北邮考研概率论与数理统计7.6(0-1)分布参数的区间估计(1)
- 格式:ppt
- 大小:659.00 KB
- 文档页数:13
§7.3 估计量的评选标准由点估计提法可以看出,估计的概念相当广泛,并且用不同的估计方法往往会得出不同的估计.如果不对估计的好坏加以明确,估计是没有意义的.评价估计量的优劣并不简单,这首先需要明确衡量优良性的标准.这些标准不是唯一的,也不是绝对的.从不同角度出发可以提出不同的标准.下面我们讨论评价估计优劣的一些常用的标准. (一)均方误差同一参数的估计有多种,那么什么样的估计算是好的甚至是最好的?这就涉及优良性标准.从直观上看,估计量与被估计量越接近越好.当我们用)(ˆX θ估计θ时,评价该估计好坏的一个自然的度量是|)(ˆ|θθ-X ,但由于θ是未知的,样本又具有随机性,因而这种自然度量在实际中是不可行的,为了消除随机性的影响,可以考虑对它求平均|)(ˆ|θθ-X E ,出于数学处理上的方便,最常用的标准是由下式给出的均方误差.2))(ˆ()ˆ(θθθθ-=X E MSE 例7.3.1设n X X ,,1 为来自正态总体),(2σμN 的简单随机样本, (1) 若μ已知,考虑2σ的两个估计量:∑=---=n i i X n 1221)(11ˆμσ,∑=-=n i i X n 1220)(1ˆμσ, 求这两个估计量的均方误差,并比较它们的大小; (2)若μ未知,考虑2σ的两个估计量:∑=---=n i i X X n 1221)(11ˆσ,∑=-=n i i X X n 1220)(1ˆσ, 求这两个估计量的均方误差, 并比较它们的大小.解:(1)先求20ˆσ的均方误差,由于220)ˆ(σσ=E ,所以])([1)ˆ()ˆ(1222022∑=-==n i i X D n D M S E μσσσ, 又∑=-ni iX122)(1μσ~)(2n χ,故n XD ni i2])(1[122=-∑=μσ,即得4122])([σμn X D ni i =-∑=,从而知nMSE 4202)ˆ(2σσσ=,或])([1)ˆ()ˆ(1222022∑=-==ni i X D n D MSE μσσσ n X D nni i 41222)(1σμ=-=∑=, (这里用到了:若X ~),(2σμN ,则⎩⎨⎧-=-为奇数,为偶数,k k k X E k k0,!)!1()(σμ从而422)(σμ=-X D )再求21ˆ-σ的均方误差,}])({)1(1)ˆ(212222212∑=-+---=ni i n X E n MSE σσμσσ 424122)1(12}])([{)1(1σσμ-+=+--=∑=n n X D n ni i , 易见对任意的02>σ,总有>-)ˆ(212σσMSE )ˆ(202σσMSE , 思考题:考虑∑=-+=n i i kX k n 122)(1ˆμσ(k 为整数),计算)ˆ(22k MSE σσ并找出k 为何值时均方误差最小.(2)先求21ˆ-σ的均方误差,由于221)ˆ(σσ=-E ,所以 ])([)1(1)ˆ()ˆ(12221212∑=----==ni i X X D n D MSE σσσ又∑=-ni i X X122)(1σ~)1(2-n χ,故)1(2])(1[122-=-∑=n X XD ni iσ, 即得412)1(2])([σ-=-∑=n X X D ni i ,从而知12)ˆ(4212-=-n MSE σσσ,再求20ˆσ的均方误差,}])1()({1)ˆ(21222222∑=----=ni i n X X E n MSE σσσσ 42412212}])([{1σσn n X X D n ni i -=+-=∑=, 易见对任意的02>σ,总有>-)ˆ(212σσMSE )ˆ(202σσMSE . 思考题:考虑∑=-+=n i i kX X k n 122)(1ˆσ(k 为整数),计算)ˆ(22k MSE σσ并找出k 为何值时均方误差最小.(二) 无偏性均方误差可分解成两部分:2))(ˆ()ˆ(θθθθ-=X E MSE 2ˆˆ]-)(E [)(r Va θθθ+= 若偏差0ˆ==θθθ-)(E )b(,那么均方误差就等于方差.这样的估计量叫做无偏估计量.因此有如下义.定义 设θ为待估参数,参数空间为Θ,),,,(ˆˆ21nX X X θθ=为θ的估计量,若对于任意Θ∈θ,总有θθθ=)ˆ(E , 则称),,,(ˆˆ21n X X X θθ=为θ的无偏估计量,或者说),,,(ˆˆ21n X X X θθ=作为θ的估计量具有无偏性.又若0=∞→)b(lim n θ,称θˆ是θ的渐近无偏估计.例7.3.2 设总体X 的均值为μ,方差为2σ,n X X ,,1 是来自该总体的简单随机样本.则(i )样本均值X 为总体均值μ的无偏估计; (ii )样本均值2S 为总体均值2σ的无偏估计;思考题:样本标准差S 是否是总体标准差σ的无偏估计?如果不是,在正态模型下如何修改使之为无偏估计.例7.3.3 设n X X ,,1 是来自总体),(2σμN 的简单随机样本,求解下面问题(1)2σ的两个常用估计量∑=-=n i i nX X n S 122)(1,∑=--=n i i X X n S 122)(11中哪个是无偏估计?(2) 若22bS X a T +=为2μ的无偏估计,确定b a ,. 解:(1)略(2) 2222222)()1()()()(σμσσμna b a b n a S bE X aE T E ++=++=+=, 由无偏性定义知 对2,σμ∀,有 222)(μσμ=++na b a 从而得nb a 1,1-==。
§7.4 区间估计参数的区间估计与参数的点估计一样,是参数估计的重要方法。
参数的点估计给出了一个具体值,但这个具体值不会是参数的精确值,而是一个近似值。
尽管近似的精度可以用均方误差给出评估,但我们还是无法知道估计值与真值相差多少。
区间估计在一定程度上解决了这个问题。
区间估计就是通过两个统计量及覆盖概率给出参数的另一种形式的估计。
当有样本值后,可以把未知参数估计在一定的范围内,并且可以给出这种估计的可信程度。
在某些具体问题中区间估计可能比点估计更具实用价值,并且区间估计还是度量点估计精度的最直观的方法。
因此区间估计是一种应用非常广泛的估计形式。
7.4.1 区间估计的概念设θ是未知参数,n x x x ,...,,21是样本,所谓区间估计就是要找两个统计量),...,,(ˆˆ21n L L x x x θ=θ和),...,,(ˆˆ21n U U x x x θ=θ,使得),...,,(ˆ21n L x x x θ),...,,(ˆ21n U x x x θ<,并构造一个随机区间)ˆ,ˆ(U L θθ,在有了样本值后把θ估计在区间)ˆ,ˆ(U L θθ内。
由于样本的随机性,随机区间)ˆ,ˆ(U L θθ覆盖θ有一定的概率,自然要求随机区间)ˆ,ˆ(U L θθ覆盖θ的概率)ˆˆ(UL P θθθ<<尽可能大,但这必然导致区间长度增大,而过长的区间又会导致给出的区间估计无意义。
为解决此矛盾,Neyman 建议采取一种折中方案:在使得覆盖θ的概率达到一定要求的前提下,寻找“精确度”尽量高的区间估计. 因此我们把)ˆ,ˆ(U L θθ覆盖θ的的概率事先指定,这就引入置信区间的概念。
