第五章--运筹学-线性规划在管理中的应用案例
- 格式:doc
- 大小:308.00 KB
- 文档页数:20
线性规划应用案例分析线性规划是一种在数学和运营管理中常见的优化技术。
它涉及到在一组线性不等式约束下,最大化或最小化一个线性目标函数。
这种技术可以应用于许多不同的领域,包括供应链管理、资源分配、投资组合优化等。
本文将探讨几个线性规划应用案例,以展示其在实际问题中的应用和价值。
某制造公司需要计划生产三种产品,每种产品都需要不同的原材料和生产时间。
公司的目标是最大化利润,但同时也受到原材料限制、生产能力限制以及每种产品市场需求限制的约束。
通过使用线性规划,该公司能够找到最优的生产计划,即在满足所有约束条件下,最大化利润。
某物流公司需要计划将货物从多个产地运输到多个目的地。
公司的目标是最小化运输成本,但同时也受到运输能力、货物量和目的地需求的约束。
通过使用线性规划,该公司能够找到最优的运输方案,即在满足所有约束条件下,最小化运输成本。
某投资公司需要将其资金分配给多个不同的投资项目。
每个项目都有不同的预期回报率和风险水平。
公司的目标是最大化回报率,同时也要保证投资风险在可接受的范围内。
通过使用线性规划,该公司能够找到最优的投资组合,即在满足所有约束条件下,最大化回报率。
这些案例展示了线性规划在实践中的应用。
然而,线性规划的应用远不止这些,它还可以用于诸如资源分配、时间表制定、路线规划等问题。
线性规划是一种强大的工具,可以帮助决策者解决复杂的问题并找到最优解决方案。
线性规划是一种广泛应用的数学优化技术,适用于在多种资源限制下寻求最优解。
这种技术涉及到各种领域,包括工业、商业、运输、农业、金融等,目的是在给定条件下最大化或最小化线性目标函数。
下面我们将详细讨论线性规划的应用。
线性规划是一种求解最优化问题的数学方法。
它的基本思想是在一定的约束条件下,通过线性方程组的求解,求得目标函数的最优解。
这里的约束条件通常表现为一组线性不等式或等式,而目标函数则通常表示为变量的线性函数。
工业生产:在工业生产中,线性规划可以用于生产计划、物料调配、人力资源分配等方面。
线性规划在管理学中的应用什么是线性规划?线性规划的意义在哪里?线性规划其实是在运筹学中发展而来的!线性规划是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,它是辅助人们进行科学管理的一种数学方法.研究线性约束条件下线性目标函数的极值问题的数学理论和方法,英文缩写LP。
它作为运筹学的一个重要分支,广泛应用于军事作战、经济分析、经营管理和工程技术等方面。
线性规划是用来确定决策问题最佳解的一种分析方法.线性规划是解决最大化问题和最小化问题的一种数学工具.当决策者可采用的行动方案受约束条件限制时,它对解决问题物别有效.由于大多数管理问题属于这类性质,线性规划成为企业当局进行管理决策的一种有用的分析工具.线性规划可应用于求解形形色色的问题,如:产品设计与产品搭配,生产系统的投入分配(包括厂址与交货路线的选择)分析,市场销售活动中的推售组合,库存物资与现金管理以用投资预算决策,等等.虽然这些问题的重点很不相同,但它们从本质上看都有是分配数额有限的资源去达到某个具体目标.在有关生产的决策方面,企业常常面临生产能力的各种限制.熟练工人与专用设备供不应求,厂房规模固定,原材料或能源的投入有限,都可能约束生产发展.当约束这些生产能力的条件存在时,企业管理当局必须做出慎重的判断,保证有限资源以尽可能有效的方式专门生产那些能提供最大收益即利润产品.例如,某石油公司能生产辛烷含量不同的各种汽油,柴油,煤油和润滑油等.在原油供应量和炼油能力一定的情况下,该公司应该怎样组合其各种产品的产量呢?林业公司也面临同样的问题由于原木供应量和锯木能力有限,它的问题是如何决定木材,胶合板,纸张和其他木制品的最佳产品组合.一个有关生产的问题是确定最佳方式去生产某种产品的一定产量.假设某公司有两个工厂,都能用来生产某种产品.然而,这两家工厂的技术水平如果不同,它们的成本函数也就不同.现在要问该公司在下列两个约束条件下应对所属两厂如何分配生产任务,才能使生产总成本最低?这些条件是:(由于公司常驻到与工会签订的劳资合同的约束,两厂每周至少要开工30小时;(2)由于公司受到与客户签订的供货合同的约束,两厂每周的产品产量至少要达到100000件.在销售方面,一个经常碰到的问题是:怎样以最佳方式组合各种广告宣布传?这里所谓的广告的最佳组合.