微带天线设计概要
- 格式:doc
- 大小:50.50 KB
- 文档页数:14
第一章微带天线简介1.1微带天线的发展历史与趋势微带天线是20世纪70年代以来逐渐发展起来的一种新型天线。
虽然在1953年就提出了微带天线的概念,但并没有在工程界的引起重视。
从20世纪50年代到60年代也只是做一些零星的研究,直到20世纪70年代初期,在微带传输线的理论模型及对敷铜的介质基片的光刻技术发展之后,第一批具有许多设计结构的实用的微带天线才被制造出来[3]。
为适应现代通信设备的需求,天线的研发方向主要往几个方面进行,即减小天线的尺寸、宽带和多波段工作、智能方向图控制。
随着电子设备集成度的提高,通信设备的体积也变得越来越小,这时天线尺寸就需要越来越小了。
然而,在减小天线的尺寸的同时又不明显影响天线的增益和效率是一项艰巨的工作。
电子设备集成度提高,经常需要一个天线在较宽的频率范围内来支持两个或更多的无线服务,宽带和多波段天线能满足这样的需要。
微带天线由于重量轻、体积小、成本低、制作工艺简单、易与有源器件和电路集成等诸多优点,所以得到广泛的应用和重视。
1.2 微带天线研究的背景微带天线是带有导体接地板的截止基片上贴加导体薄片而形成的天线。
微带天线通过微带线或者同轴线等馈线馈电,在导体贴片与接地板之间激励起射频电磁场,并通过贴片四周与接地板间的缝隙向外辐射。
微带天线主要是一种谐振式天线,相对带宽比较窄,一般设计的带宽只有2%到5%。
随着天线的工作频率的降低,带宽也逐渐变窄。
在这样的背景下,研究影响微带天线带宽的因素,进而找到展宽微带天线的带宽的方法,对于微带天线能否在工业、民用、国防等领域得到广泛的应用,具有重要的意义。
1.3 多频带微带天线研究的意义当今,无线通讯行业发展迅猛,掌上电脑、笔记本电脑和手机都已经成了人们生活的必需品[4]。
对于频谱资源日益紧张的现在通讯领域,迫切需要天线具有双极化功能,因为双极化可使它的通讯容量增加1倍。
对于有些系统,则要求系统工作于双频,且各个频段的极化又不同。
08通信陆静晔0828401034微带天线设计一、实验目的:●利用电磁软件Ansoft HFSS设计一款微带天线⏹微带天线的要求:工作频率为2.5GHz,带宽(S11<-10dB)大于5%。
●在仿真实验的帮助下对各种微波元件有个具体形象的了解。
二、实验原理:微带天线的概念首先是由Deschamps于1953年提出来的,经过20年左右的发展,Munson和Howell于20世纪70年代初期制造出了实际的微带天线。
微带天线由于具有质量轻、体积小、易于制造等优点,现今已经广泛应用于个人无线通信中。
图1-1是一个简单的微带贴片天线的结构,由辐射源、介质层和参考地三部分组成。
与天线性能相关的参数包括辐射源的长度L、辐射源的宽度W、介质层的厚度h、介质的相图1-1对介电常数εr和损耗正切tanδ、介质层的长度LG和宽度WG。
图1-1所示的微带贴片天线是采用微带线来馈电的,本次将要设计的矩形微带贴片天线采用的是同轴线馈电,也就是将同轴线接头的内芯线穿过参考地和介质层与辐射源相连接。
对于矩形贴片微带天线,理论分析时可以采用传输线模型来分析其性能。
矩形贴片微带天线的工作主模式是TM10模,意味着电场在长度L方向上有λg/2的改变,而在宽度W方向上保持不变,如图1-2(a)所示,在长度L方向上可以看作成有两个终端开路的缝隙辐射出电磁能量,在宽度W方向的边缘由于终端开路,所以电压值最大电流值最小。
从图1-2(b)可以看出,微带线边缘的电场可以分解成垂直于参考地的分量和平行于参考地的分量两部分,两个边缘的垂直分量大小相等、方向相反,平行电场分量大小相等、方向相反;因此,远区辐射电场垂直分量相互抵消,辐射电场平行于天线表面。
