数字控制直流稳压电源
- 格式:docx
- 大小:380.64 KB
- 文档页数:12
浅谈直流稳压电源电路设计随着科技的发展,信息时代的进步,电子产品的应用越来越广泛,电子产品应用的同时需要直流稳压电源对这些电子产品进行充电,因此直流稳压电源的发展乃至成熟是信息发展的必然趋势。
本文主要阐述了直流稳压电源的设计过程,论述了直流稳压电源的发展历史和现状,简述了电路实际设计过程,完成了直流稳压电源电路的设计工作,对其应用做了总结。
标签:直流稳压电源;电路设计;工作原理一、直流稳压电源的发展历史、现状和设计背景从二十世纪60年代中期到了90年代以来,以电子为核心的电源产业进入快速发展时期,数据通讯和电信行业的技术更新推动电源行业向智能化方向发展。
电源的控制方式经过模拟控制、模数混合控制向数字控制阶段转变。
数字控制的优点是标定更的量,芯片价格也比较低,相对模数混合控制其对电压电流的检测更精确,实现较高精度的较正和快速灵活的控制。
1919年之后,我国相对发达国家,在电源行业方面存在不足和差距。
电源产品的开发投入、生产规模、工艺水平、先进检测设备、智能化、可靠性和持续创新等方面都存在差距,很多先进的电源设备国内不能生产,主要依赖于进口。
2018年直流稳压电源现状分析报告看出,国内直流稳压电源行业正处于发展时期,并且不断发展成熟起来。
二、电路设计实验设备及器件所谓巧妇难为无米之炊,电路设计同样需要必要的实验设施和工具,而实验条件的好坏和选择工具的正确与否是设计的关键和前提。
下面具体阐释设计思路中所需要的实验条件、实验工具和必要的实验材料:1.电路所需实验设备、实验工具和仪表。
本次设计的完成需要在专业的电子试验台上进行,需要的实验仪器和实验工具如下:示波器、万用表、变压器(12v)、电烙铁、钳子和镊子等,另外需要若干焊锡和连接线。
2.电路所需元器件清单。
元器件清单如下:三、电路设计思路直流稳压电源又称为直流稳压器,其作用就是将交流电转化成相应用电器所需要的稳定电压的直流电。
其关键是输出直流电压的稳定性,所以设计电路的着眼点就是电路转化的稳定性。
如何使用直流稳压电源一、直流稳压电源简介直流稳压电源是能为负载提供稳定直流电源的电子装置。
直流稳压电源的供电电源大都是交流电源,当交流供电电源的电压或负载电阻变化时,稳压器的直流输出电压都会保持稳定。
直流稳压电源随着电子设备向高精度、高稳定性和高可靠性的方向发展,对电子设备的供电电源提出了高的要求。
二、直流稳压电源分类直流稳压电源可以分类两类,包括线性和开关型。
2.1、线性线性稳定电源有一个共同的特点就是它的功率器件调整管工作在线性区,靠调整管之间的电压降来稳定输出。
由于调整管静态损耗大,需要安装一个很大的散热器给它散热。
而且由于变压器工作在工频(50Hz)上,所以重量较大。
该类电源优点是稳定性高,纹波小,可靠性高,易做成多路,输出连续可调的成品。
缺点是体积大、较笨重、效率相对较低。
这类稳定电源又有很多种,从输出性质可分为稳压电源和稳流电源及集稳压、稳流于一身的稳压稳流(双稳)电源。
从输出值来看可分定点输出电源、波段开关调整式和电位器连续可调式几种。
从输出指示上可分指针指示型和数字显示式型等等。
2.2.开关型与线性稳压电源不同的一类稳电源就是开关型直流稳压电源,它的电路型式主要有单端反激式,单端正激式、半桥式、推挽式和全桥式。
它和线性电源的根本区别在于它变压器不工作在工频而是工作在几十千赫兹到几兆赫兹。
功能管不是工作在饱和及截止区即开关状态;开关电源因此而得名。
三、直流稳压电源使用方法3.1.电源连接,将稳压电源接入市电。
3.2.打开电源,空载情况下,按下主电源开关(power),再打开DC输出开关(outputswitch),使电源输出正常工作(有些简单的可调稳压电源只有主电源开关,没有独立的DC输出开关)。
此时,电源数字指示器上显示当前工作电压和输出电流。
3.3.设置输出电压。
通过调节电压设置旋钮,数字电压表可以显示目标电压,完成电压设置。
对于具有可调限流功能的电源,有两种调节系统分别调节电压和电流。
数控直流稳压电源设计1.数控直流稳压电源的概述现代电子装置在供电要求方面有着越来越高的要求,而数控直流稳压电源则是目前广泛应用的一种供电装置。
数控直流稳压电源不仅具有直流稳定的输出特性,而且还能实现数字化控制,具有更加高效、精确的供电能力和性能。
数控直流稳压电源适用于各种电子装置的开发和生产领域,如通信技术、医疗器械、军事通讯和工业自动化等。
2.数控直流稳压电源的设计原理数控直流稳压电源主要由下列几个模块组成。
2.1输入端输入端是稳压电源的第一步,它接收外部电源的直流或交流信号,并且对输入电压进行过滤和波形整形,以确保后续的电路可以正常工作。
2.2稳压模块稳压模块负责稳定输出电压的值。
在闭环控制下,稳压模块保证输出电压稳定在标准值附近,即使在输入电压波动或负载变化的条件下,它也能确保输出电压的稳定性和可靠性。
2.3数控模块数控模块为整个电源提供了数字化控制的功能。
它包括一个集成电路、显示屏、输入设备和计算机接口等组成部分。
通过输入输出端口与计算机相连,可实时监测和控制电源的电压、电流、功率等参数。
2.4保护模块保护模块负责保护电源免受外界环境的影响。
它包括四种保护措施:过压保护、过温保护、过载保护和短路保护,并采用相应的防护电路来实现保护功能。
3.数控直流稳压电源的设计流程数控直流稳压电源的设计流程包括以下几个步骤:3.1确定电源的基本参数这包括电源输出电压、电流、功率、负载范围等参数。
设计人员需要根据电路应用需要,确定电源所需的输出电压和电流等参数。
3.2选取和确认元件在确定电源的基本参数后,设计人员应选择与之相适应的元件,包括电容器、电感器、稳压管、集成电路等,这是设计数控直流稳压电源的关键步骤之一。
