高中数学选修1-1第一章常用逻辑用语C组
- 格式:doc
- 大小:467.50 KB
- 文档页数:4
常用逻辑用语一、命题及其关系考点:要点1.命题:一般地,把用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.其中判断为真的语句叫做真命题,判断为假的语句叫做假命题.要点2.四种命题:(1)一般地,用p和q分别表示命题的条件和结论,用¬p和¬q分别表示p和q的否定,于是四种命题的形式就是:原命题:若p,则q;逆命题:若q,则p;否命题:若¬p,则¬q;逆否命题:若¬q,则¬p.要点3.四种命题的关系:互为逆否的两个命题同真假.考点1. 命题及其真假判断:例1、判断下列语句是否是命题?若是,判断其真假并说明理由。
1)x>1或x=1;2)如果x=1,那么x=33)x2-5x+6=0; 4)当x=4时,2x<0; 5)垂直于同一条直线的两条直线必平行吗?6)矩形难道不是平行四边形吗? 7)矩形是平行四边形吗?;8)求证:若x∈R,方程x2-x+1=0无实根.解析:1)不是,x值不确定。
2)是,假命题3)不是命题.因为语句中含有变量x,在不给定变量的值之前,我们无法确定这语句的真假.同样如“2x>0”也不是命题.4)是命题.它是作出判断的语言,它是一个假命题.5)不是命题.因为并没有对垂直于同一条直线的两条直线平行作出判断,疑问句不是命题.6)是命题.通过反意疑问句对矩形是平行四边形作出了判断,它是真命题.7)不是.不是陈述句8)不是命题.它是祈使句,没有作出判断.如“把门关上”是祈使句,也不是命题.练一练: 1. 判断下列语句是不是命题。
(1)2+22是有理数; (2)1+1>2; (3)2100是个大数; (4)986能被11整除;(5)非典型性肺炎是怎样传播的? (6)(6)x ≤3。
2. 判断下列语句是不是命题。
(1)矩形难道不是平行四边形吗? (2)垂直于同一条直线的两条直线平行吗? (3)一个数不是合数就是质数。
(4)大角所对的边大于小角所对的边; (5)y+x 是有理数,则x 、y 也是有理数。
105051.(2019 ·宝鸡中学高二期中(文))下列语句不是命题的是( ).A. 3 > 4B. 0.3是整数C. a> 3D.4 是3 的约数2.(2019 ·北京清华附中高一期中)“ x> 1”是“ < 1”的( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D. 既不充分又不必要条件3.(2019 ·天津静海一中高一月考)命题“ V x> 0,x2 一1 > 一1”的否定是( )A. V x> 0,x2 一1 < 一1B. V x< 0,x2 一1 < 一1C. 3x> 0,x2 一1 < 一1D. 3x< 0,x2 一1 < 一14.(2019 ·内蒙古集宁一中高二月考(文))命题“ 3x= R, x2 + 2x+ 2 共0 ”的否定是( )A. V x= R, x2 + 2x+ 2 > 0B. V x= R, x2 + 2x+ 2 共0C. 3x= R, x2 + 2x+ 2 > 0D. 3x= R, x2 + 2x+ 2 > 05.(2019 ·洛阳市第一高级中学高二月考)已知命题p :V x ∈R ,x2>0 ,则一p是( )A. V x ∈R ,x2<0B. 3 x ∈R ,x2<0C. V x ∈R ,x2≤0D. 3 x ∈R ,x2≤06.(2018 ·上海市西南位育中学高二期中)“ a= 1 ” 是“ 直线l1:ax+ 2y一1 = 0 与l2:x+ (a+ 1)y+ 6 = 0 平行”的( )条件A.充分非必要B.必要非充分C.充要D. 既非充分又非必要7.(2019 ·辽宁高三月考(文))已知直线l1 :x+ (m+ 1)y+ m= 0 ,l2 :mx+ 2y+ 1 = 0 ,则“ l1//l2 ”的必要不充分条件是( )A. m= 2 或m= 1B. m= 1C. m= -2D. m= -2 或m= 18.(2019 ·天津静海一中高一月考)已知p :log2 (x- 1) < 1 ,q : x2 - 2x- 3 < 0 ,则p是q的( )条件A.充分非必要B.必要非充分C.充分必要D. 既非充分又非必要9.(2019 ·内蒙古集宁一中高二月考(文))已知命题“若p,则q”,假设其逆命题为真,则p是q 的( )A.充分条件B.必要条件C. 既不充分又不必要条件D.