2023考研数学高等数学每章知识点汇总精品
- 格式:docx
- 大小:15.52 KB
- 文档页数:12
考研数学知识点汇总1. 高等数学部分- 函数、极限与连续- 函数的概念与性质- 极限的定义与性质- 连续函数的性质与应用- 导数与微分- 导数的定义与计算- 微分的概念与应用- 高阶导数- 一元函数积分学- 不定积分与定积分- 积分技巧(换元法、分部积分法等)- 积分在几何与物理中的应用- 空间解析几何- 平面与直线的方程- 空间曲面的方程- 空间向量及其运算- 多元函数微分学- 偏导数与全微分- 多元函数的极值问题- 梯度、方向导数与切平面- 多元函数积分学- 二重积分与三重积分- 重积分的计算方法- 曲线积分与曲面积分- 无穷级数- 级数的基本概念与性质- 正项级数与收敛性- 幂级数与泰勒级数- 常微分方程- 一阶微分方程- 二阶微分方程- 线性微分方程的解法2. 线性代数部分- 行列式- 行列式的定义与性质- 行列式的计算方法- 行列式的应用- 矩阵- 矩阵的概念与运算- 矩阵的逆- 矩阵的秩- 向量空间- 向量空间的定义与性质 - 基与维数- 向量的内积与正交性- 线性方程组- 线性方程组的解的结构 - 高斯消元法- 线性方程组的应用- 特征值与特征向量- 特征值与特征向量的定义 - 矩阵的对角化- 实对称矩阵的性质- 二次型- 二次型的定义与性质- 二次型的标准化- 二次型的分类与应用3. 概率论与数理统计部分- 随机事件与概率- 随机事件的概念与运算- 概率的定义与性质- 条件概率与独立性- 随机变量及其分布- 随机变量的定义- 离散型与连续型分布- 常见分布的性质与应用- 多维随机变量及其分布- 联合分布与边缘分布- 条件分布与独立性- 随机向量的期望与方差- 随机变量的数字特征- 数字特征的定义与性质- 数字特征的计算- 大数定律与中心极限定理- 大数定律的概念与应用- 中心极限定理的条件与结论 - 数理统计的基本概念- 总体与样本- 统计量与抽样分布- 参数估计- 点估计与估计量的性质- 区间估计的原理与方法- 假设检验- 假设检验的基本步骤- 显著性水平与P值- 常见检验方法的应用请注意,这个列表是基于一般性的考研数学考试大纲制作的,具体的考试内容可能会根据不同的学校和专业有所差异。
考研高数知识点总结一、函数、极限与连续1. 函数的概念与性质- 有界性- 奇偶性- 单调性- 周期性- 复合函数- 反函数2. 极限的定义与性质- 数列极限- 函数极限- 极限的四则运算- 极限存在的条件- 无穷小与无穷大的比较3. 连续函数- 连续性的定义- 间断点的类型- 连续函数的性质- 闭区间上连续函数的性质(确界存在定理、零点定理、介值定理)二、导数与微分1. 导数的定义- 概念与几何意义- 左导数与右导数- 高阶导数2. 导数的计算- 基本初等函数的导数 - 导数的四则运算- 链式法则- 隐函数求导- 参数方程求导3. 微分- 微分的定义- 微分的几何意义- 微分形式的变换三、中值定理与导数的应用1. 中值定理- 罗尔定理- 拉格朗日中值定理- 柯西中值定理2. 导数的应用- 函数的单调性- 函数的极值问题- 最值问题- 曲线的凹凸性与拐点 - 函数的渐近线四、积分1. 不定积分- 基本积分表- 换元积分法- 分部积分法- 有理函数的积分2. 定积分- 定义与性质- 微积分基本定理- 定积分的计算- 定积分的应用(面积、体积、弧长、工作量等)3. 积分技巧- 特殊技巧(三角函数的积分、积分区间的变换等) - 积分证明五、多元函数微分学1. 多元函数的基本概念- 定义域- 偏导数- 全微分2. 多元函数的极值问题- 偏导数与极值- 拉格朗日乘数法六、重积分1. 二重积分- 直角坐标系下的二重积分- 极坐标系下的二重积分- 积分的换元法2. 三重积分- 直角坐标系下的三重积分- 柱坐标系与球坐标系下的三重积分七、级数1. 数项级数- 收敛性的判别- 无穷级数的性质- 级数的运算2. 幂级数- 幂级数的收敛半径- 泰勒级数- 函数展开成幂级数八、常微分方程1. 一阶微分方程- 可分离变量的微分方程- 齐次微分方程- 一阶线性微分方程2. 二阶微分方程- 二阶线性微分方程- 常系数线性微分方程- 变系数线性微分方程九、傅里叶级数与变换1. 傅里叶级数- 三角级数- 傅里叶级数的收敛性- 正弦级数与余弦级数2. 傅里叶变换- 傅里叶变换的定义- 傅里叶变换的性质- 快速傅里叶变换(FFT)以上是考研高数的主要知识点总结。
考研数学知识点总结一、高等数学1. 极限与连续极限:数列极限、函数极限、无穷极限、极限的性质和运算法则连续:函数连续性、连续函数的性质、间断点、闭区间连续性定理2. 导数与微分导数的概念:函数的导数、导数的性质微分:函数的微分、微分的性质、高阶微分3. 微分方程微分方程的解法:可分离变量、一阶线性微分方程、二阶线性微分方程微分方程的应用:常微分方程的物理应用、生物应用、经济应用4. 重积分二重积分:累次积分、极坐标系下的二重积分三重积分:累次积分、柱坐标系、球坐标系下的三重积分5. 线性代数行列式与矩阵:行列式的性质、矩阵的性质和运算线性方程组:线性方程组的解法、线性方程组的应用特征值与特征向量:矩阵的特征值和特征向量、对角化、相似矩阵二、离散数学1. 集合与命题逻辑集合:集合的基本概念、集合的运算、集合的应用命题逻辑:命题的联结词、等值命题、蕴含命题、充分必要条件2. 图论图的基本概念:图的定义、图的性质、图的应用连通性:连通图、强连通图、连通度、割点、桥图的着色问题:平面图的着色、四色定理3. 组合数学排列组合:排列、组合、二项式定理生成函数:普通生成函数、指数型生成函数容斥原理:二项式系数的应用、排列组合的应用4. 概率论随机事件与概率:随机试验、随机事件的概率、概率的性质随机变量与概率分布:随机变量的概念、离散型随机变量、连续型随机变量随机过程:马尔可夫链、泊松过程、布朗运动三、数学分析1. 泛函分析赋范空间:线性空间的内积、希尔伯特空间的定义线性算子:紧算子、自共轭算子巴拿赫空间:巴拿赫空间的性质和定理2. 复变函数复数和复变函数:复数的基本性质、复变函数的连续性和可导性积分定理:柯西积分定理、留数定理解析函数:正实部函数、调和函数、齐纯函数3. 实变函数度量空间:度量空间的性质、完备度量空间勒贝格积分:勒贝格积分的性质、勒贝格积分的应用广义积分:广义积分的收敛性、绝对收敛四、概率论与数理统计1. 随机变量随机变量的概念:离散型随机变量、连续型随机变量、随机变量的分布函数随机变量的数字特征:数学期望、方差、协方差2. 大数定律与中心极限定理大数定律:切比雪夫不等式、辛钦大数定律、伯努利大数定律中心极限定理:林德贝格-列维中心极限定理、中心极限定理的其他形式3. 参数估计与检验参数估计:点估计、区间估计假设检验:假设检验的基本思想、参数假设检验方差分析:单因素方差分析、双因素方差分析五、数理逻辑与模糊数学1. 数理逻辑命题逻辑:命题的联结词、等值命题、蕴含命题、充分必要条件谓词逻辑:一阶谓词逻辑、量词、谓词逻辑的推理规则2. 模糊数学模糊集合:模糊集合的基本概念、模糊集合的运算模糊关系:模糊关系的合成、模糊关系的反对称性模糊逻辑:模糊逻辑的蕴含、摩根定律、模糊逻辑的合取和析取以上是考研数学的知识点总结,希望对大家有所帮助。
考研数学每章总结知识点一、集合与函数1. 集合的基本概念1)集合的含义:集合是由一定的确定的对象组成的总体。
2)元素:属于集合的对象。
3)集合的表示法:列举法、描述法。
4)集合间的关系:包含关系、相等关系、互斥关系。
2. 集合的运算1)并集、交集、差集、补集的概念及运算法则。
2)集合运算律:分配律、结合律、交换律、对偶律。
3. 函数的概念1)函数的含义:每个自变量对应唯一的因变量。
2)定义域、值域、映射关系。
3)函数的表示法:解析式表示、图形表示、映射图表示。
4. 函数的性质1)奇偶性、周期性、单调性、有界性、分段性。
2)反函数的存在与性质。
3)初等函数:幂函数、指数函数、对数函数、三角函数。
二、极限1. 数列极限1)定义:当数列中的项”无限走”时,就引出了极限的概念。
2)数列收敛与发散的判定。
3)数列极限的性质:保号性、夹逼定理、介值性。
2. 函数极限1)定义:当自变量趋于某一点时,函数值的”极限”。
2)函数极限存在与无穷极限。
3)无穷小量与无穷大量。
3. 极限运算法则1)函数极限的四则运算法则。
2)复合函数、柯西收敛准则。
4. 极限存在的条件1)夹逼准则:当函数夹在两个趋于同一个极限的函数中间时,可以得到极限。
2)子数列性质。
3)介值性:利用介值性证明函数的极限。
三、连续1. 连续的概念1)点连续:在函数定义域内任一点处的连续性。
2)间断点:函数在某点处不连续。
3)连续函数的性质:介值定理、零点定理。
2. 连续函数的运算1)和、差、积、商的连续性。
2)复合函数的连续性。
3. 函数的限制1)边界点、左极限、右极限的概念。
2)函数的间断点的分类。
4. 连续函数的应用1)罗尔中值定理、拉格朗日中值定理。
2)柯西中值定理、费马引理。
四、导数1. 导数的概念1)导数的定义:函数在某点处的”无穷小增量与自变量增量”的比值。
2)导数的几何意义。
2. 导数的计算1)基本导数公式。