假设矩形贴片的有效长度设为L e ,则有L e =λg ∕2 (1-1)式中,λg 表示导波波长,有λg =λ0∕√εe (1-2)式中,λ0表示自由空间波长;εe 表示有效介电常数,且εe =εr +12+εr −12(1+12h W)−12 (1-3) 式中,εr 表示介质的相对介电常数;h 表示介质层厚度;W 表示微带贴片的厚度。
微带天线设计实验报告hsff1. 引言微带天线是指一种在非导体衬底上,厚度远小于工作波长的金属片片状天线。
由于其结构简单、易于实现和与尺寸成正比的频率调谐特性,微带天线在无线通信系统、雷达系统、卫星通信系统等领域都有广泛应用。
本实验旨在设计一种基于微带天线的无线通信系统。
2. 设计原理微带天线的设计基于微带线的传输线理论和天线理论,通过调整微带天线的几何结构,可以实现对特定频率信号的发送和接收。
在本实验中,我们需要设计一种工作频率为2.4 GHz的微带天线。
微带天线主要由导体衬底、金属贴片和喇叭线组成。
导体衬底可以是介电材料,如玻璃纤维板、陶瓷板等,也可以是金属材料。
金属贴片是微带天线的辐射元件,其几何形状和尺寸决定了天线的频率特性。
喇叭线用于连接导体衬底和金属贴片,起到提供电信号的功能。
3. 设计步骤根据微带天线的设计原理和工作频率要求,我们可以按照以下步骤来设计微带天线:步骤一:确定导体衬底材料和尺寸根据设计要求选择合适的导体衬底材料,一般可选用介电常数在2到12之间的材料。
确定导体衬底的尺寸,以便适应工作频率。
步骤二:计算金属贴片的尺寸根据所选导体衬底的材料和尺寸,计算金属贴片的尺寸。
一般来说,金属贴片的长度和宽度与工作波长有关,且与导体衬底的介电常数相关。
步骤三:确定喇叭线的结构根据所选导体衬底的材料和尺寸,设计合适的喇叭线结构。
喇叭线的长度、宽度和厚度都会影响微带天线的频率调谐特性。
步骤四:制作微带天线样品根据设计得到的尺寸参数,使用相应的工艺方法制作微带天线样品。
常用的制作方法包括化学腐蚀、电镀等。
步骤五:测试天线性能通过天线测试仪器对微带天线进行性能测试,包括频率响应、增益、辐射图形等参数的测量。
4. 实验结果与分析经过设计和制作,在实验中成功制作了一种工作频率为2.4 GHz的微带天线样品。
经测试,该微带天线样品的频率响应符合设计要求,在工作频率范围内具有良好的增益和辐射特性。
为了进一步优化微带天线的性能,我们对设计参数进行了微调,得到了更好的工作频率和辐射特性。
小型微带天线分析与设计随着无线通信技术的快速发展,天线作为无线通信系统的重要组成部分,其性能和尺寸成为了的焦点。
其中,微带天线由于其独特的优点在无线通信领域得到了广泛的应用。
本文将主要对小型微带天线的分析与设计进行深入探讨。
微带天线简介微带天线是一种由导体薄片贴在介质基板上形成的天线。
由于其具有体积小、易于集成、易于制作等优点,被广泛应用于移动通信、卫星导航等领域。
微带天线的分析主要涉及电磁场理论、微波传输线和电路理论等方面的知识,而设计则主要天线的性能优化和尺寸减小。
小型微带天线的分析微带天线的特点微带天线的主要特点包括体积小、重量轻、易于制作和低成本等。
微带天线还具有可共形和可集成的优点,使其能够适应不同的应用场景和设备形状。
同时,微带天线的带宽较宽,能够覆盖多个通信频段。
微带天线的分析方法微带天线的分析主要涉及电磁场理论、微波传输线和电路理论等方面的知识。
常用的分析方法包括有限元法、边界元法、高频近似方法等。
这些方法可以根据具体问题选择合适的求解器和计算精度。
小型微带天线的优化设计微带天线的设计要素微带天线的优化设计主要天线的性能优化和尺寸减小。
设计要素包括基板材料、基板厚度、贴片形状和尺寸、缝隙大小和位置等。
通过对这些要素的优化,可以提高天线的辐射效率、增益和方向性等性能。
微带天线的优化方法微带天线的优化方法包括仿真优化和理论优化。
仿真优化通过电磁仿真软件对天线进行建模和仿真,根据性能指标进行优化。
理论优化则是通过对天线理论的深入研究,提出优化的设计方案。
也可以将两种方法结合使用,以获得更佳的设计效果。
