第六节:细胞信号转导的整合与控制
- 格式:docx
- 大小:346.00 KB
- 文档页数:1
细胞的信号转导信号转导(signal transduction):指在信号传递中,细胞将细胞外的信号分子携带的信息转变为细胞内信号的过程完整的信号传递程序:完整的信号传递程序为合成信号分子;细胞释放信号分子;信号分子向靶细胞转运;信号分子与特异受体结合;转化为细胞内的信号,以完成其生理作用;终止信号分子的作用。
该过程经配体,受体,胞内信使,其中配体是指细胞外的信号分子,或凡能与受体结合并产生效应的物质,分为水溶性配体(N递质、生长因子、肽类激素)和水溶性配体(N递质、生长因子、肽类激素),是细胞外来的信号分子,又称第一信使。
而受体是细胞膜上或细胞内一类特殊的蛋白质,能选择性地和细胞外环境中特定的活性物质结合,从而引起细胞内的一系列效应;分为细胞表面受体胞内受体(胞浆和核内),细胞表面受体又分为离子通道偶联受体,酶偶联受体,G蛋白偶联受体。
其中离子通道偶联受体是由几个亚单位组成的多聚体,亚单位上配体的结合部位,中间围成离子通道,通道的“开”关受细胞外配体的调节。
具有结合位点又是离子通道本身既有信号的特点。
酶偶联受体,或称催化受体、生长因子类受体,既是受体,又是“酶”。
是由一条肽链一次跨膜的糖蛋白组成,具有N端细胞外区有配体结合部,C端细胞质区含特异酪氨酸蛋白激酶(TPK)的活性的特点。
G蛋白偶联受体是N递质、激素、肽类配体的受体,由一条350-400个氨基酸残基组成的多肽链组成,具有高度的同源性和保守性,其作用特点为分布广,转导慢,敏感,灵活,类型多。
胞内信使是指受体被激活后在细胞内产生的、能介导信号转导的活性物质,又称为第二信使。
第二信指第一信使与受体结合后最早产生的可将信号向下游传递的信号分子。
如:cAMP、cGMP、IP3、DAG(二酯酰甘油)、Ca2+等。
第三节、细胞内信使其中环磷酸腺苷( cAMP )是最重要的胞内信使。
cAMP是细胞膜的腺苷酸环化酶(AC)在G蛋白激活下,催化ATP脱去一个焦磷酸后的产物,AC的主要功能是催化ATP或cAMP,这一过程不仅需要经G蛋白激活,还需Mg2+、Mn2+的存在,cAMP的主要作用是激活依赖cAMP的蛋白激活酶A(PKA),进而使下游信号蛋白被激活产生生物学效应。
细胞信号转导细胞信号转导细胞信号转导是指细胞通过胞膜或胞内受体感受信息分子的刺激,经细胞内信号转导系统转换,从而影响细胞生物学功能的过程。
水溶性信息分子及前列腺素类(脂溶性)必须首先与胞膜受体结合,启动细胞内信号转导的级联反应,将细胞外的信号跨膜转导至胞内;脂溶性信息分子可进入胞内,与胞浆或核内受体结合,通过改变靶基因的转录活性,诱发细胞特定的应答反应。
基本内容细胞信号转导细胞信号转导是指细胞外因子通过与受体(膜受体或核受体)结合,引发细胞内的一系列生物化学反应以及蛋白间相互作用,直至细胞生理反应所需基因开始表达、各种生物学效应形成的过程.现已知道,细胞内存在着多种信号转导方式和途径,各种方式和途径间又有多个层次的交叉调控,是一个十分复杂的网络系统。
高等生物所处的环境无时无刻不在变化,机体功能上的协调统一要求有一个完善的细胞间相互识别、相互反应和相互作用的机制,这一机制可以称作细胞通讯(Cell Communication)。
在这一系统中,细胞或者识别与之相接触的细胞,或者识别周围环境中存在的各种信号(来自于周围或远距离的细胞),并将其转变为细胞内各种分子功能上的变化,从而改变细胞内的某些代谢过程,影响细胞的生长速度,甚至诱导细胞的死亡。
这种针对外源性信号所发生的各种分子活性的变化,以及将这种变化依次传递至效应分子,以改变细胞功能的过程称为信号转导(Signal Transduction),其最终目的是使机体在整体上对外界环境的变化发生最为适宜的反应。