设计人员需要综合考虑元件的品质、供货和维护等方面的因素,以便在成本和性能之间取得平衡。
3.3进行电路设计在确定元件后,设计人员需要根据设计参数和基本电路原理,设计稳压电源的具体电路方案,逐步完善和优化电路。
简述直流稳压电源的基本功能什么是直流稳压电源直流稳压电源(DC Regulated Power Supply)是一种将交流电转化为直流电并提供稳定电压输出的设备。
它通过内部电路对输入电压进行转换、整流、滤波和稳压等处理,从而提供一个稳定可靠的直流电源供电给电子设备使用。
直流稳压电源广泛应用于电子工程、实验室、通信设备以及工业自动化等领域,其功能多样化且具有稳定性强、响应速度快等特点。
直流稳压电源的基本功能1. 稳定输出电压直流稳压电源的主要功能之一是提供稳定的输出电压。
通过内部稳压电路的控制和反馈机制,直流稳压电源可以实时调整输出电压,以保持在设定的稳定值范围内。
稳定输出电压是直流稳压电源的基本要求,它能够有效保护被供电设备的正常运行,并降低电子元件的损坏风险。
2. 可调电压和电流直流稳压电源通常具有可调节输出电压和电流的功能。
用户可以通过旋钮、按钮或数字输入方式对输出电压和电流进行调整。
这个功能使得直流稳压电源适用于不同类型的电子设备,可以根据需要提供不同的电压和电流输出。
3. 短路保护和过载保护直流稳压电源内置了短路保护和过载保护功能,能够在供电设备发生短路或过载情况时自动切断电源输出,以保护供电设备和稳压电源本身的安全。
短路保护和过载保护是直流稳压电源应具备的重要功能,能够有效预防因电路故障而引起的意外事故。
4. 超低纹波和噪声直流稳压电源会通过滤波电路减小输出电压中的纹波和噪声。
纹波指的是输出电压中存在的交流成分,噪声则是指输出电压中的随机波动信号。
通过降低纹波和噪声水平,直流稳压电源能够提供高质量的直流电源,适用于对电源干扰要求较高的设备。
5. 温度保护直流稳压电源还常常具备温度保护功能,可以通过内置传感器实时监测设备内部的温度,并在温度过高时自动切断供电。
温度保护功能能够防止电源过热,保护电子设备的正常运行。
6. 数字化控制和远程控制现代直流稳压电源通常具备数字化控制和远程控制的功能。
数控直流稳压电源的设计和制作数控直流稳压电源,是一种集数字化控制、直流电源稳定输出功能于一体的电子制品,它广泛应用于各类实验、测试、仪器、通讯系统及各种机电设备中。
今天我们就来谈谈数控直流稳压电源的设计和制作的具体过程。
一、设计1.稳压芯片选型在设计数控直流稳压电源中,首先要选用一款适合的稳压芯片。
常见的稳压芯片有LM317、LM350、LM338等,选择其中的一种根据自己的需求进行选择。
例如,LM317适合安装功率较低的电路,LM350适合于安装功率较大的电路,而LM338的输出电流可达5A以上,是一种非常适合于实验室及大功率稳压电源设计的芯片。
2.规划电源输出模块在设计中需要考虑输出模块的功能设置与实际需要相符,因此需要详细了解电源输出模块的所有类型,包括DC稳压输出、DC包络线输出、交流输出、多路并联输出等的优劣之处,然后选用适合自己需要的类型进行设计。
3.阻容电路的设计在电源输出中需要设计阻容电路,其目的是为了保护电源不受怠工放置,以及电源的过载保护等,详见下面内容。
二、制作1.准备器材在制作数控直流稳压电源之前,需要准备相应的器材和材料,例如PCB板、元器件、焊接工具等。
2.电源输出模块的焊接在制作中需要用到数控直流稳压电源输出模块,首先在PCB板上进行焊接,接下来安装电容、二极管等元器件,进行一定量的基础防护。
3.安装稳压芯片安装稳压芯片需要考虑其散热问题,此时应该做好散热片附加硅脂,以保证芯片处于稳定状态。
4.接线在焊接和装配完成后,接线工作是必要的。
在接线时,必须要认真看清接线图,把电路板上的元器件和接线线路进行一一对应,以便拼接时不会出现误差。
5.开机测试制作数控直流稳压电源时,一定要经过开机测试。
在开机时,应该观察电源的工作状态是否正常,电压是否稳定,是否存在短路等问题。
这样可以在实际应用时更加安全和稳定。
以上就是数控直流稳压电源的设计和制作的具体过程,每一步都要做好方案设计和操作步骤的准备工作,以确保电源的稳定运行。
一、绪论高科技设备的发展离不开电源技术的进步,高精度电源已广泛应用到于通信、工业、军事、航空航天、家电等领域。
其中弱电的重要性是所有电源的基础,人们对它的研究、开发技术水平也越来越高。
低压大电流的电源也是以后发展的方向。
而直流稳压电源是常用的电子设备,它能保证在电网电压波动或负载发生变化时,输出稳定的电压。
一个低纹波、高精度的稳压源在仪器仪表、工业控制及测量领域中有着重要的实际应用价值而电源是电子设备的心脏部分,其质量的好坏直接影响着电子设备的可靠性而且电子设备的故障60%来自电源,因此作为电子设备的基础元件,电源受到越来越多的重视.现代电子设备使用的电源大致有线性稳压电源和开关稳压电源两大类. 所谓线性稳压电源,是指在稳压电源电路中的调整管是工作在线性放大区. 将220V,50Hz 的工频电压经过线性变压器降压以后,经过整流,滤波和稳压, 输出一个直流电压.我们做两类电源比较。
线性稳压源的优点是:电源稳定度及负载稳定度较高;输出纹波电压小;瞬态响应速度快;线路结构简单,便于维修;没有开关干扰。
缺点是:功耗大,效率低,其效率一般只有35~60%;体积大,质量重,不能微小型化;必须有较大容量的滤波电容. 其中,交换效率低下是线性稳压电源的重要缺点,造成了资源的严重浪费. 在这种背景下,开关稳压电源应运而生. 任何电子设备均需直流电源来供给电路工作.特别是采用电网供电的电子产品.为了适应电网电压波动和电路的工作状态变化,更需要具备适应这种变化的直流稳压电源. 随着电子技术的发展,人们对如何提高电源的转换效率,增强对电网的适应性,缩小体积,减轻重量进入了深入的研究.开关电源应运而生.七十年代,便应用于电视机的接收,现在已经广泛用于彩电,录像机,计算机,通讯设备,医疗器械,气象等行业.本文就是利用LM317作为输出电压可变的集成三端稳压块,是一种使用方便、应用广泛的集成稳压块。