定义 设θ是总体的一个参数,假设有两个统计量),...,,(ˆˆ21n L L x x x θ=θ和),...,,(ˆˆ21n U U x x x θ=θ,若对任意Θ∈θ,有 )ˆˆ(UL P θθθ<<α-≥1 则称随机区间),ˆ(U L θθ为θ的置信水平为α-1的置信区间,UL θθ,ˆ分别称为θ的置信水平为α-1的(双侧)置信下限和置信上限。
概率论与数理统计习题及答案习题 一1.写出下列随机试验的样本空间及下列事件包含的样本点. (1) 掷一颗骰子,出现奇数点. (2) 掷二颗骰子,A =“出现点数之和为奇数,且恰好其中有一个1点.”B =“出现点数之和为偶数,但没有一颗骰子出现1点.” (3)将一枚硬币抛两次, A =“第一次出现正面.” B =“至少有一次出现正面.” C =“两次出现同一面.” 【解】{}{}1123456135A Ω==(),,,,,,,,;{}{}{}{}{}(2)(,)|,1,2,,6,(12),(14),(16),(2,1),(4,1),(6,1),(22),(24),(26),(3,3),(3,5),(4,2),(4,4),(4,6),(5,3),(5,5),(6,2),(6,4),(6,6);(3)(,),(,),(,),(,),(,),(,),(,),(,),(i j i j A B A B ΩΩ=======,,,,,,正反正正反正反反正正正反正正正反反{}{},),(,),(,),C =正正正反反2.设A ,B ,C 为三个事件,试用A ,B ,C(1) A 发生,B ,C 都不发生; (2) A 与B 发生,C (3) A ,B ,C 都发生; (4) A ,B ,C (5) A ,B ,C 都不发生; (6) A ,B ,C(7) A ,B ,C 至多有2个发生; (8) A ,B ,C 至少有2个发生. 【解】(1) A BC (2) AB C (3) ABC(4) A ∪B ∪C =AB C ∪A B C ∪A BC ∪A BC ∪A B C ∪AB C ∪ABC =ABC(5) ABC=A B C (6) ABC(7) A BC∪A B C∪AB C∪AB C∪A BC∪A B C∪ABC=ABC=A∪B∪C(8) AB∪BC∪CA=AB C∪A B C∪A BC∪ABC3.指出下列等式命题是否成立,并说明理由:(1) A∪B=(AB)∪B;(2) A B=A∪B;A∩C=AB C;(3) B(4) (AB)( AB)= ∅;(5) 若A⊂B,则A=AB;(6) 若AB=∅,且C⊂A,则BC=∅;(7) 若A⊂B,则B⊃A;(8) 若B⊂A,则A∪B=A.【解】(1)不成立.特例:若Α∩B=φ,则ΑB∪B=B.所以,事件Α发生,事件B必不发生,即Α∪B发生,ΑB∪B不发生.故不成立.(2)不成立.若事件Α发生,则A不发生,Α∪B发生,所以A B不发生,从而不成立.A,AB画文氏图如下:(3)不成立.B所以,若Α-B发生,则AB发生, A B不发生,故不成立.(4)成立.因为ΑB与AB为互斥事件.(5)成立.若事件Α发生,则事件B发生,所以ΑB发生.若事件ΑB发生,则事件Α发生,事件B发生.故成立.(6)成立.若事件C发生,则事件Α发生,所以事件B不发生,故BC=φ.⊂.(7)不成立.画文氏图,可知B A(8)成立.若事件Α发生,由()A AB ⊂,则事件Α∪B 发生.若事件Α∪B 发生,则事件Α,事件B 发生. 若事件Α发生,则成立.若事件B 发生,由B A ⊂,则事件Α发生.4.设A ,B 为随机事件,且P (A )=0.7,P (A B )=0.3,求P (AB ). 【解】 P (AB )=1P (AB )=1[P (A )P (AB )]=1[0.70.3]=0.65.设A ,B 是两事件,且P (A )=0.6,P (B )=0.7, (1) 在什么条件下P (AB(2) 在什么条件下P (AB【解】(1) 当AB =A 时,P (AB )取到最大值为0.6.(2) 当A ∪B =Ω时,P (AB )取到最小值为0.3.6.设A ,B ,C 为三事件,且P (A )=P (B )=1/4,P (C )=1/3且P (AB )=P (BC )=0P(AC )=1/12,求A ,B ,C 至少有一事件发生的概率.【解】 P (A ∪B ∪C )=P (A )+P (B )+P (C )P (AB )P (BC )P (AC )+P (ABC )=14+14+13112=347.52张扑克牌中任意取出13张,问有5张黑桃,3张红心,3张方块,2张梅花的概率是多少?【解】 p =5332131313131352C C C C /C8. (1) 求五个人的生日都在星期日的概率; (2) 求五个人的生日都不在星期日的概率; (3) 求五个人的生日不都在星期日的概率.【解】(1) 设A 1={五个人的生日都在星期日},基本事件总数为75,有利事件仅1个,故 P (A 1)=517=(17)5(亦可用独立性求解,下同) (2) 设A 2={五个人生日都不在星期日},有利事件数为65,故P (A 2)=5567=(67)5(3) 设A 3={五个人的生日不都在星期日}P (A 3)=1P (A 1)=1(17)59. 从一批由45件正品,5件次品组成的产品中任取3件,求其中恰有一件次品的概率.【解】与次序无关,是组合问题.从50个产品中取3个,有350C 种取法.因只有一件次品,所以从45个正品中取2个,共245C 种取法;从5个次品中取1个,共15C 种取法,由乘法原理,恰有一件次品的取法为245C 15C种,所以所求概率为21455350C C P C =.10.一批产品共N 件,其中M 件正品.从中随机地取出n 件(n <N ).试求其中恰有m 件(m ≤M )正品(记为A )的概率. (1) n 件是同时取出的; (2)n (3) n 件是有放回逐件取出的.【解】(1) P (A )=C C /C m n m nM N M N --(2) 由于是无放回逐件取出,可用排列法计算.样本点总数有P nN 种,n 次抽取中有m次为正品的组合数为C m n 种.对于固定的一种正品与次品的抽取次序,从M 件正品中取m 件的排列数有P mM 种,从NM 件次品中取nm 件的排列数为P n mN M --种,故P (A )=C P P P m m n mn M N MnN-- 由于无放回逐渐抽取也可以看成一次取出,故上述概率也可写成P (A )=C C C m n mM N Mn N--可以看出,用第二种方法简便得多.(3) 由于是有放回的抽取,每次都有N 种取法,故所有可能的取法总数为N n种,n 次抽取中有m 次为正品的组合数为C m n 种,对于固定的一种正、次品的抽取次序,m 次取得正品,都有M 种取法,共有M m 种取法,n m 次取得次品,每次都有N M 种取法,共有(N M )n m 种取法,故()C ()/m m n m nnP A M N M N -=- 此题也可用贝努里概型,共做了n 重贝努里试验,每次取得正品的概率为MN,则取得m 件正品的概率为()C 1m n mm n M M P A N N -⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭11. 