2)常用的一些导数运算法则。
考研高数每章总结知识点一、函数与极限1. 函数的概念与性质2. 一元函数的极限3. 函数的连续性4. 导数与微分5. 多元函数的极限6. 多元函数的连续性7. 偏导数与全微分在这一章节中,我们需要深入理解函数的概念与性质,掌握一元函数的极限和导数与微分的计算方法,以及多元函数的极限、连续性、偏导数与全微分的性质和应用。
二、微分学1. 函数的微分学2. 隐函数与参数方程的微分法3. 高阶导数与微分的应用4. 泰勒公式与函数的逼近5. 不定积分6. 定积分与广义积分7. 定积分的应用在这一章节中,我们需要掌握函数的微分学的相关知识,包括隐函数与参数方程的微分法、高阶导数与泰勒公式的应用,以及不定积分、定积分与广义积分的计算方法及其应用。
三、级数与一些其他杂项1. 数项级数2. 幂级数3. 函数项级数4. 傅立叶级数5. 常微分方程在这一章节中,我们需要掌握数项级数、幂级数和函数项级数的相关知识,包括傅立叶级数的表示和计算方法,以及常微分方程的解法和应用。
四、空间解析几何1. 空间直角坐标系2. 空间点、向量和坐标3. 空间中的直线和平面4. 空间中的曲线5. 空间中的曲面6. 空间曲线和曲面的切线与法线在这一章节中,我们需要掌握空间中的点、向量和坐标的表示和计算方法,以及空间中的直线、平面、曲线和曲面的性质和应用,包括曲线和曲面的切线与法线的计算方法。
五、多元函数微分学1. 函数的极值2. 条件极值与 Lagrange 乘数法3. 二重积分4. 三重积分5. 重积分的应用在这一章节中,我们需要掌握多元函数的极值和条件极值的求解方法,包括 Lagrange 乘数法的应用,以及二重积分和三重积分的计算方法及其应用。
总结起来,考研高数的每个章节都包含了大量的知识点,要想取得好成绩就需要对每个章节的知识点有一个深入的了解和掌握。
在备考的过程中,应该注重理论知识的掌握和应用能力的提升,多做习题和模拟题,以增强对知识点的理解和记忆。
考研数学的学科知识点总结一、高等数学1.极限与连续(1)函数极限的定义及其性质(2)无穷大量与无穷小量(3)函数的连续性(4)洛必达法则2.微分学(1)导数的概念及性质(2)高阶导数及其应用(3)隐函数及参数方程的微分(4)微分中值定理及其应用3.积分学(1)不定积分的性质及计算方法(2)定积分的定义及性质(3)换元积分法(4)分部积分法(5)定积分的应用4.级数(1)级数的收敛性(2)常数项级数(3)幂级数(4)级数的性质5.微分方程(1)常微分方程的解法(2)一阶线性微分方程(3)高阶微分方程的解法(4)常系数齐次线性微分方程6.多元函数微积分(1)偏导数及其应用(2)多元函数的极值(3)多元函数的积分(4)梯度、散度和旋度二、线性代数1.向量空间(1)向量及其线性运算(2)向量组的线性相关性(3)向量空间及其性质2.矩阵及行列式(1)矩阵的概念及运算法则(2)矩阵的秩(3)行列式的概念及性质(4)行列式的应用3.线性方程组(1)线性方程组的解法(2)矩阵的秩与线性方程组的解的关系(3)特解和通解4.线性空间与线性变换(1)线性空间的定义及性质(2)线性变换的概念及性质(3)矩阵表示与特征值特征向量5.内积空间(1)内积的定义及其性质(2)正交性(3)正交矩阵(4)施密特正交化方法三、概率论与数理统计1.概率及其性质(1)事件与概率(2)概率的基本运算法则(3)条件概率与独立性(4)全概率公式与贝叶斯公式2.随机变量及其分布(1)随机变量的概念及其性质(2)离散型随机变量(3)连续型随机变量(4)常见分布的特征及应用3.数理统计(1)抽样及其样本统计量(2)点估计(3)区间估计(4)假设检验四、常微分方程1.一阶常微分方程(1)可分离变量的微分方程(2)一阶线性微分方程(3)恰当微分方程(4)常见微分方程的解法2.高阶常微分方程(1)有限阶、线性、常系数微分方程(2)拉普拉斯变换解法(3)常见高阶微分方程的解法(4)特解与通解五、离散数学1.命题逻辑(1)命题与命题的联结词(2)真值表及其等值演算(3)逻辑推理法则2.集合 theory(1)集合及其运算(2)集合的等价关系与划分(3)集合的运算律3.函数与关系(1)函数的概念及性质(2)函数的复合与反函数(3)关系及其性质4.图论(1)图的定义及运算(2)完全图和酷颠图(3)图的遍历与回路5.格 theory(1)格的定义及性质(2)分配格和布尔格(3)集合与乘积格以上是考研数学学科的知识点总结,希望对大家有所帮助!。
【引言概述】考研高数是考研数学中的重点科目之一,它不仅涵盖了高等数学的基本概念和理论,还包括了各种常见的数学方法和技巧。
为了帮助考生更好地备考高数,本文将围绕考研高数的知识点展开详细的总结和解读。
【正文内容】一、函数与极限1.函数的概念与性质a.函数的定义b.函数的分类c.函数的性质及图像d.函数的运算与复合2.极限的概念与性质a.极限的定义b.极限的性质及运算法则c.极限存在准则d.极限的计算方法二、微分与导数1.导数的定义与性质a.导数的几何意义b.导数的物理意义c.导数的计算方法d.导数的性质及运算法则2.微分的概念与性质a.微分的定义b.微分的计算方法c.微分的性质及运算法则d.高阶导数与高阶微分三、积分与定积分1.定积分的概念与性质a.定积分的定义b.定积分的计算方法c.定积分的性质及运算法则d.定积分与不定积分的关系2.积分的应用a.曲线长度与曲面面积b.弧长的计算c.曲线的平均值与中值定理d.牛顿莱布尼茨公式四、级数与幂级数1.级数的概念与性质a.级数的定义与收敛、发散性质b.级数收敛的判定方法c.级数的运算法则d.级数的收敛域与和函数2.幂级数的概念与性质a.幂级数的定义与收敛性质b.幂级数的计算法则c.幂级数的收敛域与和函数d.幂级数的应用与展开式五、微分方程与线性代数1.一阶微分方程a.一阶微分方程的概念与分类b.一阶微分方程的解法及应用c.高阶微分方程的解法及应用d.常系数线性微分方程的解法及应用2.线性代数a.线性代数的基本概念与性质b.线性方程组的解法及应用c.矩阵的运算与特征值特征向量d.线性空间的概念与性质【总结】通过对考研高数知识点的详细总结,可以发现高数知识点的内容广泛且深入,需要考生掌握扎实的基础知识和灵活运用的能力。
在备考过程中,考生应该注重对各个知识点的理解和记忆,并结合实际问题进行练习和应用。
只有通过不断的积累与实践,才能在考试中取得理想的成绩。
希望本文对考生备考高数提供了一定的参考和指导,祝愿考生能够取得优异的成绩!。
第二讲 极限部分【考试要求】1.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左极限、右极限之间的关系.2.掌握极限的性质及四则运算法则.3.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.4.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.考点:极限的定义1.数列极限的定义及存在的充要条件{}{}{}0,,.,lim ;,.,n n n n n n n n N n N x a a x n x a x a a x x a N x a x εεεεεε→∞>>-<→∞=-<(1)定义中的是衡量必须且只需可以任意足够小;(2)定义中的正整数如果对于任意给定的总存在正整数当时,恒有成立则称常数是数列在时的极限,或称数列收敛于记为如果不存在这样的常数则称数列发散与无限接近的一个标准所以是保证不等式成立的分界点,它随的给定而选定;(3)数列注:定义1{}{},n n x 是否有极限如果有极限其极限值为多少,跟的前有限项无关.{}1,0,,, ;0,,, 1,,.n n n n n x a N N n N x x a N N n N x a c c m N N N n N x a mεεεε++++⎡⎤⎣⎦>∈>-<>∈>-<∈∈>-<例下列关于数列的极限是的定义哪些是对的,哪些是错的?说明理由.(1)对于任意给定的存在当时,有无穷多项使不等式成立(2)对于任意给定的存在当时,不等式成立其中为某个正常数;(3)对于任意给定的存在当时,不等式成立2lim 0,lim ,n n n n u a u a →∞→∞=≠=⎡⎤⎣⎦例若证明并举例说明反之不对.{}{}{}n n n x x x 在数列中任意抽取无限多项并保持这些项在原来数列中的先后次序,这样得到的一个数列称为原数列的子数列(或子列).定义2{}{}{},,.,n n n x a a x x 如果数列收敛于那么它的任一子列也收敛且极限也是若数列的某子列发散或某两个子列极限值不相等则数列发散.定理1注:221lim lim lim .n n n n n n x A x x A -→∞→∞→∞=⇔==定理2{}()()()()2212213313312015,____.lim ,lim lim lim lim ,lim lim ,lim lim lim lim ,lim n n n n n n n n n n n n n n n n n n n n n n n n n x A x a x x aB x x a x aC x a x x aD x x a x a -→∞→∞→∞-→∞→∞→∞-→∞→∞→∞-→∞→∞→∞⎡⎤⎣⎦============例2,数三设是数列则下列不正确的是若则若则若则若则()11lim ____.nn n n -→∞+⎛⎫=⎡⎤ ⎪⎣⎦⎝⎭例32.