充要条件10.(2019·上海师大附中高一期中)A,B,C三个学生参加了一次考试,已知命题p:若及格分高于70 分,则A,B,C都没有及格.则下列四个命题中为p的逆否命题的是( )A.若及格分不高于70 分,则A,B,C都及格B.若A,B,C都及格,则及格分不高于70 分C.若A,B,C至少有一人及格,则及格分不高于70 分D.若A,B,C至少有一人及格,则及格分高于70 分7463611.(2019·上海师大附中高一期中)“ x> 4 ”是“ x> 2 ”的___________条件.12.(2018·上海市澄衷高级中学高一期中)“ x> 5 ”的一个充分非必要条件是__________.13.(2018·上海市杨思高级中学高一期中)写出命题“若a> 0 且b> 0 ,则ab>0 ”的否命题:________15.(2019·北京市十一学校高一单元测试)命题“ 3x=Q, x2 - x+ 1= Z”为__________命题(填“真”或“假”) ,其否定为__________15.(2018·江西高二期末( 理)) 若a2 + b2 = 0 , 则a= 0 _____ b= 0 ( 用适当的逻辑联结词“且”“或”“非”)16.(2011·浙江高二期中(理))已知命题“面积相等的三角形是全等三角形” ,该命题的否定是_______________________,该命题的否命题是___________________________.17.(2018·海林市朝鲜族中学高二单元测试)设命题p:若e x> 1 ,则x>0 ,命题q:若a>b,则 < ,则命题p∧q为____命题.(填“真”或“假”)56418--201221,221418.(2019·邵阳市第十一中学高二期中)已知p:实数x,满足x一a< 0 ,q : 实数x,满足x2 一4x+ 3 共0 ,若a= 2时,p^ q为真,求实数x的取值范围.19.(2019·辽宁高一月考)设p: x> a, q : x> 3 .( 1)若p是q的必要不充分条件,求a的取值范围;(2)若p是q的充分不必要条件,求a的取值范围;(3)若a是方程x2 一6x+ 9 = 0 的根,判断p是q的什么条件.} ,20.(2019·上海市行知中学高一月考) 设集合A= 恳x | x2 + 3x+ 2 = 0B=恳x | x2+ (m+ 1)x+ m= 0};( 1)用列举法表示集合A;(2)若x= B是x= A的充分条件,求实数m的值.21.(2019·青冈县第一中学校高二月考( 文)) 已知,:关于的方程有实数根.( 1)若为真命题,求实数的取值范围;(2)若为真命题,为真命题,求实数的取值范围.22.(2019·湖南高二期中( 理)) 已知命题p : x2 + mx+ 1 = 0 有两个不相等的负根,命题q : 4x2 + 4(m一2)x+ 1 = 0 无实根,若p^ p为假,p八q为真,求实数m的取值范围.105051.(2019 ·宝鸡中学高二期中(文))下列语句不是命题的是( ).A. 3 > 4B. 0.3是整数C. a> 3D.4 是3 的约数【答案】C2.(2019 ·北京清华附中高一期中)“ x> 1”是“< 1”的( )A.充分而不必要条件C.充分必要条件B.必要而不充分条件D. 既不充分又不必要条件【答案】A3.(2019 ·天津静海一中高一月考)命题“ V x> 0, x2 一1 > 一1”的否定是( )A. V x> 0, x2 一1 < 一1B. V x< 0, x2 一1 < 一1C. 3x> 0, x2 一1 < 一 1D. 3x< 0, x2 一1 < 一1【答案】C4.(2019 ·内蒙古集宁一中高二月考(文))命题“ 3x= R, x2 + 2x+ 2 共0 ”的否定是( )A. V x= R, x2 + 2x+ 2 > 0B. V x= R, x2 + 2x+ 2 共0C. 3x= R, x2 + 2x+ 2 > 0D. 3x= R, x2 + 2x+ 2 > 0【答案】A5.(2019 ·洛阳市第一高级中学高二月考)已知命题p :V x ∈R ,x2>0 ,则一p是( )A. V x ∈R ,x2<0B. 3 x ∈R ,x2<0C. V x ∈R ,x2≤0D. 3 x ∈R ,x2≤0【答案】D6.(2018 ·上海市西南位育中学高二期中)“ a= 1 ” 是“ 直线l1:ax+ 2y一1 = 0 与l2:x+ (a+ 1)y+ 6 = 0 平行”的( )条件A.