浅析中考中的规律问题_3
- 格式:doc
- 大小:658.00 KB
- 文档页数:5
浅析安徽省历史中考试题规律及解题策略中图分类号:g633.51文献标识码:b文章编号:1672-1578(2013)06-0215-01安徽省近几年来的中考历史试题,以《历史课程标准》为基础,以考查学生学习能力为目标,命题结构严谨,题量适中,形式多样,知识点分布合理。
充分体现了历史教学的基础性、创新性、探究性和教育性。
在试卷结构上贴近现实,选材丰富,形式活跃,试题图文并茂,设计精炼,文字浅显简洁而富有情趣,实实在在地体现了历史学科开卷考查的特点。
1.安徽省历史中考命题规律总结1.1注重基础和实效,选材灵活。
从近三年的中考试题来看,没有被开卷形势所束缚,而是通过选择有效材料,创设鲜活情境,科学设计问题等手段,将原本一般人认为是死的知识考活了。
同时要求学生基础要扎实,对历史人物、历史事件、历史现象以及历史发展的基本线索的认知要清晰。
如:2010年第1题从历史文物图片入手考查能反映商代社会生活的文物;第2题从热播剧《三国》入手考查有关曹操的史实。
2011年第1题从存在的时间、公元前210年和南海郡等信息,让学生判断秦朝所使用的货币;第12题(2)小题考查学生对历史人物徐悲鸿的了解。
2012年第1题从安徽蚌埠的考古发现入手考查汉字,提醒学生对安徽考古发展的关注;第4题以漫画的形式结合”20世纪前期、青岛、太阳旗”这些时间、地点、标志的提示使学生看出”五四运动”与日本对青岛虎视眈眈的侵略之心;第14题通过《大国崛起》考查英国的发展历程及其对世界的历史影响。
如果学生的基础知识掌握不牢,很难发现其中错误之处,真正体现了夯实基础才能显示能力。
1.2关注周年事件和热点时政,时代特征明显。
历史是为现实服务的,命题者紧扣社会热点紧贴学生的生活实际并将这些与教材中的知识要点进行有机结合,以人们比较关心的社会现实问题、时政热点问题为切入口,创设情境,考查学生对所学知识的理解度,考查学生根据题意对知识进行整理、运用、概括的综合能力。
浅析中考数学题型中的规律探索问题拉萨市第八中学李家强纵观近年来全国各省市的中考数学题,从中可以发现一个共同的特点,那就是规律探索问题。
它已经成为中考命题中的热点试题,它的出现,对初中数学教学产生了积极的导向作用,且有利于新课程改革的进一步深化。
这类问题主要是考查学生发散性思维和所学基本知识的应用能力,同时要求学生具有一定的数学猜想能力和逻辑推理能力,能够根据题目中给出的一组有规律的数、算式或图形,通过观察、实验、归纳、类比等活动获得数学猜想,并能对所做出的猜想进行验证;从特殊情况入手,分析特点,探索事物的内在规律,从而得出结论。
而此类问题的突破和解决往往取决于日常学习中积累的数学感悟以及对或显或隐的结构特征的认识和把握。
规律探索问题大致可分为两种类型:一种是图形规律探索问题,另一种是数字或字母规律探索问题。
两者存在一定的共性,也存在着个性;同时两者之间也可以相互转化,相互渗透,相辅相成。
图形规律探索问题往往给出几个简单的图形,通过观察、归纳、猜想等方法,进行适当的正向迁移和归纳推理,并通过计算或证明,得出符合题设条件的规律,进而得出答案。
解决与图形有关探索问题的思维方法是:采用从特殊到一般的探索思路,即通过观察几个特殊的例子进行比较、归纳和分析综合,得到一般规律,这是解决这类问题的重要方法。
数字或字母规律探索问题与图形规律探索问题相类似,对于一般数字或字母规律探索问题较为简单,只要经过观察、分析、比较、类比、归纳等探索,就能找出规律来,从几个简单的、特殊的情况出发,逐步探索,归纳出一般规律和性质,是解答有关数字或字母规律探索问题常用的方法,下面就以上方法举出几例加以说明:例1:如图所示,用小棒摆下面的图形,图形(1)需要3根小棒,图形(2)需要7根小棒,……照这样的规律继续摆下去,第n 个图形需要 根小棒(用含n 的代数式表示)。
解析:第(1)个图形的小棒数量可看成3=4×1-1,第(2)个图形的小棒数量可看成7=4×2-1,第(3)个图形的小棒数量可看成11=4×3-1,所以第n 个图形中由(4n-1)根小棒组成。
九年级中考数学考点提升训练——专题:《找规律:数字变化类》(三)1.观察下列三行数:﹣3,9,﹣27,81,﹣243,… ﹣5,7,﹣29,79,﹣245… ﹣1,3,﹣9,27,﹣81… (1)第一行数按什么规律排列?(2)第二行、第三行数与第一行数分别有什么关系? (3)分别取这三行数的第6个数,计算这三个数的和.2.先观察下列等式,然后用你发现的规律解答问题. 第1个等式:a 1==×(1﹣); 第2个等式:a 2==×(﹣); 第3个等式:a 3==×(﹣); 第4个等式:a 4==×(﹣);…请回答下列问题:(1)按以上规律列出第5个等式:a 5= = ;(2)用含有n 的代数式表示第n 个等式:a n = = (n 为正整数); (3)求a 1+a 2+a 3+a 4+…+a n 的值.3.设f (x )=,例如f (1)==,f (2)==,===,===,…(1)直接写出结果:f(4)=,=;(2)计算:f(1)+f(2)++f(3)++f(4)++……+f(100)+.4.将网格中相邻的两个数分别加上同一个数,称为一步变换,比如,我们可以用三步变换将网格1变成网格2,变换过程如图.(1)请用两步变换将网格3变成网格1.(2)请用三步变换将网格4变成网格1.(3)当ab 满足什么条件时,网格5通过若干步变换可以变成网格6,请利用网格7中的字母简要说明理由.5.将一张边长为1的正方形纸片A ,对折一次可得纸片A 1,再将纸片A 1对折得纸片A 2,依次对折后的纸片A 3、A 4、A 5、…A n .(1)纸片A 3的面积P 3= ,纸片A 5的面积P 5= ;(2)设S 5=P 1+P 2+P 3+P 4+P 5,求S 5的值,小东同学再求S 5时用以下方法解: 设 S 5=++++①2S 5=1++++②由②﹣①得S 5=(3)请你模仿小东同学的解题思路求:1+6+62+63+64+…+62015的值.6.先阅读下列材料,然后解答问题:材料:从4张不同的卡片中选取2张,有6种不同的选法,抽象成数学问题就是从4个不同元素中选取2个元素的组合,组合数记为==6.一般地,从n个不同元素中选取m个元素的组合数记作,=(m≤n).例如:从6个不同元素中选3个元素的组合,组合数记作==20(1)为迎接国家建设工作检查,学校将举办小型书画展览.王老师在班级8幅优秀书画中选取3幅,共有多少种选法?(2)探索发现:计算:=,=,=,=,=,=.由上述计算,试猜想,,之间有什么关系.(只写结论,不需说明理由)(3)请你直接利用(2)中猜想的结论计算:++++…+.7.探索规律观察下面由※组成的图案和算式,解答问题(1)请计算1+3+5+7+9+11=;(2)请猜想1+3+5+7+9+…+19=;(3)请猜想1+3+5+7+9+…+(2n﹣1)=;(4)请用上述规律计算:21+23+25+ (99)8.研究下列算式,你会发现什么规律?1×3+1=4=222×4+1=9=323×5+1=16=424×6+1=25=52…(1)请你找出规律井计算7×9+1==()2(2)用含有n的式子表示上面的规律:.(3)用找到的规律解决下面的问题:计算:=.9.计算下列各式:(1)1﹣=;(2)=;(3)=;你能根据所学知识找到计算上面的算式的简便方法吗?请你利用你找到的简便方法计算下式:.10.一列火车自A城驶往B城,沿途有n个车站(包括起点站A和终点站B),该列火车挂有一节邮政车厢,运行时需要在每个车站停靠,每停靠一站不仅要卸下已经通过的各车站发给该站的邮包一个,还要装上该站发往下面行程中每个车站的邮包一个.(1)写出列车在第x车站启程时,邮政车厢上共有邮包的个数y(用x、n表示).(2)当n=20时,列车在第几个车站启程时邮政车厢上邮包的个数最多?参考答案1.解:(1)∴﹣3=(﹣1)131,9=(﹣1)232,﹣27=(﹣1)333,81=(﹣1)434,…, ∴第1行第n 个数为(﹣3)n ;(2)第二行数与第一行数的每一个相对应的数加上﹣2,即;(﹣1)131﹣2,(﹣1)232﹣2,(﹣1)333﹣2,(﹣1)434﹣2… 第三行数与第一行数的每一个相对应的数乘以,即×(﹣1)131,×(﹣1)232,×(﹣1)333,×(﹣1)434…(3)第一行数的第6个数为(﹣1)636=36; 第二行数的第6个数为(﹣1)636﹣2=36﹣2; 第一行数的第6个数为×(﹣1)1036=35;这三个数的和为36+36﹣2+35=1699. 2.解:根据观察知, (1)=×(﹣), 故答案为:,×(﹣);(2)第n 个等式为=(﹣);故答案为:,(﹣);(3)a 1+a 2+a 3+a 4+…+a n =×(1﹣)+×(﹣)+×(﹣)+×(﹣)+…+×(﹣) =×(1﹣+﹣+﹣+…+﹣)=×(1﹣)=×=3.解:(1)由题意可知:f(4)==;f()=;(2)f()=,∴f(x)+f()=1,∴原式=+1+1…+1=99故答案为:(1);;(2)994.解:(1)如图,(2)如图,由(1)可得,网格4变成网格1,所以a﹣2b+k=1,b﹣2+k+m=0,b﹣a+m+n=0,1﹣2b+n=0,解得,k=1﹣a+2b,m=a﹣b,n=2b﹣1;(3)当满足a=b=0时,交换网格7中的字母a1和a2可得,由网格5变换成网格6,理由如下:观察网格6中数字的特点,仅有一格数字为1,其他数字均为0,观察网格5中的整式,仅有一个整式1﹣2b中有常数项1,所以只要取a=0,b=0,这时仅有a2=1﹣2b=1,其他各网格的值都为0,所以只要把a1和a2交换,其他都不变.所以当满足a=b=0时,交换网格7中的字母a1和a2可由网格5变换成网格6,5.