小型微带天线的应用前景及挑战应用前景随着无线通信技术的不断发展,小型微带天线具有广泛的应用前景。
未来,微带天线将不断应用于5G、6G等新一代无线通信技术中,实现更高速度、更宽带宽和更低功耗的无线通信。
同时,微带天线也将应用于物联网、智能家居、自动驾驶等领域,实现设备的互联互通和智能化。
虽然小型微带天线具有许多优点,但也存在一些挑战。
超宽带平面微带天线本论文在对现有超宽带(UWB)平面天线广泛调研的基础上,借助于电磁仿真软件设计了七种新型超宽带平面微带天线,实际制作和测试了其中四种天线,测试结果和仿真结果进行了对比,吻合较好,证实了天线的优越性。
本论文的主要工作及创新之处可以归纳为以下几点:对圆形UWB天线进行了改进,将圆形贴片超宽带印刷单极子天线的带宽扩展到六倍频程。
在天线尺寸不变的情况下,极大地扩展了天线的带宽,但天线的增益随频率变化非常大,天线色散较为严重。
针对FCC规定的3.1~10.6GHz免费使用频段,并保证较好的天线增益频响特性,借助于电磁仿真软件HFSS研制了三款新型带陷超宽带印刷单极子天线,该天线既能有效覆盖相应频段又避免了与现有的WLAN系统干扰,具有相对稳定的增益特性和近似的全向特性。
论文分析了天线的回波损耗、增益、带陷特性和归一化方向图,并进行了实际制作和测试,测试结果和仿真结果吻合较好。
为了进一步有效地抑制该天线与WiMax系统的干扰,论文设计提出了一种结构紧凑的双带陷超宽带印刷单极子天线,通过在辐射贴片开圆弧形缝隙槽和在微带馈线加载两个匹配节实现了在WLAN频段和WiMAX频段上的双带陷功能。
借助电磁仿真软件HFSS对天线进行了详细仿真分析设计,研究结果表明其具有良好的双带陷性能。
为了进一步得到较好的辐射特性,设计提出了一种新颖的结构紧凑的超宽带平面天线,该天线工作频率覆盖了5.9GHz到9.4GHz,具有3.5GHz绝对带宽,并且在工作带宽内的y-z面的方向图具有稳定的增益特性和非常好的全向特性。
论文中设计的平面微带天线具有小型和超宽带的特点,仿真测试结果验证天线满足超宽带无线通信技术的要求,非常适合应用于超宽带短距离无线通信系统中。
同主题文章【关键词相关文档搜索】:电磁场与微波技术; UWB; 微带天线; 短距离无线通信; 平面天线; 单极子天线【作者相关信息搜索】:南京航空航天大学;电磁场与微波技术;刘少斌;邓宏伟;。
关于蝶形宽带微带天线的设计索引:蝶形宽带微带天线. 设计方案排列效率摘要:现在提出一种基于绝缘体衬底的有限长度的宽带微带天线的设计方法。
这种方法快速、对计算精度要求较低,是建立在一蝶形天线进行二等分而形成的两个梯形天线的。
首先设计出单边的梯形部分,然后制作出相同的另一部分并在其顶点处将其连接。
与理论计算相比在X波段上实验测量表现得很好。
其有效带宽达到10.6%。
1 介绍微带天线的主要限制是其带宽的狭窄。
依照频率定义带宽其范围SWR为2:1或更少,贴片微带天线的带宽为1%到5%。
现在的努力已经集中到适当的提高天线的带宽上。
其中一种便是蝶形天线,众所周知它设计简单,阻抗带宽宽。
用严密的解决方案来分析蝶形天线将花费很长的时间才能得到完整的答案。
写这篇文章的目的就是要介绍一种快速、相对准确而高效设计蝶形天线的新方法。
研究宽带天线的新结构已经成为学术刊物的一个主要热点并以更大的努力持续研究。
与频率有关的相对快速变化的阻抗是决定带宽的主要因素。
这篇论文包涵了在频率选定上采用并联阻抗使之最大限度的和输入阻抗形成共振,并且与输入阻抗的平均幅值匹配。
在这篇论文中,在X波段上一个宽带蝶形天线(以后把它称为=2.2,h=0.787mm)的天线1)被安放在一个121.8×111mm(r衬底上。
天线做了如下改进:把两个相同的天线通过一个互联导体连在一起,从而代替了天线两个顶点之间的连接。
2 设计方案通过TMENSEMBLE的模拟可以看出,改进后的蝶形天线的性能是来自每一个单边天线组成的天线阵列效应。