与数字电压表头集成块ICL7107,实现对直流输出大小的在线测量。
(1)DC-DC程控直流稳压电源设计一、任务设计并制作一个程控DC-DC电源,其结构框图如图1所示。
二、要求:1.基本要求(1)基本规格:输入直流19-23V,输出电压:0-15V/DC(2)基本技术指标:从0V到+15V,步进0.1V能用“+”、“-”键操作控制输出电压的步进或步减效率:大于70%(以输入直流21V,输出+15V/1A测试为准)最大输出电流:3.0A输出电压纹波:≤100mV(以输入直流21V,输出+15V/1A测试为准)(3)电压调整率≤1%(输入电压变化范围+19V~+23V)(4)负载调整率≤1%(输入电压+21V下,空载到满载)(5)用LED或LCD显示设定电压、输出电压。
(6)可用按键开启/关闭输出电压(不能使用继电器等开关切换)(7)具有输出记忆功能,当切断电源供电,重新启动后,输出电压保持不变。
2.发挥部分(1)输出电流步进功能,从100 mA-3A,,步进100mA;(2)用LED或LCD显示设定电流和输出电流。
(3)提供电路效率:大于85%(以输出+15V/1A测试为准)(4)具有限流保护功能:当输出电流大于3A时,能自动切断输出供电。
5s后自动恢复。
(5)其它创新设计。
三、评分标准四、说明1.图1中DC-DC变换器不允许使用成品模块,但可使用开关电源控制芯片。
2.DC-DC变换器、控制、显示电路只能由U i供电,不得另加辅助电源,但控制器电源允许使用DC-DC成品模块。
3.本题中的输出噪声纹波电流是指输出电流中的所有非直流成分,要求用毫伏表测量输出纹波电压,再换算成输出纹波电流值。
4.整机效率 =P o/ P I,其中P o=U o I o,P I=U i I i。
第三届(1997年)全国大学生电子设计竞赛题目A题直流稳定电源一、任务设计并制作交流变换为直流的稳定电源。
二、要求1.基本要求(1)稳压电源在输入电压220V、50Hz、电压变化范围+15%~-20%条件下:a.输出电压可调范围为+9V~+12Vb.最大输出电流为1.5Ac.电压调整率≤0.2%(输入电压220V变化范围+15%~-20%下,空载到满载)d.负载调整率≤1%(最低输入电压下,满载)e.纹波电压(峰-峰值)≤5mV(最低输入电压下,满载)f.效率≥40%(输出电压9V、输入电压220V下,满载)g.具有过流及短路保护功能(2)稳流电源在输入电压固定为+12V的条件下:a.输出电流:4~20mA可调b.负载调整率≤1%(输入电压+12V、负载电阻由200Ω~300Ω变化时,输出电流为20mA时的相对变化率)(3)DC-DC变换器在输入电压为+9V~+12V条件下:a.输出电压为+100V,输出电流为10mAb.电压调整率≤1%(输入电压变化范围+9V~+12V)c.负载调整率≤1%(输入电压+12V下,空载到满载)d.纹波电压(峰-峰值)≤100mV (输入电压+9V下,满载)2.发挥部分(1)扩充功能a.排除短路故障后,自动恢复为正常状态b.过热保护c.防止开、关机时产生的“过冲”(2)提高稳压电源的技术指标a.提高电压调整率和负载调整率b.扩大输出电压调节范围和提高最大输出电流值(3)改善DC-DC变换器a.提高效率(在100V、100mA下)b.提高输出电压(4)用数字显示输出电压和输出电流三、评分意见开关稳压电源一、任务设计并制作如图1所示的开关稳压电源。
基于单片机的数控直流稳压电源设计一、概述随着科技的飞速发展,电子设备在我们的日常生活和工业生产中扮演着越来越重要的角色。
这些设备的稳定运行离不开一个关键的组件——电源。
在各种电源类型中,直流稳压电源因其输出电压稳定、负载调整率好、效率高等优点,被广泛应用于各种电子设备和精密仪器中。
传统的直流稳压电源通常采用模拟电路设计,但这种方法存在着电路复杂、稳定性差、调整困难等问题。
为了解决这些问题,本文提出了一种基于单片机的数控直流稳压电源设计方案。
本设计采用单片机作为控制核心,通过编程实现对电源输出电压的精确控制和调整。
相比于传统的模拟电路设计,基于单片机的数控直流稳压电源具有以下优点:单片机具有强大的计算和处理能力,能够实现复杂的控制算法,从而提高电源的稳定性和精度单片机可以通过软件编程实现各种功能,具有很强的灵活性和可扩展性单片机的使用可以大大简化电路设计,降低成本,提高系统的可靠性。
本文将详细介绍基于单片机的数控直流稳压电源的设计原理、硬件电路和软件程序。
我们将介绍电源的设计原理和基本组成,包括单片机控制模块、电源模块、显示模块等我们将详细介绍硬件电路的设计和实现,包括电源电路、单片机接口电路、显示电路等我们将介绍软件程序的设计和实现,包括主程序、控制算法、显示程序等。
1. 数控直流稳压电源的应用背景与意义随着科技的快速发展,电力电子技术广泛应用于各个行业和领域,直流稳压电源作为其中的关键组成部分,其性能的稳定性和可靠性直接影响着整个系统的运行效果。
传统的直流稳压电源多采用模拟电路实现,其调节精度、稳定性以及智能化程度相对较低,难以满足现代电子设备对电源的高性能要求。
开发一种高性能、智能化的数控直流稳压电源具有重要意义。
数控直流稳压电源通过引入单片机控制技术,实现了对电源输出电压和电流的精确控制。
它可以根据实际需求,通过编程灵活调整输出电压和电流的大小,提高了电源的适应性和灵活性。