解:(1)纸片A3的面积P3=,纸片A5的面积P5=;(2)S5=1﹣=;(3)设S=1+6+62+63+64+ (62015)则6S=6+62+63+64+ (62016)5S﹣S=62016﹣1,S=.6.解:(1)==56答:共有56种选法.(2)=3,=1,=4,=10,=5,=15,因为+=,+=,所以C k n+∁n k+1=Cn+1k+1.(3)++++…+=+++…+=+…+===165.7.解:(1)∵1+3=4=22,1+3+5=9=32,1+3+5+7=16=42,1+3+5+7+9=25=52,∴1+3+5+7+9+11=62=36.故答案为:36;(2)∵1+3+5+7+9+…+19共有10个数,∴1+3+5+7+9+…+19=102=100.故答案为:100;(3)由(1)(2)得,1+3+5+7+9+…+(2n﹣1)=n2.故答案为:n2;(4)原式=21+23+25+…+99=(1+3+5+7+...+97+99)﹣(1+3+5+7+ (19)=()2﹣102=2500﹣100=2400.8.解:(1)7×9+1=64=82;(2)上述算式有规律,可以用n表示为:n(n+2)+1=n2+2n+1=(n+1)2.(3)原式==.故答案为:64,8;n(n+2)+1=(n+1)2;.9.解:(1)1﹣=;(2)(1﹣)(1﹣)=;(3)()(1﹣)(1﹣)=;故答案为:;;;原式==.10.解:(1)当列车停靠在第x个车站时,邮政车厢上需要卸下已经通过的(x﹣1)个车站发给该站的邮包共(x﹣1)个,还要装上下面行程中要停靠的(n﹣x)个车站的邮包共(n﹣x)个.根据题意,完成下表:车站序号在第x车站启程时邮政车厢邮包总数1 n﹣12 (n﹣1)﹣1+(n﹣2)=2(n﹣2)3 2(n﹣2)﹣2+(n﹣3)=3(n﹣3)4 3(n﹣3)﹣3+(n﹣4)=4(n﹣4)5 4(n﹣4)﹣4+(n﹣5)=5(n﹣5)……n0由上表可得,y=x(n﹣x).答:列车在第x车站启程时,邮政车厢上共有邮包的个数y=x(n﹣x).(2)当n=20时,y=x(20﹣x)=﹣x2+20x=﹣(x﹣10)2+100,当x=10时,y取得最大值.答:列车在第10个车站启程时,邮政车厢上邮包的个数最多.。
【中考数学】中考数学解题策略大盘点(3)三、解题的常用方法3.化折为直化折为直:定点间的几条折线段在一条直线上时,其和最小。
另有:点到直线的所有连线中垂线段最小。
这里的“直”理解为“直线”或“垂直”。
注意:化折为直的前提是“几条连续折线在两个定点之间,或在定点与定线之间”,若不满足需先进行变换转化。
例13.(1)如图①,RtΔABC中,∠C=90°,AC=3,BC=4,点P是边上任意一点,则PC的最小值为.(2)如图②,矩形ABCD中,AB=3,BC=4,点M、点N分别在BD、BC上,求CM+MN的最小值.(3)如图③,矩形ABCD中,AB=3,BC=4,点E是AB边上一点,且AE=2,点F是BC边上的任意一点,把ΔBEF沿EF翻折,点B 的对应点为P点,连接AP、CP,四边形APCD的面积是否存在最小值,若存在,求这个最小值及此时BF的长度;若不存在,请说明理由.问题(1)直接求点C到AB的距离。
问题(2)中折线CM、MN 居于轨迹线BD同侧,无法化直,所以要先把CM或MN翻折变换到另一侧,以便化直,这样转化为点到线的最短路径问题。
如下图,CM+MN=C′M+MN,C′N′即为其最小值,在ΔCC′N′中利用三角函数可求得为24/5×4/5=96/25。
同样可以把MN沿BD翻折至MN′,N′的轨迹即是把BC翻折后的BC′,转化为求C点到直线BC′的最短路径,即CH的长。
问题(3)中可先确定P点轨迹为以E为圆心以BE为半径的圆弧,把四边形APCD面积最小转化为ΔAPC面积最小,再转化为高PH最小,即求圆E到直线AC的最短路径,过E作AC的垂线,所得PH即为最小值,求得四边形APCD的面积最小值为15/2。
4.改斜归正改斜归正:由于坐标的本质是水平竖直方向的距离,所以坐标系中往往把斜向线段的关系转化为正向(水平竖直方向)线段的关系解决。
例14.抛物线y=0.5x2+1.5x-2与x轴交于点A、B,与y轴交于点C,点P为抛物线在第三象限的一个动点,作PH⊥BC于H.(1)求PH的最大值;(2)若∠HPC=2∠ABC,求点P的横坐标.问题(1)中PH的长不易表示,可以作PN⊥x轴交BC于M,设P(x,0.5x2-1.5x-2),M(x,-0.5x-2),则PM=-0.5x2+x,PH=2√5/5PM,转化为求PM的最大值。
专题6 数学规律探究问题根据一列数或一组图形的特例进行归纳,猜想,找出一般规律,进而列出通用的代数式,称之为规律探究。
解决此类问题的关键是:“细心观察,大胆猜想,精心验证”。
一、数式规律探究通常给定一些数字、代数式、等式或不等式,然后猜想其中蕴含的规律,反映了由特殊到一般的数学方法。
一般解法是先写出数式的基本结构,然后通过横比(比较同一等式中不同位置的数量关系)或纵比(比较不同等式间相同位置的数量关系)找出各部分的特征,改写成要求的格式。
数式规律探究是规律探究问题中的主要部分,解决此类问题注意以下三点:1.一般地,常用字母n表示正整数,从1开始。
2.在数据中,分清奇偶,记住常用表达式。
正整数…n-1,n,n+1…奇数…2n-3,2n-1,2n+1,2n+3…偶数…2n-2,2n,2n+2…3.熟记常见的规律① 1、4、9、16......n2② 1、3、6、10……(1)2n n+数列的变化规律③ 1、3、7、15……2n -1④ 1+2+3+4+…n=(1)2n n+⑤ 1+3+5+…+(2n-1)= n2 数列的和⑥ 2+4+6+…+2n=n(n+1)数式规律探究反映了由特殊到一般的数学方法,解决此类问题常用的方法有以下两种:1.观察法例1.观察下列等式:①1×12=1-12②2×23=2-23③3×34=3-34④4×45=4-45……猜想第n个等式为(用含n的式子表示)分析:将等式竖排:1×12=1-12n=12×23=2-23n=23×34=3-34n=34×45=4-45n=4观察相应位置上变化的数字与序列号的对应关系(注意分清正整数的奇偶)易观察出结果为:n ×1n n +=n-1n n +例2.探索规律:31=3,32=9,33=27,34=81,35=243,36=729……,那么 32009的个位数字是 。
04选填压轴之找规律目录中考考点解读 (1)重点知识重拾 (1)知识点1、关于x轴、y轴或原点对称的点的坐标的特征 (1)知识点2、点的平移 (1)知识点3、两点间的距离 (1)知识点4、旋转 (2)选填常考题型整理 (2)选填小题狂做 (5)中考考点解读规律探究型问题在中考数学中一般以选择题或者填空题中的压轴题形式出现,出题难度一般在中上等。
主要命题方式有数式规律、图形变化规律、点的坐标规律等。
虽然规律探索问题却并不是每个城市的必考题,个别省市经常出。
又因为各省市模拟考或者月考中出现几率较大且难度也较大,所以掌握其基本的考试题型及解题技巧还是非常有必要的。
重点知识重拾知识点1、关于x轴、y轴或原点对称的点的坐标的特征点P(a,b)与关于x轴对称点的坐标为(a,-b)点P(a,b)与关于y轴对称点的坐标为(-a,b)点P(a,b)与关于原点对称点的坐标为(-a,-b)口诀:关于谁对称,谁不变,另一个变号,关于原点对称都变号知识点2、点的平移点P(a,b)沿x轴向右(或向左)平移m个单位后对应点的坐标是a±m,b;点P(a,b)沿y轴向上(或向下)平移n个单位后对应点的坐标是a,b±n.口诀:横坐标右加左减,纵坐标上加下减.知识点3、两点间的距离在x轴或平行于x轴的直线上的两点P1(x1,y),P2(x2,y)间的距离为x1−x2在y轴或平行于y轴的直线上的两点P1(x,y1),P2(x,y2)间的距离为y−y2任意两点P1(x1,y1),P2(x2,y2),则线段P1P22,2任意两点P(x,y),P(x,y),则线段P知识点4、旋转1.旋转的三要素:旋转角度,旋转中心和旋转方向。
2.旋转的性质:旋转前后对应的图形全等,对应的旋转角度相等。
3.中心对称:特别的,如果旋转角度为180︒,那么旋转前后两个图形成中心对称。
注意:两个图形成中心对称和中心对称图形要区别清楚,两个图形成中心对称指的是两个图形,中心对称图形指的是一个图形,比如说平行四边形是一个中心对称图形。
浅析中考中规律探索题[摘要] 规律探索题在近几年的中考中已经成为热点。
近几年的中考规律探索题有数字中的规律题、字母规律题、几何图形规律题等类型。
本文对这些题目进行了归纳总结分析。
[关键词] 中考规律探索题学习能力近几年来,中考中出现了一类热点题型,它要求学生通过对题目中所给出的一些“数或图形”的特点分析其规律,从而给出结论。
这就是所谓的“规律探索题”。
纵观这几年各地的中考试题,这种题型频频出现,让老师和学生很难捉摸,也让很多学生在中考中失分严重。
这种题目要通过观察、实验、归纳、类比等活动获得数学猜想,并能对所做出的猜想进行验证,能进行一些简单的、严密的逻辑论证,并有条理地表达自己的证明。
笔者探究发现,这种题可以分为以下几种类型。
一、数字中的规律题数字规律题给出一个数列,但其中缺少一项或找出其中的通项,要求学生仔细观察这个数列各数字之间的关系,找出其中的排列规律。
在解答数字规律题时需要注意以下两点:一是反应要快;二是掌握恰当的方法和规律。
一般而言,先观察前面相邻的两三个数字之间的关系,在大脑中假设出一种符合这个数字关系的规律,并迅速将这种假设应用到下一个数字与前一个数字之间的关系上。
如果得到验证,就说明假设的规律是正确的,由此可以直接推出答案;如果假设被否定,就马上改变思路,提出另一种数量规律的假设。
另外,有时从后往前推,或者“中间开花”向两边推也是较为有效的。
两个数列规律有时交替排列在一列数字中,是数字规律测验中一种较为常见的形式。