函数极限的定义()()()()()()000000,0,0,lim .lim .x x x x x x x f x a a f x x x f x a f x x f x f x x εδδε→→>><-<-<→=如果对于任意给定的总存在当满足时,恒有成立则称常数是在时的极限,记为在处的极限是否存在与在处是否有定义无关定义3注:()()()()()000lim lim .lim lim lim .x x x x x x x x x x x x x x f x f x f x A f x f x A -+-+-+→→→→→→→=⇔==类似可定义和时的和单侧极限定理1()()1,040,0,:0.1,0x x f x x x f x x x -<⎧⎪==→⎡⎤⎨⎣⎦⎪+>⎩例设证明当时的极限不存在()()()0,0,lim .x X x x X f x a a f x x f x a εε→∞>>>-<→∞=如果对于任意给定的总存在当满足时,恒有成立,则称常数是在时的极限,记为定义3()()()()()lim lim .lim lim lim .x x x x x x x f x f x f x A f x f x A →+∞→-∞→∞→+∞→-∞→+∞→-∞=⇔==类似可定义和时的和单侧极限定理225____,____lim arctan .2x ax xa b x bx x π→∞+===-⎡⎤⎣⎦-例当时,有()()011110112sin lim lim lim ,0arctan arctan ,arctan 211limarctan limarctan 2.1x xx x x x x xe e e xe e x x ππ∞+∞-∞→-→→→→→+∞→∞+=--∞∞=-需要分别考察左右极限的情形有(即何时使型型 用定理与定理)(1)分段函数的分段点处(包含带有绝对值的情形);如;(2);如和;(3)如和;总结:()()()()12116112 0 x x x e x A B C D --→⎡⎤⎣⎦-∞∞例当时,函数的极限____.等于等于为不存在但不为考点:极限的性质 1.数列极限的性质{},.n x 如果数列收敛那么它的极限唯一性质1(唯一性){}{},.n n x x 如果数列收敛那么数列一定有界性质2(有界性)lim 00,,, 00.lim ,,,n n n n n n x a N n N x x a b b N n N x b b →∞→∞=><>><=><>><如果(或)那么存在正整数当时有()如果()那么存在正整数当时都有().性质3(局部保号性)注:2.函数极限的性质()lim ,.f x 如果存在那么这极限唯一性质1(唯一性)()()0000lim ,.,x x f x x x f x x x x x x →+→→→→∞如果存在那么当时,有界可以改成其他方式如,等,结论也对应改之即可, 下面的保号性也一样.性质2(局部有界性)注:()()()()000lim 00,00.lim ,.x x x x f x a x x f x f x a b b x x f x b b →→=><→><=><→><如果(或)那么当时,()如果(或)那么当时,()性质3(局部保号性)注:()()()()()()()()31110,lim 2,1____.1x f x f f x x x A B C D →''===⎡⎤⎣⎦-例设且则在处不取极值取极大值取极小值是否取极值无法确定3.函数与数列极限的关系(归结原则、海涅定理)()(){}{}{}{}()(){}{}{}{}{}{}()00000lim ,,lim lim .lim lim lim ,lim .n n x x x n n n x x x n n n n n n n n n x x f x x x x x f x f x f x x x f x x x y f x f y f x →→∞→∞→→∞→∞→∞→∞→→∞=如果存在则对任一收敛于但又不等于的数列(或)其所对应的函数值数列必收敛,且若存在某收敛于数列使不存在或存在某两个收敛于数列和使和不相等则不存在注:012limsin x x→⎡⎤⎣⎦例证明不存在.ln 3lim .n n n →∞⎡⎤⎣⎦例求考点:无穷小与无穷大 1.无穷小的定义()()0000,,f x x x f x x x x x x x x +→→→→→∞如果在时极限为零,那么称为时的无穷小,当然,这里的可以是其他情形如等.定义1(1)有限个无穷小的和仍是无穷小;(2)有限个无穷小的积仍是无穷小;(3)有界函数与无穷小的乘积仍是无穷小.注:()()lim ,.f x A f x A αα=⇔=+其中是无穷小定理1(无穷小与极限的关系)()323112007lim sin cos ____.2x x x x x x x →+∞+++=⎡⎤⎣⎦+例(数三)2.无穷小的比较lim 0,lim 0,0lim0,2lim 0,3lim 1,4lim 0,.k o c c k αβαββαβααββααββααβαββαα==≠===≠==≠设且(1)若则称是比的高阶无穷小,记为();()若则称与是同阶无穷小;()若则称与是等阶无穷小,记为;()若则称是的阶无穷小12,3,,.αααββααββγαγ等价无穷小具有以下性质()(自反性);()(对称性)若则;()(传递性)若则注:()()()()()()()()()()()()()222232235235222,.0;2.x o x o x o x o x o x o x x o x o x o x o x o x o x o x →⎡⎤⎣⎦±=±=⋅=⋅==例判断下列等式是否正确并说明理由()(1);(2)(3);(4);(5)()()()()()()()()()3232,0.x xf x x A f x x B f x x C f x x D f x x =+-→⎡⎤⎣⎦例设则当时,有____与是等价无穷小与同价但非等价无穷小是比高阶的无穷小是比低阶的无穷小3.无穷大的定义()()()00,00,0,,M X x x x X x f x f x M f x x x x δδ>><-<>>→→∞如果对于任意给定的正数(不论它多么大)总存在(或)对适合(或)的一切对应的函数值总满足那么称是(或)时的无穷大.定义2ln !,,0, 1.nn n nn a n n a αβαβ→∞∀>>时,有其中注:()()()()(),1,10,.f x f x f x f x f x ≠在自变量的同一变化过程中如果为无穷大那么为无穷小;反之,如果为无穷小,且那么为无穷大定理2(无穷小与无穷小的关系)4.无穷大与无界的关系()00.x x x x f x M x x x x →→∞⇒⎧>∀⎨→→∞⇒⎩要求或的一切这是无穷大对成立要求或的某一这是无界()114sin 0,10x x x+→⎡⎤⎣⎦例证明函数在内无界,但时这函数不是无穷大.()5cos ,y x x x =-∞+∞→+∞⎡⎤⎣⎦例函数在内是否有界?这函数是否为时的无穷大?考点:极限的四则运算法则()()()()()()()()()()()()()()()lim ,lim ,lim lim lim lim lim lim lim lim 0.lim f x A g x B f x g x f x g x A B f x g x f x g x A B f x f x A B g x g x B ==±=±=±⎡⎤⎣⎦=⋅=⋅⎡⎤⎣⎦==≠如果那么数列对应有以上运算法则.定理1注:()()()()()()()()()()()()()()()()1,,1lim ,lim lim 2lim lim lim 3lim lim lim 4lim lim lim f x g x f x g x f x g x f x g x f x g x f x g x f x g x f x g x ⎡⎤⎣⎦±⎡⎤⎣⎦±⎡⎤⎣⎦⋅⎡⎤⎣⎦⋅⎡⎤⎣⎦例下列陈述中哪些是对的哪些是错的?()如果存在但不存在,那么不存在;()如果和都不存在,那么不存在;()如果存在,但不存在,那么不存在;()如果和都不存在,那么不存在.32212lim .53x x x x →-⎡⎤⎣⎦-+例求)3223233103342 31lim2lim.09753133lim4lim.11x xx xx x xx x xx xx x→→∞→+∞→-∞++⎡⎤⎣⎦-∞+-⎛⎫⋅∞∞-∞-⎪--⎝⎭例求()(型);()(型)()(0型);()(型)()()()()()()()()4:1lim,lim0,lim0,2lim0,lim0,lim0.f xA g x f xg xf xA f x g xg x===⎡⎤⎣⎦=≠==例证明()若且则()若且则考点:极限存在准则1.夹逼准则{}{}{}{}10,,2lim lim .lim .n n n n n n n n n n n n n x y z N n N x y z x z a y y a →∞→∞→∞∃>>≤≤===如果数列,,满足以下条件:()从某项起,即当时有;()则数列有极限,且函数对应有以上夹逼准则.