解:假设1头牛1天吃的草的数量是1份
30×8=240份……原草量-8天的减少量
25×9=225份……原草量-9天的减少量
草每天的减少量:
原草量:
(240-225)÷(9-8)=15份
240+8×15=360份
或220+9×15=360份
第九页,共27页。
400份 - 15份
15头牛在吃 360份草可供21头牛吃几天?
1188÷33=36份
第二块草量为: 17×84=1428份
平均每公顷有草量: 1428÷28=51份
每公顷草每天的生长量为:
(51-36)÷(84-54)=0.5份
每公亩的草量: 36-54×0.5=9份 第三块牧场可供: 或51-84×0.5=9份
(40×9+40×0.5×24)÷24=35(头)
女孩: 15×6 = 自动扶梯的级数-6分钟减少的级数
每分钟减少的级数= (20×5-15×6) ÷(6-5)=10(级) 自动扶梯的级数= 20×5+5×10=150(级)
第二十五页,共27页。
[自主训练] 两个顽皮孩子逆着自动扶梯行驶的方向行走,男 孩每秒可走3级阶梯,女孩每秒可走2级阶梯,结果从扶梯的 一端到达另一端男孩走了100秒,女孩走了300秒。问该扶 梯共有多少级?
(优选)牛吃草问题课件
第一页,共27页。
1、牛吃草问题
牛吃草问题最先在牛顿的《普通算术》中出现,所以人们 又习惯上称之为牛顿的牛吃草问题。
2、牛顿牧场 牛顿牧场是理想牧场,在这个牧场上草是匀速生长的 3、牛吃草问题三部曲 (1)先算新生草量
(2)再算原有草量
(3)最后计算问题
第二页,共27页。