同时,数控直流稳压电源还具备过流、过压、过热等多重保护功能,有效提高了电源的安全性和可靠性。
可调直流稳压电源工作原理可调直流稳压电源是一种可以将输出电压调节为特定值的直流电源。
它的工作原理是通过改变电源内部的电路结构和控制方式,实现输出电压的稳定和调节。
下面详细介绍可调直流稳压电源的工作原理。
一、直流稳压电源的工作原理直流稳压电源是一种能够将不稳定电压转换为稳定电压的电源。
变压器将输入电压降低或升高,整流器将交流电压转换为直流电压,滤波器将直流电压中的纹波消除,稳压器则保证输出电压的稳定。
稳压器是直流稳压电源的核心部分,它主要由采样电路、比较电路、放大电路和调整电路组成。
采样电路将输出电压的一部分反馈到比较电路,比较电路将反馈电压与设定电压进行比较,然后将误差信号传递给放大电路。
放大电路将误差信号进行放大,然后将放大后的信号传递给调整电路。
调整电路根据放大后的信号,调整输出电压,使其与设定电压相等。
可调直流稳压电源可调直流稳压电源是在简单直流稳压电源的基础上增加了调节功能,使输出电压可以根据需要进行调节。
可调直流稳压电源通常由变压器、整流器、滤波器、稳压器、调节器和控制器组成。
调节器是可调直流稳压电源的核心部分,它主要由采样电路、比较电路、放大电路、调整电路和控制器组成。
采样电路将输出电压的一部分反馈到比较电路,比较电路将反馈电压与设定电压进行比较,然后将误差信号传递给放大电路。
放大电路将误差信号进行放大后传递给调整电路,调整电路根据放大后的信号调整输出电压,使其与设定电压相等。
同时,控制器根据设定的电压值和实际输出电压值,调整调节器的输出,从而实现输出电压的调节。
二、可调直流稳压电源的分类可调直流稳压电源可以根据不同的分类方式进行分类,常见的分类方式有以下几种:根据输出电压的调节范围根据输出电压的调节范围,可调直流稳压电源可以分为宽范围可调直流稳压电源和窄范围可调直流稳压电源。
宽范围可调直流稳压电源的输出电压可以在较大的范围内调节,而窄范围可调直流稳压电源的输出电压只能在较小的范围内调节。
基于单片机的数控直流稳压电源在电子设备中,直流稳压电源是非常重要的一部分,它能够为其他电路、芯片或者整个系统提供稳定可靠的电源供应。
而基于单片机的数控直流稳压电源技术则能够在一定程度上提升电源的稳定性和可调性,本文将介绍基于单片机的数控直流稳压电源的原理和设计。
1. 引言直流稳压电源在各种电子设备中都起着至关重要的作用。
传统的直流稳压电源主要采用稳压二极管、稳压管等元件,无法实现精准的控制和调节。
而基于单片机的数控直流稳压电源通过单片机的控制和监测,能够实现电源输出的精确控制和稳定性。
2. 设计原理基于单片机的数控直流稳压电源采用了反馈控制的原理,通过单片机对电源输出进行监测和调节。
其基本原理如下:首先,将输入交流电源经过整流和滤波,得到稳定的直流电压。
然后,通过单片机的模数转换功能,将电源输出电压转换为数字信号。
单片机通过比较这个数字信号与设定值,计算出控制电源输出的PWM 信号。
接下来,PWM信号经过数模转换后,通过放大电路驱动功率开关管。
功率开关管的导通与截止控制决定了电源的输出电压。
单片机通过不断调整PWM信号的占空比,实现对电源输出电压的精确调节。
同时,通过单片机监测电源输出电压的实际值,并与设定值进行比较,若存在偏差,则单片机通过反馈控制的方式调整PWM信号,使电源输出电压保持在设定值附近,从而实现直流稳压电源的功能。
3. 设计步骤基于单片机的数控直流稳压电源的设计步骤如下:3.1 硬件设计根据需要设计输出电压范围和电流容量,选取适当的元器件。
包括整流滤波电路、模数转换电路、功率开关管和放大电路等。
3.2 软件设计编写单片机的控制程序,实现电源输出的精确控制和稳定性。
包括模数转换、PWM控制和反馈控制等功能。
3.3 系统集成将硬件电路和单片机控制程序进行集成,进行系统调试和优化。
通过实验和测试,不断优化电源的稳定性和可调性。
4. 应用示例基于单片机的数控直流稳压电源的应用非常广泛。
例如,可以应用于实验室、工业自动化、通信设备等领域。
毕业设计(论文)说明书数字显示可调直流稳压电源的设计专业电气自动化技术班级14电气(2)班学生沛波指导教师盛继华2014年2月----2014年6月工业大学毕业设计(论文)任务书成教学院(系)电气自动化技术专业 2014 级 1班沛波注原件存主办源(系、单位)。
摘要随着科技的发展,电气、电子设备已经广泛的应用于日常、科研、学习等各个方面。
电源已经成为电气和电子设备中必不可少的能源供应部件,对电源的研究和开发已经成为新技术、新设备开发的重要环节,在推动科技发展中起着重要作用。
本文介绍了一种数字显示连续可调直流稳压电源的设计方案,此方案应用 7824与7924芯片组成稳压电源的电源模块,用 ICL7107芯片组成了数显模块,最终通过两个模块的连接实现连续可调直流稳压功能。
同时,本文还对电源模块和数显模块的基本原理,参数计算和性能指标等进行了分析讲解。
这种电源价格便宜,电路简单,并且可通过旋钮在-24V~24V 围调节电压,使用方便、安全、稳定性高。