注:01:lim 1.x x x +→⎡⎤=⎡⎤⎣⎦⎢⎥⎣⎦例1证明222111:lim 1.2n n n n n n πππ→∞⎛⎫+++=⎡⎤ ⎪⎣⎦+++⎝⎭例2证明12,,,,0.n m m n a a a a ++≥⎡⎤⎣⎦例3求其中2.单调有界准则{}{},lim ,lim n n n n n n x x x x →∞→∞若数列单调增加且有上界,则极限存在;若数列单调减少且有下界,则极限存在.函数对应有以上单调有界准则.注:{}11112,1,2,.2n n n n x x x n x x +⎛⎫==+=⎡⎤ ⎪⎣⎦⎝⎭例4设(),证明数列有极限{}11342,1,2,.1n n n nx x x n x x ++===⎡⎤⎣⎦+例5设(),证明:数列有极限{}116,sin 1,2,,.n n n x x xn x π+<<==⎡⎤⎣⎦例设0()证明:数列有极限考点:用等价无穷小求极限1.常用的等价无穷小()()()21.0sin arcsin tan arctan ln 1111cos ,1ln ,11.22.,,,0.x x m n m x xx x x x e x x x a x a x x o x x x m n x ααβαβααβα→---+-=±→±<时,;若即是的高阶无穷小则特别地时,()+2.等价无穷小替换原则111111,,lim lim lim lim .ββββααββαααα===若则30sin 1lim .3x x x x→⎡⎤⎣⎦+例求极限tan 302lim ____.x xx e e x→-=⎡⎤⎣⎦例20ln cos 3lim ____.x x x→=⎡⎤⎣⎦例4x →⎡⎤⎣⎦例求极限215lim ln 1.x x x x →∞⎡⎤⎛⎫-+⎡⎤ ⎪⎣⎦⎢⎥⎝⎭⎣⎦例求极限()2032sin 36lim .tan xxx x x →+-⎡⎤⎣⎦例求极限考点:幂指函数的极限()()()()()()()()000000,lim ,,lim lim .x x x x x x y f g x y f u u g x g x u y f u u u f g x f g x f u →→→====⎡⎤⎣⎦⎡⎤====⎡⎤⎣⎦⎢⎥⎣⎦设是由与复合而成若而函数在连续则定理1)1limsin .n n n →∞⎡⎤⎣⎦例求()()()()()()lim lim 0,lim ,lim lim .v x v x b u x a v x b u x u x a =>===若则定理2(幂指函数极限运算法则)()()()20cos ,02,lim ____.2,0x x x x f x f x a x π-→⎧<<⎪==⎡⎤⎨⎣⎦⎪=⎩例设则1000lim ____; lim ____;1 lim 1____.x xx x x x x x x +→+∞→∞→∞=∞=⎡⎤⎣⎦⎛⎫+= ⎪⎝⎭例3(1)(0型)(2)(型)(3)(1型)tan4lim____.xx+→=⎡⎤⎣⎦例()()()()()()()1tan251,,lim,lim1,lim,,0lim sin.3v x Ax x x xxx xu x v x u x e A v x u xa b ca b c xπ→→→→∞==-⎡⎤⎡⎤⎣⎦⎣⎦⎛⎫++>⎪⎝⎭例设证明:其中并用此公式计算()和。
考研数学:各章必背知识点汇总第一章函数极限连续1、正确理解函数的概念,了解函数的奇偶性、单调性、周期性和有界性,理解复合函数、反函数及隐函数的概念.2、理解极限的概念,理解函数左、右极限的概念以及极限存在与左右极限之间的关系. 理解无穷小、无穷大以及无穷小阶的概念,会用等价无穷小求极限,掌握无穷小的比较方法.3、理解函数连续性的概念,会判别函数间断点的类型. 了解初等函数的连续性和闭区间上连续函数的性质(值、最小值定理和介值定理),并会应用这些性质.4、掌握利用两个重要的极限:lim(x→0sinxx)=1,lim(1+1x)xx→∞=e,理解连续函数的概念及闭区间上连续函数的性质.5、理解分段函数、复合函数的概念,了解反函数和隐函数的概念.重点:极限(数列、函数)的概念,两个重要极限,连续函数及其性质应用难点:极限(数列、函数)概念、用定义证明极限第二章一元函数微分学1、理解导数和微分的概念,导数的几何意义,会求平面曲线的切线方程,理解函数可导性与连续性之间的关系.2、掌握导数的四则运算法则和一阶微分的形式不变性. 了解高阶导数的概念,会求简单函数的n阶导数,分段函数的一阶、二阶导数. 会求隐函数和由参数方程所确定的函数的一阶、二阶导数及反函数的导数.3、理解并会用罗尔中值定理,拉格朗日中值定理,了解并会用柯西中值定理.4、掌握函数单调性的判别方法,了解函数极值的概念,掌握函数极值、值和最小值的求法及其应用.5、理解函数极值的概念,掌握函数值和最小值的求法及简单应用,会用导数判断函数的凹凸性和拐点,会求函数图形水平、铅直和斜渐近线,会描绘简单函数的图形.6、了解曲率和曲率半径的概念,会计算曲率和曲率半径及两曲线的交角.7、掌握用罗必塔法则求未定式极限的方法重点:导数和微分的概念,平面曲线的切线和法线方程函数的可导性与连续性之间的关系,一阶微分形式的不变性,分段函数的导数. 罗必塔法则函数的极值和值、最小值的概念及其求法,函数的凹凸性判别和拐点的求法.难点:复合函数的求导法则隐函数以及参数方程所确定的函数的一阶、二阶导数的计算.第三章一元函数积分学1、理解原函数和不定积分的概念,了解定积分的概念.2、掌握不定积分的基本公式,不定积分和定积分的性质及定积分中值定理,掌握换元积分法和分部积分法.3、会求有理函数、三角函数和简单无理函数的积分.4、理解变上限积分定义的函数,会求它的导数,掌握牛顿莱布尼兹公式.5、了解广义积分的概念并会计算广义积分.6、掌握用定积分计算一些几何量和物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、变力作功、引力、压力等. )重点:原函数与不定积分的概念及性质,基本积分公式及积分的换元法和分部积分法,定积分的性质、计算及应用.难点:第二类换元积分法,分部积分法. 积分上限的函数及其导数,定积分元素法及定积分的应用.第四章向量代数与空间解析几何1、理解向量的概念及其表示.2、掌握向量的运算(线性运算、数量积、向量积、混合积),了解两个向量垂直、平行的条件;掌握单位向量、方向数与方向余弦、向量的坐标表达式以及用坐标表达式进行向量运算的方法.3、掌握平面方程和直线方程及其求法,会利用平面直线的相互关系解决有关问题.4、理解曲面方程的概念,了解常用二次曲面的方程及其图形,会求以坐标轴为旋转轴的旋转曲面及母线平行于坐标轴的柱面方程.5、了解空间曲线的参数方程和一般方程;了解空间曲线在坐标平面上的投影,并会求其方程.第五章多元函数微分学1、了解二元函数的极限与连续的概念,二元函数的几何意义以及有界闭区域上连续函数的性质.2、理解多元函数偏导数和全微分的概念,会求多元复合函数一阶、二阶偏导数,会求全微分. 掌握多元复合函数偏导数的求法,会求隐函数的偏导数.3、理解方向导数与梯度的概念并掌握其计算方法.4、了解曲线的切线和法平面及曲面的切平面和法线的概念,掌握二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求多元函数的值和最小值及一些简单的应用问题.重点:二元函数的极限和连续的概念,偏导数与全重点是二元函数的极限和连续的概念,偏导数与全微分的概念及计算复合函数、隐函数的求导法,二阶偏导数,方向导数和梯度的概念及其计算. 空间曲线的切线和法平面,曲面的切平面和法线,二元函数极值.难点:多元复合函数的求导法,二元函数的泰勒公式.第六章多元函数积分学1、理解二重积分与三重积分的概念,了解重积分的性质.2、掌握二重积分(直角坐标、极坐标)的计算方法,会计算三重积分(直角坐标、柱面坐标、球面坐标).3、理解两类曲线积分的概念,了解两类曲线积分的性质及两类曲线积分的关系;掌握计算两类曲线积分的方法;掌握格林公式并会运用平面曲线积分与路径无关的条件.4、了解两类曲面积分的概念、性质及两类曲面积分的关系,掌握计算两类曲面积分的方法.5、会用重积分、曲线积分和曲面积分求一些几何量和物理量.重点:利用直角坐标、极坐标计算二重积分. 利用直角坐标、柱面坐标、球面坐标计算三重积分. 两类曲线积分的概念、性质及计算,格林公式. 两类曲面积分的概念、性质及计算,高斯公式.难点:化二重积分为二次积分、改换二次积分的积分次序以及三重积分计算. 第二类曲面积分与斯托克斯公式.第七章无穷级数1、了解级数的收敛与发散、收敛级数的和的概念. 掌握级数的基本性质及其级数收敛的必要条件,掌握几何级数与p级数的收敛与发散的条件;掌握正项级数收敛性的的比较判别法与比值判别法.2、会用交错级数的莱布尼兹定理,了解绝对收敛和条件收敛的概念及它们的关系.3、会求幂级数的和函数以及数项级数的和,掌握幂级数收敛域的求法.4、掌握e的x次方、sinx、cosx、ln(1+x),(1+x)的a次方的马克劳林展开式,会用它们将简单函数作间接展开;会将定义在[-L,L]上的函数展开为傅立叶级数,会将定义在上的函数展开为正弦级数和余弦函数.