在电话号码簿中任取一电话号码,求后面4个数全不相同的概率(设后面4个数中的每一个数都是等可能地取自0,1,…,9).【解】这是又重复排列问题.个数有10种选择,4个数共有104种选择.4个数全不相同,是排列问题.用10个数去排4个位置,有410P 种排法,故所求概率为4410/10P P =.12. 50只铆钉随机地取来用在10个部件上,每个部件用3只铆钉.其中有3个铆钉强度太弱.若将3只强度太弱的铆钉都装在一个部件上,则这个部件强度就太弱.求发生一个部件强度太弱的概率是多少? 【解】设A ={发生一个部件强度太弱}133103501()C C /C 1960P A ==13.7个球,其中4个是白球,3个是黑球,从中一次抽取3个,计算至少有两个是白球的概率. 【解】 设A i ={恰有i 个白球}(i =2,3),显然A 2与A 3互斥.213434233377C C C 184(),()C 35C 35P A P A ====故 232322()()()35P A A P A P A =+=14.有甲、乙两批种子,发芽率分别为0.8和0.7,在两批种子中各随机取一粒,求:(1) 两粒都发芽的概率; (2) 至少有一粒发芽的概率; (3) 恰有一粒发芽的概率.【解】设A i ={第i 批种子中的一粒发芽},(i =1,2)(1) 1212()()()0.70.80.56P A A P A P A ==⨯= (2) 12()0.70.80.70.80.94P A A =+-⨯=(3) 2112()0.80.30.20.70.38P A A A A =⨯+⨯=15.3次正面才停止.(1) 问正好在第6次停止的概率;(2) 问正好在第6次停止的情况下,第5次也是出现正面的概率.【解】(1) 223151115()()22232p C == (2) 1342111C ()()22245/325p == *16.0.7及0.6,每人各投了3次,求二人进球数相等的概率.【解】 设A i ={甲进i 球},i =0,1,2,3,B i ={乙进i 球},i =0,1,2,3,则3331212330()(0.3)(0.4)C 0.7(0.3)C 0.6(0.4)i i i P A B ==+⨯⨯+22223333C (0.7)0.3C (0.6)0.4+(0.7)(0.6)⨯=0.32076*17.从5双不同的鞋子中任取4只,求这4只鞋子中至少有两只鞋子配成一双的概率.【解】 4111152222410C C C C C 131C 21p =-= 18.0.3,下雨的概率为0.5,既下雪又下雨的概率为0.1,求:(1)在下雨条件下下雪的概率;(2)这天下雨或下雪的概率. 【解】 设A ={下雨},B ={下雪}.(1) ()0.1()0.2()0.5P AB p B A P A === (2) ()()()()0.30.50.10.7p A B P A P B P AB =+-=+-=?19.已知一个家庭有3个小孩,且其中一个为女孩,求至少有一个男孩的概率(小孩为男为女是等可能的).【解】 设A ={其中一个为女孩},B ={至少有一个男孩},样本点总数为23=8,故()6/86()()7/87P AB P B A P A ===或在缩减样本空间中求,此时样本点总数为7.6()7P B A =20.5%的男人和0.25%的女人是色盲,现随机地挑选一人,此人恰为色盲,问此人是男人的概率(假设男人和女人各占人数的一半).【解】 设A ={此人是男人},B ={此人是色盲},则由贝叶斯公式()()()()()()()()()P A P B A P AB P A B P B P A P B A P A P B A ==+ 0.50.05200.50.050.50.002521⨯==⨯+⨯21.两人约定上午9∶00~10∶00在公园会面,求一人要等另一人半小时以上的概率.题21图【解】设两人到达时刻为x,y ,则0≤x ,y ≤60.事件“一人要等另一人半小时以上”等价于|xy |>30.如图阴影部分所示.22301604P ==22.0,1)中随机地取两个数,求:(1) 两个数之和小于65的概率; (2) 两个数之积小于14的概率.【解】 设两数为x ,y ,则0<x ,y <1.(1) x +y <65. 11441725510.68125p =-==(2) xy =<14.1111244111d d ln 242x p x y ⎛⎫=-=+⎪⎝⎭⎰⎰ 题22图23.P (A )=0.3,P (B )=0.4,P (A B )=0.5,求P (B |A ∪B )【解】 ()()()()()()()()P AB P A P AB P B A B P A B P A P B P AB -==+- 0.70.510.70.60.54-==+-24.15个乒乓球,其中有9个新球,在第一次比赛中任意取出3个球,比赛后放回原盒中;第二次比赛同样任意取出3个球,求第二次取出的3个球均为新球的概率.【解】 设A i ={第一次取出的3个球中有i 个新球},i =0,1,2,3.B ={第二次取出的3球均为新球}由全概率公式,有3()()()i i i P B P B A P A ==∑33123213336996896796333333331515151515151515C C C C C C C C C C C C C C C C C C =∙+∙+∙+∙0.089=25. 按以往概率论考试结果分析,努力学习的学生有90%的可能考试及格,不努力学习的学生有90%的可能考试不及格.据调查,学生中有80%的人是努力学习的,试问: (1)考试及格的学生有多大可能是不努力学习的人? (2)考试不及格的学生有多大可能是努力学习的人? 【解】设A ={被调查学生是努力学习的},则A ={被调查学生是不努力学习的}.由题意知P(A )=0.8,P (A )=0.2,又设B ={被调查学生考试及格}.由题意知P (B |A )=0.9,P (B |A )=0.9,故由贝叶斯公式知(1)()()()()()()()()()P A P B A P AB P A B P B P A P B A P A P B A ==+ 0.20.110.027020.80.90.20.137⨯===⨯+⨯即考试及格的学生中不努力学习的学生仅占2.702% (2) ()()()()()()()()()P A P B A P AB P A B P B P A P B A P A P B A ==+ 0.80.140.30770.80.10.20.913⨯===⨯+⨯即考试不及格的学生中努力学习的学生占30.77%.26. 将两信息分别编码为A 和B 传递出来,接收站收到时,A 被误收作B 的概率为0.02,而B 被误收作A 的概率为0.01.信息A 与B 传递的频繁程度为2∶1.若接收站收到的信息是A ,试问原发信息是A 的概率是多少?【解】 设A ={原发信息是A },则={原发信息是B }C ={收到信息是A },则={收到信息是B } 由贝叶斯公式,得()()()()()()()P A P C A P A C P A P C A P A P C A =+2/30.980.994922/30.981/30.01⨯==⨯+⨯27.