因此,首先要设计蝶形天线的一个单边。
蝶形天线和及其参数由如图1所示,一个三角形构成蝶形天线的一半,从而简化了设计步骤,这一部分被设计成等边三角形,它的频率比要求的工作频率的一半稍微高一点,补偿了互联宽度c,而互联宽度c能增加天线覆盖面积因而降低了谐振频率。
两个相同的部分在顶点连接起来并且与第二谐振频率相匹配。
这个设计方案分为以下三个步骤。
实验十三微带天线(Microstrip Antenna)一、实验目的1.了解天线之基本原理与微带天线的设计方法。
2.利用实验模组的实际测量得以了解微带天线的特性。
二、预习内容1.熟悉微带天线的理论知识。
2.熟悉天线设计的基本概念及理论知识。
三、实验设备四、理论分析天线基本原理:天线的主要功能是将电磁波发射至空气中或从空气中接收电磁波。
所以天线亦可视为射频发收电路与空气的信号耦合器。
在射频应用上,天线的类型与结构有许多种类。
就波长特性分有八分之一波长、四分之一波长、半波天线;就结构分,常见有单极型(Monopole)、双极型(Dipole)、喇叭型(Horn)、抛物型(Parabolic Disc)、角型(Corrner)、螺旋型(Helix)、介电质平面型(Dielectric Patch)及阵列型(Array)天线,如图13-1所示。
就使用频宽来分别有窄频带型(Narrow-band,10%以下)及宽频带型(Broad-band,10%以上)。
图13-1 常见天线(一)天线特性参数1.天线增益(Antenna Gain’G):isotropicPPG=其中 G——天线增益P——与测量天线距离R处所接收到的功率密度,Watt / m2Pisotropic——与全向性天线距离R处所接收到的功率密度,Watt / m2由此可推导出,与增益为G的天线距离R处的功率密度应为接收功率密度:24RPGP txrec⋅⋅=π其中 G——天线增益P tx——发射功率,Watt / m2R——与天线的距离,m2.天线输入阻抗(Antenna Input Impedance’Zin):IVZin=其中 Z in——天线输入阻抗V——在馈入点上的射频电压I——在馈入点上的射频电流以偶极天线为例,其阻抗由中心处73Ω变化到末端为2500Ω。
3.辐射阻抗(Radiation Resistance’Rrad):(a)单极型(c)喇叭型(d)抛物面(e)螺旋型(f)阵列型2i P R av rad =其中Pav ——天线平均辐射功率,Wi ——馈入天线的有效电流,A I ——在馈入点上的射频电流对一半波长天线而言,其辐射阻抗为73Ω。
超宽带微带天线
本文介绍了超宽带天线的研究背景、超宽带天线特点、研究现状及趋势。
详细阐述了超宽带天线中一些典型结构天线及超宽带天线设计中常见的阻抗带宽、辐射特性、极化、群时延、相位中心等参数。
在超宽带天线接地面和辐射贴片是否在同一个平面的基础上按辐射贴片类型、对接地面的处理等做了详细的概述。
总结了超宽带天线设计中对辐射贴片处理、对接地面处理等小型化、扩展带宽技术。
亦对超宽带天线设计中寄生耦合、开缝隙、分形等带阻技术做了详细总结。
仿真分析了平面超宽带天线,主要有以下改进:1、在五边形辐射贴片超宽带天线中引入了叉形对称结构,对接地面做开半圆形缝隙处理,改善其全向性。
此结构在3.5-8GHz的频段内,具有好的全向性。
2、对多阶梯结构超宽带天线进行了优化设计,扩展了阻抗带宽,且使天线小型化,覆盖了FCC建议的3.1-10.6GHz频段。
通过对辐射贴片开圆形缝隙处理,改善了全向性。
3、综合了宽缝结构和微带式超宽带天线设计。
对于宽缝结构的超宽带天线,对与辐射贴片中间相邻的接地面进行了调节处理,改进了此结构的下限频率;对圆形贴片超宽带天线,在接地面左右两端引入对称的双臂结构,通过调整臂宽、臂长来调整频段,覆盖了6-10.75GHz,设计了高频段超宽带天线。
...