重点:数项级数的概念与性质,正项级数的审敛法,交错级数及其审敛法,绝对收敛与条件收敛的概念. 幂级数的收敛半径、收敛区间的求法,将函数展成傅立叶级数.难点:求幂级数的和函数,将函数展成幂级数、傅立叶级数.第八章常微分方程1、了解微分方程及其解、阶、通解、初始条件和特解等概念2、掌握变量可分离的微分方程、齐次微分方程和一阶线性微分方程的解法.3、会用降阶法解y(n)=f(x),y″=f(x,y),y″=f(y,y')类的方程;理解线性微分方程解的性质和解的结构.4、掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程.5、会解包含两个未知函数的一阶常系数线性微分方程组.6、了解差分与差分方程及其通解与特解等概念重点:微分方程的概念,变量可分离方程,一阶线性微分方程及二阶的常系数线性微分方程的解法.难点:由实际问题建立微分方程及确定定解条件.第九章级数(数一、数三)1、收敛级数的性质(必要条件、线性运算、“加括号”、“有限项”)2、正项级数的判别法(比较、比值、根值,p级数与推广的p级数)3、交错级数的莱布尼兹判别法4、绝对收敛与条件收敛5、幂级数的收敛半径与收敛域6、幂级数的求和与展开7、傅里叶级数(函数展开成傅里叶级数,狄利克雷定理)。
考研数学高数重要知识点总结职高一数学知识点总结篇一一、求导数的方法(1)基本求导公式(2)导数的四则运算(3)复合函数的导数设在点x处可导,y=在点处可导,则复合函数在点x处可导,且即二、关于极限1、数列的极限:粗略地说,就是当数列的项n无限增大时,数列的项无限趋向于A,这就是数列极限的描述性定义。
记作:=A。
如:2、函数的极限:当自变量x无限趋近于常数时,如果函数无限趋近于一个常数,就说当x趋近于时,函数的极限是,记作三、导数的概念1、在处的导数。
2、在的导数。
3、函数在点处的导数的几何意义:函数在点处的导数是曲线在处的切线的斜率,即k=,相应的切线方程是注:函数的导函数在时的函数值,就是在处的导数。
例、若=2,则=()A—1B—2C1D四、导数的综合运用(一)曲线的切线函数y=f(x)在点处的导数,就是曲线y=(x)在点处的切线的斜率。
由此,可以利用导数求曲线的切线方程。
具体求法分两步:(1)求出函数y=f(x)在点处的导数,即曲线y=f(x)在点处的切线的斜率k=(2)在已知切点坐标和切线斜率的条件下,求得切线方程为x。
职高一数学知识点总结篇二一、集合有关概念1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。
2、集合的中元素的三个特性:1.元素的确定性;2.元素的互异性;3.元素的无序性。
3、集合的表示:(1){?}如{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}(2)。
用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}4.集合的表示方法:列举法与描述法。
常用数集及其记法:非负整数集(即自然数集)记作:N正整数集N*或N+整数集Z有理数集Q实数集R5、关于“属于”的概念集合的元素通常用小写的拉丁字母表示,如:a是集合A的元素,就说a属于集合A记作a∈A,相反,a不属于集合A记作a?A列举法:把集合中的元素一一列举出来,然后用一个大括号括上。
高等数学定理大解析-考研必捋版考研大纲要求范围+高数重点知识第一章函数与极限1、函数的有界性在定义域内有fx≥K1则函数fx在定义域上有下界,K1为下界;如果有fx≤K2,则有上界,K2称为上界;函数fx在定义域内有界的充分必要条件是在定义域内既有上界又有下界;2、函数的单调性、奇偶性、周期性指最小正周期3、数列的极限定理极限的唯一性数列{xn}不能同时收敛于两个不同的极限;定理收敛数列的有界性如果数列{xn}收敛,那么数列{xn}一定有界; 如果数列{xn}无界,那么数列{xn}一定发散;但如果数列{xn}有界,却不能断定数列{xn}一定收敛,例如数列1,-1,1,-1,-1n+1…该数列有界但是发散,所以数列有界是数列收敛的必要条件而不是充分条件;定理收敛数列与其子数列的关系如果数列{xn}收敛于a,那么它的任一子数列也收敛于a;●如果数列{xn}有两个子数列收敛于不同的极限,那么数列{xn}是发散的,如数列1,-1,1,-1,-1n+1…中子数列{x2k-1}收敛于1,{xnk}收敛于-1,{xn}却是发散的;同时一个发散的数列的子数列也有可能是收敛的;4、函数的极限函数极限的定义中0<|x-x0|表示x≠x0,所以x→x0时fx有没有极限与fx在点x0有没有定义无关;定理极限的局部保号性如果limx→x0时fx=A,而且A>0或A<0,就存在着点那么x0的某一去心邻域,当x在该邻域内时就有fx>0或fx>0,反之也成立;●函数fx当x→x0时极限存在的充分必要条件是左极限右极限各自存在并且相等,即fx0-0=fx0+0,若不相等则limfx不存在;●一般的说,如果limx→∞fx=c,则直线y=c是函数y=fx的图形水平渐近线;如果limx→x0fx=∞,则直线x=x0是函数y=fx图形的铅直渐近线;5、极限运算法则定理有限个无穷小之和也是无穷小;有界函数与无穷小的乘积是无穷小;常数与无穷小的乘积是无穷小;有限个无穷小的乘积也是无穷小;定理如果F1x≥F2x,而limF1x=a,limF2x=b,那么a≥b;6、极限存在准则●两个重要极限limx→0sinx/x=1;limx→∞1+1/xx=1;●夹逼准则如果数列{xn}、{yn}、{zn}满足下列条件:yn≤xn≤zn 且limyn=a,limzn=a,那么limxn=a,对于函数该准则也成立;●单调有界数列必有极限;7、函数的连续性●设函数y=fx在点x0的某一邻域内有定义,如果函数fx当x→x0时的极限存在,且等于它在点x0处的函数值fx0,即limx→x0fx=fx0,那么就称函数fx在点x0处连续;●不连续情形:1、在点x=x0没有定义;2、虽在x=x0有定义但lim x→x0fx不存在;3、虽在x=x0有定义且limx→x0fx存在,但limx →x0fx≠fx0时则称函数在x0处不连续或间断;●如果x0是函数fx的间断点,但左极限及右极限都存在,则称x0为函数fx的第一类间断点左右极限相等者称可去间断点,不相等者称为跳跃间断点;非第一类间断点的任何间断点都称为第二类间断点无穷间断点和震荡间断点;●定理有限个在某点连续的函数的和、积、商分母不为0是个在该点连续的函数;●定理如果函数fx在区间Ix上单调增加或减少且连续,那么它的反函数x=fy在对应的区间Iy={y|y=fx,x∈Ix}上单调增加或减少且连续;反三角函数在他们的定义域内都是连续的;●定理最大值最小值定理在闭区间上连续的函数在该区间上一定有最大值和最小值;如果函数在开区间内连续或函数在闭区间上有间断点,那么函数在该区间上就不一定有最大值和最小值;●定理有界性定理在闭区间上连续的函数一定在该区间上有界,即m ≤fx≤M;●定理零点定理设函数fx在闭区间a,b上连续,且fa与fb异号即f a×fb<0,那么在开区间a,b内至少有函数fx的一个零点,即至少有一点ξa<ξ<b使fξ=0;●定理介值定理设函数fx在闭区间a,b上连续,且在这区间的端点处取不同的值fa=A,fb=B,那么对于A与B之间的任一数C,在开区间a, b内至少有一点ξ使fξ=C,a<ξ<b;●推论在闭区间上连续的函数必取得介于最大值M与最小值m之间的任何值;第二章导数与微分1、导数存在的充分必要条件●函数fx在点x0处可导的充分必要条件是在点x0处的左极限limh→-0fx0+h-fx0/h及右极限limh→+0fx0+h-fx0/h都存在且相等,即左导数f-′x0右导数f+′x0存在相等;2、函数fx在点x0处可导=>函数在该点处连续;函数fx在点x0处连续≠>在该点可导;即函数在某点连续是函数在该点可导的必要条件而不是充分条件;3、原函数可导则反函数也可导,且反函数的导数是原函数导数的倒数;4、函数fx在点x0处可微=>函数在该点处可导;函数fx在点x0处可微的充分必要条件是函数在该点处可导;第三章中值定理与导数的应用1、定理罗尔定理如果函数fx在闭区间a,b上连续,在开区间a,b内可导,且在区间端点的函数值相等,即fa=fb,那么在开区间a,b内至少有一点ξa<ξ<b,使的函数fx在该点的导数等于零:f’ξ=0;2、定理拉格朗日中值定理如果函数fx在闭区间a,b上连续,在开区间a,b内可导,那么在开区间a,b内至少有一点ξa<ξ<b,使的等式f