在已有两个球的箱子中再放一白球,然后任意取出一球,若发现这球为白球,试求箱子【解】设A i ={箱中原有i 个白球}(i =0,1,2),由题设条件知P (A i )=13,i =0,1,2.又设B ={抽出一球为白球}.由贝叶斯公式知11112()()()()()()()i i i P B A P A P A B P A B P B P B A P A ===∑ 2/31/311/31/32/31/311/33⨯==⨯+⨯+⨯28.96%是合格品,检查产品时,一个合格品被误认为是次品的概率为0.02,一个次品被误认为是合格品的概率为0.05,求在被检查后认为是合格品产品确是合格品的概率.【解】 设A ={产品确为合格品},B ={产品被认为是合格品}由贝叶斯公式得()()()()()()()()()P A P B A P AB P A B P B P A P B A P A P B A ==+0.960.980.9980.960.980.040.05⨯==⨯+⨯29.某保险公司把被保险人分为三类:“谨慎的”,“一般的”,“冒失的”.统计资料表明,上述三种人在一年内发生事故的概率依次为0.05,0.15和0.30;如果“谨慎的”被保险人占20%,“一般的”占50%,“冒失的”占30%,现知某被保险人在一年内出了事故,则他是“谨慎的”的概率是多少?【解】 设A ={该客户是“谨慎的”},B ={该客户是“一般的”},C ={该客户是“冒失的”},D ={该客户在一年内出了事故} 则由贝叶斯公式得()()(|)(|)()()(|)()(|)()(|)P AD P A P D A P A D P D P A P D A P B P D B P C P D C ==++0.20.050.0570.20.050.50.150.30.3⨯==⨯+⨯+⨯30.次品率分别为0.02,0.03,0.05,0.03,假定各道工序是相互独立的,求加工出来的零件的次品率. 【解】设A i ={第i 道工序出次品}(i =1,2,3,4).412341()1()i i P A P A A A A ==-12341()()()()P A P A P A P A =-10.980.970.950.970.124=-⨯⨯⨯=31.设每次射击的命中率为0.2,问至少必须进行多少次独立射击才能使至少击中一次的概率不小于0.9? 【解】设必须进行n 次独立射击.则1(0.8)0.9n-≥即为 (0.8)0.1n ≤ 故n ≥1lg8=11.07,至少必须进行11次独立射击. 32.证明:若P (A |B )=P (A |B ),则A ,B 相互独立.【证】 (|)(|)P A B P A B =即()()()()P AB P AB P B P B =亦()()()()P AB P B P AB P B =,即()[1()][()()]()P AB P B P A P AB P B -=- 因此 ()()()P AB P A P B =,故A 与B 相互独立. 33.三人独立地破译一个密码,他们能破译的概率分别为151314,求将此密码破译出的概率. 【解】 设A i ={第i 人能破译}(i =1,2,3),则31231231()1()1()()()i i P A P A A A P A P A P A ==-=-42310.6534=-⨯⨯=34.甲、乙、丙三人独立地向同一飞机射击,设击中的概率分别是0.4,0.5,0.7,若只有一人击中,则飞机被击落的概率为0.2;若有两人击中,则飞机被击落的概率为0.6;若三人都击中,则飞机一定被击落,求:飞机被击落的概率. 【解】设A ={飞机被击落},B i ={恰有i 人击中飞机},i =0,1,2,3由全概率公式,得3()(|)()i i i P A P A B P B ==∑=(0.4×0.5×0.3+0.6×0.5×0.3+0.6×0.5×0.7)×0.2+(0.4×0.5×0.3+0.4×0.5×0.7+0.6×0.5×0.7)×0.6+0.4×0.5×0.7×1=0.458。
概率论与数理统计考前必备公式==================================概率论与数理统计是大学生必修的数学课程之一,也是多个专业领域的基础知识。
这门课程主要研究随机现象以及随机事件的概率,探索统计规律,并应用于实际问题的分析与决策。
在概率论与数理统计的学习过程中,我们会接触到大量的公式,这些公式是我们进行问题求解的基础。
本文档将为大家整理并介绍概率论与数理统计考前必备的公式,帮助大家在考试中更好地把握重点,提高成绩。
1.随机变量与分布1.1随机变量随机变量是一种数值型的随机量,它的取值由随机实验的结果决定。
我们将随机变量分为离散型和连续型两类。
1.离散型随机变量定义:$X$是一个随机变量,如果它的取值有穷多个或者可列无穷多个,那么$X$是离散型随机变量。
2.连续型随机变量定义:$X$是一个随机变量,如果它的取值为一个区间或者多个区间,那么$X$是连续型随机变量。
1.2分布函数分布函数是描述随机变量取值情况的函数,记作$F(x)$,其中$x$为实数。
根据随机变量的类型,分布函数可为离散型随机变量的概率质量函数或连续型随机变量的概率密度函数。
1.离散型随机变量概率质量函数概率质量函数描述离散型随机变量取值的概率分布。
对于离散型随机变量$X$,其概率质量函数定义如下:$$P(X=x_i)=p_i,\q u ad i=1,2,\d ot s$$2.连续型随机变量概率密度函数概率密度函数描述连续型随机变量取值的概率分布。
对于连续型随机变量$X$,其概率密度函数定义如下:$$F(x)=\in t_{-\in f ty}^{x}f(x)d x$$1.3均匀分布均匀分布是最简单的连续型随机变量分布之一,主要用于描述在一个区间内所有点出现的概率相等的情况。
1.均匀分布的概率密度函数均匀分布的概率密度函数定义如下:$$f(x)=\be gi n{cas e s}\f ra c{1}{b-a},&a\le qx\l eq b\\0,&\t ex t{其他}\e n d{ca se s}$$其中$a$为区间下界,$b$为区间上界。
概率论与数理统计第7章参数估计习题及答案第7章参数估计 ----点估计⼀、填空题1、设总体X 服从⼆项分布),(p N B ,10<计量=pXN. 2、设总体)p ,1(B ~X,其中未知参数 01<则 p 的矩估计为_∑=n 1i i X n 1_,样本的似然函数为_ii X 1n1i X )p 1(p -=-∏__。
3、设 12,,,n X X X 是来⾃总体 ),(N ~X 2σµ的样本,则有关于 µ及σ2的似然函数212(,,;,)n L X X X µσ=_2i 2)X (21n1i e21µ-σ-=∏σπ__。