【关键词相关文档搜索】:电磁场与微波技术;
【作者相关信息搜索】:西南交通大学;电磁场与微波技术;刘运林;贾登权;。
微带天线的仿真设计一、设计目的及技术指标学习和掌握HFSS软件,加强对相关知识的理解和掌握。
本设计就是基于微带贴片天线基础理论以及熟练掌握HFSS10仿真软件基础上,设计一个右手圆极化矩形贴片天线,其工作频率为2.45GHZ。
创建切角,并设馈电位置在(-8,0,0),探针半径dx:0,dy:0,dz:5;端口面位置(-8,0,0),半径dx:1.5,dy:0,dz:0。
二、设计原理1、微带天线的结构微带天线是由一块厚度远小于波长的介质板(成为介质基片)和(用印刷电路或微波集成技术)覆盖在他的两面上的金属片构成的,其中完全覆盖介质板一片称为接触板,而尺寸可以和波长想比拟的另一片称为辐射元。
微带天线的馈电方式分为两种,如图所示。
一种是侧面馈电,也就是馈电网络与辐射元刻制在同一表面;另一种是底馈,就是以同轴线的外导体直接与接地板相连,内导体穿过接地板和介质基片与辐射元相接。
微带天线的馈电(a)侧馈(b)底馈2、微带天线的辐射原理用传输线模分析法介绍矩形微带天线的辐射原理。
矩形贴片天线如图:矩形贴片天线示意图设辐射元的长为L,宽为ω,介质基片的厚度为h。
现将辐射元、介质基片和接地板视为一段长为L的微带传输线,在传输线的两端断开形成开路,根据微带传输线的理论,由于基片厚度h<<λ,场沿h方向均匀分布。
在最简单的情况下,场沿宽度ω方向也没有变化,而仅在长度方向(L≈λ/2)有变化。
在开路两端的电场均可以分解为相对于接地板的垂直分量和水平分量,两垂直分量方向相反,水平分量方向相同,因而在垂直于接地板的方向,两水平分量电场所产生的远区场同向叠加,而两垂直分量所产生的场反相相消。
因此,两开路端的水平分量可以等效为无限大平面上同相激励的两个缝隙,缝的电场方向与长边垂直,并沿长边ω均匀分布。
缝的宽度△L≈h,长度为ω,两缝间距为L≈λ/2。
这就是说,微带天线的辐射可以等效为有两个缝隙所组成的二元阵列。
经过查阅资料,可以知道微带天线的波瓣较宽,方向系数较低,这正是微带天线的缺点,除此之外,微带天线的缺点还有频带窄、损耗大、交叉极化大、单个微带天线的功率容量小等。
编号:审定成绩:重庆邮电大学毕业设计(论文)设计(论文)题目:双频微带天线设计学院名称:光电工程学院学生姓名:孔淑苗专业:电子科学与技术班级:0230401学号:04320106指导教师:尹波答辩组负责人:填表时间:年月重庆邮电大学教务处制摘要微带天线是在带有导体接地板的介质基片上贴加导体薄片而形成的天线。
它具有低剖面、重量轻,可与各种载体共形;馈电网络可与天线印制在一起,适用于用印刷电路技术大批量生产;便于实现圆极化,双极化,双频段工作等优点,从七十年代最初的微带天线研制成开始,微带天线得到了广泛的研究和发展,获得了多种应用,并且在微波天线这个广阔的领域里,作为一个分立的整体而建立了自己的课题。
本文首先就天线基础知识进行概述,同时介绍了微带天线的辐射原理及微带天线的馈电方法,并就列举出的五种馈电方法进行了比较;其次介绍微带天线的一般分析方法,并详细分析了多频微带贴片天线的设计技术,并结合实例就后文将提及的仿真软件ADS(Advanced Design System)进行简单的介绍;然后利用ADS软件就基于提出的微带线耦合馈电的半圆双频微带贴片天线和矩形双频微带贴片天线进行仿真设计,得到两种天线的S11参数仿真结果及辐射方向图,并进行分析比较,从而得到尺寸缩减的依据;最后利用ADS仿真软件优化工具对天线参数进行优化,并就参数优化后天线进行探讨。
最后对全文的工作进行了总结,提出了不足之处和需要改进的问题。
【关键词】微带天线双频带ADS(Advanced Design System) 优化ABSTRACTMicros-trip antenna is a kind antenna which is composed by add conductor slice on medium board. It has some advantages such as low profile, light weight, small volume, and low production cost. They also can be easily integrated with microwave integrated circuits and easily made into dual-frequency and dual-polarization antennas. From the initial micros-trip antenna fabricated in 1970s, it has been developed widely, and be used in many area. And it is regarded as a specialty in the area of microwave