是指能以最低费用招来一定数目的潜在顾客(其年龄,个人收入,文化水平等都有具体规定)的各种广告形式的组合.在财务方面,企业可能有许多投资机会,但受到可利用的资金额的限制.在资金总预算不超过规定的最高限额的条件下,哪些计划时能使未来长期投资项目的收益最大?此外,现金是一种得不到收益的资产,但企业必须具有若干现金.那么,在现金短缺的概率不超过某个最低水平的条件下,企业至少能持有多少现金?这些问题都不存在简单的经验估计的解法.它们涉及的相互联系问题很复杂,需要仔细分析可供选择的方案,才能找出最佳解来.事实证明了线性规划对解答范围如此广泛的约束最大化与最小化问题很有用处,从中可以看出它是一种重要的管理决策工具.线性规划的确是一种行之有效的方法,可以预料在未来的年代里,心将更经常地应用于解决企业管理问题.在生产管理分析各个领域中的问题时,首先需确定研究的系统边界,这样才能划定研究的范围。
管理运筹学案例
1.生产计划优化:某家汽车制造公司需要优化其生产计划,以降低成本和提高效率。
管理运筹学通过分析生产流程和数据,建立数学模型来帮助公司优化生产计划。
2. 集装箱装载优化:一家货运公司需要将不同尺寸和重量的物
品装入集装箱,以最大程度地利用空间和降低成本。
管理运筹学通过建立装载模型和运算方法,帮助公司实现最优化装载。
3. 供应链管理:一家服装公司需要优化其供应链,以降低库存
成本、提高订单响应速度和提高客户满意度。
管理运筹学通过分析供应链的各个环节,建立数学模型和算法,帮助公司优化供应链管理。
4. 机场货物分配优化:某个机场需要优化货物分配,以最大程
度地利用仓库和车辆容量,降低运输成本和提高效率。
管理运筹学通过建立货物分配模型和运算方法,帮助机场实现最优化货物分配。
5. 人力资源管理:一家公司需要优化其人力资源管理,以提高
员工的工作效率和满意度,降低人事成本。
管理运筹学通过建立人力资源管理模型和算法,帮助公司实现最优化人力资源管理。
6. 投资组合优化:一家投资公司需要优化其投资组合,以实现
最大化收益和最小化风险。
管理运筹学通过建立投资组合模型和算法,帮助公司实现最优化投资组合。
7. 网络规划优化:一家电信公司需要优化其网络规划,以提高
网络效率和降低成本。
管理运筹学通过建立网络规划模型和算法,帮助公司实现最优化网络规划。
8. 排班优化:一家医院需要优化其医护人员排班,以提高工作效率和员工满意度。
管理运筹学通过建立排班模型和算法,帮助医院实现最优化排班。
线性规划在管理中的应用摘要:本文从线性规划的概念、构成要素出发,给出了线性规划模型。
并给出了用单纯型法来求解线性规划模型的求解原理。
然后通过几个具体例子,如合理下料问题、运输问题、投资问题,建立了数学规划模型,并给出了如何对生活中有限资进行合理分配,对选择方案进行最优决策。
线性规划模型决策应用线性规划是运筹学中一种最常用的方法,线性规划在现代管理中起到了重要的作用,线性规划所处理的问题是怎样以最佳的方式在各项经济活动中分配有限的资,以便最充分地发挥资的效能去获取最佳经济效益。
线性规划在财务贸易、金融、工业制造、农业生产、交通运输、人事管理、设备维修等领域的管理决策分析^p 中均可帮助人们解决实际问题。
例如在原料分配问题上,研究如何确定各原料比例,才能降低生产成本,增加利润;在农作物规划中,如何安排各种农作物的布局,使生产率迅速提高;在生产计划安排中,选择什么样的生产方案才能提高生产产值。
线性规划为求解这类问题提供了实用性强的理论基础和具体求解方法。
一、线性规划数学模型经营管理中研究如何有效地利用现有的人力物力完成更多的任务,或在预定的任务目标下,如何耗用最少的人力物力去实现,这个统筹规划的问题用可用数学语言表达。
线性规划模型从数学角度来归纳为三点:(1)每个问题都有一组变量,称为决策变量,一般记为,一般要求。
它是决策者对决策问题需要加以考虑和控制的因素。
(2)每个问题都有决策变量需要满足一定的条件,问题的限制条件用不等式或等式来表达,它是实现企业决策目标,限制性因素对实现目标起约束作用,称为约束条件。
(3)问题的目标通过变量的函数形式来表达,称为目标函数,且目标值与决策变量之间的关系是线性关系,要求在约束条件下,求目标函数的最大值或最小值。
(4)一般的线性规划数学模型为:线性规划标准形式特点:(1)目标函数求最大值(有时求最小值)(2)约束条件都为等式方程,且右端常数项bi都大于或等于零(3)决策变量xj为非负。
【课题】5.5 线性规划问题的应用举例
【教学目标】
知识目标:用六个案例介绍了线性规划模型在生产实际中的应用.