⼆、计算题1、设总体X 具有分布密度(;)(1),01f x x x ααα=+<<,其中1->α是未知参数,n X X X ,,21为⼀个样本,试求参数α的矩估计和极⼤似然估计.解:因?++=+=101α2α1α102++=++=+|a x 令2α1α++==??)(X X EXX --=∴112α为α的矩估计因似然函数1212(,,;)(1)()n n n L x x x x x x ααα=+∑=++=∴ni i X n L 1α1αln )ln(ln ,由∑==++=??ni i X nL 101ααln ln 得,α的极⼤似量估计量为)ln (?∑=+-=ni iXn11α2、设总体X 服从指数分布 ,0()0,x e x f x λλ-?>=??其他,n X X X ,,21是来⾃X 的样本,(1)求未知参数λ的矩估计;(2)求λ的极⼤似然估计.解:(1)由于1()E X λ=,令11X Xλλ=?=i x nn L x x x eλλ=-∑=111ln ln ln 0nii ni ni ii L n x d L n n x d xλλλλλ====-=-=?=∑∑∑故λ的极⼤似然估计仍为1X。
第七章 参数估计参数估计是数理统计研究的主要问题之一. 假设总体X ~N (μ,σ2),μ,σ2是未知参数,X 1,X 2,…,X n 是来自X 的样本,样本值是x 1,x 2,…,x n ,我们要由样本值来确定μ和σ2的估计值,这就是参数估计问题,参数估计分为点估计(Point estimation )和区间估计(Interval estimation).第一节 点估计所谓点估计是指把总体的未知参数估计为某个确定的值或在某个确定的点上,故点估计又称为定值估计.定义7.1 设总体X 的分布函数为F (x ,θ),θ是未知参数,X 1,X 2,…,X n 是X 的一样本,样本值为x 1,x 2,…,x n ,构造一个统计量(X 1,X 2,…,X n ),用它的观察值 (x 1,x 2,…,x n )作为θ的估计值,这种问题称为点估计问题.习惯上称随机变量(X 1,X 2,…,X n )为θ的估计量,称(x 1,x 2,…,x n )为的估计值.构造估计量(X 1,X 2,…,X n )的方法很多,下面仅介绍矩法和极大似然估计法. 1.矩法矩法(Moment method of estimation )是一种古老的估计方法.它是由英国统计学家皮尔逊(K .Pearson )于1894年首创的.它虽然古老,但目前仍常用.矩法估计的一般原则是:用样本矩作为总体矩的估计,若不够良好,再作适当调整. 矩法的一般作法:设总体X ~F (X ;θ1,θ2,…,θl )其中θ1,θ2,…,θl 均未知. (1) 如果总体X 的k 阶矩μk =E (X k ) (1≤k ≤l)均存在,则μk =μk (θ1,θ2,…,θl ),(1≤k ≤l ).(2) 令⎪⎪⎩⎪⎪⎨⎧.),,,(,),,,(,),,,(2122121211l l l l l A A A θθθμθθθμθθθμ其中A k (1≤k ≤l )为样本k 阶矩.求出方程组的解,ˆ,,ˆ,ˆ21l θθθ 我们称),,,(ˆˆ21n k k X X X θθ=为参数θk (1≤k ≤l )的矩估计量, ),,,(ˆˆ21nk k x x x θθ=为参数θk 的矩估计值. 例7.1 设总体X 的密度函数为:f (x )=⎩⎨⎧-><<+.,0),1(,10,)1(其他αααx x其中α未知,样本为(X 1,X 2,…,X n ),求参数α的矩法估计.解 A 1=X .由μ1=A 1及μ1=E (X )=21)1()(1++=+=⎰⎰+∞∞-ααααx x x x x xf d d , 有21++=ααX ,得121ˆ--=X Xα.例7.2 设X ~N (μ,σ2),μ,σ2未知,试用矩法对μ,σ2进行估计. 解⎪⎪⎩⎪⎪⎨⎧======∑∑==.1)(,1)(12222111ni i ni i X n A X E X n A X E μμ 又 E (X )=μ, E (X 2)=D (X )+(EX )2=σ2+μ2,那么 .1ˆˆ,ˆ2222S nn A X -=-==μσμ. 例7.3 在某班期末数学考试成绩中随机抽取9人的成绩.结果如下:试求该班数学成绩的平均分数、标准差的矩估计值.解 设X 为该班数学成绩,μ=E (X ),σ2=D (X ))558994(919191+++==∑= i i x x =75;2/19122)(819898⎥⎦⎤⎢⎣⎡-⋅=∑=i i x x s =12.14.⎪⎪⎩⎪⎪⎨⎧======∑∑==.91)(,91)(9122229111i i i i X A X E X A X E μμ 由于E (X 2)=D (X )+(EX )2=σ2+μ2,那么,2222228ˆˆˆ,().9X A A x S μσμ==-=-= 所以,该班数学成绩的平均分数的矩估计值x =μˆ=75分,标准差的矩估计值298ˆs =σ=12.14. 作矩法估计时无需知道总体的概率分布,只要知道总体矩即可.但矩法估计量有时不惟一,如总体X 服从参数为λ的泊松分布时,X 和B 2都是参数λ的矩法估计.2.极(最)大似然估计法极大似然估计法(Maximum likelihood estimation)只能在已知总体分布的前提下进行,为了对它的思想有所了解,我们先看一个例子.例7.4 假定一个盒子里装有许多大小相同的黑球和白球,并且假定它们的数目之比为3∶1,但不知是白球多还是黑球多,现在有放回地从盒中抽了3个球,试根据所抽3个球中黑球的数目确定是白球多还是黑球多.解 设所抽3个球中黑球数为X ,摸到黑球的概率为p ,则X 服从二项分布P {X =k }=k 3C p k(1-p )3-k , k =0,1,2,3.问题是p =1/4还是p =3/4?现根据样本中黑球数,对未知参数p 进行估计.抽样后,共有4种可能结果,其概率如表7-1所示.假如某次抽样中,只出现一个黑球,即X =1,p =1/4时,P {X =1}=27/64;p =3/4时,P {X =1}=9/64,这时我们就会选择p =1/4,即黑球数比白球数为1∶3.因为在一次试验中,事件“1个黑球”发生了.我们认为它应有较大的概率27/64(27/64>9/64),而27/64对应着参数p =1/4,同样可以考虑X =0,2,3的情形,最后可得p =⎪⎩⎪⎨⎧==.3,2,43,1,0,41时当时当x x(1) 似然函数在极大似然估计法中,最关键的问题是如何求得似然函数(定义下文给出),有了似然函数,问题就简单了,下面分两种情形来介绍似然函数. (a ) 离散型总体设总体X 为离散型,P {X =x }=p (x ,θ),其中θ为待估计的未知参数,假定x 1,x 2,…,x n 为样本X 1,X 2,…,X n 的一组观测值.P {X 1=x 1,X 2=x 2,…,X n =x n }=P {X 1=x 1}P {X 2=x 2}…P {X n =x n }=p (x 1,θ)p (x 2,θ)…p (x n ,θ)=∏=ni ix p 1),(θ.将∏=ni ix p 1),(θ看作是参数θ的函数,记为L (θ),即 L (θ)=∏=ni ix p 1),(θ. (7.1)(b ) 连续型总体设总体X 为连续型,已知其分布密度函数为f (x ,θ),θ为待估计的未知参数,则样本(X 1,X 2,…,X n )的联合密度为:f (x 1,θ)f (x 2,θ)…f (x n ,θ)=∏=ni ix f 1),(θ.