充分非必要B.必要非充分C.充要D. 既非充分又非必要【答案】A7.(2019 ·辽宁高三月考(文))已知直线l1 :x+ (m+ 1)y+ m= 0 ,l2 :mx+ 2y+ 1 = 0 ,则“ l1//l2 ”的必要不充分条件是( )A. m= 2 或m= 1B. m= 1C. m= 一2D. m= 一2 或m= 1 【答案】D8.(2019 ·天津静海一中高一月考)已知p :log2 (x一1) < 1 ,q : x2 一2x一3 < 0 ,则p是q的( )条件A.充分非必要B.必要非充分C.充分必要D. 既非充分又非必要【答案】A9.(2019 ·内蒙古集宁一中高二月考(文))已知命题“若p,则q”,假设其逆命题为真,则p是q 的( )A.充分条件B.必要条件C. 既不充分又不必要条件D.充要条件【答案】B10.(2019·上海师大附中高一期中)A,B,C三个学生参加了一次考试,已知命题p:若及格分高于70 分,则A,B,C都没有及格.则下列四个命题中为p的逆否命题的是( )A.若及格分不高于70 分,则A,B,C都及格B.若A,B,C都及格,则及格分不高于70 分C.若A,B,C至少有一人及格,则及格分不高于70 分D.若A,B,C至少有一人及格,则及格分高于70 分【答案】C7463611.(2019·上海师大附中高一期中)“ x> 4 ”是“ x> 2 ”的___________条件.【答案】充分非必要12.(2018·上海市澄衷高级中学高一期中)“ x> 5 ”的一个充分非必要条件是__________. 【答案】x> 6 (答案不唯一)13.(2018·上海市杨思高级中学高一期中)写出命题“若a> 0 且b> 0 ,则ab>0 ”的否命题:________【答案】若a< 0 或b< 0 ,则ab< 015.(2019·北京市十一学校高一单元测试)命题“ 3x=Q, x2 一x+ 1= Z”为__________命题(填“真”或“假”) ,其否定为__________【答案】真假15.(2018·江西高二期末( 理)) 若a2 + b2 = 0 , 则a= 0 _____ b= 0 ( 用适当的逻辑联结词“且”“或”“非”)【答案】且16.(2011·浙江高二期中(理))已知命题“面积相等的三角形是全等三角形” ,该命题的否定是________________________________,该命题的否命题是___________________________. 【答案】面积相等的三角形不一定是全等三角形;若两个三角形的面积不相等,则这两个三角形不是全等三角形.17.(2018·海林市朝鲜族中学高二单元测试)设命题p:若e x> 1 ,则x>0 ,命题q:若a>b,则 < ,则命题p∧q为____命题.(填“真”或“假”)【答案】假56418--201221,221418.(2019·邵阳市第十一中学高二期中)已知p:实数x,满足x一a< 0 ,q : 实数x,满足x2 一4x+ 3 共0 ,若a= 2时,p^ q为真,求实数x的取值范围.【答案】恳x1共x<2}19.(2019·辽宁高一月考)设p: x> a, q : x> 3 .( 1)若p是q的必要不充分条件,求a的取值范围;(2)若p是q的充分不必要条件,求a的取值范围;(3)若a是方程x2 一6x+ 9 = 0 的根,判断p是q的什么条件.【答案】( 1) a< 3 ;(2) a> 3 ;(3)充要条件} ,20.(2019·上海市行知中学高一月考) 设集合A= 恳x | x2 + 3x+ 2 = 0B=恳x | x2+ (m+ 1)x+ m= 0};( 1)用列举法表示集合A;(2)若x= B是x= A的充分条件,求实数m的值.【答案】( 1) A 1, 2 ;(2) m 1或 m 2【解析】( 1) x 23x 2 0 x 1 x 2 0即 x1或x 2 ,A 1, 2 ;(2)若x B 是x A 的充分条件,则 B A ,x 2 m 1 x m 0 x 1 x m 0解得 x 1 或 x m ,当 m1时, B 1 ,满足 B A ,当 m 2 时, B 1, 2 ,同样满足B A ,所以 m1或 m 2 .21.(2019· 青 冈 县 第 一 中 学 校 高 二 月考 ( 文 )) 已 知有实数根.( 1)若为真命题,求实数的取值范围; (2)若为真命题,为真命题,求实数的取值范围.