能力目标:通过六个案例,学习线性规划模型建立的方法和技巧.
【教学重点】用适当的方法,解决线性规划问题.
【教学难点】用适当的方法,解决线性规划问题.
【教学设计】
1.本节分别介绍了投资问题,生产安排问题,环境保护问题,混合问题,运输问题和下料问题等六个案例,通过这些具体的案例,使学生认识线性规划的应用.
2.①案例1是一个投资计划制定问题,要在可承受的亏损范围内,使获利尽可能的多,因此目标函数是获得利润,约束条件是资金限制和亏损的承受范围.这是二元线性规划问题,故可用图解法解得.
②案例2是一个简单的生产安排问题,生产所获利润取决于三种产品的产量,因此以三种产品产量为决策变量,表格中列出了资源限制条件,据此可得约束条件.
③案例3是一个环境保护问题,其中各种因素已经作了简化,在列出的三个条件中,(3)成立必使(2 )成立,因此条件有冗余,作简化后得约束条件.
④案例4是混合问题,类似于案例2.
⑤案例5是运输调配问题,这是一类典型的问题,一般的运筹学教材中都会专门介绍,本例是产销平衡的,要使总费用最低,必须知道各调运路线的运量,因此所设决策变量较多,为便于学生理解,变量写成教材的形式,有时我们也可用双下标的形式来表示变量.
⑥案例6是下料问题,与前面所举例一样,只是截法增多了.。
第五章运筹学线性规划在管理中的应用案例-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII第五章线性规划在管理中的应用5.1 某企业停止了生产一些已经不再获利的产品,这样就产生了一部分剩余生产力。
管理层考虑将这些剩余生产力用于新产品Ⅰ、Ⅱ、Ⅲ的生产。
可用的三种新产品的单位利润分别为0.5元、0.2元、0.25元。
目标是要确定每种新产品的产量,使得公司的利润最大化。
1、判别问题的线性规划数学模型类型。
2、描述该问题要作出决策的目标、决策的限制条件以及决策的总绩效测度。
3、建立该问题的线性规划数学模型。
4、用线性规划求解模型进行求解。
5、对求得的结果进行灵敏度分析(分别对最优解、最优值、相差值、松驰/剩余量、对偶价格、目标函数变量系数和常数项的变化范围进行详细分析)。
6、若销售部门表示,新产品Ⅰ、Ⅱ生产多少就能销售多少,而产品Ⅲ最少销售18件,请重新完成本题的1-5。
解:1、本问题是资源分配型的线性规划数学模型。
2、该问题的决策目标是公司总的利润最大化,总利润为:0.5x1+ 0.2x2+ 0.25x3决策的限制条件:8x1+ 4x2+ 6x3≤500 铣床限制条件4x1+ 3x2≤350 车床限制条件3x1 + x3≤150 磨床限制条件即总绩效测试(目标函数)为:max z= 0.5x1+ 0.2x2+ 0.25x33、本问题的线性规划数学模型max z= 0.5x1+ 0.2x2+ 0.25x3S.T. 8x1+ 4x2+ 6x3≤5004x1+ 3x2≤3503x1 + x3≤150x1≥0、x2≥0、x3≥04、用Excel线性规划求解模板求解结果:最优解(50,25,0),最优值:30元。
5、灵敏度分析目标函数最优值为 : 30变量最优解相差值x1 50 0x2 25 0x3 0 .083约束松弛/剩余变量对偶价格1 0 .052 75 03 0 .033目标函数系数范围 :变量下限当前值上限x1 .4 .5 无上限x2 .1 .2 .25x3 无下限 .25 .333常数项数范围 :约束下限当前值上限1 400 500 6002 275 350 无上限3 37.5 150 187.5(1)最优生产方案:新产品Ⅰ生产50件、新产品Ⅱ生产25件、新产品Ⅲ不安排。
运筹学应用范例与解法以运筹学应用范例与解法为题,我们将探讨一些实际问题,并介绍如何运用运筹学的方法来解决这些问题。
一、生产调度问题假设某工厂有多条生产线,每条生产线可以生产不同种类的产品。
每个产品的生产时间、成本和销售价格都不同。