只有当你把这一列数字判断为单数项与双数项交替排列在一起时,才算找到了正确解答这道题的方向,你的成功就已经是80%了。
由此可见,即使一些表面看起来很复杂的排列数列,只要我们对其进行细致的分析和研究,就会发现,将相邻的两个数相加或相减、相乘或相除之后,它们也不过是由一些简单的排列规律复合而成的。
只要掌握它们的排列规律,善于开动脑筋,就会获得理想的效果。
【例1】(2010辽宁沈阳)在平面直角坐标系中,点a1(1,1),a2(2,4),a3(3,9),a4(4,16),……,用你发现的规律确定点a9的坐标为。
B ACDA 1 A 22014届中考专题复习《规律探究问题》湖北省竹溪县城关中学 明道银中考数学规律探索型问题是近几年来中考的热点,需要敏锐的观察力和一定的推理、计算能力,利用从特殊到一般或从一般到特殊的方法来解决几何类规律探索型问题。
一 规律明显 数数看看定有发现例1、如图,每一幅图中有若干个大小不同的菱形,第1幅图中有1个,第2幅图中有3个,第3幅图中有5个,则第n 幅图中共有 个。
解析:方法 :一数。
在数字中发现。
在开始的几幅图中把所要的问题分别数字记载,如1、3、5、7 、… ,发现奇数规律排列,猜想最终结果为2n-1 ;二看。
发现图形规律和结果数字规律。
直接由图序排列发现大小菱形逐次各自多1,得出所要的结果是:1、1+2、1+2+2、1+2+2+2、… ,再发现是1加上若干个2 组成,2的多少与序列号少1,于是得1+2(n-1)即2n-1 。
归纳方法:这类给定的图形或数字规律及寻找的数字规律容易发现,通过一看二数三变的方法即可解决问题。
二 规律隐含 算算数量待发现 例2、如图,在△ABC 中,∠A =α.∠ABC 与∠ACD 的平分线交于点A 1,得∠A 1;∠A 1BC 与∠A 1CD 的平分线相交于点A 2,得∠A 2; ……;∠A 2009BC 与∠A 2009CD 的平分线相交于点A 2010,得∠A 2010,则∠A 2010= .方法:利用三角形的内角和或外角和的性质及角平分线性质,采取从特殊到一般的数学思想解决问题,逐次探究出∠A 1 ;∠A 2 ;∠A 3 ;… ;∠A n 与∠A 的关系,∠A n = 12∠A三、练习 第一类: 数字类1、(2012四川巴中)观察下面一列数:1,-2,3,-4,5,-6,……,根据你发现的规律,第2012个数是2、(2012广东肇庆)观察下列一组数:32,54,76,98,1110,…… ,它们是按一定规律排列的,那么这一组数的第k 个数是 .3. (2012贵州安顺)已知2+23=22×23,3+38=32×38,4+415=42×415…,若8+a b =82×a b (a ,b 为正整数),则a +b = . 4. (2012内蒙古赤峰)将分数67化为小数是0.857142,则小数点后第2012位上的数是 . 5.(2013·泰安)观察下列等式:31=3,32=9,33=27,34=81,35=243,36=729,37=2187…解答下列问题:3+32+33+34…+32013的末位数字是( )A .0B .1C .3D .76. (2012山东滨州)求1+2+22+23+…+22012的值,可令S =1+2+22+23+…+22012,则2S =2+22+23+24+…+22013,因此2S ﹣S =22013﹣1.仿照以上推理,计算出1+5+52+53+…+52012的值为【 】 A .52012﹣1 B .52013﹣1 C .2013514- D .2012514-第二类: 数式类7. (2012江苏泰州)根据排列规律,在横线上填上合适的代数式:x ,23x ,35x , ,59x ,…. 8、(2012江苏)已知整数1234,,,,a a a a ⋅⋅⋅满足下列条件:10a =,21|1|a a =-+,32|2|a a =-+,43|3|a a =-+,…,依次类推,则2012a 的值为【 】A .1005-B .1006-C .1007-D .2012-第三类: 图形类9、(2012贵州省毕节市)在下图中,每个图案均由边长为1的小正方形按一定的规律堆叠而成,照此规律,第10个图案中共有 个小正方形。
中考数学找规律题型扩展及解析“有比较才有鉴别”。
通过比较,可以发现事物的相同点和不同点,更容易找到事物的变化规律。
找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律。
揭示的规律,常常包含着事物的序列号。
所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘。
初中数学考试中,经常出现数列的找规律题,本文就此类题的解题方法进行探索:一、基本方法——看增幅(一)如增幅相等(实为等差数列):对每个数和它的前一个数进行比较,如增幅相等,则第n个数可以表示为:a1+(n-1)b,其中a为数列的第一位数,b 为增幅,(n-1)b为第一位数到第n位的总增幅。
然后再简化代数式a+(n-1)b。
例:4、10、16、22、28……,求第n位数。
分析:第二位数起,每位数都比前一位数增加6,增幅都是6,所以,第n位数是:4+(n-1) 6=6n-2(二)如增幅不相等,但是增幅以同等幅度增加(即增幅的增幅相等,也即增幅为等差数列)。
如增幅分别为3、5、7、9,说明增幅以同等幅度增加。
此种数列第n位的数也有一种通用求法。
基本思路是:1、求出数列的第n-1位到第n位的增幅;2、求出第1位到第第n位的总增幅;3、数列的第1位数加上总增幅即是第n位数。
此解法虽然较烦,但是此类题的通用解法,当然此题也可用其它技巧,或用分析观察的方法求出,方法就简单的多了。
(三)增幅不相等,但是增幅同比增加,即增幅为等比数列,如:2、3、5、9,17增幅为1、2、4、8.(四)增幅不相等,且增幅也不以同等幅度增加(即增幅的增幅也不相等)。
此类题大概没有通用解法,只用分析观察的方法,但是,此类题包括第二类的题,如用分析观察法,也有一些技巧。
二、基本技巧(一)标出序列号:找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律。
找出的规律,通常包序列号。
所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘。
探索规律与定义新运算知识集结知识元数字规律知识讲解数字规律就是一列数按一定规律排列起来,常见的规律有:1、正整数规律:1、2、3、4、5、……可以表示为n(其中n为正整数)2、奇数规律:1、3、5、7、9、……可以表示为(其中n为正整数)3、偶数规律:2、4、6、8、10、……可以表示为2n(其中n为正整数)4、正、负交替规律变化:一组数,不看他们的绝对值,只看其性质,为正负交替(1)-、+、-、+、-、+、-、+可以表示为(2)+、-、+、-、+、-、+、-可以表示为5、平方数规律:1、4、9、16、……可以表示为(其中n为正整数),能看得出:上面的规律数+1、+2、-1、-2例题精讲数字规律例1.已知一组数:1,3,5,7,9,…按此规律,第n个数是.例2.观察下列顺序排列的式子:9×0+1=1;9×1+2=11;9×2+3=21;9×3+4=31;9×4+5=41;…猜想:第个式子应为___________________。
例3.观察下列算式:;;;,…(1)左边各项的底数与右边幂的底数之间的关系是什么?(2)猜想的规律是什么?(3)用第五个关系式进行验证。
算式规律知识讲解算式规律就是一些等式按一定的规律排列起来,这类规律寻找的方法一般是:应对的一般原则:①找出等式中的各个部分;②找出等式中的各个部分中不变的部分;③找出等式中的各个部分中变化的部分、并寻找他们的变化规律.例题精讲算式规律例1.观察下列顺序排列的式子:9×0+1=1;9×1+2=11;9×2+3=21;9×3+4=31;9×4+5=41;…猜想:第个式子应为___________________。
例2.观察下列各式:;;;;…,把发现的规律用含自然数的式子表示:_______________________。
数字循环的规律知识讲解循环排列规律是运动着的规律,就是一列数或图形按几个固定的数或图形循环重复出现,我们只要根据题目的已知部分分析出图案或数据每隔几个就会循环出现,看看最后所求的与循环的第几个一致即可,关键是找出“循环节数”。
专题三规律探索与猜想专题命题规律纵观怀化7年中考,规律探索与猜想题型共考查了5次,以选择、填空形式出现,3分或4分,难度中等,考查类型有:1.数字规律;2.图形规律,常以图形变换中的规律探索为主.善于发现图形变换的过程中的特点,抓住其周期性是解决此类问题的关键.2022预测预计2022年怀化中考还会以类似方式和方法、难度来考查,故在学习中应突出训练、总结规律.,中考重难点突破)数字规律【经典导例】【例1】(2022中考预测)正整数按如图所示的规律排列,请写出第20行第21列的数字.【解析】首先应发现第1列中的数与所在行数的关系,再关注第n行的第1个数与第(n+1)列的第1个数的关系,那么第n行第n+1列这个数应该不难确定.【学生解答】【方法指导】1.对于数阵类的规律问题,题目中的数据与有序数对是对应的,设问方式有求有序数对数值和表示某个数值的有序数对.解题步骤为:(1)分析数阵中的数字排列方式,从以下方面寻找规律:①每行的个数,②每列的个数,③相邻数据的变化特点,并且观察是否某一行或者某一列的数具有某些特别的性质(如完全平方数、正整数)等;(2)找出该行或列上的数字与其所在的行数和列数的关系;(3)使用(1)中找出的具有特殊性质的数字根据(2)中的性质定位,求得答案.2.