【答案】( 1);(2)【解析】( 1) 方程有实数根,得:(2)为真命题,为真命题为真命题,为假命题,即得 .22.(2019· 湖南 高 二期 中( 理)) 已 知命题 p : x2mx 1 0 有两个 不相等 的 负根 , 命题q : 4x 2 4(m 2)x 1 0 无实根,若p p 为假, p q 为真,求实数 m 的取值范围.【答案】 (1, 2]得;, : 关 于 的 方 程【解析】因为p⊥ p假,并且p q为真,故p假,而q真即x2 + mx+ 1 = 0不存在两个不等的负根,且4x2 +4(m 2)x+1= 0无实根.所以= 16(m 2)2 16 < 0 ,即1< m< 3,当1< m 2 时,x2 + mx+ 1 = 0不存在两个不等的负根,当2< m< 3时,x2 + mx+ 1 = 0存在两个不等的负根.所以m的取值范围是(1, 2]。
高中数学高考核心考点提醒选修1-1 第一章常用逻辑用语集合与常用逻辑用语集合概念一组对象的全体. ,x A x A∈∉。
元素特点:互异性、无序性、确定性。
关系子集x A x B A B∈⇒∈⇔⊆A∅⊆;,A B B C A C⊆⊆⇒⊆n个元素集合子集数2n 真子集00,,x A x B x B x A A B∈⇒∈∃∈∉⇔⊂相等,A B B A A B⊆⊆⇔=运算交集{}|,x xB x BA A∈∈=且()()()U U UC A B C A C B=()()()U U UC A B C A C B=()U UC C A A=并集{}|,x xB x BA A∈∈=或补集{}|Ux x UC A x A∈=∉且常用逻辑用语命题概念能够判断真假的语句。
四种命题原命题:若p,则q原命题与逆命题,否命题与逆否命题互逆;原命题与否命题、逆命题与逆否命题互否;原命题与逆否命题、否命题与逆命题互为逆否。
互为逆否的命题等价。
逆命题:若q,则p否命题:若p⌝,则q⌝逆否命题:若q⌝,则p⌝充要条件充分条件p q⇒,p是q的充分条件若命题p对应集合A,命题q对应集合B,则p q⇒等价于A B⊆,p q⇔等价于A B=。
必要条件p q⇒,q是p的必要条件充要条件p q⇔,,p q互为充要条件逻辑连接词或命题p q∨,,p q有一为真即为真,,p q均为假时才为假。
类比集合的并且命题p q∧,,p q均为真时才为真,,p q有一为假即为假。
类比集合的交非命题p⌝和p为一真一假两个互为对立的命题。
类比集合的补量词全称量词∀,含全称量词的命题叫全称命题,其否定为特称命题。
存在量词∃,含存在量词的命题叫特称命题,其否定为全称命题。
一、命题及其关系1.四种命题的相互关系:(既否条件又否结论)(先逆再否)(互换条件与结论)2.四种命题的真假性之间的关系:(1)两个命题互为逆否命题,它们有相同的真假性,即原命题与逆否命题等价,逆命题与否命题等价。
目录:数学选修1-1第一章常用逻辑用语 [基础训练A组]第一章常用逻辑用语 [综合训练B组]第一章常用逻辑用语 [提高训练C组]第二章圆锥曲线 [基础训练A组]第二章圆锥曲线 [综合训练B组]第二章圆锥曲线 [提高训练C组]第三章导数及其应用 [基础训练A组]第三章导数及其应用 [综合训练B组]第三章导数及其应用 [提高训练C组](数学选修1-1)第一章 常用逻辑用语[基础训练A 组]一、选择题1.下列语句中是命题的是( )A .周期函数的和是周期函数吗?B .0sin 451=C .2210x x +->D .梯形是不是平面图形呢?2.在命题“若抛物线2y ax bx c =++的开口向下,则{}2|0x ax bx c φ++<≠”的逆命题、否命题、逆否命题中结论成立的是( )A .都真B .都假C .否命题真D .逆否命题真3.有下述说法:①0a b >>是22a b >的充要条件. ②0a b >>是ba 11<的充要条件. ③0ab >>是33a b >的充要条件.则其中正确的说法有( )A .0个B .1个C .2个D .3个 4.下列说法中正确的是( )A .一个命题的逆命题为真,则它的逆否命题一定为真B .“a b >”与“ a c b c +>+”不等价C .“220a b +=,则,a b 全为0”的逆否命题是“若,a b 全不为0, 则220a b +≠”D .一个命题的否命题为真,则它的逆命题一定为真5.若:,1A a R a ∈<, :B x 的二次方程2(1)20x a x a +++-=的一个根大于零,另一根小于零,则A 是B 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件6.已知条件:12p x +>,条件2:56q x x ->,则p ⌝是q ⌝的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件二、填空题1.命题:“若a b ⋅不为零,则,a b 都不为零”的逆否命题是 。