我们需要确定每条生产线的生产计划,以最大化总利润。
解决方案:可以使用线性规划模型来解决这个问题。
首先,我们需要列出每条生产线的生产时间、成本和销售价格表。
然后,我们将每条生产线的生产计划表示为决策变量,并设置约束条件,如生产时间不能超过工作时间,每个产品的生产数量不能为负数等。
最后,我们通过求解线性规划模型,得到最佳的生产计划。
二、配送路线问题假设某物流公司需要将货物从若干个仓库送往多个客户,每个仓库和客户之间的距离和货物数量都不同。
我们需要确定最佳的配送路线,以最小化总运输成本。
解决方案:可以使用旅行商问题(TSP)模型来解决这个问题。
首先,我们需要计算每个仓库和客户之间的距离,并列出距离矩阵。
然后,我们将每个客户的配送路线表示为决策变量,并设置约束条件,如每个客户只能被访问一次,每个仓库的货物数量不能超过容量等。
最后,我们通过求解TSP模型,得到最佳的配送路线。
三、项目调度问题假设某公司有多个项目需要进行调度,每个项目都有不同的工期、资源需求和利润。
我们需要确定最佳的项目调度方案,以最大化总利润。
解决方案:可以使用动态规划模型来解决这个问题。
首先,我们需要列出每个项目的工期、资源需求和利润表。
然后,我们将每个项目的调度方案表示为决策变量,并设置约束条件,如资源不能超过容量,每个项目的工期不能延迟等。
最后,我们通过求解动态规划模型,得到最佳的项目调度方案。
四、库存管理问题假设某零售商需要决定每个产品的订货量,以满足客户需求并最小化库存成本。
每个产品的需求量、订货时间和库存成本都不同。
解决方案:可以使用库存模型来解决这个问题。
首先,我们需要列出每个产品的需求量、订货时间和库存成本表。
线性规划在运筹学中的应用线性规划,在运筹学中是一个非常重要的数学方法,它可以解决许多实际问题。
线性规划是一种最优化的方法,它可以帮助我们在资源有限的情况下,合理地分配资源,达到最大化效益的目的。
1.线性规划的定义线性规划是一种用于求解优化问题的数学方法,它能够求解包含线性目标函数和线性约束条件的最优化问题。
与其他优化方法相比,线性规划具有计算简单、适用范围广等优点。
线性规划的基本形式可以表示为:目标函数:$max(c_1x_1+c_2x_2+...+c_nx_n)$约束条件:$ax_1+b_1x_2+...+d_nx_n≤r$$x_1,x_2,...,x_n≥0$其中,$c_i$是每个决策变量的价值,$a,b,...,d$是线性约束条件中每个变量的系数,$r$是约束条件的界限。
2.线性规划的应用领域线性规划在实际应用中,有着非常广泛的应用领域。
2.1生产调度在生产过程中,生产的目标通常是在资源和时间有限的条件下最大化利润。
线性规划可以帮助企业制定最优生产计划,达到最大化效益的目标。
2.2运输问题在运输问题中,通常需要确定如何分配运输物资以最小化运输成本。
线性规划可以帮助解决这类问题,以确定最佳运输成本。
2.3设施选址在设施选址问题中,需要确定在哪里建造设施以最大程度地利用资源。
线性规划可以帮助制定最优的设施选址计划。
2.4资源分配在资源分配问题中,需要确定如何最好地利用资源以达到最大效益。
线性规划可以帮助解决这个问题,以确定最佳资源分配。
3.线性规划的优缺点3.1 优点线性规划具有计算简单、适用范围广、柔性、可扩展性等优点。
计算简单:线性规划的求解方法非常简单,常用的线性规划求解软件有MATLAB、LINGO、GAMS、EXCEL等,大多数软件都提供了直观的界面和演示讲解,即使没有专业知识也可以轻松使用。
适用范围广:线性规划被广泛应用于各种领域,包括生产调度、运输问题、设施选址、资源分配等。
柔性:线性规划具有良好的性能,可以根据问题的不同情况进行适当调整,以获得最佳结果。
【课题】5.5 线性规划问题的应用举例
【教学目标】
知识目标:用六个案例介绍了线性规划模型在生产实际中的应用.