antenna.Firstly, the theory of antenna is simply analyzed. At the same time, the radiation theory and the feeding ways of dual-frequency are presented, and then compare the five kinds of feeding ways. Secondly, we introduce the analysis way of micros-trip antenna, the design technique of dual-frequency is analyzed detailedly, and use a example to empress the simulation software ADS(Advanced Design System) which mention later. Then make use of the simulation software ADS to design the antennas that on the base of analysis of micros-trip-fed semicircle and rectangle double-band micros-trip patch antenna, we can get and compare the two kinds of antennas’ S11 parameters and the radiation direction diagram, warranty of dimension curtailment is offered. Finally make use of the simulation software ADS to optimize the parameter of antennas and expansion of band of those antennas above is discussed.Finally conclude the research of this thesis with an outlook for the further research.【Key words】micros-trip antenna dual-frequency ADS(Advanced Design System) optimize目录第一章绪论 (1)第一节课题分析 (1)一、课题来源及研究目的、意义 (1)二、国内外研究现状及分析 (1)第二节天线概述 (2)一、引言 (2)二、天线的分类 (3)三、天线辐射机理 (3)四、天线特性参数 (5)第二章微带天线的基本原理 (6)第一节微带天线概述 (6)一、微带天线的发展 (6)二、微带天线的定义和结构 (6)三、微带天线的优缺点 (7)四、微带天线辐射机理 (8)第二节微带天线的馈电方法 (10)一、微带线馈电 (10)二、同轴线馈电 (11)三、临近耦合馈电 (11)四、口径耦合馈电 (12)五、共面波导馈电 (12)六、不同馈电方法的比较 (12)第三节微带天线的分析法 (13)一、传输线模型法 (14)二、空腔模型理论 (17)第三章多频微带天线及仿真工具 (21)第一节多频微带贴片天线 (21)一、多片法 (21)二、单片多模法 (22)三、单片加载法 (22)第二节Momentum介绍 (23)一、ADS简介 (23)二、Momentum概述 (23)三、Momentum运行过程 (24)四、仿真实例 (25)第四章双频微带贴片天线的研究 (27)第一节双频微带贴片天线的介绍 (27)第二节双频微带贴片天线的结果分析 (29)一、天线S11参数 (29)二、天线方向图 (29)三、频带扩展 (30)第三节优化后的双频天线 (31)一、改成矩形贴片天线 (31)二、改变基板介质常数 (33)三、优化馈线长度 (34)四、优化矩形天线上贴片长度 (35)五、优化矩形天线上下贴片长度 (36)六、小结 (36)结论 (37)致谢 (38)参考文献 (39)附录 (41)一、英文原文 (41)二、英文翻译 (50)第一章绪论第一节课题分析一、课题来源及研究目的、意义随着移动通信事业在全世界范围内的迅猛发展,移动电话越来越多地为人们的生活和工作提供了方便和快捷。
微带天线设计天线大体可分为线天线和口径天线两类。
移动通信用的VHF、UHF天线,大多是以对称振子为基础而发展的各种型式的线天线,卫星地面站接收卫星信号大多用抛物面天线(口径天线)。
天线的特征与天线的形状、大小及构成材料有关。
天线的大小一般以天线发射或接收电磁波的波长l来计量。
因为工作于波长l = 2m的长为1m的偶极子天线的辐射特性与工作于波长l = 2cm的长为1cm的偶极子天线是相同的。
与天线方向性有关参数:方向性函数或方向图离开天线一定距离处,描述天线辐射的电磁场强度在空间的相对分布的数学表达式,称为天线的方向性函数;把方向性函数用图形表示出来,就是方向图。
