弧焊常用于焊接小型结构、修补工作以及不易通过自动化方法实现的焊接任务。