能力目标:通过六个案例,学习线性规划模型建立的方法和技巧.
【教学重点】用适当的方法,解决线性规划问题.
【教学难点】用适当的方法,解决线性规划问题.
【教学设计】
1.本节分别介绍了投资问题,生产安排问题,环境保护问题,混合问题,运输问题和下料问题等六个案例,通过这些具体的案例,使学生认识线性规划的应用.
2.①案例1是一个投资计划制定问题,要在可承受的亏损范围内,使获利尽可能的多,因此目标函数是获得利润,约束条件是资金限制和亏损的承受范围.这是二元线性规划问题,故可用图解法解得.
②案例2是一个简单的生产安排问题,生产所获利润取决于三种产品的产量,因此以三种产品产量为决策变量,表格中列出了资源限制条件,据此可得约束条件.
③案例3是一个环境保护问题,其中各种因素已经作了简化,在列出的三个条件中,(3)成立必使(2 )成立,因此条件有冗余,作简化后得约束条件.
④案例4是混合问题,类似于案例2.
⑤案例5是运输调配问题,这是一类典型的问题,一般的运筹学教材中都会专门介绍,本例是产销平衡的,要使总费用最低,必须知道各调运路线的运量,因此所设决策变量较多,为便于学生理解,变量写成教材的形式,有时我们也可用双下标的形式来表示变量.
⑥案例6是下料问题,与前面所举例一样,只是截法增多了.。
线性规划在企业管理中的应用摘要:随着运筹学广泛应用,作为其一重要分支的线性规划在企业的生产管理中起到了极其重要的作用。
本文分别对线性规划和企业管理简单介绍,然后着重讨论线性规划在现代企业生产管理中的应用,并应用几种常见的解法对所提出的问题加以解答,从而获得最优解或制定最佳方案等。
关键词:线性规划企业管理数学建模线性求解Linear Programming Be Used In Business ManagementAbstract:With the Operational Research has been widly used. As the major branch,The Linear Programming paly an important role in Business Management. Thisdissertation main introduce the Linear Programming and Business Management, thenwe will discuss the apply of Linear Programming in modem Business Managemen, and use some usual methods to solve this problems which we foundand applied, so that wecan gain the optimal solution or work out optimal schema.Keywords:Linear Programming,Business Managemen ,Mathematical Modelling,Deprecatory ,Apply由于计算机技术的发展,许多利用运筹学处理的问题可在较短的时间内得出结果,线性规划作为运筹学的一重要分支,它的应用也日益广泛,如利用其数学方法,通过计算机软件应用于生产组织、几乎与管理中。
线性规划在工商管理中的应用一、人力资源分配的问题例1某昼夜效劳的公交线路每天各时间段内所需司机和乘务人员人数如下表所示:设司机和乘务人员分别在各时间段开场时上班;并连续工作8小时,问该公交线路应怎样安排司机和乘务人员,既能满足工作需要,又使配备司机和乘务人员的人数最少?例2 一家中型的百货商场对售货员的需求经过统计分析如下表所示:为了保证售货员充分休息,要求售货员每周工作五天,休息两天,并要求休息的两天是连续的,问应该如何安排售货员的休息日期,既能满足工作需要,又使配备的售货员的人数最少?二、生产方案问题例3 某公司面临一个是外包协作还是自行生产的问题。
该公司有甲、乙、丙三种产品,这三种产品都要经过铸造、机械加工和装配三道工序。