第一章常用逻辑用语1.1 命题及其关系1、命题(1)一般地,在数学中我们把用语言、符号或式子表达的,可以判断真假的陈述句叫做命题。
其中判断为真的语句叫做真命题,判断为假的语句叫做假命题。
(2)“若p,则q”形式的命题中的p称为命题的条件,q称为命题的结论。
2、四种命题(1)对于两个命题,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么我们把这样的两个命题叫做互逆命题。
其中一个命题叫做原命题(“若p,则q”),另一个叫做原命题的逆命题(“若q,则p”)。
(2)对于两个命题,其中一个命题的条件和结论恰好是另一个命题的条件的否定和结论的否定,我们把这样的两个命题叫做互否命题。
如果把其中一个命题叫做原命题,那么另一个叫做原命题的否命题(“若p⌝,则q⌝”)。
(3)对于两个命题,其中一个命题的条件和结论恰好是另一个命题的结论的否定和条件的否定,我们把这样的两个命题叫做互为逆否命题。
如果把其中的一个命题叫做原命题,那么另一个叫做原命题的逆否命题(“若q⌝,则p⌝”)。
3、四种命题间的相互关系例1下列语句中哪些是命题?是真命题还是假命题?(1)空集是任何集合的子集;(2)若整数a是素数,则a是奇数;(3)指数函数是增函数吗?(4)若空间中两条直线不相交,则这两条直线平行;(5)2)2-;(2=(6)15x。
>例2指出下列命题中的条件p和结论q:(1)若整数a能被2整除,则a是偶数;(2)若四边形是菱形,则它的对角线互相垂直且平分。
例3将下列命题改写成“若p,则q”的形式,并判断真假:(1)垂直于同一条直线的两条直线平行;(2)负数的立方是负数;(3)对顶角相等。
例4证明:若022=x,则0=+yx。
-y1.2 充分条件与必要条件1、充分条件与必要条件一般地,“若p,则q”为真命题,是指由p通过推理得出q。
这是,我们就说,由p可推出q,记作qp⇒,并且说p是q的充分条件,q是p的必要条件。
2、充要条件一般地,如果既有qq⇒,就记作qp⇔。
常用逻辑用语一、命题及其关系考点:要点1.命题:一般地,把用语言、符号或式子表达的,可以推断真假的陈述句叫做命题.其中推断为真的语句叫做真命题,推断为假的语句叫做假命题.要点2.四种命题:(1)一般地,用p和q分别表示命题的条件和结论,用¬p和¬q分别表示p和q的否定,于是四种命题的形式就是:原命题:若p,则q;逆命题:若q,则p;否命题:若¬p,则¬q;逆否命题:若¬q,则¬p.要点3.四种命题的关系:互为逆否的两个命题同真假.考点1. 命题及其真假推断:例1、推断下列语句是否是命题?若是,推断其真假并说明理由。
1)x>1或x=1;2)假如x=1,那么x=33)x2-5x+6=0; 4)当x=4时,2x<0; 5)垂直于同一条直线的两条直线必平行吗?6)矩形莫非不是平行四边形吗? 7)矩形是平行四边形吗?;8)求证:若x∈R,方程x2-x+1=0无实根.解析:1)不是,x值不确定。
2)是,假命题3)不是命题.因为语句中含有变量x,在不给定变量的值之前,我们无法确定这语句的真假.同样如“2x>0”也不是命题.4)是命题.它是作出推断的语言,它是一个假命题.5)不是命题.因为并没有对垂直于同一条直线的两条直线平行作出推断,疑问句不是命题.6)是命题.通过反意疑问句对矩形是平行四边形作出了推断,它是真命题.7)不是.不是陈述句8)不是命题.它是祈使句,没有作出推断.如“把门关上”是祈使句,也不是命题.练一练: 1. 推断下列语句是不是命题。
(1)2+22是有理数;(2)1+1>2;(3)2100是个大数;(4)986能被11整除;(5)非典型性肺炎是怎样传播的? (6)(6)x ≤3。
2. 推断下列语句是不是命题。
(1)矩形莫非不是平行四边形吗? (2)垂直于同一条直线的两条直线平行吗? (3)一个数不是合数就是质数。
(4)大角所对的边大于小角所对的边; (5)y+x 是有理数,则x 、y 也是有理数。