b-fa=f’ξb-a成立即f’ξ=fb-fa/b-a;3、定理柯西中值定理如果函数fx及Fx在闭区间a,b上连续,在开区间a,b内可导,且F’x在a,b内的每一点处均不为零,那么在开区间a,b内至少有一点ξ,使的等式fb-fa/Fb-Fa=f’ξ/F’ξ成立;4、洛必达法则应用条件●只能用与未定型诸如0/0、∞/∞、0×∞、∞-∞、00、1∞、∞0等形式;5、函数单调性的判定法●设函数fx在闭区间a,b上连续,在开区间a,b内可导,那么:1如果在a,b内f’x>0,那么函数fx在a,b上单调增加;2如果在a,b内f’x<0,那么函数fx在a,b上单调减少;●如果函数在定义区间上连续,除去有限个导数不存在的点外导数存在且连续,那么只要用方程f’x=0的根及f’x不存在的点来划分函数fx的定义区间,就能保证f’x在各个部分区间内保持固定符号,因而函数fx在每个部分区间上单调;6、函数的极值●如果函数fx在区间a,b内有定义,x0是a,b内的一个点,如果存在着点x0的一个去心邻域,对于这去心邻域内的任何点x,fx<fx0均成立,就称fx0是函数fx的一个极大值;如果存在着点x0的一个去心邻域,对于这去心邻域内的任何点x,fx>fx0均成立,就称fx0是函数fx的一个极小值;●在函数取得极值处,曲线上的切线是水平的,但曲线上有水平曲线的地方,函数不一定取得极值,即可导函数的极值点必定是它的驻点导数为0的点,但函数的驻点却不一定是极值点;●定理函数取得极值的必要条件设函数fx在x0处可导,且在x0处取得极值,那么函数在x0的导数为零,即f’x0=0;●定理函数取得极值的第一种充分条件设函数fx在x0一个邻域内可导,且f’x0=0,那么:1如果当x取x0左侧临近的值时,f’x恒为正;当x去x0右侧临近的值时,f’x恒为负,那么函数fx在x0处取得极大值;2如果当x取x0左侧临近的值时,f’x恒为负;当x去x0右侧临近的值时,f’x恒为正,那么函数fx在x0处取得极小值;3如果当x取x0左右两侧临近的值时,f’x恒为正或恒为负,那么函数fx在x0处没有极值;●定理函数取得极值的第二种充分条件设函数fx在x0处具有二阶导数且f’x0=0,f’’x0≠0那么:1当f’’x0<0时,函数fx在x0处取得极大值;2当f’’x0>0时,函数fx在x0处取得极小值;●驻点有可能是极值点,不是驻点也有可能是极值点;7、函数的凹凸性及其判定设fx在区间Ix上连续,如果对任意两点x1,x2恒有fx1+x2/2<fx1+fx1/2,那么称fx在区间Ix上图形是凹的;如果恒有fx1+x2/2> fx1+fx1/2,那么称fx在区间Ix上图形是凸的;●定理设函数fx在闭区间a,b上连续,在开区间a,b内具有一阶和二阶导数,那么1若在a,b内f’’x>0,则fx在闭区间a,b上的图形是凹的;2若在a,b内f’’x<0,则fx在闭区间a,b上的图形是凸的;●判断曲线拐点凹凸分界点的步骤1求出f’’x;2令f’’x=0,解出这方程在区间a,b内的实根;3对于2中解出的每一个实根x0,检查f’’x在x0左右两侧邻近的符号,如果f’’x在x0左右两侧邻近分别保持一定的符号,那么当两侧的符号相反时,点x0,fx0是拐点,当两侧的符号相同时,点x0,fx0不是拐点;●在做函数图形的时候,如果函数有间断点或导数不存在的点,这些点也要作为分点;第四章不定积分1、原函数存在定理●定理如果函数fx在区间I上连续,那么在区间I上存在可导函数F x,使对任一x∈I都有F’x=fx;简单的说连续函数一定有原函数;●分部积分发如果被积函数是幂函数和正余弦或幂函数和指数函数的乘积,就可以考虑用分部积分法,并设幂函数和指数函数为u,这样用一次分部积分法就可以使幂函数的幂降低一次;如果被积函数是幂函数和对数函数或幂函数和反三角函数的乘积,就可设对数和反三角函数为u;2、对于初等函数来说,在其定义区间上,它的原函数一定存在,但原函数不一定都是初等函数;第五章定积分1、定积分解决的典型问题1曲边梯形的面积2变速直线运动的路程2、函数可积的充分条件●定理设fx在区间a,b上连续,则fx在区间a,b上可积,即连续=>可积;●定理设fx在区间a,b上有界,且只有有限个间断点,则fx在区间a, b上可积;3、定积分的若干重要性质●性质如果在区间a,b上fx≥0则∫abfxdx≥0;●推论如果在区间a,b上fx≤gx则∫abfxdx≤∫abgxdx;●推论|∫abfxdx|≤∫ab|fx|dx;●性质设M及m分别是函数fx在区间a,b上的最大值和最小值,则mb-a≤∫abfxdx≤Mb-a,该性质说明由被积函数在积分区间上的最大值及最小值可以估计积分值的大致范围;●性质定积分中值定理如果函数fx在区间a,b上连续,则在积分区间a,b上至少存在一个点ξ,使下式成立:∫abfxdx=fξb-a;4、关于广义积分设函数fx在区间a,b上除点ca<c<b外连续,而在点c的邻域内无界,如果两个广义积分∫acfxdx与∫cbfxdx都收敛,则定义∫abfxdx= ∫acfxdx+∫cbfxdx,否则只要其中一个发散就称广义积分∫abfxdx 发散;第六章定积分的应用1、求平面图形的面积曲线围成的面积●直角坐标系下含参数与不含参数●极坐标系下r,θ,x=rcosθ,y=rsinθ扇形面积公式S=R2θ/2●旋转体体积由连续曲线、直线及坐标轴所围成的面积绕坐标轴旋转而成且体积V=∫abπfx2dx,其中fx指曲线的方程●平行截面面积为已知的立体体积V=∫abAxdx,其中Ax为截面面积●功、水压力、引力●函数的平均值平均值y=1/b-a∫abfxdx第七章多元函数微分法及其应用1、多元函数极限存在的条件极限存在是指Px,y以任何方式趋于P0x0,y0时,函数都无限接近于A,如果Px,y以某一特殊方式,例如沿着一条定直线或定曲线趋于P0x0, y0时,即使函数无限接近某一确定值,我们还不能由此断定函数极限存在;反过来,如果当Px,y以不同方式趋于P0x0,y0时,函数趋于不同的值,那么就可以断定这函数的极限不存在;例如函数:fx,y={0xy/x^2+y^2x^2+y^2≠02、多元函数的连续性●定义设函数fx,y在开区域或闭区域D内有定义,P0x0,y0是D的内点或边界点且P0∈D,如果limx→x0,y→y0fx,y=fx0,y0则称fx,y在点P0x0,y0连续;●性质最大值和最小值定理在有界闭区域D上的多元连续函数,在D 上一定有最大值和最小值;●性质介值定理在有界闭区域D上的多元连续函数,如果在D上取得两个不同的函数值,则它在D上取得介于这两个值之间的任何值至少一次;3、多元函数的连续与可导如果一元函数在某点具有导数,则它在该点必定连续,但对于多元函数来说,即使各偏导数在某点都存在,也不能保证函数在该点连续;这是因为各偏导数存在只能保证点P沿着平行于坐标轴的方向趋于P0时,函数值fP趋于fP0,但不能保证点P按任何方式趋于P0时,函数值fP都趋于fP0;4、多元函数可微的必要条件一元函数在某点的导数存在是微分存在的充分必要条件,但多元函数各偏导数存在只是全微分存在的必要条件而不是充分条件,即可微=>可偏导;5、多元函数可微的充分条件定理充分条件如果函数z=fx,y的偏导数存在且在点x,y连续,则函数在该点可微分;6多元函数极值存在的必要、充分条件定理必要条件设函数z=fx,y在点x0,y0具有偏导数,且在点x0,y0处有极值,则它在该点的偏导数必为零;定理充分条件设函数z=fx,y在点x0,y0的某邻域内连续且有一阶及二阶连续偏导数,又fxx0,y0=0,fyx0,y0=0,令fxxx0,y0=0=A,fxyx0, y0=B,fyyx0,y0=C,则fx,y在点x0,y0处是否取得极值的条件如下:1AC-B2>0时具有极值,且当A<0时有极大值,当A>0时有极小值;2AC-B2<0时没有极值;3AC-B2=0时可能有也可能没有;7、多元函数极值存在的解法1解方程组fxx,y=0,fyx,y=0求的一切实数解,即可求得一切驻点; 2对于每一个驻点x0,y0,求出二阶偏导数的值A、B、C;3定出AC-B2的符号,按充分条件进行判定fx0,y0是否是极大值、极小值;注意:在考虑函数的极值问题时,除了考虑函数的驻点外,如果有偏导数不存在的点,那么对这些点也应当考虑在内;第八章二重积分1、二重积分的一些应用●曲顶柱体的体积●曲面的面积A=∫∫√1+f2xx,y+f2yx,ydσ●平面薄片的质量●平面薄片的重心坐标x=1/A∫∫xdσ,y=1/A∫∫ydσ;其中A=∫∫dσ为闭区域D的面积;●平面薄片的转动惯量Ix=∫∫y2ρx,ydσ,Iy=∫∫x2ρx,ydσ;其中ρx,y为在点x,y处的密度;●平面薄片对质点的引力FxFyFz2、二重积分存在的条件当fx,y在闭区域D上连续时,极限存在,故函数fx,y在D上的二重积分必定存在;3、二重积分的一些重要性质●性质如果在D上,fx,y≤ψx,y,则有不等式∫∫fx,ydxdy≤∫∫ψx,ydxdy,特殊地由于-|fx,y|≤fx,y≤|fx,y|又有不等式|∫∫fx,ydxdy|≤∫∫|fx,y|dxdy;●性质设M,m分别是fx,y在闭区域D上的最大值和最小值,σ是D的面积,则有mσ≤∫∫fx,ydσ≤Mσ;●性质二重积分的中值定理设函数fx,y在闭区域D上连续,σ是D的面积,则在D上至少存在一点ξ,η使得下式成立:∫∫fx,ydσ=fξ,ησ4、二重积分中标量在直角与极坐标系中的转换●把二重积分从直角坐标系换为极坐标系,只要把被积函数中的x,y 分别换成ycosθ、rsinθ,并把直角坐标系中的面积元素dxdy换成极坐标系中的面积元素rdrdθ;。