甲、乙两种产品的铸件可以外包协作,亦可以自行生产,但产品丙必须由本厂铸造才能保证质量。
有关情况如下表所示,公司中可利用的总工时为:铸造8000小时,机械加工12000小时和装配10000小时。
为了获得最大利润,甲、乙、丙三种产品各应生产多少件?甲、乙两种产品的铸件有多少由本公司铸造?有多少为外包协作?三、套裁下料问题例4 某工厂要做100套钢架,每套钢架需要长度分别为2.9米、2.1米、和1.5米的圆钢各一根。
原料每根长7.4米,问应如何下料,可使所用原料最省?四、配料问题例5某工厂要用三种原料1、2、3混合调配出三种不同规格的产品甲、乙、丙,产品的规格要求、产品的单价、每天能供给的原材料数量及原材料单价如下表所示:问该厂应如何安排生产,才能使利润最大?五、投资问题例6某部门现有资金200万元,今后五年内考虑给以下的工程投资:工程A:从第一年到第五年每年年初都可以投资,当年末能收回本利110%;工程B:从第一年到第四年每年年初都可以投资,次年末能收回本利125%,但规定每年最大投资额不能超过30万元;工程C:第三年初需要投资,到第五年末能收回本利140%,但规定每年最大投资额不能超过80万元;工程D:第二年初需要投资,到第五年末能收回本利155%,但规定每年最大投资额不能超过100万元。
第五章线性规划在管理中的应用5.1 某企业停止了生产一些已经不再获利的产品,这样就产生了一部分剩余生产力。
管理层考虑将这些剩余生产力用于新产品Ⅰ、Ⅱ、Ⅲ的生产。
可用的机器设备是限制新产品产量的主要因素,具体数据如下表:量,使得公司的利润最大化。
1、判别问题的线性规划数学模型类型。
2、描述该问题要作出决策的目标、决策的限制条件以及决策的总绩效测度。
3、建立该问题的线性规划数学模型。
4、用线性规划求解模型进行求解。
5、对求得的结果进行灵敏度分析(分别对最优解、最优值、相差值、松驰/剩余量、对偶价格、目标函数变量系数和常数项的变化范围进行详细分析)。
6、若销售部门表示,新产品Ⅰ、Ⅱ生产多少就能销售多少,而产品Ⅲ最少销售18件,请重新完成本题的1-5。
解:1、本问题是资源分配型的线性规划数学模型。
2、该问题的决策目标是公司总的利润最大化,总利润为:0.5x1+ 0.2x2+ 0.25x3决策的限制条件:8x1+ 4x2+ 6x3≤500 铣床限制条件4x1+ 3x2≤350 车床限制条件3x1+ x3≤150 磨床限制条件即总绩效测试(目标函数)为:max z= 0.5x1+ 0.2x2+ 0.25x33、本问题的线性规划数学模型max z= 0.5x1+ 0.2x2+ 0.25x3S.T.8x1+ 4x2+ 6x3≤5004x1+ 3x2≤3503x1+ x3≤150x1≥0、x2≥0、x3≥04、用Excel线性规划求解模板求解结果:最优解(50,25,0),最优值:30元。
5、灵敏度分析目标函数最优值为 : 30变量最优解相差值x1 50 0x2 25 0x3 0 .083约束松弛/剩余变量对偶价格1 0 .052 75 03 0 .033目标函数系数范围 :变量下限当前值上限x1 .4 .5 无上限x2 .1 .2 .25x3 无下限 .25 .333常数项数范围 :约束下限当前值上限1 400 500 6002 275 350 无上限3 37.5 150 187.5(1)最优生产方案:新产品Ⅰ生产50件、新产品Ⅱ生产25件、新产品Ⅲ不安排。
最大利润值为30元。
(2)x3 的相差值是0.083意味着,目前新产品Ⅲ不安排生产,是因为新产品Ⅲ的利润太低,若要使新产品Ⅲ值得生产,需要将当前新产品Ⅲ利润0.25元/件,提高到0.333元/件。
(3)三个约束的松弛/剩余变量0,75,0,表明铣床和磨床的可用工时已经用完,而车床的可用工时还剩余75个工时;三个对偶价格0.05,0,0.033表明三种机床每增加一个工时可使公司增加的总利润额。
(4)目标函数系数范围表明新产品Ⅰ的利润在0.4元/件以上,新产品Ⅱ的利润在0.1到0.25之间,新产品Ⅲ的利润在0.333以下,上述的最佳方案不变。