一、选择题1.已知命题1:,04xp x R ⎛⎫∀∈> ⎪⎝⎭,命题p 的否定是( ) A .1,04xx R ⎛⎫∃∈> ⎪⎝⎭ B .1,04xx R ⎛⎫∃∈≤ ⎪⎝⎭ C .1,04x x R ⎛⎫∀∈≤ ⎪⎝⎭D .1,04xx R ⎛⎫∀∉≤ ⎪⎝⎭2.命题“x R ∀∈,210x x +-<”的否定是( )A .x R ∃∈,210x x +->B .x R ∃∈,210x x +-≥C .x R ∀∈,210x x +-≥D .x R ∀∈,210x x +->3.使“不等式241122x x -+⎛⎫> ⎪⎝⎭成立”的一个充分不必要条件是( )A .1x <B .0x <C .1x >D .0x >4.命题“a ∀∈R ,20a >或20a =”的否定形式是( ) A .a ∀∈R ,20a <B .a ∀∈R ,20aC .0a R ∃∈,200aD .0a R ∃∈,200a <5.命题“x R ∀∈,24cos 0x x +>”的否定为( ) A .x R ∀∈,24cos 0x x +< B .x R ∀∈,24cos 0x x +≤ C .x R ∃∈,24cos 0x x +<D .x R ∃∈,24cos 0x x +≤6.命题“x R ∀∈,2210x x -+>”的否定为( ) A .x R ∀∈,2210x x -+< B .x R ∀∉,2210x x -+> C .x R ∃∈,2210x x -+≥ D .x R ∃∈,2210x x -+≤ 7.命题“210x x x ∀>->,”的否定是( )A .21,0x x x ∃≤->B .21,0x x x ∀>-≤C .21,0x x x ∃>-≤D .21,0x x x ∀≤-> 8.若0a >,0b >,则“a b >”是“ln ln a b b a ->-”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 9.设x ∈R ,则“20x -=”是“24x =”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件10.已知命题()0:0,p x ∃∈+∞,00sin 0x x +<,则p ⌝为( ) A .()0,x ∀∈+∞,sin 0x x +≥B .()0,x ∀∈+∞,sin 0x x +<C .()00,x ∃∉+∞,00sin 0x x +<D .()00,x ∃∉+∞,00sin 0x x +≥11.若“x a ≥”是“12x ≥”的充分条件,则下列不可能是a 的一个取值的是( ) A .sin3πB .13C .2D .π12.若“,33x ππ⎡⎤∃∈-⎢⎥⎣⎦,tan x m <”是假命题,则实数m 的最大值为( )A B .C .3D .二、填空题13.为迎接2022年北京冬奥会,短道速滑队组织甲、乙、丙等6名队员参加选拔赛,已知比赛结果没有并列名次记“甲得第一名”为p ,“乙得第一名”为q ,“丙得第一名”为r ,若p q ∨是真命题,()p r ⌝∨是真命题,则得第一名的是______________.14.命题“R x ∃∈,sin 1x ≤”的否定是___________. 15.给出以下几个结论: ①若0a b >>,0c <,则c c a b<; ②如果b d ≠且,b d 都不为0,则111221n n nn n n nd b d db db dbb d b++----+++⋅⋅⋅++=-,*n N ∈;③若1e ,2e 是夹角为60的两个单位向量,则122ae e ,1232be e 的夹角为60;④在ABC 中,三内角,,A B C 所对的边分别为,,a b c ,则()22cos cos c a B b A a b -=-;其中正确结论的序号为______.16.已知命题p :“∀x ∈[1,2],x 2+1≥a ”,命题q :“∃x 0∈R ,x 02+2ax 0+1=0”,若命题“¬p ∨¬q ”是假命题,则实数a 的取值范围是_____. 17.现给出五个命题: ①a ∀∈R ,212a a +>; ②223,,2()2a b R a b a b ∀∈+>--;> ④4()cos ,0,cos 2f x x x x π⎛⎫=+∈ ⎪⎝⎭的最小值等于4;⑤若不等式2210kx x k -+-<对[]1,1k ∀∈-都成立,则x 12x <<. 所有正确命题的序号为______18.