将它也看作是关于参数θ的函数,记为L (θ),即L (θ)=∏=ni ix f 1),(θ. (7.2)由此可见:不管是离散型总体,还是连续型总体,只要知道它的概率分布或密度函数,我们总可以得到一个关于参数θ的函数L (θ),称L (θ)为似然函数.(2) 极大似然估计极大似然估计法的主要思想是:如果随机抽样得到的样本观测值为x 1,x 2,…,x n ,则我们应当这样来选取未知参数θ的值,使得出现该样本值的可能性最大,即使得似然函数L (θ)取最大值,从而求参数θ的极大似然估计的问题,就转化为求似然函数L (θ)的极值点的问题,一般来说,这个问题可以通过求解下面的方程来解决0)(=θθd d L . (7.3)然而,L (θ)是n 个函数的连乘积,求导数比较复杂,由于ln L (θ)是L (θ)的单调增函数,所以L (θ)与ln L (θ)在θ的同一点处取得极大值.于是求解(7.3)可转化为求解0)(=θθd dln L .(7.4)称ln L (θ)为对数似然函数,方程(7.4)为对数似然方程,求解此方程就可得到参数θ的估计值.如果总体X 的分布中含有k 个未知参数:θ1,θ2,…,θk ,则极大似然估计法也适用.此时,所得的似然函数是关于θ1,θ2,…,θk 的多元函数L (θ1,θ2,…,θk ),解下列方程组,就可得到θ1,θ2,…,θk 的估计值,⎪⎪⎪⎩⎪⎪⎪⎨⎧=∂∂=∂∂=∂∂.0),,,(ln ,0),,,(ln ,0),,,(ln 21221121k k k k L L L θθθθθθθθθθθθ(7.5) 例7.5 在泊松总体中抽取样本,其样本值为:x 1,x 2,…,x n ,试对泊松分布的未知参数λ作极大似然估计.解 因泊松总体是离散型的,其概率分布为:P {X =x }=λλ-e !x x,故似然函数为:L (λ)=∏∏==∑--⋅⋅==ni ni i x nixx x ni ii11!1!1λλλλee. ln L (λ)=11ln ln (!)nniii i n x x λλ==-+-∑∏,∑=+-=ni i x n 11)ln(λλλd d . 令λλd d ln =0,得: ∑=+-ni i x n 11λ=0.所以x x n ni i L ==∑=11ˆλ,λ的极大似然估计量为X L=λˆ(为了和λ的矩法估计区别起见,我们将λ的极大似然估计记为Lλˆ). 例7.6 设一批产品含有次品,今从中随机抽出100件,发现其中有8件次品,试求次品率θ的极大似然估计值.解 用极大似然法时必须明确总体的分布,现在题目没有说明这一点,故应先来确定总体的分布.设 X i =,100,,2,1,0,1 =⎩⎨⎧i ,i ,i 次取正品第次取次品第则X i 服从两点分布:12100p (x i ,θ)=P {X i =x i }=θ xi (1-θ)1-xi ,x i =0,1,故似然函数为:L (θ)=∑-∑=-==-=-∏1001100110010011)1()1(i ii i iix x i x x θθθθ由题知:∑=1001i ix =8,所以 L (θ)=θ8(1-θ)92. 两边取对数得:ln L (θ)=8ln θ+92ln (1-θ).对数似然方程为:θθθθ--=1928)(ln d d L =0.解之得θ=8/100=0.08.所以Lθˆ=0.08. 例7.7 设x 1,x 2,…,x n 为来自正态总体N (μ,σ2)的观测值,试求总体未知参数μ,σ2的极大似然估计.解 因正态总体为连续型,其密度函数为f (x )=222)(21σμσ--x e π,所以似然函数为:L (μ,σ2)=⎭⎬⎫⎩⎨⎧--⎪⎭⎫ ⎝⎛=⎭⎬⎫⎩⎨⎧--∑∏==n i i nni i x x 122122)(21exp 212)(exp 21μσσσμσππ ln L (μ,σ2)=∑=----n i i x n n 1222)(21ln 22ln 2μσσπ. 故似然方程组为:⎪⎪⎩⎪⎪⎨⎧=-+-=∂∂=-=∂∂∑∑==.0)(212),(ln ,0)(1),(ln 124222122ni i ni i x n L x L μσσσσμμσμσμ 解以上方程组得:⎪⎪⎩⎪⎪⎨⎧=-=-===∑∑∑===.ˆ)(1)(1,12121221B x x n x n x x n ni i n i i ni i μσμ 所以 ⎩⎨⎧==.ˆ,ˆ22B X L σμ例7.8 设总体X 服从[0,θ]上的均匀分布,X 1,X 2,…,X n 是来自X 的样本,求θ的矩法估计和极大似然估计.解 因为E (X )=θ/2,令X =E (X ),得.2ˆX =矩θ 又 f (x )=⎪⎩⎪⎨⎧≤≤.,0,0,1其他θθx所以L (θ)=n θ1,0≤x i ≤θ. 要L (θ)最大,θ必须尽可能小,又θ≥x i ,i =1,2,…,n ,所以{}ini L X ≤≤=1max ˆθ.第二节 估计量的评价标准设总体X 服从[0,θ]上的均匀分布,由上节例7可知ˆ2X θ=矩,{}1ˆmax L ii nX θ≤≤ 都是θ的估计,这两个估计哪一个好?下面我们首先讨论衡量估计量好坏的标准问题.1.无偏性定义7.2 若估计量(X 1,X 2,…,X n )的数学期望等于未知参数θ,即:ˆ()E θθ=, (7.6) 则称ˆθ为θ的无偏估计量(Non -deviation estimator ).估计量ˆθ的值不一定就是θ的真值,因为它是一个随机变量,若ˆθ是θ的无偏估计,则尽管ˆθ的值随样本值的不同而变化,但平均来说它会等于θ的真值.例7.9 设X 1,X 2,…,X n 为总体X 的一个样本,E (X )=μ,则样本平均数11nii X X n ==∑是μ的无偏估计量.证 因为E (X )=μ,所以E (X i )=μ,i =1,2,…,n ,于是1111()()n ni i i i E X E X E X n n ==⎛⎫== ⎪⎝⎭∑∑=μ.所以X 是μ的无偏估计量.例7.10 设有总体X ,E (X )=μ,D (X )=σ2,(X 1,X 2,…,X n )为从该总体中抽得的一个样本,样本方差S 2及二阶样本中心矩B 2=11()ni i X X n =-∑是否为总体方差σ2的无偏估计?解 因为E (S 2)=σ2,所以S 2是σ2的一个无偏估计,这也是我们称S 2为样本方差的理由.由于B 2=21n S n -, 那么 E (B 2)=2211()n n E S n nσ--=, 所以B 2不是σ2的一个无偏估计.还需指出:一般说来无偏估计量的函数并不是未知参数相应函数的无偏估计量.例如,当X ~N (μ,σ2)时,X 是μ的无偏估计量,但2X 不是μ2的无偏估计量,事实上:22222()()().E X D X E X nσμμ⎡⎤=+=+≠⎣⎦2.有效性对于未知参数θ,如果有两个无偏估计量1ˆθ与2ˆθ,即E (1ˆθ)=E (2ˆθ)=θ,那么在1ˆθ,2ˆθ中谁更好呢?此时我们自然希望对θ的平均偏差E (ˆθ-θ)2越小越好,即一个好的估计量应该有尽可能小的方差,这就是有效性.