(5)常数项范围表明铣床的可用条件在400到600工时之间、车铣床的可用条件在275工时以上、磨铣床的可用条件在37.5到187.5工时之间。
各自每增加一个工时对总利润的贡献0.05元,0元,0.033元不变。
6、若产品Ⅲ最少销售18件,修改后的的数学模型是:max z= 0.5x1+ 0.2x2+ 0.25x3S.T.8x1+ 4x2+ 6x3≤5004x1+ 3x2≤3503x1+ x3≤150x3≥18x1≥0、x2≥0、x3≥0这是一个混合型的线性规划问题。
代入求解模板得结果如下:最优解(44,10,18),最优值:28.5元。
灵敏度报告:目标函数最优值为 : 28.5变量最优解相差值x1 44 0x2 10 0x3 18 0约束松弛/剩余变量对偶价格1 0 .052 144 03 0 .0334 0 -.083目标函数系数范围 :变量下限当前值上限x1 .4 .5 无上限x2 .1 .2 .25x3 无下限 .25 .333常数项数范围 :约束下限当前值上限1 460 500 6922 206 350 无上限3 18 150 1654 0 18 30(1)最优生产方案:新产品Ⅰ生产44件、新产品Ⅱ生产10件、新产品Ⅲ生产18件。
最大利润值为28.5元。
(2)因为最优解的三个变量都不为0,所以三个相关值都为0。
(3)四个约束的松弛/剩余变量0,144,0,0,表明铣床和磨床的可用工时已经用完,新产品Ⅲ的产量也刚好达到最低限制18件,而车床的可用工时还剩余144个工时;四个对偶价格0.05,0,0.033,-0.083表明三种机床每增加一个工时可使公司增加的总利润额,第四个对偶价格-0.083表明新产品Ⅲ的产量最低限再多规定一件,总的利润将减少0.083元。
(4)目标函数系数范围表明新产品Ⅰ的利润在0.4元/件以上,新产品Ⅱ的利润在0.1到0.25之间,新产品Ⅲ的利润在0.333以下,上述的最佳方案不变。
(5)常数项范围表明铣床的可用条件在460到692工时之间、车铣床的可用条件在206工时以上、磨铣床的可用条件在18到165工时之间、新产品Ⅲ产量限制在30件以内。
各自每增加一个工时对总利润的贡献0.05元,0元,0.033元,-.083元不变。
5.2 某铜厂轧制的薄铜板每卷宽度为100cm,现在要在宽度上进行切割以完成以下订货任务:32cm的75卷,28cm的50卷,22cm的110卷,其长度都是一样的。
问应如何切割可使所用的原铜板为最少?解:本问题是一个套材下料问题,用穷举法找到所有可能切割的方式并建立数学模型:min f=x1+x2+x3+x4+x5+x6+x7+x8+x9+x10S.T. 3x1+2x2+2x3+x4+x5+x6≥75x2+2x4+x6+3x7+2x8+x9≥50x3+3x5+x6+2x8+3x9+4x10≥110x i≥0 (i=1,2…..10)用Excel线性规划求解模型板求解:最优解:(18.33 ,0,0,0,20,0,0.25,0,0,0),最优值:63.3333因为铜板切割时必须整卷切割所以需要做整数近似。
即其结果为:即最优解:(19 ,0,0,0,20,0,0.25,0,0,0),最优值:64灵敏度分析报告:目标函数最优值为 : 63.333变量最优解相差值x1 18.333 0x2 0 .056x3 0 .111x4 0 .111x5 20 0x6 0 .167x7 0 .167x8 25 0x9 0 .056x10 0 .111约束松弛/剩余变量对偶价格1 0 -.3332 0 -.2783 0 -.222目标函数系数范围 :变量下限当前值上限x1 .75 1 1.071x2 .944 1 无上限x3 .889 1 无上限x4 .889 1 无上限x5 .833 1 1.083x6 .833 1 无上限x7 .833 1 无上限x8 .444 1 1.111x9 .944 1 无上限x10 .889 1 无上限常数项数范围 :约束下限当前值上限1 20 75 无上限2 0 50 1103 50 110 275这是一个统计型的线性规划问题,所以分析价值系数的取值范围和相差都没有意义。