关键词:稳压电源 A/D 转换器电源模块稳压模块高级技师学院电气工程专业(论文)目录第一章绪论 ............................................................................ (1)1.1 直流稳压电源的介绍 (1)1.2 直流稳压电源的技术指标 (1)1.2.1 描述输入交流电压变化对输出电压影响的技术指标 (1)1.2.2 描述负载变化对输出电压影响的技术指标 (2)1.3 稳压电源的分类 ............................................................................ .. (3)第二章电源总体方案确定 (5)2.1 电源模块的选定 (5)2.1.1 晶体管串联式直流稳压电路 (5)2.1.2 用单片机制作的可调直流稳压电源 (5)2.1.3 采用三端集成稳压器电路 (6)2.1.4 方案的确定 (7)2.2 显示模块的选定 (7)2.2.1 采用双积分 A/D 转换器 MC14433 的方案 (7)2.2.2 采用 ICL7107 的方案 (7)2.2.3 方案确定 (7)第三章电源模块的设计 (8)3.1 三端稳压器的工作原理 (8)3.2 稳压器的主要参数 (8)3.2.1 输出电压 V。
摘要电源技术尤其是数控电源技术是一门实践性很强的工程技术,服务于各行各业。
电力电子技术是电能的最佳应用技术之一。
当今电源技术融合了电气、电子、系统集成、控制理论、材料等诸多学科领域。
随着计算机和通讯技术发展而来的现代信息技术革命,给电力电子技术提供了广阔的发展前景,同时也给电源提出了更高的要求。
该直流稳压电源的输入为交流22OV,50Hz,输出电压为1.26V—10V内连续可调,输出电流为500mA以上,并能够直观的显示输出电压。
电源的控制电路选用AT89S51单片机为核心,以及数/模转换功能,具有线路简单、稳定性好、显示清晰直观等特点。
文章中分析了电源的整体结构和工作原理,并详细的讲述了预稳压电路、数/模转换电路、显示电路等电路的工作原理。
给出了控制电路的硬件实现和主要的软件流程设计。
关键词:单片机;数码管;数/模转换;稳压- 1 -目录摘要...............................................................................................................................................1.1 课题背景..................................................................................................................................1.2 设计任务与技术要求..............................................................................................................2.1 方案选择..................................................................................................................................2.2 方案的确定..............................................................................................................................2.3 方框图的设计..........................................................................................................................3.1 单片机电路设计......................................................................................................................3.1.1 AT89S51单片机...................................................................................................................3.1.2 AT89S51引脚功能...............................................................................................................3.1.3 单片机在电路中应用...........................................................................................................3.2 数/模转换电路设计.................................................................................................................3.2.1 DAC0832芯片简介 .............................................................................................................3.2.2 DAC0832的主要特性参数 ........................................................................................ - 12 - 3.2.3 DAC0832结构 .....................................................................................................................3.2.4 DAC0832的工作方式 .........................................................................................................3.2.5 DAC0832在电路中的应用 ........................................................................................ - 13 - 3.3 放大电路设计..........................................................................................................................3.3.1 LM324简介................................................................................................................. - 14 - 3.3.2 LM324的特点......................................................................................................................3.4 稳压电路设计..........................................................................................................................3.5 电源电路设计..........................................................................................................................3.6 显示电路设计..........................................................................................................................3.6.1 四位一体数码管(共阳)介绍...........................................................................................3.6.2 四位一体数码管管脚...........................................................................................................3.6.3 驱动电路...................................................................................................................... - 19 -4.1 程序流程图..............................................................................................................................4.2 程序..........................................................................................................................................5.1 工作原理..................................................................................................................................5.2 整机原理图.............................................................................................................................. 结论............................................................................................................................................... 致谢............................................................................................................................................... 参考文献........................................................................................................................................... 附录1 C程序 ................................................................................................................................... 附录2 整机原理图..........................................................................................................................- 2 -采用单片机的数字可调稳压电源价格低廉采用普遍使用的元件就能实现其功能,显示清晰直观,传统的模拟可调稳压电源没有读数,在读数过程中很不方便,并且长时间使用会造成输出电压不稳。
小功率数控直流稳压电源设计马艳【摘要】Switching power supply has the advantage of high efficiency, low heat release, small size, however, its output ripple is big; on the contrary, linear power supply’s output ripple is small, but it has the disadvantageof low efficiency large heat release, need to add large heat sink. This design combines the merits of both, with single chip processor as the core, switching power supply as the former level of output, low drop regulatoras the latter level of output, and finally realizes digital controlled low power, high efficiency, low ripple rate of dc regulated power supply output. In addition, the feasibility of the power supply is confirmed.%开关电源具备效率高、发热量少、体积小等特点,但其输出纹波较大;而线性电源效率低、发热量大,需加体积庞大的散热片,但其输出纹波较小。
该设计结合两者的优点,以单片机为核心,开关电源作为前级输出,低压差线性稳压器(LDO)作为后级输出,最终实现数字可控的小功率、高效率、低纹波率的直流稳压电源输出[2],并通过实验验证方案的可行性。
电子系统设计
专业:电子信息科学与技术班级: 0312412 学号: 031341221 题目:数字控制直流稳压电源
学生姓名:黄勇
指导教师:谭建军
数字控制直流稳压电源
摘要
本设计采用数字电位器MCP41010和功率放大电路LM324构成输出电压在0.1-9. 9V的直流稳压电源,整个电路由D/A转换模块、电压放大模块、精密电压源模块和过流保护模块组成。
数字控制部分采用+/一按键来调整预设电压值,调整步进0. IV,当按下+/一按键超过1秒时进入快速调整状态,每秒步进为0. 4V。
最后再将放大后的输出电压值和输出电流值,经过PIC16F877A的内部A/D转换并在数码管上实时显示。
关键词:数字电位器、 D/A转换、电压源。
Abstract
Our design makes full use of the Digital Resistance 41010 and Power Amplifiers LM324 to constitute the steady current source whose output voltages range from O.IVt0 9.9V. The whole circuit consists of digital and analog signal conversion part,voltage amplification part, accurate voltage source part and current limitation part.The output will add or minus O.IV if we press the key every time, what 's more, whichwill change 0.4V if we press the button more than one second. Lastly, samples are sent to PIC and after whose processing the figures tubes will display the result value.
Key words: Digital Resistance; D/A Convert; V oltage Source; Current Limitation
1系统设计
1.1设计要求
1.1.1设计任务
设计出有一定输出电压范围和功能的数控电源。
1.1.2、设计要求
(1)输出电压:范围0~+9. 9V,步进0.IV,纹波不大于lOmV。
(2)输出电流:500mA。
(3)输出电压值由数码管显示。
(4)由“+”、“-”两键分别控制输出电压步进增减。
(5)为实现上述几部件工作,自制一稳压直流电源,输出+15V,+5V。
1.1.3、发挥部分
1.输出电压可预置在0V-9.9V之间的任意一值。