对于数字不循环变换类规律题,需要掌握如下方法:(1)当所给的一组数是整数时,先观察这组数字是自然数列、正整数数列、奇数列、偶数列还是正整数数列经过平方、平方加1或减1等运算后的数列,然后再看这组数字的符号,判断数字符号的正负是交替出现还是只出现一个符号,如果是交替出现的用(-1)n表示数字的符号,最后把数字规律和符号规律结合起来从而得到结果;(2)当数字规律题的数字是分数和整数结合的时候,把这组数据的所有整数写成分数,然后分别推断出分子和分母的数字规律[其他方法同(1)],从而得出分子和分母的规律,最后得到该组第n 项的规律.3.对于数字循环变换类规律题,求经过N 次变换后对应的数字的解题步骤为:(1)通过观察这组数字,得到该组数字经过一个循环变换需要的次数,记为n ;(2)用N 除以n ,当商b 余m(0≤m<n)时,第N 次变换后对应的数字就是一个循环变换中第m 次变换后对应的数字;(3)根据题意,找出第m 次变换后对应的数字,推断出第N 次变换后对应的数字.4.对于数式的规律探究题,求第n 个等式(式子的结果)的解题步骤为:(1)先观察给出的等式式子(计算出给出式子的计算结果);(2)分析对比所得的结果,从结果与序数或结果与所给数式中数字的构成个数两方面进行对比,寻找不变的量和变化的量之间的变化关系,从而得到结果与各自等式或式子之间满足的关系式,求第n 个数式直接套用关系式即可.1.(2022安徽中考)按一定规律排列的一列数:21,22,23,25,28,213,…,若x 、y 、z 表示这列数中的连续三个数,猜测x 、y 、z 满足的关系式是________.2.(2022怀化二模)计算下列各式的值:92+19;992+199;9992+1999;99992+19999.观察所得结果,总结存在的规律,应用得到的规律可得99…922022个9+199…92,2022个9) )=________. 3.(2022东营中考)将自然数按以下规律排列:第一列 第二列 第三列 第四列 第五列第一行 1 4 5 16 17 …第二行 2 3 6 15 …第三行 9 8 7 14 …第四行 10 11 12 13 …第五行 ……表中数2在第二行,第一列,与有序数对(2,1)对应;数5与(1,3)对应;数14与(3,4)对应;根据这一规律,数2022对应的有序数对为________.4.(2022常德中考)已知:2-122-12=13;4-3+2-142-32+22-12=15;计算:6-5+4-3+2-162-52+42-32+22-12=________;猜想:[(2n +2)-(2n +1)]+…+(6-5)+(4-3)+(2-1)[(2n +2)2-(2n +1)2]+…+(62-52)+(42-32)+(22-12)=________. 5.(2022广东中考)观察下列一组数:13,25,37,49,511,…,根据该组数的排列规律,可推出第10个数是________. 6.(2022乌鲁木齐中考)如图所示的数码叫“莱布尼茨调和三角形”,它们是由整数的倒数组成的,第n 行有n 个数,且两端的数均为1n,每个数是它下一行左右相邻两数的和,则第8行第3个数(从左往右数)为( ) 1112 121 316131 411211214A.160B.1168C.1252D.12807.(2022武威中考)古希腊数学家把数1,3,6,10,15,21,…叫做三角形数,其中1是第一个三角形数,3是第2个三角形数,6是第3个三角形数,…依此类推,那么第9个三角形数是________,2022是第________个三角形数.8.(2022临沂中考)观察下列关于x的单项式,探究其规律:x,3x2,5x3,7x4,9x5,11x6,….按照上述规律,第2022个单项式是( )A.2022x2022B.4029x2022C.4029x2022D.4031x2022图形规律【经典导例】【例2】(2022娄底中考)如图是一组有规律的图案,第1个图案由4个▲组成,第2个图案由7个▲组成,第3个图案由10个▲组成,第4个图案由13个▲组成,…,则第n(n为正整数)个图案由________个▲组成.【解析】观察发现:第1个图案有3×2-3+1=4个三角形;第2个图案有3×3-3+1=7个三角形;第3个图案有3×4-3+1=10个三角形;…第n个图案有3(n+1)-3+1=(3n+1)个三角形.【学生解答】【方法指导】图形规律探索有以下几种类型:1.求个数,方法为:(1)标序数:按图号标序;(2)找关系:找后一个图与前一个图中所求量之间的关系(一般是通过作差或作商的形式观察是否含有定量)或找出图中的所求量与序数之间的关系;(3)算结果:计算每个给出图中所求量的个数;(4)找规律:对求出的结果进行一定的变形,使其呈现一定的规律;(5)归纳:归纳结果与序数之间的关系,即可得到第n个图中所求量的个数;(6)验证:代入序号验证所归纳的式子是否正确.2.求面积,方法为:(1)根据题意可得出第一次变换前图形的面积为S;(2)通过计算得到第一次变换后图形的面积,第二次变换后图形的面积,第三次变换后图形的面积,第四次变换后图形的面积,……,归纳出后一个图形的面积与前一个图形的面积之间存在的倍数关系n;(3)第M次变换后,求得图形的面积为n M S.1.(2022山西中考)如图是一组有规律的图案,它们是由边长相同的正方形和正三角形镶嵌而成,第(1)个图案有4个三角形,第(2)个图案有7个三角形,第(3)个图案有10个三角形,……依此规律,第n 个图案有________个三角形(用含n 的代数式表示).2.(2022武汉中考)观察下列一组图形中点的个数,其中第1个图中共有4个点,第2个图中共有10个点,第3个图中共有19个点,……,按此规律第5个图中共有点的个数是( )A .31B .46C .51D .663.(2022沧州模拟)如图,在第1个△A 1BC 中,∠B =30°,A 1B =CB ;在边A 1B 上任取一点D ,延长CA 1到A 2,使A 1A 2=A 1D ,得到第2个△A 1A 2D ;在边A 2D 上任取一点E ,延长A 1A 2到A 3,使A 2A 3=A 2E ,得到第3个△A 2A 3E ,…按此做法继续下去,则第n 个三角形中以A n 为顶点的内角度数是( )A .(12)n ·75°B .(12)n -1·65°C .(12)n -1·75°D .(12)n ·85°4.(2022内江中考)如图,将若干个正三角形、正方形和圆按一定规律从左向右排列,那么第2022个图形是________.5.(2022衡阳中考)如图,△A 1B 1A 2,△A 2B 2A 3,△A 3B 3A 4,…,△A n B n A n +1都是等腰直角三角形,其中点A 1,A 2,…,A n 在x 轴上,点B 1,B 2,…,B n 在直线y =x 上,已知OA 1=1,则OA 2022的长为________. (第5题图)(第7题图)6.(2022深圳中考)如图,下列图形是将正三角形按一定规律排列,则第5个图形中所有正三角形的个数有________.7.(2022珠海中考)如图,在等腰Rt △OAA 1中,∠OAA 1=90°,OA =1,以OA 1为直角边作等腰Rt △OA 1A 2,以OA 2为直角边作等腰Rt △OA 2A 3,…,则OA 6的长度为________.点的坐标规律【经典导例】【例3】(2022威海中考)如图,在平面直角坐标系xOy 中,Rt △OA 1C 1,Rt △OA 2C 2,Rt △OA 3C 3,Rt △OA 4C 4…的斜边都在坐标轴上,∠A 1OC 1=∠A 2OC 2=∠A 3OC 3=∠A 4OC 4=…30°,若点A 1的坐标为(3,0),OA 1=OC 2,OA 2=OC 3,OA 3=OC 4…,则依此规律,点A 2022的横坐标为( )A .0B .-3×(233)2022C .(23)2022D .3×(233)2022 【解析】∵∠A 2OC 2=30°,OA 1=OC 2=3,∴OA 2=23OC 2=3×233;∵OA 2=OC 3=3×233,∴OA 3=23OC 3=3×(233)2;∵OA 3=OC 4=3×(233)2,∴OA 4=23OC 4=3×(233)3,∴OA 2022=3×(233)2022,而2022=4×503+3.∴点A 2022在x 轴的负半轴上,∴点A 2022的横坐标为-3×(233)2022. 【学生解答】【方法指导】求点坐标,根据图形点坐标的变换特点可知这类题有两种考查形式:一类是点坐标变换是在同一象限递推变化;另一类是点坐标变换在坐标轴上或象限内循环递推变化;解决这类题的方法如下:(1)若第一个点的坐标未给出,可先由所给信息求出坐标(a ,b);(2)根据题目中给出的线段的数量关系及角度,通过勾股定理或直角三角形的边角关系得到第二个,第三个,第四个…的坐标,观察它们之间存在的比例关系,比值记为n ;(3)当点坐标在同一象限变换时,通过第M 次变换后,图形的点坐标为(n M a ,n M b);(4)当点坐标在整个平面直角坐标系里变换,先观察点的变换规律为顺时针循环还是逆时针循环,通过第M 次变换后,用M÷4=w +q(0≤q<4),当q =0时,点坐标所在象限与起点相同,依此类推,当确定出点坐标落在x 轴正半轴时,点坐标为(n M c ,0),点坐标落在y 轴正半轴时,点坐标为(0,n M c),点坐标落在x 轴负半轴时,点坐标为(-n M c ,0),点坐标落在y 轴负半轴时,点坐标为(0,-n M c).1.(2022靖州模拟)如图,以O(0,0)、A(2,0)为顶点作正△OAP1,以点P1和线段P1A的中点B为顶点作正△P1BP2,再以点P2和线段P2B的中点C为顶点作正△P2CP3,…,如此继续下去.则第六个正三角形中,不在第五个正三角形边上的顶点P6的坐标是________.2.(2022聊城中考)如图,在平面直角坐标系中,一动点从原点O出发,按向上、向右、向下、向右的方向依次不断地移动,每次移动一个单位,得到点A1(0,1),A2(1,1),A3(1,0),A4(2,0),…,那么点A4n+1(n是自然数)的坐标为________.3.(2022齐齐哈尔中考)如图,在平面直角坐标系xOy中,有一个等腰直角三角形AOB,∠OAB=90°,直角边AO在x 轴上,且AO=1.将Rt△AOB绕原点O顺时针旋转90°得到等腰直角三角形A1OB1,且A1O=2AO,再将Rt△A1OB1绕原点O顺时针旋转90°得到等腰直角三角形A2OB2,且A2O=2A1O,…依此规律,得到等腰直角三角形△A2022OB2022,则点A2022的坐标为________.4.(2022河北中考)如图,∠BOC=9°,点A在OB上,且OA=1,按下列要求画图:以A为圆心,1为半径向右画弧交OC于点A1,得第1条线段AA1;再以A1为圆心,1为半径向右画弧交OB于点A,得第2条线段A1A2;再以A2为圆心,1为半径向右画弧交OC于点A3,得第3条线段A2A3;……这样画下去,直到得第n条线段,之后就不能再画出符合要求的线段了,则n=________.。