定义7.3 设1ˆθ和2ˆθ都是未知参数θ的无偏估计,若对任意的参数θ,有 D (1ˆθ)≤D (2ˆθ), (7.7)则称1ˆθ比2ˆθ有效. 如果1ˆθ比2ˆθ有效,则虽然1ˆθ还不是θ的真值,但1ˆθ在θ附近取值的密集程度较2ˆθ高,即用1ˆθ估计θ精度要高些. 例如,对正态总体N (μ,σ2),11ni i X X n ==∑,X i 和X 都是E (X )=μ的无偏估计量,但D (X )=2nσ≤D (X i )=σ2,故X 较个别观测值X i 有效.实际当中也是如此,比如要估计某个班学生的平均成绩,可用两种方法进行估计,一种是在该班任意抽一个同学,就以该同学的成绩作为全班的平均成绩;另一种方法是在该班抽取n 位同学,以这n 个同学的平均成绩作为全班的平均成绩,显然第二种方法比第一种方法好.3.一致性无偏性、有效性都是在样本容量n 一定的条件下进行讨论的,然而(X 1,X 2,…,X n )不仅与样本值有关,而且与样本容量n 有关,不妨记为n ,很自然,我们希望n 越大时,n 对θ的估计应该越精确.定义7.4 如果n 依概率收敛于θ,即∀ε>0,有{}ˆlim 1,nn P θθε→∞-<=,(7.8) 则称ˆnθ是θ的一致估计量(Uniform estimator ). 由辛钦大数定律可以证明:样本平均数X 是总体均值μ的一致估计量,样本的方差S 2及二阶样本中心矩B 2都是总体方差σ2的一致估计量.第三节 区间估计1.区间估计的概念上节我们介绍了参数的点估计,假设总体X ~N (μ,σ2),对于样本(X 1,X 2,…,X n ),ˆX μ=是参数μ的矩法估计和极大似然估计,并且满足无偏性和一致性.但实际上X =μ的可能性有多大呢?由于X 是一连续型随机变量,P {X =μ}=0,即ˆμ=μ的可能性为0,为此,我们希望给出μ的一个大致范围,使得μ有较高的概率在这个范围内,这就是区间估计问题.定义7.5 设1ˆθ(X 1,X 2,…,X n )及2ˆθ (X 1,X 2,…,X n )是两个统计量,如果对于给定的概率1-α(0<α<1),有:P {1ˆθ<θ<2ˆθ}=1-α, (7.9) 则称随机区间(1ˆθ,2ˆθ)为参数θ的置信区间(Confidence interval ),1ˆθ称为置信下限,2ˆθ称为置信上限,1-α叫置信概率或置信度(Confidence level).定义中的随机区间(1ˆθ,2ˆθ)的大小依赖于随机抽取的样本观测值,它可能包含θ,也可能不包含θ,(7.9)式的意义是指(1ˆθ,2ˆθ)以1-α的概率包含θ.例如,若取α=0.05,那么置信概率为1-α=0.95,这时,置信区间(1ˆθ,2ˆθ)的意义是指:在100次重复抽样中所得到的100个置信区间中,大约有95个区间包含参数真值θ,有5个区间不包含真值θ,亦即随机区间(1ˆθ,2ˆθ)包含参数θ真值的频率近似为0.95. 例7.11 设X ~N (μ,σ2),μ未知,σ2已知,样本X 1,X 2,…,X n 来自总体X ,求μ的置信区间,置信概率为1-α.解 因为X 1,X 2,…,X n 为来自X 的样本,而X ~N (μ,σ2),所以uX ~N (0,1),对于给定的α,查附录中表2可得上分位点2z α,使得2P z α⎫<⎬⎭=1-α,即22P X z X z ααμ⎧-<<+⎨⎩=1-α. 所以μ的置信概率为1-α的置信区间为X z X z αα⎛-+ ⎝. (7.10) 由(7.10)式可知置信区间的长度为22z α,若n 越大,置信区间就越短;若置信概率1-α越大,α就越小,2z α就越大,从而置信区间就越长.2.正态总体参数的区间估计由于在大多数情况下,我们所遇到的总体是服从正态分布的(有的是近似正态分布),故我们现在来重点讨论正态总体参数的区间估计问题.在下面的讨论中,总假定X ~N (μ,σ2),X 1,X 2,…,X n 为其样本. (1) 对μ的估计 分两种情况进行讨论. (a ) σ2已知此时就是例7.11的情形,结论是:μ的置信区间为22X z X z αα⎛-+ ⎝, 置信概率为1-α.(b ) σ2未知当σ2未知时,不能使用(7.10)式作为置信区间,因为(7.10)式中区间的端点与σ有关,考虑到S 2=211()1n ii X X n =--∑是σ2X σ换成S 得 TX ~t (n -1).对于给定的α,查附录中t 分布表4可得上分位点t σ/2(n -1),使得2(1)P t n α⎫<-⎬⎭=1-α,即22(1)(1)P X t n X t n ααμ⎧⎫-<<-⎨⎬⎩⎭=1-α.所以μ的置信概率为1-α的置信区间为22(1),(1)X t n X t n αα⎛⎫-- ⎪⎝⎭. (7.11)=,S 0,所以μ的置信区间也可写成22(1),(1)X t n X t n αα⎛⎫-+- ⎪⎝⎭.(7.12) 例7.12 某车间生产滚珠,已知其直径X ~N (μ,σ2),现从某一天生产的产品中随机地抽出6个,测得直径如下(单位:毫米)14.6 15.1 14.9 14.8 15.2 15.1试求滚珠直径X 的均值μ的置信概率为95%的置信区间.解 111(14.615.114.914.815.215.1)6n i i x x n ===+++++∑=14.95,s 0, t α/2(n -1)=t 0.025(5)=2.571,所以2(t n α-=2.571=0.24, 置信区间为(14.95-0.24,14.95+0.24),即(14.71,15.19),置信概率为95%.σ2的置信区间我们只考虑μ未知的情形.此时由于S 2=211()1n i i X X n =--∑是σ2的无偏估计,我们考虑22(1)n S σ-,由于222(1)~(1)n S n χσ--,所以,对于给定的α,2122222(1)(1)(1)n S P n n ααχχσ-⎧⎫--<<-⎨⎬⎩⎭=1-α. 即222221(1)(1)(1)(1)n S n S P n n αασχχ-⎧⎫--⎪⎪<<⎨⎬--⎪⎪⎩⎭=1-α.所以σ2的置信区间为2222221(1)(1),(1)(1)n S n S n n ααχχ-⎛⎫-- ⎪ ⎪--⎝⎭(7.13) 或222200221,(1)(1)nS nS n n ααχχ-⎛⎫ ⎪ ⎪--⎝⎭, 其中S 02=211()ni i X X n =-∑. 例7.13 某种钢丝的折断力服从正态分布,今从一批钢丝中任取10根,试验其折断力,得数据如下:572 570 578 568 596 576 584 572 580 566试求方差的置信概率为0.9的置信区间.解 因为111(572570566)10n i i x x n ===+++∑=576.2,s 02=2211n i i x x n =-∑=71.56, α=0.10,n -1=9,查附表得:2220.05(1)(9)n αχχ-==16.919,220.951(1)(9)n αχχ--==3.325,22021071.56(1)16.919ns n αχ⨯=-=42.30,220211071.56(1) 3.325ns n αχ-⨯=-=215.22.所以,σ2的置信概率为0.9的置信区间为(42.30,215.22).