考研数学基础知识点梳理(高数篇) 第一章函数、极限与连续1、函数的有界性2、极限的定义(数列、函数)3、极限的性质(有界性、保号性)4、极限的计算(重点)(四则运算、等价无穷小替换、洛必达法则、泰勒公式、重要极限、单侧极限、夹逼定理及定积分定义、单调有界必有极限定理)5、函数的连续性6、间断点的类型7、渐近线的计算第二章导数与微分1、导数与微分的定义(函数可导性、用定义求导数)2、导数的计算(“三个法则一个表”:四则运算、复合函数、反函数,基本初等函数导数表;“三种类型”:幂指型、隐函数、参数方程;高阶导数)3、导数的应用(切线与法线、单调性(重点)与极值点、利用单调性证明函数不等式、凹凸性与拐点、方程的根与函数的零点、曲率(数一、二)) 第三章中值定理1、闭区间上连续函数的性质(最值定理、介值定理、零点存在定理)2、三大微分中值定理(重点)(罗尔、拉格朗日、柯西)3、积分中值定理4、泰勒中值定理5、费马引理第四章一元函数积分学1、原函数与不定积分的定义2、不定积分的计算(变量代换、分部积分)3、定积分的定义(几何意义、微元法思想(数一、二))4、定积分性质(奇偶函数与周期函数的积分性质、比较定理)5、定积分的计算6、定积分的应用(几何应用:面积、体积、曲线弧长和旋转面的面积(数一、二),物理应用:变力做功、形心质心、液体静压力)7、变限积分(求导)8、广义积分(收敛性的判断、计算)第五章空间解析几何(数一)1、向量的运算(加减、数乘、数量积、向量积)2、直线与平面的方程及其关系3、各种曲面方程(旋转曲面、柱面、投影曲面、二次曲面)的求法第六章多元函数微分学1、二重极限和二元函数连续、偏导数、可微及全微分的定义2、二元函数偏导数存在、可微、偏导函数连续之间的关系3、多元函数偏导数的计算(重点)4、方向导数与梯度5、多元函数的极值(无条件极值和条件极值)6、空间曲线的切线与法平面、曲面的切平面与法线第七章多元函数积分学(除二重积分外,数一)1、二重积分的计算(对称性(奇偶、轮换)、极坐标、积分次序的选择)2、三重积分的计算(“先一后二”、“先二后一”、球坐标)3、第一、二类曲线积分、第一、二类曲面积分的计算及对称性(主要关注不带方向的积分)4、格林公式(重点)(直接用(不满足条件时的处理:“补线”、“挖洞”),积分与路径无关,二元函数的全微分)5、高斯公式(重点)(不满足条件时的处理(类似格林公式))6、斯托克斯公式(要求低;何时用:计算第二类曲线积分,曲线不易参数化,常表示为两曲面的交线)7、场论初步(散度、旋度)第八章微分方程1、各类微分方程(可分离变量方程、齐次方程、一阶线性微分方程、伯努利方程(数一、二)、全微分方程(数一)、可降阶的高阶微分方程(数一、二)、高阶线性微分方程、欧拉方程(数一)、差分方程(数三))的求解2、线性微分方程解的性质(叠加原理、解的结构)3、应用(由几何及物理背景列方程)第九章级数(数一、数三)1、收敛级数的性质(必要条件、线性运算、“加括号”、“有限项”)2、正项级数的判别法(比较、比值、根值,p级数与推广的p级数)3、交错级数的莱布尼兹判别法4、绝对收敛与条件收敛5、幂级数的收敛半径与收敛域6、幂级数的求和与展开7、傅里叶级数(函数展开成傅里叶级数,狄利克雷定理)。
考研数学十二章知识点归纳考研数学是许多学生在准备研究生入学考试时的重点科目。
以下是对考研数学十二章知识点的归纳总结:第一章:极限与连续- 极限的定义和性质- 无穷小量的阶- 连续性的定义和性质- 闭区间上连续函数的性质第二章:导数与微分- 导数的定义和几何意义- 基本导数公式- 高阶导数- 隐函数和参数方程求导- 微分的定义和应用第三章:中值定理与导数的应用- 罗尔定理、拉格朗日中值定理和柯西中值定理- 泰勒公式- 导数在几何上的应用:曲线的切线、法线和弧长- 导数在物理上的应用:速度、加速度等第四章:不定积分- 不定积分的定义和性质- 基本积分公式- 换元积分法和分部积分法- 有理函数的积分第五章:定积分- 定积分的定义和性质- 牛顿-莱布尼茨公式- 定积分的计算方法- 定积分在几何和物理上的应用第六章:多元函数微分法- 偏导数和全微分- 多元函数的极值问题- 条件极值和拉格朗日乘数法第七章:重积分- 二重积分和三重积分的定义- 积分区域和积分顺序- 重积分的计算方法:直角坐标系、极坐标系和球坐标系第八章:曲线积分与曲面积分- 第一类和第二类曲线积分- 格林公式和斯托克斯定理- 高斯公式和奥斯特罗格拉德斯基定理第九章:无穷级数- 常数项级数的收敛性- 幂级数和泰勒级数- 函数的幂级数展开- 傅里叶级数和傅里叶变换第十章:常微分方程- 一阶微分方程的解法:分离变量法、变量替换法、常数变易法- 高阶微分方程的降阶- 线性微分方程的解法:特征方程法、常系数线性微分方程第十一章:偏微分方程- 偏微分方程的基本概念- 一阶偏微分方程的解法- 热传导方程、波动方程和拉普拉斯方程第十二章:线性代数- 向量空间和线性变换- 矩阵的运算和性质- 行列式和逆矩阵- 特征值和特征向量- 二次型和正定矩阵结束语:考研数学的知识点广泛,需要同学们系统地学习和大量的练习。
希望以上的归纳能够帮助大家更好地复习和掌握考研数学的主要内容。
第一讲 函数、极限与持续一、考试规定1. 理解函数旳概念,掌握函数旳表达措施,会建立应用问题旳函数关系。
2.理解函数旳奇偶性、单调性、周期性和有界性。
3. 理解复合函数及分段函数旳概念,理解反函数及隐函数旳概念。
4. 掌握基本初等函数旳性质及其图形,理解初等函数旳概念。
5. 理解(理解)极限旳概念,理解(理解)函数左、右极限旳概念以及函数极限存 在与左、右极限之间旳关系。
6. 掌握(理解)极限旳性质,掌握四则运算法则。
7. 掌握(理解)极限存在旳两个准则,并会运用它们求极限,掌握(会)运用两个重要极 限求极限旳措施。
8. 理解无穷小量、无穷大量旳概念,掌握无穷小量旳比较措施,会用等价无穷小量求极限。
9. 理解函数持续性旳概念(含左持续与右持续),会鉴别函数间断点旳类型 10. 理解持续函数旳性质和初等函数旳持续性,理解闭区间上持续函数旳性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质。
11. 掌握(会)用洛必达法则求未定式极限旳措施。
二、内容提纲 1、函数(1)函数旳概念: y=f(x),重点:规定会建立函数关系.(2)复合函数: y=f(u), u=ϕϕ()[()]x y f x ⇒=,重点:确定复合关系并会求复合函数旳定义域.(3)分段函数: 注意,)}(),(min{)},(),(max{,)(x g x f x g x f x f 为分段函数. (4)初等函数:通过有限次旳四则运算和复合运算且用一种数学式子表达旳函数。
(5)函数旳特性:单调性、有界性、奇偶性和周期性 * 注:1、可导奇(偶)函数旳导函数为偶(奇)函数。
尤其:若)(x f 为偶函数且)0(f '存在,则0)0(='f 2、若)(x f 为偶函数,则⎰xdt t f 0)(为奇函数;若)(x f 为奇函数,则⎰xadt t f )(为偶函数;3、可导周期函数旳导函数为周期函数。
尤其:设)(x f 认为T 周期且)(0x f '存在,则)()(00x f T x f '=+'。
2023考研数学高等数学每章知识点汇总精品高等数学基础知识篇一1、函数、极限与连续重点考查极限的计算、已知极限确定原式中的未知参数、函数连续性的讨论、间断点类型的判断、无穷小阶的比较、讨论连续函数在给定区间上零点的个数、确定方程在给定区间上有无实根。
2、一元函数积分学重点考查不定积分的计算、定积分的计算、广义积分的计算及判敛、变上限函数的求导和极限、利用积分中值定理和积分性质的证明、定积分的几何应用和物理应用。
3、一元函数微分学重点考查导数与微分的定义、函数导数与微分的计算(包括隐函数求导)、利用洛比达法则求不定式极限、函数极值与最值、方程根的个数、函数不等式的证明、与中值定理相关的证明、在物理和经济等方面的实际应用、曲线渐近线的求法。
4、向量代数与空间解析几何(数一)主要考查向量的运算、平面方程和直线方程及其求法、平面与平面、平面与直线、直线与直线之间的夹角,并会利用平面、直线的相互关系(平行、垂直、相交等))解决有关问题等,该部分一般不单独考查,主要作为曲线积分和曲面积分的基础。
5、多元函数微分学重点考查多元函数极限存在、连续性、偏导数存在、可微分及偏导连续等问题、多元函数和隐函数的一阶、二阶偏导数求法、有条件极值和无条件极值。
另外,数一还要求掌握方向导数、梯度、曲线的切线与法平面、曲面的切平面与法线。
6、多元函数积分学重点考查二重积分在直角坐标和极坐标下的计算、累次积分、积分换序。
此外,数一还要求掌握三重积分的计算、两类曲线积分和两种曲面积分的计算、格林公式、高斯公式及斯托克斯公式。
7、无穷级数(数一、数三)重点考查正项级数的基本性质和敛散性判别、一般项级数绝对收敛和条件收敛的判别、幂级数收敛半径、收敛域及和函数的求法以及幂级数在特定点的展开问题。
8、常微分方程及差分方程重点考查一阶微分方程的通解或特解、二阶线性常系数齐次和非齐次方程的特解或通解、微分方程的建立与求解。
此外,数三考查差分方程的基本概念与一介常系数线形方程求解方法。
数一还要求会伯努利方程、欧拉公式等。