龙源期刊网
浅析初中数学规律探索型问题
作者:刘君
来源:《考试周刊》2013年第04期
世界上的万事万物都是有规律可循的,所以认识规律、掌握规律、运用规律是人类认识世界、改造世界的重要途径和手段。
在我们的课本、中考说明、试卷等资料中就出现了大量“探索规律”的问题,学会解决这类问题对同学们认识世界、了解世界,树立正确的世界观将起到重要作用。
规律探索型问题:就是对材料信息的加工提炼和运用,从而得出数学概念和规律,或者将实际问题抽象为数学问题,建立数学模型的一类问题。
规律的归纳和发现能反映出一个人应用数学、发展数学和进行数学创新的意识和能力。
求解规律探索型问题要求学生有敏锐的观察力,能从特殊的情况出发,经过周密的思考、全面的分析,去推得一般的结论。
这类试题意在检测解题者驾驭数学的创新意识和才能,因此成为这几年的热点内容。
笔者将在教学实践中遇到的找规律题分为以下几类并谈谈解题套路。
一、代数中的规律问题
代数规律问题中的数、式一般都按照一定的顺序给出,在解题时,可按照它的顺序编上序号,然后从横向和纵向两个角度,研究哪些数是变的,哪些数是不变的,变数和序号之间又有什么关系,假如能从题设中观察出这些关系,那就比较容易发现其中的奥秘,结论也就得到了。
1.数字型探索规律
例题1:观察下列各数:1,4,9,16,25…,按此规律写出第n个数为()
解析:第一步,寻找个体的共性:各个数均为平方数。
第二步,寻找个体的特性,探求特性中的共性(即:找到第一个数与1的关系,第二个数与2的关系,第三个数与3的关系……并且考察是否具有相同的关系)。
中考心理指导:应考技巧浅析
中考是同学们在初级中学阶段的最终一次考试,也是最关紧的一次考试。
在中考中要想获得好绩效,除开需求敦实地掌握基础知识外,还需求有较好的心理状况,讲究应考策略,注意答题的办法和技法。
下边谈谈应考方面的一点技法,期望助同学们一臂之力。
一、消弭惊慌害怕,牢稳情绪
入闱后,必须要牢稳情绪,避免情绪过度焦虑。
考生临场情绪有些焦虑是难以避免的,但必须要尽量加快地调试好自个儿的状况,将情绪牢稳下来。
第一,要明确中考的目标是检查验看自个儿的知识和有经验,不要把绩效看得过重。
第二,要沉着,饱含自信心,必须要建立“我能行,我有把握考出好绩效”的信心,维持牢稳、舒畅的心绪。
第三,要做好应试前的相关准备,如带好准考据、不可少的文具以及防暑。
中考复习《规律探究题专练》1.(2014年福建南平4分)如图,将三个数按图中方式排列,若规定(a,b)表示第a排第b列的数,则(8,2)与(2014,2014)表示的两个数的积是()A. B. C. D.2.(2014年湖南永州3分)在求1+62+63+64+65+66+67+68+69的值时,小林发现:从第二个加数起每一个加数都是前一个加数的6倍,于是她设:S=1+6+62+63+64+65+66+67+68+69①然后在①式的两边都乘以6,得:6S=6+62+63+64+65+66+67+68+69+610②②﹣①得6S﹣S=610﹣1,即5S=610﹣1,所以S=,得出答案后,爱动脑筋的小林想:如果把“6”换成字母“a”(a≠0且a≠1),能否求出1+a+a2+a3+a4+…+a2014的值?你的答案是()A. B. C. D.3.(2014年山东日照4分)下面是按照一定规律排列的一列数:第1个数:;第2个数:;第3个数:;…依此规律,在第10个数、第11个数、第12个数、第13个数中,最大的数是()A.第10个数 B.第11个数 C.第12个数 D.第13个数4.(2013年山东泰安3分)观察下列等式:31=3,32=9,33=27,34=81,35=243,36=729,37=2187…解答下列问题:3+32+33+34…+32013的末位数字是()A.0 B.1 C.3 D.75.(2012江苏扬州3分)大于1的正整数m的三次幂可“分裂”成若干个连续奇数的和,如23=3+5,33=7+9+11,43=13+15+17+19,…若m3分裂后,其中有一个奇数是2013,则m的值是()A.43 B.44 C.45 D.466.(2014年福建漳州4分)已知一列数2,8,26,80.…,按此规律,则第n个数是.(用含n的代数式表示)7.(2014年甘肃白银、定西、平凉、酒泉、临夏4分)观察下列各式:13=1213+23=3213+23+33=6213+23+33+43=102…猜想13+23+33+…+103= .8.(2014年广西百色3分)观察以下等式:32﹣12=8,52﹣12=24,72﹣12=48,92﹣12=80,…由以上规律可以得出第n个等式为.9.(2014年广西桂林3分)观察下列运算:81=8,82=64,83=512,84=4096,85=32768,86=262144,…,则:81+82+83+84+…+82014的和的个位数字是.10.(2014年贵州铜仁4分)一列数:0,﹣1,3,﹣6,10,﹣15,21,…,按此规律第n 的数为.11.(2014年黑龙江大庆3分)有一列数如下:1,0,1,0,0,1,0,0,0,1,0,0,0,0,1,…,则第9个1在这列数中是第个数.12.(2014年湖北黄石3分)观察下列等式:第一个等式:a1=;第二个等式:;第三个等式:;第四个等式:.按上述规律,回答以下问题:(1)用含n的代数式表示第n个等式:a n= = ;(2)式子a1+a2+a3+…+a20= .13.(2014年湖南常德3分)已知:;计算: = ;猜想: = .14.(2014年湖南湘潭3分)如图,按此规律,第6行最后一个数字是,第行最后一个数是2014.15.(2014年江苏扬州3分)设是从这三个数中取值的一列数,若,,则中为0的个数.n=1n=2a2=b1+2c1b2=c1+2a1c2=a1+2b1n=3a3=b2+2c2b3=c2+2a2c=a2+2b2…………满足的n可以取得的最小整数是.17.(2014年内蒙古呼伦贝尔3分)一组等式:12+22+22=32,22+32+62=72,32+42+122=132,42+52+202=212…请观察它们的构成规律,用你发现的规律写出第9个等式.18.(2014年山东滨州4分)计算下列各式的值:观察所得结果,总结存在的规律,运用得到的规律可得= _.19.(2014年山东东营4分)将自然数按以下规律排列:表中数2在第二行第一列,与有序数对(2,1)对应,数5与(1,3)对应,数14与(3,4)对应,根据这一规律,数2014对应的有序数对为.20.(2014年山东菏泽3分)下面是一个按某种规律排列的数阵:根据数阵排列的规律,第n(n是整数,且n>3)行从左向右数第个数是.(用含n的代数式表示)21.(2014年河北省3分)如图,点O,A在数轴上表示的数分别是0,0.1,将线段OA分成100等份,其分点由左向右依次为M1,M2 (99)将线段OM1分成100等份,其分点由左向右依次为N1,N2 (99)将线段ON1分成100等份,其分点由左向右依次为P1,P2 (99)则点P37所表示的数用科学计数法表示为.22.(2014年云南省3分)观察规律并填空;;;;…= .(用含n的代数式表示,n是正整数,且n≥2)23.(2014年浙江台州5分)有一个计算程序,每次运算都是把一个数先乘以2,再乘以它与1的和,多次重复进行这种运算的过程如下∶则第n次的运算结果=(含字母x和n的代数式表示).参考答案1.B.【解析】观察数列,可得,每三个数一循环,,(8,2)在数列中是第(1+7)×7÷2+2=30个,∵30÷3=10,∴(8,2)表示的数正好是第10轮的最后一个,即(8,2)表示的数是.(2014,2014)在数列中是第(1+2014)×2014÷2=2029105个,∵2029105÷3=676368…1,∴(2014,2014)表示的数正好是第676369轮的第一个数,即(2014,2014)表示的数是1.∴.故选B.考点:探索规律题(数字的变化类----循环问题).2.B.【解析】仿照例题,设S=1+a+a2+a3+a4+…+a2014,①在①式的两边都乘以a,得:aS=a+a2+a3+a4+…+a2014+a2015,②,②﹣①得:(a﹣1)S=a2015﹣1,∴S=,即1+a+a2+a3+a4+…+a2014=.故选B.考点:1.阅读理解型问题;2.探索规律题(数字的变化类);3.同底数幂的乘法.3.A.【解析】通过计算找出规律,求得第10个数、第11个数、第12个数、第13个数的得数,通过比较得出答案:第1个数:;第2个数:;第3个数:;…第n个数:∴第10个数、第11个数、第12个数、第13个数分别为,其中最大的数为,即第10个数最大.故选A.考点:1.探索规律题(数字的变化类);2.有理数的大小比较.4.C【解析】观察所给等式,寻找规律:3n (n=1,2,3,……)的末位数字分别是:3,9,7,1,3,……,四个数一循环,末位数字和为0,∵2013÷4=503…1,∴3+32+33+34…+32013的末位数字相当于:3+7+9+1+…+3的末尾数为3。