松弛/剩余变量都为0,表示最优方案已达到三种规格薄铜板数量的最低限。
三个约束条件的对偶价格-.333、-.278、-.222分别表示三种规格薄铜板数量的最低限再增加一个,将增加原铜板.333cm、.278cm、.222cm。
这个数字实际跟薄铜板长度规格相一致。
常数项数范围表示三种规格薄铜板数量的最低限在这些范围内,每增一个限额所原原铜板.333cm、.278cm、.222cm不变。
这里需要特别指出的是,第一种规格的薄铜板32cm宽,已使三块组合就能比较恰当地用完原铜板,所以这种规格的薄铜板无论增加多少,都不改变用原铜板的比例。
5.3 某医院对医生工作的安排为4小时一个工作班次,每人要连续工作二个班次。
各班次需要医生人数如下表:其中,第6班报到的医生要连续上班到第二天的第1班。
问在各班开始时应该分别有几位医生报到。
若参加1、2、6班的医生需要支付夜班津贴,为了使支付总的夜班津贴为最少,应如何安排各班开始时医生的报到人数。
解:第一步:不考虑夜班津贴。
线性规划数学模型为:min f=x1+x2+x3+x4+x5+x6S.T. x6+x1≥4x1+x2≥7x2+x3≥9x3+x4≥12x4+x5≥8x5+x6≥6x i≥0(i=1,2,3,4,5,6)用Excel线性规划求解模板求解得:第一班安排7人,第三班安排10人,第四班安排2人,第五班安排6人,第二、第六班不安排人。
总人数为25人。
灵敏度分析报告:目标函数最优值为 : 25变量最优解相差值x1 7 0x2 0 0x3 10 0x4 2 0x5 6 0x6 0 0约束松弛/剩余变量对偶价格1 3 .02 0 -13 1 .04 0 --15 0 . 06 0 --1目标函数系数范围 :变量下限当前值上限x1 0 .1 1x2 1 1 无上限.x3 0 . 1 1x4 1 . 1 2x5 0 1 1x6 1 1 无上限常数项数范围 :约束下限当前值上限1 无下限 4 72 4 7 无上限3 无下限 9 104 11 12 无上限5 6 8 96 5 6 8“对偶价格”一栏。
第一个常数项由4增加到5,因为还剩下2人,所以不会改变最优值;第二个常数项由7增加到8,因为再没有剩余的人,所以本班必须再多安排一个人最优值解也必须增加1,因为是求最小化问题,所以对偶价格为-1;第三个常数项由9增加到10,刚好将原来剩余的人用上,所以不会改变最优值;第四个、第六个常数项与第二个常数项一样;第五个常数项由2增加到3,因为再没有剩余的人,所以本班必须再多安排一个人,但下个班就可以再少安排一个人,所以不会改变最优值;本题的这种情况是每一个变量都会影响到两个时段的结果,所以在进行灵敏度分析时也必定要考虑这个因素,这里第一个时段是特殊情况(有资源剩余),其余的时段分析时相邻两个是相互影响的。
因此,第2时段为-1,第3时段为0,后面的依次相反。
若第2时段为0,则第3时段就为-1。
第二步:考虑夜班津贴。
线性规划数学模型为:min f=x1+x2+x3+x5+x6S.T. x6+x1≥4x1+x2≥7x2+x3≥9x3+x4≥12x4+x5≥8x5+x6≥6x i≥0(i=1,2,3,4,5,6)用Excel线性规划求解模板求解得:即:总人数还是25人,但每班安排人数有所调整:第一班不安排人,第二班安排7人,第三班安排2人,第四班安排10人,第五班安排0人,第六班安排6人。
灵敏度分析报告:目标函数最优值为 : 15变量最优解相差值x1 0 1x2 7 0x3 2 0x4 10 0x5 0 0x6 6 0约束松弛/剩余变量对偶价格1 2 02 0 03 0 -14 0 05 2 06 0 -1目标函数系数范围 :变量下限当前值上限x1 0 1 无上限x2 1 1 2x3 0 1 1x4 0 0 1x5 1 1 无上限x6 0 1 1常数项数范围 :约束下限当前值上限1 无下限 4 62 5 7 93 7 9 114 10 12 无上限5 无下限 8 106 4 6 无上限“对偶价格”一栏。