最大辐射波束通常称为方向图的主瓣。
主瓣旁边的几个小的波束叫旁瓣。
为了方便对各种天线的方向图进行比较,就需要规定一些表示方向图特性的参数,这些参数有:1.天线增益G(或方向性GD)、波束宽度(或主瓣宽度)、旁瓣电平等。
2.天线效率3.极化特性4.频带宽度5.输入阻抗天线增益是在波阵面某一给定方向天线辐射强度的量度。
它是被研究天线在最大辐射方向的辐射强度与被研究天线具有同等输入功率的各向同性天线在同一点所产生的最大辐射强度之比。
天线方向性GD与天线增益G类似但与天线增益定义略有不同。
因为天线总有损耗,天线辐射功率比馈入功率总要小一些,所以天线增益总要比天线方向性小一些。
理想天线能把全部馈入天线的功率限制在某一立体角ΩB内辐射出去,且在ΩB立体角内均匀分布。
这种情况下天线增益与天线方向性相等。
理想的天线辐射波束立体角ΩB及波束宽度θB实际天线的辐射功率有时并不限制在一个波束中,在一个波束内也非均匀分布。
在波束中心辐射强度最大,偏离波束中心,辐射强度减小。
辐射强度减小到3db时的立体角即定义为ΩB。
波束宽度θB与立体角ΩB关系为旁瓣电平旁瓣电平是指主瓣最近且电平最高的。
第一旁瓣电平,一般以分贝表示。
方向图的旁瓣区一般是不需要辐射的区域,其电平应尽可能的低。
天线效率ηA定义为:式中,Pi为输入功率;P1为欧姆损耗;PΣ为辐射功率。
天线的辐射电阻RΣ用来度量天线辐射功率的能力,它是一个虚拟的量,定义如下:设有一个电阻RΣ,当通过它的电流等于天线上的最大电流时,其损耗的功率就等于辐射功率。
显然,辐射电阻越大,天线的辐射能力越强。
由上述定义得辐射电阻与辐射功率的关系为即辐射电阻为仿照引入辐射电阻的办法,损耗电阻R1为将上述两式代入效率公式,得天线效率为可见,要提高天线效率,应尽可能提高RΣ,降低R1。
极化特性是指天线在最大辐射方向上电场矢量的方向随时间变化的规律。
按天线所辐射的电场的极化形式,可将天线分为线极化天线、圆极化天线和椭圆极化天线。
线极化又可分为水平极化和垂直极化;圆极化和椭圆极化都可分为左旋和右旋。
输入阻抗与电压驻波比:天线的输入阻抗等于传输线的特性阻抗,才能使天线获得最大功率。
当天线工作频率偏离设计频率时,天线与传输线的匹配变坏,致使传输线上电压驻波比增大,天线效率降低。
因此在实际应用中,还引入电压驻波比参数,并且驻波比不能大于某一规定值。
天线的电参数都与频率有关,当工作频率偏离设计频率时,往往要引起天线参数的变化。
当工作频率变化时,天线的有关电参数不应超出规定的范围,这一频率范围称为频带宽度,简称为天线的带宽。
多数天线具有互易性,即天线在发射模式和接收模式具有相同的方向性。
如果一给定天线工作在发射模式,A方向辐射电磁波的能力比B方向强100倍,那末该天线工作于接收模式时,接收A方向辐射来的电磁波灵敏度比B方向也强100倍。
如果所观测点离开波源很远、很远,波源可近似为点源。
从点源辐射的波其波阵面是球面。
因为观测点离开点源很远很远,在观察者所在的局部区域,其波阵面可近似为平面,当作平面波处理。
符合这一条件的场通常称为远区场。
在天线很多应用场合,远区场的假设都是成立的。
远区场假设为我们分析研究天线辐射的场带来很大方便。
这里所谓很远很远都是以波长来计量的。
同常规的微波天线相比,微带天线具有一些优点。
因而,在大约从100MHz到50GHz的宽频带上获得了大量的应用。
与通常的微波天线相比,微带天线的一些主要优点是:∙重量轻、体积小、剖面薄的平面结构,可以做成共形天线;∙制造成本低,易于大量生产;∙可以做得很薄,因此,不扰动装载的宇宙飞船的空气动力学性能;∙无需作大的变动,天线就能很容易地装在导弹、火箭和卫星上;∙天线的散射截面较小;∙稍稍改变馈电位置就可以获得线极化和圆极化(左旋和右旋);∙比较容易制成双频率工作的天线;∙不需要背腔;∙微带天线适合于组合式设计(固体器件,如振荡器、放大器、可变衰减器、开关、调制器、混频器、移相器等可以直接加到天线基片上);∙馈线和匹配网络可以和天线结构同时制作。
但是,与通常的微波天线相比,微带天线也有一些缺点:∙频带窄;∙有损耗,因而增益较低;∙大多数微带天线只向半空间辐射;∙最大增益实际上受限制(约为20dB);∙馈线与辐射元之间的隔离差;∙端射性能差;∙可能存在表面波;∙功率容量较低。
但是有一些办法可以减小某些缺点。
例如,只要在设计和制造过程中特别注意就可抑制或消除表面波。
在许多实际设计中,微带天线的优点远远超过它的缺点。
在一些显要的系统中已经应用微带天线的有:–移动通信;–卫星通讯;–多普勒及其它雷达;–无线电测高计;–指挥和控制系统;–导弹遥测;–武器信管;–便携装置;–环境检测仪表和遥感;–复杂天线中的馈电单元;–卫星导航接收机;–生物>'/yixuelunwen' target='_blank' class='infotextkey'>医学辐射器。
这些绝没有列全,随着对微带天线应用可能性认识的提高,微带天线的应用场合将继续增多。