2021年九年级数学中考复习——专题:找规律之数字变化类(三)1.阅读下列材料,然后回答问题:已知a>0,S1=,S2=﹣S1﹣1,S3=,S4=﹣S3﹣1,S5=,….当n为大于1的奇数时,S n=;当n为大于1的偶数时,S n=﹣S n﹣1﹣1.直接写出S2020=(用含a的代数式表示);计算:S1+S2+S3+…+S2022=.2.定义一种关于整数n的“F”运算:(1)当n是奇数时,结果为3n+5;(2)当n是偶数时,结果是(其中k是使是奇数的正整数),并且运算重复进行.例如:取n=58,第一次经F运算是29,第二次经F运算是92,第三次经F运算是23,第四次经F运算是74…;若n=72,则第2019次运算结果是.3.观察下面的变化规律:=1﹣,=﹣,=﹣,=﹣,…根据上面的规律计算:=.4.一组按规律排列的式子:,﹣,,﹣,…(ab≠0),其中第10个式子是.5.按下面一组数的排列规律,在横线上填上适当的数:,,,,,.6.下列各正方形中的四个数之间都有相同的规律,请你仔细观察,找出规律,根据这种规律计算可知:m的值为.7.观察多项式:8x﹣16x2+32x3﹣64x4+128x5…,以此规律,第n项为.8.如表被称为“杨辉三角”或“贾宪三角”.其规律是:从第三行起,每行两端的数都是“1”,其余各数都等于该数“两肩”上的数之和.表中两平行线之间的一列数:1,3,6,10,15,…,我们把第一个数记为a1,第二个数记为a2,第三个数记为a3,…,第n个数记为a n,则a6=,a200=.9.观察下列式子:2=22×,3=32×,4=42×,….你发现它们之间存在的规律是.(用含n的式子表示出来,n表示大于等于2整数)10.给定一列按规律排列的数:,1,,,…,根据前4个数的规律,第2020个数是.11.小磊想编一个循环“插数”程序,对有序的数列:﹣2,0进行有规律的“插数”:对任意两个相邻的数,都用右边的数减去左边的数之差“插”在这相邻的两个数之间,产生一个个新数列.如:第1次“插数”产生的一个新数列是﹣2,2,0;第2次“插数”产生的一个新数列是﹣2,4,2,﹣2,0;第3次“插数”产生的一个新数列是﹣2,6,4,﹣2,2,﹣4,﹣2,2,0;……,第2019次插数产生的一个新数列的所有数之和是.12.观察下列一组数,按规律在横线上填写适当的数,﹣,,﹣,,……,第7个数是.13.在一列数a1,a2,a3,a4,…a n中,已知a1=2,a2=,a3=,a4=,…a n=,则a=.202014.按照一定规律排列的一组数:,,,,…,,,…(其中a,b 为正整数),则a﹣b=.15.已知一列数的和x1+x2+……+x2019=×(1+2+…+2019),|x1﹣3x2+1|=|x2﹣3x3+2|=…=|x2018﹣3x2019+2018|=|x2019﹣3x1+2019|,则x1﹣2x2﹣3x3=.16.如图,下列各图形中的三个数之间均具有相同的规律.根据此规律,当m=99时,则M的值为.17.按一定规律排列的一列数依次为,﹣,,﹣,,﹣,…,按此规律排列下去,这列数中第8个数是,第n个数是(n为正整数).18.一个盒子里装有不多于200颗糖,如果每次2颗,3颗,4颗或6颗的取出,最终盒内都只剩下一颗糖,如果每次以11颗的取出,那么正好取完,则盒子里共有颗糖.19.观察这一列数:﹣1,2,﹣3,4,﹣5,6,﹣7,…,若将这列数排成如图所示的形式,按照这个规律排下去,那么第10行从左边起第8个数是.20.按一定顺序排列的一列数叫做数列,如数列:,,,,…,则这个数列前2018个数的和为.参考答案1.解:∵S1=,S=﹣S1﹣1=,2S==,3S=﹣S3﹣1=,4S==﹣a﹣1,5S=﹣S5﹣1=a,6S==,7….当n为大于1的奇数时,S n=;当n为大于1的偶数时,S n=﹣S n﹣1﹣1.发现规律:每6个结果为一个循环,所以2020÷6=336…4,所以S2020=;因为2022÷6=337,所以S1+S2+S3+…+S2022=337(+++﹣a﹣1+a)=337(﹣1﹣1﹣1)=﹣1011.故答案为:,﹣1011.2.解:由题意n=72时,第一次经F运算是9,第二次经F运算是32,第三次经F运算是1,第四次经F运算是8,第五次经F运算是1…以后出现1、8循环,奇数次是1,偶数次是8,∴第2019次运算结果1,故答案为:1.3.解:由题干信息可抽象出一般规律:(a,b均为奇数,且b=a+2).故=1﹣+﹣+﹣+…+﹣=1﹣=.故答案:.4.解:分子为b,其指数为2,5,8,11,…,其规律为3n﹣1,分母为a,其指数为1,2,3,4,…,其规律为n,分数符号为+、﹣,+,﹣,…,其规律为(﹣1)n+1,…第n个式子是(﹣1)n+1.所以,第10个式子是﹣.故答案是:﹣.5.解:∵,,,,…,∴这列数的第n个数为:,∴当n=5时,=,故答案为:.6.解:由表格可得,左上角的数字是一些连续的奇数,从大到小排列,从3开始,左下角的数字比左上角的数字大2,右上角的数字比左下角的数字大2,右下角的数字等于左下角与右下角的数字的乘积,∴当左上角的数字为﹣3时,左下角的数字为﹣3+2=﹣1,右上角的数字为﹣1+2=1,右下角的数字为(﹣1)×1=﹣1,∴m=﹣1,故答案为:﹣1.7.解:根据分析的规律,得第n项为(﹣1)n+12n+2x n.(n≥1的自然数).故答案为:(﹣1)n+12n+2x n(n≥1的自然数).8.解:由题意可得,a=1,1a=1+2=3,2a=1+2+3=6,3a=1+2+3+4=10,4a=1+2+3+4+5=15,5…,∴a n=1+2+3+…+n=,∴当n=6时,a6==21,当n=200时,a200==20100,故答案为:21,20100.9.解:2=22×,3=32×,4=42×,…∴用含n(n表示大于等于2整数)的代数式表示出来为:n+.故答案为n+.10.解:观察这列数发现,奇数项是负数,偶数项是正数;分子分别为3,5,7,9,…;分母分别为12+1,22+1,32+1,…,∴该列数的第n项是(﹣1)n,∴第2020个数是=,故答案为.11.解:∵第一次操作增加数字:2,第二次操作增加数字:4,2,﹣2,第三次操作增加数字:6,4,﹣2,2,﹣4,﹣2,2,∴第一次操作增加2,第二次操作增加4+2﹣2=4,第三次操作增加6+4﹣2+2﹣4﹣2+2=6,…,即,每次操作加2,第2019次操作后所有数之和为﹣2+0+2019×2=4036.故答案为:4036.12.解:观察一组数,﹣,,﹣,,……,发现规律:第n个数是(﹣1)n,所以第7个数是﹣.故答案为:﹣.13.解:∵a1=2,∴a2==﹣1;a==;3a==2;4…,发现规律:每3个数一个循环,所以2020÷3=673…1,则a2020=a1=2.故答案为:2.14.解:∵一组数:,,,,…,,,…(其中a,b为正整数),∴这组数是:,,,,…,,,,…,∴a=15×16=240,b=17×18=306,∴a﹣b=240﹣306=﹣66,故答案为:﹣66.15.解:因为x1﹣3x2+1+x2﹣3x3+2+...+x2018﹣3x2019+2018+x2019﹣3x1+2019 =x1+x2+......+x2019﹣3(x1+x2+......+x2019)+(1+2+3+ (2019)=×(1+2+...+2019)﹣3××(1+2+...+2019)+(1+2+ (2019)=0.所以绝对值内的2019个式子相加等于0,且它们的绝对值相等,所以|x1﹣3x2+1|=|x2﹣3x3+2|=…=|x2018﹣3x2019+2018|=|x2019﹣3x1+2019|=0,所以x2=3x3﹣2,所以x1=3x2﹣1=3(3x3﹣2)﹣1=9x3﹣7,所以x1﹣2x2﹣3x3=9x3﹣7﹣2(3x3﹣2)﹣3x3=﹣3.故答案为:﹣3.16.解:∵3=2×1+1,15=4×3+3,35=6×5+5,∴M=mn+m,且n=m+1,当m=99时,M=99×100+99=9999,故答案为:9999.17.解:根据分析可知:一列数依次为:,﹣,,﹣,,﹣,…,按此规律排列下去,则这列数中的第8个数是﹣,所以第n个数是:(﹣1)n+1(n是正整数).故答案为:﹣;(﹣1)n+1.18.解:已知如果每次11颗地取出正好取完,则盒子内糖数必为11的倍数.又知盒子里装有不多于200颗糖,则盒子内糖数可能为11、22、33、44、55、66、77、88、99、110、121、132、143、154、165、176、187、198.又已知如果每次2颗,3颗,4颗或6颗地取出,最终盒内都只剩一颗糖,则盒子内糖数为12的倍数+1.又知盒子里装有不多于200颗糖则盒子内糖数可能为13,25,37,49,61,73,85,97,109,121,133,145,157,169,181,193.取上面两组数的交集可得121,故盒子里共有121颗糖.故答案为:121.19.解:∵第n行左边第一个数的绝对值为(n﹣1)2+1,奇数为负,偶数为正,∴第10行从左边数第1个数绝对值为82,即这个数为82,∴从左边数第8个数等于﹣89.故答案为:﹣89.20.解:由数列知第n个数为,则前2018个数的和为++++…+=++++…+=1﹣+﹣+﹣+﹣+…+﹣=1﹣=,故答案为:.。