以上仅介绍了正态总体的均值和方差两个参数的区间估计方法.在有些问题中并不知道总体X 服从什么分布,要对E (X )=μ作区间估计,在这种情况下只要X 的方差σ2已知,并且样本容量n 很大,X 准正态分布N (0,1),因而μ的置信概率为1-α的近似置信区间为X z X z αα⎛-+ ⎝.小 结参数估计问题分为点估计和区间估计.设θ是总体X 的待估计参数.用统计量ˆθ=ˆθ(X 1,X 2,…,X n )来估计θ称ˆθ是θ的估计量,点估计只给出未知参数θ的单一估计.本章介绍了两种点估计的方法:矩估计法和极大似然估计法.矩法的做法:设总体X ~F (X ;θ1,θ2,…,θl )其中θk (1≤k ≤l )为未知参数. (1) 求总体X 的k (1≤k ≤l )阶矩E (x k ); (2) 求方程组112112(,,,)(),(,,,)().l l l l l E X A E X A μθθθμθθθ==⎧⎪⎨⎪==⎩的一组解1ˆθ,2ˆθ,…, ˆl θ,那么ˆk θ=ˆk θ (X 1,X 2,…,X n )(1≤k ≤l)为k 的矩估计量. ˆkθ(x 1,x 2,…,x n )为θk 的矩估计值. 极大似然估计法的思想是若已观察到样本值为(x 1,x 2,…,x n ),而取到这一样本值的概率为P =P (θ1,θ2,…,θl ),我们就取θk (1≤k ≤l )的估计值使概率P 达到最大,其一般做法如下: (1) 写出似然函数L =L (θ1,θ2,…,θl ) 当总体X 是离散型随机变量时,L =121(;,,,)nil i P x θθθ=∏,当总体X 是连续型随机变量时L =121(;,,,)nil i f x θθθ=∏,(2) 对L 取对数ln L =121ln (;,,,)nil i f x θθθ=∑,(3) 求出方程组ln kLθ∂∂=0, k =1,2,…,l . 的一组解ˆk θ=ˆk θ (x 1,…,x n ) (1≤k ≤l )即k 为未知参数θ的极大似然估计值,ˆkθ=(X 1,X 2,…,X n )为θk 的极大似然估计量.在统计问题中往往先使用极大似然估计法,在此法使用不方便时,再用矩估计法进行未知参数的点估计.对于一个未知参数可以提出不同的估计量,那么就需要给出评定估计量好坏的标准.本章介绍了三个标准:无偏性、有效性、一致性.重点是无偏性.点估计不能反映估计的精度,我们就引人区间估计.设θ是总体X 的未知参数,1ˆθ,2ˆθ均是样本X 1,X 2,…,X n 的统计量,若对给定值α(0<α<1)满足P (1ˆθ<θ<2ˆθ)=1-α,称1-α为置信度或置信概率,(1ˆθ,2ˆθ)为θ的置信度为1-α的置信区间.参数的区间估计中一个典型、重要的问题是正态总体X (X ~N (μ,σ2))中μ或σ2的区间估计,其置信区间如表7-3所示.表7-3 正态总体的均值、方差的置信度为(1-α)的置信区间区间估计给出了估计的精度与可靠度(1-α),其精度与可靠度是相互制约的即精度越高(置信区间长度越小),可靠度越低;反之亦然.在实际中,应先固定可靠度,再估计精度. 重要术语及主题矩估计量 极大似然估计量估计量的评选标准:无偏性、有效性、一致性, 参数θ的置信度为(1-α)的置信区间, 单个正态总体均值、方差的置信区间.习 题 七1.设总体X 服从二项分布b (n ,p ),n 已知,X 1,X 2,…,X n 为来自X 的样本,求参数p 的矩法估计.2.设总体X 的密度函数f (x ,θ)=22(),0,0,.x x θθθ⎧-<<⎪⎨⎪⎩其他X 1,X 2,…,X n 为其样本,试求参数θ的矩法估计.3.设总体X 的密度函数为f (x ,θ),X 1,X 2,…,X n 为其样本,求θ的极大似然估计.(1) f (x ,θ)=,0,0,0.e x x x θθ-⎧≥⎨<⎩(2) f (x ,θ)=1,01,0,.x x θθ-⎧<<⎨⎩其他5.随机变量X 服从[0,θ]上的均匀分布,今得X 的样本观测值:0.9,0.8,0.2,0.8,0.4,0.4,0.7,0.6,求θ的矩法估计和极大似然估计,它们是否为θ的无偏估计.6.设X 1,X 2,…,X n 是取自总体X 的样本,E (X )=μ,D (X )=σ2,2ˆσ=k 1211()n i ii XX -+=-∑,问k 为何值时2ˆσ为σ2的无偏估计. 7.设X 1,X 2是从正态总体N (μ,σ2)中抽取的样本112212312211311ˆˆˆ;;;334422X X X X X X μμμ=+=+=+ 试证123ˆˆˆ,,μμμ都是μ的无偏估计量,并求出每一估计量的方差. 8.某车间生产的螺钉,其直径X ~N (μ,σ2),由过去的经验知道σ2=0.06,今随机抽取6枚,测得其长度(单位mm )如下:14.7 15.0 14.8 14.9 15.1 15.2 试求μ的置信概率为0.95的置信区间.9.总体X ~N (μ,σ2),σ2已知,问需抽取容量n 多大的样本,才能使μ的置信概率为1-α,且置信区间的长度不大于L ? 10.设某种砖头的抗压强度X ~N (μ,σ2),今随机抽取20块砖头,测得数据如下(kg ·cm -2):64 69 49 92 55 97 41 84 88 99 84 66 100 98 72 74 87 84 48 81 (1) 求μ的置信概率为0.95的置信区间. (2) 求σ2的置信概率为0.95的置信区间. 11.设总体X ~f (x )=(1),01;10,.x x θθθ⎧+<<>-⎨⎩其中其他 X 1,X 2,…,X n 是X 的一个样本,求θ的矩估计量及极大似然估计量. (1997年研考)12.设总体X ~f (x )= 36(),0;0,.xx x θθθ⎧-<<⎪⎨⎪⎩其他X 1,X 2,…,X n 为总体X 的一个样本(1) 求θ的矩估计量;(2) 求ˆ()D θ. (1999研考) 13.设某种电子元件的使用寿命X 的概率密度函数为f (x ,θ)= 2()2,0;0,.e x x x θθ--⎧>⎨≤⎩其中θ(θ>0)为未知参数,又设x 1,x 2,…,x n 是总体X 的一组样本观察值,求θ的极大似然估计值. (2000研考)估计值和极大似然估计值. (2002研考)15.设总体X 的分布函数为F (x ,β)=1,,0,.x xx ββααα⎧->⎪⎨⎪<⎩其中未知参数β>1,α>0,设X 1,X 2,…,X n 为来自总体X 的样本(1) 当α=1时,求β的矩估计量;(2) 当α=1时,求β的极大似然估计量;(3) 当β=2时,求α的极大似然估计量. (2004研考) 16.从正态总体X ~N (3.4,62)中抽取容量为n 的样本,如果其样本均值位于区间(1.4,5.4)内的概率不小于0.95,问n 至少应取多大?2/2()d zt z t ϕ-=⎰(1998研考)17. 设总体X 的概率密度为f (x ,θ)=,01,1,12,0,.x x θθ<<⎧⎪-≤<⎨⎪⎩其他 其中θ是未知参数(0<θ<1),X 1,X 2,…,X n 为来自总体X 的简单随机样本,记N 的样本值x 1,x 2,…,x n 中小于1的个数.求: (1) θ的矩估计;(2) θ的最大似然估计. (2006研考)。