2.用自动扫描代替人工按键,实现输出电压变化(步进0.1V不变)。
3.扩展输出电压种类(比如三角波等)。
1.2方案论证与比较
1.2.1稳压模块
方案一:如下图所示,电路接成串联型电压负反馈,我们把输入电压加到运放的同相端,与6脚的取样电压构成差动放大器,把他们之间的电压差进行放大,放大后的电压再接到调整管的基级,通过调整管的调整作用,来达到稳定输出电压的效果。
方案二:如图,电压经过差分放大后由功率三极管放大电流组成电压负反馈电路。
再经过电容滤波,电路即可输出稳定的直流电压。
综合以上分析,方案二较好。
1.2.2电压采样模块
方案一:在输出口串上两个大电阻和一个电位器,从电位器的中间抽头进行采样,这样不但可以得到完全采样,而且可调.因为实际的电阻值与所标的电阻值会有一些误差,电位器的精密度等都会增加电压采样误差.电路图如下:
方案二:由于产生的稳定直流电压源的电压值高达9. 9V,不能直接送给PIC的1/0采样,则需将其线性降压,而此降压电路模块不会影响电压源的各性能。
因此利用电压跟随器的输入电阻无穷大的特性,得出采样电压。
1.2.4最终方案
单片机PIC16F877A主要用于预设输出电压值并通过按键来实现输出电压的步进控制,系统将电路中实时采样的电压值和电流值送数码管显。
(1)单片机控制模块:采用PIC16F877A单片机为核心。
(2)稳压电压模块:采用数字电位器MCP41010进行D/A转换输出基准电压。
(3)控制调整模块:采用达林顿管TIP122进行控制调整输出电压。
(4)输出取样模块:采用电阻臂进行电压取样,小功率电阻进行电流取样。
(5)显示模块:采用数码管显示。
1.2.5系统框图
2.单元电路分析
2.1.1工作原理
如图所示,利用PIC16F877A及数字电位器MCP41010进行D/A转换,从而得到步进电压。
SCK用于接入PIC的C2口输出的时钟信号。
SI为MCP41010的数据输入引脚,用于接收从PIC的C3口输出的数据信号,即步进电压信号。
当CS =0时,SCK的上升沿到来时,数据从SI引脚输入数字电位器,从而得到步进电压。
2.1.2参数选择
电解电容C,、瓷片电容C,是为了对+2.5V参考电压进行滤波,故可选取电解电容C,为I00uF、瓷片电容C1为104。
2.2电压放大模块
2.2.1工作原理
如图所示,由于MCP41010是8位电流型串行数字电位器,可产生256个步进。
当参考电压为+2. 5V时,PWO输出的步进值约为0.OIV。
所以要想得到步进值为0.1V,需放大5倍,并且电位器每次步进2阶同时自动调整。
通过对输出D/A的输出电压进行同相放大,该电路的放大倍数大约为5倍,并通过电位器来改变它的放大倍数,
2.2.2参数选择
(1)电路负反馈放大倍数:A=5
(2)集成运放选取LM324。
2.3稳定电压源及电压采样模块
2.3.1工作原理
如图所示,集成运放的5、6、7引脚构成差分放大电路,与功率三极管TIP122组成闭环负反馈电路,使得5和6引脚的电压保持相等。
其中功率三极管还起到放大电流的作用,各电容起到稳压滤波作用。
由于输出电压范围为0-9.9V,不能直接将其作为电压采样值送给PIC的I/O口,所以需要将其线性降压。
根据电压跟随器的输入电阻无穷大的特性,组成如图采样电路,并且不影响直流电压源的各参数性质。
2.3.2参数选择
(1)由于设计要求电压源输出的电压高达9.9V,所以用大于9.9V的电源给电路供电。
三极管是电流控制电流型器件,考虑到流经其上的电流要高达0.5A,因此所选三极管的功率要承受:
P= V/—10矿术0.5彳=SW
所以需要选择散热性好的功率三极管TIP122,并且加上散热片帮助其尽快散热。
(2)稳压滤波电容
(3)电压采样电阻
3.电路原理图
4.软件流程图
4.1部分程序源码
#include "includes.h"
#define TIME0H 0x3C
#define TIME0L 0xB0
unsigned char uc_Clock=0;
bit b_DATransform=0;
void vShowV oltage(unsigned int uiNumber)
{
unsigned char ucaNumber[3],ucCount;
if(uiNumber>999)
uiNumber=999;
ucaNumber[0]=uiNumber/100;
ucaNumber[1]=(uiNumber-100*(int)ucaNumber[0])/10;
ucaNumber[2]=uiNumber-100*(int)ucaNumber[0]-10*uc aNumber[1]
for(ucCount=0;ucCount<3;ucCount++)
{
vShowOneChar(ucaNumber[ucCount]+48);
if(ucCount==0)
vShowOneChar('.');
}
}
void main()
{
TMOD=0x01;
TH0=TIME0H;
TL0=TIME0L;
TR0=1;
ET0=1;
EA=1;
vdInitialize();
vWriteCMD(0x84);
vShowChar("V oltage:");
vWriteCMD(0xC9);
vShowChar("(V)");
while(1)
{
if(b_DATransform==1)
{
b_DATransform=0;
vWriteCMD(0xC4);
vShowV oltage(uiADTransform());
}
}
}
5.系统测试
5.1测试步骤:
①第一步:检查电路没有问题,上电。
②第二步:预设置电压值,并用数字万用表检测输出电压,及功率电阻两端的电压。
③第三步:用示波器测输出电压的纹波。