考点3 数式规律1.(2020·黑龙江牡丹江)一列数1,5,11,19,…按此规律排列,第7个数是( )A.37 B.41 C.55 D.712.(2020·云南)按一定规律排列的单项式:a,-2a,4a,-8a,16a,-32a,…第n个单项式是( ) A.(-2)n-1a B.(-2)n aC.2n-1a D.2n a3.(2020·甘肃天水)观察等式:2+22=23-2;2+22+23=24-2;2+22+23+24=25-2;…已知按一定规律排列的一组数:2100,2101,2102,…,2199,2200,若2100=S,用含S的式子表示这组数据的和是( ) A.2S2-S B.2S2+SC.2S2-2S D.2S2-2S-24.(2020·湖南娄底)下列各正方形中的四个数之间都有相同的规律,根据此规律,x的值为( )A.135 B.153C.170 D.1895.(2020·四川达州)如图,正方体的每条棱上放置相同数目的小球,设每条棱上的小球数为m,下列代数式表示正方体上小球总数,则表达错误的是( )A.12(m-1) B.4m+8(m-2)C.12(m-2)+8 D.12m-166.(2020·山东德州)如图是用黑色棋子摆成的美丽图案,按照这样的规律摆下去,第10个这样的图案需要黑色棋子的个数为( )A.148 B.152C.174 D.2027.(2020·湖南常德)如图,将一枚跳棋放在七边形ABCDEFG的顶点A处,按顺时针方向移动这枚跳棋2 020次.移动规则是:第k次移动k个顶点(如第一次移动1个顶点,跳棋停留在B处,第二次移动2个顶点,跳棋停留在D处),按这样的规则,在这2 020次移动中,跳棋不可能停留的顶点是( )A .C ,EB .E ,FC .G ,C ,ED .E ,C ,F8.(2020·云南昆明)观察下列一组数:-23,69,-1227,2081,-30243,…,它们是按一定规律排列的,那么这一组数的第n 个数是__________.9.(2020·广西钦州)如图,某校礼堂的座位分为四个区域,前区一共有8排,其中第1排共有20个座位(含左、右区域),往后每排增加两个座位,前区最后一排与后区各排的座位数相同,后区一共有10排,则该礼堂的座位总数是____________.10.(2020·山东泰安)如图被称为“杨辉三角”或“贾宪三角”.其规律是:从第三行起,每行两端的数都是“1”,其余各数都等于该数“两肩”上的数之和.表中两平行线之间的一列数:1,3,6,10,15,…我们把第一个数记为a 1,第二个数记为a 2,第三个数记为a 3,…第n 个数记为a n ,则a 4+a 200=________________.11.(2020·海南)海南黎锦有着悠久的历史,已被列入世界非物质文化遗产名录.如图是黎锦上的图案,每个图案都是由相同菱形构成的.若按照第1个图至第4个图中的规律编织图案,则第5个图中有________个菱形, 第n 个图中有____________________个菱形(用含n 的代数式表示).12.(2020·内蒙古呼和浩特)“书法艺术课”开课后,某同学买了一包纸练习软笔书法,且每逢星期几写几张,即每星期一写1张,每星期二写2张…每星期日写7张.若该同学从某年的5月1日开始练习,到5月30日练习完后累积写完的宣纸总数超过120张,则可算得5月1日到5月28日他共用宣纸张数为________________,并可推断出5月30日应该是星期几__________________.13.(2020·山东淄博)某快递公司在甲地和乙地之间共设有29个服务驿站(包括甲站、乙站),一辆快递货车由甲站出发,依次途经各站驶往乙站,每停靠一站,均要卸下前面各站发往该站的货包各1个,又要装上该站发往后面各站的货包各1个.在整个行程中,快递货车装载的货包数量最多是__________个.14.(2020·青海)观察下列各式的规律:①1×3-22=3-4=-1;②2×4-32=8-9=-1;③3×5-42=15-16=-1. 请按以上规律写出第4个算式__________________________________.用含有字母的式子表示第n 个算式为______________________________.15.(2020·湖南张家界)观察下面的变化规律:21×3=1-13,23×5=13-15,25×7=15-17,27×9=17-19,…根据上面的规律计算:21×3+23×5+25×7+…+22 019×2 021=________.16.(2020·湖北咸宁)按一定规律排列的一列数:3,32,3-1,33,3-4,37, 3-11,318,…,若a ,b ,c 表示这列数中的连续三个数,猜想a ,b ,c 满足的关系式是______________.参考答案1.C 2.A 3.A 4.C 5.A 6.C 7.D8.(-1)n ·n×(n +1)3n 9.556个 10.20 110 11.41 2n 2-2n +112.112 星期五、六或日 13.21014.4×6-52=24-25=-1 n(n +2)-(n +1)2=-1 15.2 0202 02116.a÷b=c。
【高中数学】中考生数学普遍存在的6大问题一、
对数学概念的理解还不够透彻,对概念的理解仍处于机械应用阶段。
我们不能完全掌握概念的深度和广度,导致无法写出正确的答案。
记忆力减退,你似乎不理解这个问题,你觉得自己在课堂上讲过,不记得在考试中如何回答。
二、
学生平时缺乏训练,导致计算能力差。
例如,“会面但不正确,正确但不完整”的现象更为严重。
计算能力一直是困扰数学学习的最大因素。
三、
学生没有彻底研究开放式问题,错误答案、遗漏答案和理解错误太多。
没有明确的思考方向或解决问题的起点,我们只能做重要的事情,思考多少,回答多少。
四、
问题没有经过仔细的研究,解决问题的过程不规范、不准确,数学语言不能熟练地表达和解决问题。
学生们会出现在每次考试中,并为此感到后悔。
五、
中学入学考试的模拟不系统,学生的考试能力逐渐下降。
在考试期间,一些学生由于紧张情绪而在一段时间内思维混乱,这主要体现在他们连续几道题都得不到分数。
六、
数学应用能力差,学生缺乏实践经验,复习时不能锻炼,因此没有提高。
2021中考数学复习之规律探索题专项训练3(附答案详解)1.将一些相同的“O”按如图所示摆放,观察每个图形中的“O”的个数,若第n个图形中“O”的个数是78,则n的值是()……第1个图形第2个图形第3个图形第4个图形A.11 B.12 C.13 D.142.观察下列三行数:(1)第①行的第n个数是_______(直接写出答案,n为正整数)(2)第②、③行的数与第①行相对应的数分别有什么关系?(3)取每行的第9个数,记这三个数的和为a,化简计算求值:(5a2-13a-1)-4(4-3a+54a2)3.观察下列方程及解的特征:⑴x+1x=2的解为x1=x2=1;⑵x+1x =52的解为x1=2,x2=12;⑶x+1x =103的解为x1=3,x2=13;解答下列问题:(1)请猜想:方程x+1x=265的解为________;(2)请猜想:关于x的方程x+1x═________的解为x1=a,x2=1a(a≠0);(3)下面以解方程x+1x=265为例,验证(1)中猜想结论的正确性.4.观察下列等式的规律,解答下列问题:①1111()24224=-⨯;②1111()46246=-⨯;③1111()68268=-⨯……(1)按以上规律,第④个等式为: ;第n个等式为: (用含n的代数式表示,n为正整数);(2)按此规律,计算:11111 2446688101012 ++++⨯⨯⨯⨯⨯(3)探究计算(直接写出结果):1111= 2558811299302++++⨯⨯⨯⨯… .5.(观察)12929⨯=,22856⨯=,32781⨯=,……,1317221⨯=,1416224⨯=,1515225⨯=,1614224⨯=,1713221⨯=,……,27381⨯=,28256⨯=,29129⨯=.(发现)根据你的阅读回答问题:(1)上述内容中,两数相乘,积的最大值为______;(2)设参与上述运算的第一个因数为a ,第二个因数为b ,用等式表示a 与b 的数量关系是____.(类比)观察下列两数的积:1×49,2×48,3×47,4×46,……m×n ,……46×4,47×3,48×2,49×1猜想mn 的最大值为_______,并用你学过的知识加以证明.6.观察下面的式子:111123623==-⨯, 1111341234==-⨯, 1111452045==-⨯,⋯ (1)你发现规律了吗?下一个式子应该是________________;(2)利用你发现的规律,计算:11111223344520162017++++⋯+⨯⨯⨯⨯ 7.先阅读下面的文字,然后按要求解题:例:1+2+3+ … +100=?如果一个一个顺次相加显然太繁琐,我们仔细分析这100个连续自然数的规律和特点,可以发现运用加法运算律,是可以大大简化计算,提高运算速度的.因为1+100=2+99=3+98= … =50+51=101所以将所给算式中各加数经过交换、结合以后,可以很快求出结果.解:1+2+3+ … +100=(1+100)+(2+99)+(3+98)+ … +(50+51)=101×____________=____________ .(1)补全例题的解题过程;(2)计算:()(2)(3)(99)(100)a a b a b a b a b a b +++++++++++8.阅读材料小明遇到这样一个问题:求计算(x +2)(2x +3)(3x +4)所得多项式的一次项系数。
浅析中考中的“规律”问题
浙江省嵊州市三塘中学 顾方东 邮编312459
随着新课程改革的推进和新课标教材的实施,自主探索的思想不断出现于中考命题中,作为亲身体验和在探索中认识数学的载体,许多省市采用了一些找规律的试题,这样的试题往往设计独特、格调清新、构思新颖。
有利于考查学生的探究意识和创新精神。
下面以2006年的中考试题为例,谈谈中考中的一些“规律”问题。
一.数中的规律 1.与数列相关的规律
对于比较简单的数列问题,学生可以通过已有的知识和自己的观察、类比、分析得到。
例1. (重庆市2006年)按一定的规律排列的一列数依次为:111111
,,,,,2310152635
┅┅ 按此规律排列下去,这列数中的第7个数是 .