微微带天线可以分为三种基本类型:微带贴片天线、微带行波天线和微带缝隙天线。
微带贴片天线微带贴片天线(MPA)是由介质基片、在基片一面上有任意平面几何形状的导电贴片和基片另一面上的地板所构成。
实际上,能计算其辐射特性的贴片图形是有限的。
图3-3 实际使用的各种微带天线图形图3-4 微带天线其它可能的几何图形微带行波天线(MTA)是由基片、在基片一面上的链形周期结构或普通的长TEM波传输线(也维持一个TE模)和基片另一面上的地板组成。
TEM波传输线的末端接匹配负载,当天线上维持行波时,可从天线结构设计上使主波束位于从边射到端射的任意方向图3-5 微带行波天线微带缝隙天线由微带馈线和开在地板上的缝隙组成。
缝隙可以是矩形(宽的或窄的),圆形或环形。
图3-6 微带缝隙天线大多数微带天线只在介质基片的一面上有辐射单元,因此,可以用微带天线或同轴线馈电。
因为天线输入阻抗不等于通常的50 传输线阻抗,所以需要匹配。
匹配可由适当选择馈电的位置来做到。
但是,馈电的位置也影响辐射特性。
图3-7 微带线馈电的天线图3-9 同轴馈电的微带天线中心微带馈电和偏心微带馈电。
馈电点的位置也决定激励那种模式。
当天线元的尺寸确定以后,可按下法进行匹配:先将中心馈电天线的贴片同50 的馈线一起光刻,测量输入阻抗并设计出匹配变阻器;再在天线元与馈线之间接入该匹配变阻器,重新做成天线。
另外,如果天线的几何图形只维持主模,则微带馈线可偏向一边以得到良好的匹配。
特定的天线模可用许多方法激励。
如果场沿矩形贴片的宽度变化,则当馈线沿宽度移动时,输入阻抗随之而变,从而提供了一种阻抗匹配的简单办法。
馈电位置的改变,使得馈线和天线之间的耦合改变,因而使谐振频率产生一个小的漂移,而辐射方向图仍然保持不变。
不过,稍加改变贴片尺寸或者天线尺寸,可补偿谐振频率的漂移。
对于微带馈电,用惠更斯原理可以把馈源模拟为贴在磁壁上沿z方向的电流带。
在薄的微带线中,除了馈线的极邻近区域外,在贴片边界上的任何地方,这个电流都很小。
在理想的情况下,可假定馈源是一个恒定电流的均匀电流带,如图3-8所示。
边缘效应要求电流带的宽度等于馈线的有效宽度,馈线对微带天线输入阻抗的影响表现为增加了一个感抗分量,此感抗可以由电流带的尺寸来计算。
各种同轴激励示于图3-。
在所有的情况中,同轴插座安装在印制电路板的背面,而同轴线内导体接在天线导体上。
对指定的模,同轴插座的位置可由经验去找,以便产生最好的匹配。
使用N型同轴插座的典型微带天线示于图3-9中。
根据惠更斯原理,同轴馈电可以用一个由底面流向顶面的电流圆柱带来模拟。
这个电流在地板上被环状磁流带圈起来,同轴线在地板上的开口则用电壁闭合。
如果忽略磁流的贡献,并假定电流在圆柱上是均匀的,则可进一步简化。
简化到最理想的情况是,取出电流圆柱,用一电流带代替,类似微带馈电的情况。
该带可认为是圆柱的中心轴,沿宽度方向铺开并具有等效宽度的均匀电流带,对于给定的馈电点和场模式,等效宽度可以根据计算与测量所得的阻抗轨迹一致性经验地确定。
一旦这个参数确定了,它就可以用在除馈电点在贴片边缘上以外的任何馈电位置和任何频率。
当馈电点在贴片边缘上时,可以认为,在贴片边缘上的边缘场使等效馈电宽度不同于它在天线内部时的值。
在矩形天线中,等效宽度为同轴馈线内径的五倍时,可给出良好的结果。
在微带天线中,除了直接辐射之外,还可以激励表面波,从而产生轴向辐射。
因此,在设计中必须给予考虑。
这些表面波是TM 型和TE 型,它们传播到微带贴片之外的基片中。
当沿微带贴片传播的准TEM 波相速接近于表面波相速时,就出现了波间的强耦合。
这类表面波耦合的最低频率确定了微带天线工作频率的上限。
最低次TM 模的截止频率没有下限,高次模(TM n 和TE n )的截止频率为式中,c 是真空中的光速;n=1,3,5,…(TE n 模),或n = 2,4,6…(TM n 模)。
对于TE 1模,以duroid (εr = 2.32)和氧化铝(εr = 10)为基片时,h / λc (λc 为截止波长)的计算值分别为0.217和0.0833。
因此,最低次TE 模对于0.16cm 厚的duroid 基片,在约41GHz 上可以激励起来,对于0.0635cm 厚的氧化铝陶瓷基片,在约39GHz 上可以激励起来。
由于TM 0模的截止频率没有下限,所以,在开路微带天线上,总能激励到相当程度,甚至在介电常数较低而且非常薄的基片上,也能以近于光速的相速传播起来。
计算表明,当h / λ0 > 0.09(εr ≈ 2.3的基片)和h / λ0 > 0.03(εr ≈ 10的基片)时,表面波的激励就相当可观了。
因此,一般来说,在特定的应用中,如果按照上面的表面波抑制条件来选择基片,表面波的影响就可不必考虑。
以矩形微带天线为例,用传输线模分析法介绍它的辐射原理。
设辐射元的长为l,宽为w,介质基片的厚度为h,现将辐射元、介质基片和接地板视为一段长为l的微带传输线,在传输线的两端断开形成开路。