高等数学考研知识篇二一、高等数学考试内容包括:函数、极限、连续考试要求1、理解函数的概念2、了解函数的有界性、单调性、周期性和奇偶性。
3、理解复合函数及分段函数的概念,了解反函数及隐函数的概念。
4、掌握基本初等函数的性质及其图形,了解初等函数的概念。
5、理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左、右极限之间的关系。
6、掌握极限的性质及四则运算法则。
7、掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法8、理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限。
9、理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型。
10、了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质。
二、一元函数微分学考试要求1、理解导数和微分的概念,理解导数与微分的关系,理解函数的可导性与连续性之间的关系。
2、掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式、了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分。
3、了解高阶导数的概念,会求简单函数的高阶导数。
4、会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数。
5、理解并会用罗尔定理、拉格朗日中值定理和泰勒定理,了解并会用柯西中值定理。
6、掌握用洛必达法则求未定式极限的方法。
7、理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用。
8、会用导数判断函数图形的凹凸性(注:在区间内,设函数具有二阶导数。
当时,的图形是凹的;当时,的图形是凸的),会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形。
9、了解曲率、曲率圆与曲率半径的概念,算曲率和曲率半径。
三、一元函数积分学考试要求1、理解原函数的概念,理解不定积分和定积分的概念。
2、掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分法与分部积分法。
3、会求有理函数、三角函数有理式和简单无理函数的积分。
4、理解积分上限的函数,会求它的导数,掌握牛顿-莱布尼茨公式。
5、了解反常积分的概念,算反常积分。
6、掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力、质心、形心等)及函数的平均值。
四、向量代数和空间解析几何考试要求1、理解空间直角坐标系,理解向量的概念及其表示。
2、掌握向量的运算(线性运算、数量积、向量积、混合积),了解两个向量垂直、平行的条件。
3、理解单位向量、方向数与方向余弦、向量的坐标表达式,掌握用坐标表达式进行向量运算的方法。
4、掌握平面方程和直线方程及其求法。
5、会求平面与平面、平面与直线、直线与直线之间的夹角,并会利用平面、直线的相互关系(平行、垂直、相交等)解决有关问题。
6、会求点到直线以及点到平面的距离。
7、了解曲面方程和空间曲线方程的概念。
8、了解常用二次曲面的方程及其图形,会求简单的柱面和旋转曲面的方程。
9、了解空间曲线的参数方程和一般方程、了解空间曲线在坐标平面上的投影,并会求该投影曲线的方程。
五、多元函数微分学考试要求1、理解多元函数的概念,理解二元函数的几何意义。
2、了解二元函数的极限与连续的概念以及有界闭区域上连续函数的性质。
3、理解多元函数偏导数和全微分的概念,会求全微分,了解全微分存在的必要条件和充分条件,了解全微分形式的不变性。
4、理解方向导数与梯度的概念,并掌握其计算方法。
5、掌握多元复合函数一阶、二阶偏导数的求法。
6、了解隐函数存在定理,会求多元隐函数的偏导数。
7、了解空间曲线的切线和法平面及曲面的切平面和法线的概念,会求它们的方程。
8、了解二元函数的二阶泰勒公式。
9、理解多元函数极值和条件极值的概念,并会解决一些简单的应用问题。
六、多元函数积分学考试要求1、理解二重积分、三重积分的概念,了解重积分的性质,了解二重积分的中值定理。
2、掌握二重积分的计算方法(直角坐标、极坐标),会计算三重积分(直角坐标、柱面坐标、球面坐标)。
3、理解两类曲线积分的概念,了解两类曲线积分的性质及两类曲线积分的关系。
4、掌握计算两类曲线积分的方法。
5、掌握格林公式并会运用平面曲线积分与路径无关的条件,会求二元函数全微分的原函数。
6、了解两类曲面积分的概念、性质及两类曲面积分的关系,掌握计算两类曲面积分的方法,掌握用高斯公式计算曲面积分的方法,并会用斯托克斯公式计算曲线积分。
7、了解散度与旋度的概念,并会计算。
8、会用重积分、曲线积分及曲面积分求一些几何量与物理量(平面图形的面积、体积、曲面面积、弧长、质量、质心、形心、转动惯量、引力、功及流量等)。
七、无穷级数考试要求1、理解常数项级数收敛、发散以及收敛级数的和的概念,掌握级数的基本性质及收敛的必要条件。
2、掌握几何级数与级数的收敛与发散的条件。
3、掌握正项级数收敛性的比较判别法和比值判别法,会用根值判别法。
4、掌握交错级数的莱布尼茨判别法。
5、了解任意项级数绝对收敛与条件收敛的概念。
6、了解函数项级数的收敛域及和函数的概念。
7、理解幂级数收敛半径的概念、并掌握幂级数的收敛半径、收敛区间及收敛域的求法。
8、会求一些幂级数在收敛区间内的和函数,并会由此求出一些数项级数的和。
9、了解函数展开为泰勒级数的充分必要条件。
10、掌握麦克劳林展开式,会用它们将一些简单函数间接展开成幂级数。
11、了解傅里叶级数的概念和狄利克雷收敛定理,会将定义在上的函数展开为傅里叶级数,会将定义在上的函数展开为正弦级数与余弦级数,会写出傅里叶级数的和函数的表达式。
八、常微分方程考试要求1、了解微分方程及其阶、解、通解、初始条件和特解等概念。
2、掌握变量可分离的微分方程及一阶线性微分方程的解法。
3、会解齐次微分方程、伯努利方程和全微分方程,会用简单的变量代换解一些微分方程4、会用降阶法解下列形式的微分方程。
5、理解线性微分方程解的性质及解的结构。
6、掌握二阶常系数齐次线性微分方程的解法,并会解一些高于二阶的常系数齐次线性微分方程。
7、会解自由项为多项式、指数函数、正弦函数、余弦函数以及它们的和与积的二阶常系数非齐次线性微分方程。
8、会解欧拉方程。
9、会用微分方程解决一些简单的应用问题。
高等数学知识点汇总篇三第一章函数与极限知识点1:函数的概念、函数定义域的求法知识点2:函数的分类、特殊类型的函数知识点3:函数的基本性质知识点4:数列极限的概念与性质知识点5:函数极限的概念与性质知识点6:证明极限式与证明极限不存在的方法知识点7:无穷小与无穷大的概念与关系知识点8:极限的四则运算法则知识点9:复合函数的极限运算法则知识点10:极限存在的两个准则知识点11:两个重要极限知识点12:无穷小的比较知识点13:函数连续性的概念及判断知识点14:函数间断点的求法及分类知识点15:闭区间上连续函数的性质第二章导数与微分知识点16:导数的概念知识点17:导数的几何意义、平面曲线的切线与法线方程的求法知识点18:复合函数的求导知识点19:反函数的求导知识点20:隐函数及参数方程的求导知识点21:微分的概念及运算知识点22:一元函数微分形式的不变性知识点23:导数的物理意义知识点24:按定义求导的题目类型知识点25:可导、可微与连续三个概念之间的关系知识点26:奇偶函数与周期函数的导数的性质知识点27:用求导公式与法则求导数知识点28:函数的高阶导数第三章微分中值定理与导数的应用知识点29:罗尔定理、拉格朗日中值定理的应用知识点30:柯西中值定理的应用知识点31:有关中值定理证明题的典型实例知识点32:洛必达法则求极限知识点33:求极限的方法总结知识点34:函数的零点(方程的根)存在性与唯一性的证明知识点35:函数的零点(方程的根)个数的讨论知识点36:不等式的证明方法总结知识点37:泰勒公式的求法知识点38:泰勒公式的应用知识点39:函数的单调性及判别知识点40:函数的极值及判别知识点41:函数的最值及判别知识点42:渐近线的分类与求法知识点43:曲线的凸凹性和拐点知识点44:曲率、曲率圆及曲率半径(数学一、二)知识点45:弧微分知识点46:导数在经济领域的应用(数学三)第四章不定积分知识点47:不定积分的概念与性质知识点48:不定积分的换元积分法知识点49:不定积分的分部积分法知识点50:有理函数与三角有理式的不定积分知识点51:不定积分计算技巧的典型实例第五章定积分知识点52:定积分的概念与基本性质知识点53:变上限的积分及其导数知识点54:奇偶函数与周期函数的积分性质知识点55:涉及定积分证明题型的典型实例知识点56:用牛顿-莱布尼兹定理计算定积分知识点57:定积分的换元积分法知识点58:定积分的分部积分法知识点59:定积分的特殊计算方法的典型实例知识点60:无穷限的。