【分析及简解】本题只要找出分母的变化规律,不难发现2、3、10、15、26、35分别可以写成112
+、122
-、132
+、142
-、
152+、162-依次规律第7个数可以写成172+,故答案为
50
1。
例2. (2006年南安市)12.观察分析下列数据,寻找规律: 0,3,6,3,23,15,32,……那么第10个数据应是 .
【分析及简解】本题只要把这组数据中几个最简根式还原为181512963、、、、、,然后找根号内的数的变化规律:发现0、3、6、9、12、15、18都是3的倍数,所以可以写成3(n-1)(n 为数据的顺序数)的形式,故第10个数据应是27,即为33。
2.与数表相关的规律
这是一类数表相结合的题型,是从表中来找出数的关系和数的规律,从而来解决问题。
例3. (日照市2006年)德国数学家莱布尼兹发现了下面的单位分数三角形(单位分数是分子为1,分母为正整数的分数):
第一行 1
1
第二行
12 12 第三行 13 16 1
3
第四行 14 112 112 1
4
第五行 15 120 130
120 1
5
… …… ……
根据前五行的规律,可以知道第六行的数依次是: .
【分析及简解】本题通过观察在莱布尼兹三角形中有这样的规律:三角形外围的分数中分母是连续的整数,且每一行中的任
一数都等于其“脚下”两数的和。
故答案为111111 ,,,,,. 6306060306。
例4.(乐山市2006年)观察下列数表:根据数列所反映的规律,第n行第n列交叉点上的数应为 .
【分析及简解】本题能从数表中直观的看出规律:任意一行的第一个数即为该行的行数,且每一行从第一个数开始都是连续的整数。
故第n行的第一个数是n,则该行的第n列的数为n+(n+1)=2n+1。
二.图中的规律
1.生活图形中的规律
在现实生活中有着许许多多美丽的图形,只要仔细观察这些生活图形,其中暗藏着我们数学中的一些知识和规律。
例5.(2006年福州市)一串有趣的图案按一定规律排列.请仔细观察,按此规律画出的第10个图案是;在前16个图案中有_个.第2008个图案是 .
【分析及简解】本题是一串美丽的脸形图案,通过观察不难发现其中的规律,它是以这样
三个为一变化单位,故易得答案分别为
,5,
例6.(2006年大连西岗区)如图6是小亮用8根,14根、20根火柴搭的1条、2条、3条“金鱼”,按此方法搭n 条“金鱼”需要火柴__________根。
(用含n的代数式表示
)
3条
2条
1条
图6
【分析及简解】本题“金鱼”图案中火柴根数的规律:后一个“金鱼”图的火柴根数比前一个“金鱼”图的火柴根数多6条。
故搭n 条“金鱼”需要火柴比第一条多6(n-1)根,所以答案为6n+2。
2.游戏图形中的规律
随着新课标的实施,游戏活动在数学中大量的出现,游戏图形也相继出现在中考中,通过一些游戏图形中的规律来考查
第
四
列
第
三
列
第
二
列
第
一
列
第四行 4 5 6 7
第三行 3 4 5 6
第二行 2 3 4 5
第一行
1 2 3 4
学生的探究意识和创新精神。
例7. (云南省2006年)观察图(l )至(4)中小圆圈的摆放规律,并按这样的规律继续摆放,记第n 个图中小圆圈的个数为m ,则,m=_____ (用含 n 的代数式表示).
【分析及简解】在这个游戏中,根据小圆圈的摆放规律它的个数有这样的规律:每增加一个正方形小圆圈就增加3个。
故第n 个图形中小圆圈的个数比第一个多3(n-1),即
m=5+3(n-1)=3n+2。
例8. (2006年无锡市)探索规律:根据下图中箭头指向的规律,从2004到2005再到2006,箭头的方向是( )
【分析及简解】在这个游戏中,如果从数上去分析箭头方向,显然较为困难。
不妨从箭头本 身的变化过程去找规律,易知它是以这样
为一个变化周期,即4个数为一个变化周期,则从0到2004有2005个数,答案应选A 。
3.平面图形中的规律
平面图形中的知识在初中阶段是属于要求掌握的内容之一,其中也有一些找规律的题型。
例9. (2006年温州市)在边长为l 的正方形网格中,按下列方式得到“L ”形图形第1 个“L ”形图形的周长是8,第2个“L ”形图形的周长是12, 则第n 个“L ”形图形的周 长是 .
【分析及简解】本题只要来移动“L ”形内侧的两条线条使其成为一个正方形,这样问题就变成了求正方形的周长,且从图中的变化规律可知边长是逐一增加的,故答案为4(n+1)。
例10.(成都市2006年)如图,如果以正方形ABCD 的对角线AC 为边作第二个正方形ACEF ,再以对角线AE 为边作第三个正方形AEGH ,如此下去,…,已知正方形ABCD 的面积1S 为1,按上述方法所作的正方形的面积依次为23S S ,,…,S n (n 为正整数),那么第8个正方形的面积8S =_______。
【分析及简解】本题主要是在正方形中对角线是边长的2倍的规律,易得答案为128。
① ②
③
C D
E F G I
J
4.空间图形中的规律
空间图形相对平面图形来讲要显得抽象些,学生就要有一定的空间想象能力,在此基础上空间图形中的一些规律问题就能迎刃而解。
例11. (2006年山东省青岛市)如图,下列几何体是由棱长为1的小立方体按一定规律在地面上摆成的,若将露出的表面都涂上颜色(底面不涂色),则第n 个几何体中只有两个面...涂色的小立方体共有 个.
【分析及简解】本题涂色的问题实际上是在这个空间图形中找露出两个表面的小立方体的个数,这样可在几何体中从上而下分层的找出规律:第一层四边中,每边上除两端的小立方体外都是露出两个面的,以下几层都是每层四端的小立方体有两个面露出。
所以第n 个几何体露出两个面的可以分第一层有4⨯(n-1)个,以下几层共有4⨯n 个,故答案为8n-4。
例12.
(烟台市2006年) 下列图形中,图(a )是正方体木块,把它切去一块,得到如图(b )(c )(d )(e )的木块.
(1)我们知道,图(a )的正方体木块有8个顶点、12条棱、6个面,请你将图(b )、(c )、(d )、(e )中木块的顶点数、棱数、面数填入下表:(6分)
(2)上表,各种木块的顶点数、棱数、面数之间的数量关系可以归纳出一定的规律,请你试写出顶点数x 、棱数y 、面数z 之间的数量关系式.(2分)
【分析及简解】本题只要熟悉正方体这个空间图形就马上能得到表中的答案
而要得到顶点数、棱数、面数之间的数量关系可以具体分析表中的数据即可,易得顶点数+面数-棱数=常数2的规律,应此
有2=-+y z x (欧拉定理)。
三.直角坐标中的规律
直角坐标中的一些规律主要是与坐标相关联,往往是通过点的坐标和坐标中特有的 对称性来解决规律问题
例13.(江苏省淮安市2006年)如图,已知A l (1,0)、A 2(1,1)、A 3(-1,1)、A 4(-1,-1)、 A 5(2,-1)、…。
则点A 2007,的坐标为________.
【分析及简解】本题要解决A 2007的坐标,首先要知道它在第几象限。
从图中A 点变化趋势中能够找出这样的规律:以A 2,A 3,A 4,A 5为起始点分别向坐标的的四个象限延伸,同一象限内相邻的两点之间相隔4个点,且相邻的两点之间的纵横坐标逐一递减或递增。
而2007=4 501+3所以2007A 是以3A 为起始点的在第二象限的第502个点,又3A 的坐标为(-1,1),故2007A 的坐标为(-502,502)。
例14.( 2006年泉州市)在平面直角坐标系中,横坐标、纵坐标都为整数的点称为整点.请 你观察图中正方形A 1B 1C 1D 1、A 2B 2C 2D 2、A 3B 3C 3D 3……每个正方形四条边上的整点的个数, 推算出正方形A 10B 10C 10D 10四条边上的整点共有
【分析及简解】从坐标中观察可以得到正方形经过的整数点依次为8、16、24 … 所以易得这样的规律:正方形n n n n D C B A 四条边上的整点为8n 个。
故正方形A 10B 10C 10D 10
四条边上的整点共有80个。
纵观2006年中考中的这些“规律”问题,不难发现培养学生的探究意识和创新精神已是初中数学教学中不可缺失的一部分,各省市的这些中考题型是新课标实施的很好体现,同时也给当前的教学带来了一些新意。
此文发表于2007年<<中学生数学>>第6期。