在物质代谢调节中往往涉及到神经-内分泌系统对代谢途径在整体水平上的调节,其实质就是机体内一部分细胞发出信号,另一部分细胞接收信号并将其转变为细胞功能上的变化的过程。
所以,阐明细胞信号转导的机理就意味着认清细胞在整个生命过程中的增殖、分化、代谢及死亡等诸方面的表现和调控方式,进而理解机体生长、发育和代谢的调控机理。
一、细胞信号转导的概念细胞信号转导是指细胞通过胞膜或胞内受体感受信息分子的刺激,经细胞内信号转导系统转换,从而影响细胞生物学功能的过程。
细胞的信号转导是指外界信号通过细胞膜传递到细胞内部,触发一系列生化反应和细胞功能的调控过程。
细胞的信号转导可以通过多种方式进行,其中常见的几种方式包括:
1.直接通透型信号转导:某些小分子信号物质(如气体一氧化氮)、离子(如钙离子)或
水溶性小分子可直接穿过细胞膜,与胞浆内的靶分子发生作用,并触发相应的信号转导反应。
2.膜受体介导的信号转导:大部分信号分子无法直接通过细胞膜,而是通过与细胞膜上特
定的受体结合来传递信号。
这些受体可以是离子通道、酪氨酸激酶、鸟苷酸环化酶等类型的膜受体。
当信号分子与受体结合后,受体会激活下游的信号传递通路,如激活蛋白激酶级联反应或次级信号分子的释放,从而引发细胞内的信号转导。
3.细胞间接触介导的信号转导:有些细胞间信号传递是通过直接接触实现的。
例如,细胞
间的黏附分子可以通过细胞-细胞或细胞-基质之间的物理接触来传递信号。
这种方式通常使细胞与周围环境相互作用,调控细胞的形态、迁移和生长等过程。
4.核内受体介导的信号转导:某些脂溶性信号分子(如类固醇激素和甲状腺激素)可以通
过穿过细胞膜进入细胞,并与细胞核内的核受体结合。
与核受体结合后,信号分子与核受体复合物进入细胞核,影响特定基因的转录和表达,从而调控细胞功能。
这些信号转导方式可以单独存在,也可以相互作用,共同调节细胞的功能和生理过程。
不同的信号转导方式在细胞内部形成了复杂的网络,以确保信号的准确传递和细胞功能的精确调控。
细胞信号转导与信号传递细胞信号转导是细胞内外信息的传递和响应的过程。
信号分子通过细胞外受体与细胞内信号通路发生相互作用,最终调控细胞的生理功能和适应环境。
信号传递是指信号分子在细胞内传递过程中的多种机制和途径。
本文将重点探讨细胞信号转导和信号传递的原理及其在生物学中的重要作用。
一、细胞信号转导的基本原理细胞信号转导过程中,信号分子通过与细胞表面或内部的受体结合,触发一系列的信号转导途径,最终导致细胞内外环境的调节。
信号转导途径可以分为六个步骤:识别、传导、放大、组织、响应和调节。
1. 识别阶段:信号分子与细胞膜上的受体结合,形成信号复合物。
2. 传导阶段:信号复合物通过膜内或膜外的信号传导通路传递信号,同时触发一系列的酶活化和蛋白质磷酸化等反应。
3. 放大阶段:在传导过程中,信号可以通过激活信号转导途径中的正反馈机制来放大信号强度。
4. 组织阶段:在细胞内部,信号被进一步传递和整合,形成信号网。
5. 响应阶段:细胞通过信号转导途径调节基因表达、蛋白质合成、细胞分化和增殖等生理功能,实现对外界环境的适应。
6. 调节阶段:信号转导途径中的各种组分通过负反馈机制和时序调控来保持信号的稳定性和平衡性。
二、信号传递的方式细胞信号传递方式多种多样,主要包括内分泌传递、神经传递、细胞直接相邻传递和自动信息传递。
1. 内分泌传递:由内分泌腺分泌的信号分子经血液或淋巴循环到达靶细胞,通过血液循环广泛传递,影响身体的多个部位。
2. 神经传递:神经元通过神经冲动传递信息,经神经分支将信号传递至神经肌肉接头或其他神经元,实现信息的传递和交流。
3. 细胞直接相邻传递:细胞通过细胞间连接、质膜融合等方式直接传递信号,如邻近细胞之间的离子传递和细胞间紧密连接的信号传递。
4. 自动信息传递:通过细胞内自动信息传递系统,如细胞内钙信号传递、细胞内信号分子的扩散等。
三、细胞信号转导的重要性细胞信号转导在维持细胞生命活动和调节机体内稳态过程中起着重要的作用。