命题:“x R ∀∈,2210x x ++>”的否定为____________;19.已知,,αβγ是三个不同的平面,,m n 是两条不同的直线,给出下列命题: ①若//,m n αα⊂,则//m n ; ②若,//αβ⋂=m m n ,且,n n αβ⊄⊄,则//,//αβn n ;③若,,//αβαβ⊥⊂n m ,则m n ⊥; ④ ,,,αγβγαβγ⊥⊥⋂=⊂m n ,则m n ⊥. 其中真命题是__________.20.设有两个命题:(1)不等式|||1|x x a -->的解集为∅;(2)函数()f x =a 的取值范围为________.三、解答题21.已知集合()(){}140A x x x =--≤,{}5B x a x a =-<<. (1)若x A ∈是x B ∈的充分条件,求实数a 的取值范围; (2)若命题“AB =∅”为真命题,求实数a 的取值范围.22.设函数()22)lg(3f x x x =+-的定义域为集合A ,函数1()||g x a x x =+-在[-3,-1]上存在零点时的a 的取值集合B . (1)求AB ;(2)若集合2{}0|C x x p =+≥,若x C ∈是x A ∈充分条件,求实数p 的取值范围. 23.已知0,a >给出下列两个命题::p 函数()()ln 1ln2af x x x=+--小于零恒成立; :q 关于x 的方程()2110x a x +-+=一根在0,1上,另一根在1,2上.若p q ∨为真命题, p q ∧为假命题,求实数a 的取值范围. 24.已知函数()af x x =和()24g x x ax a =++.(1)命题p :()f x 是[)0,+∞上的增函数,命题q :关于的方程()0g x =有实根,若p q ∧为真,求实数a 的取值范围;(2)若“[]1,2x ∈”是“()0g x ≤”的充分条件,求实数a 的取值范围. 25.已知集合A 是函数()2lg 208y x x=--的定义域,集合B 是不等式22210x x a -+-≥(0a >)的解集,p :x A ∈,q :x B ∈.(1)若A B =∅,求实数a 的取值范围;(2)若p ⌝是q 的充分不必要条件,求实数a 的取值范围.26.给定命题p :对任意实数x 都有210ax ax ++>成立;命题q :关于x 的方程20x x a -+=有实数根.如果p q ∨为真命题,p q ∧为假命题,求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】根据命题的否定的定义,写出命题的否定,然后判断. 【详解】命题1:,04xp x R ⎛⎫∀∈> ⎪⎝⎭的否定是:1,04xx R ⎛⎫∃∈≤ ⎪⎝⎭. 故选:B . 2.B解析:B 【分析】根据全称命题的否定是特称命题即可得正确答案. 【详解】命题“x R ∀∈,210x x +-<”的否定是x R ∃∈,210x x +-≥ 故选:B3.B解析:B 【分析】根据指数函数的性质,求得不等式的解集,再结合充分不必要条件和选项,即可求解. 【详解】由不等式241122x x -+⎛⎫> ⎪⎝⎭,可得24122x x -++>,即241x x -+>+,解得1x <,结合选项,可得“不等式241122x x -+⎛⎫> ⎪⎝⎭成立”的一个充分不必要条件可以是0x <.故选:B.4.D解析:D 【分析】利用全称命题的否定是特称命题可得出结论. 【详解】命题“a ∀∈R ,20a >或20a =”为全称命题,该命题的否定为“0a R ∃∈,200a <”.故选:D.5.D解析:D 【分析】全称命题的否定为特称命题,即可选出答案. 【详解】全称命题的否定为特称命题,故“x R ∀∈,24cos 0x x +>”的否定为“x R ∃∈,24cos 0x x +≤”,故选:D6.D解析:D 【分析】本题可根据全称命题的否定是特称命题得出结果. 【详解】因为全称命题的否定是特称命题,所以命题“x R ∀∈,2210x x -+>”的否定为“x R ∃∈,2210x x -+≤”, 故选:D.7.C解析:C 【分析】根据全称命题否定的定义得解. 【详解】由全称命题的定义可知,命题“210x x x ∀>->,”的否定是: 21,0x x x ∃>-≤故选:C8.C解析:C 【分析】构造函数()ln f x x x =+,根据,a b 的范围结合函数的单调性以及充分条件和必要条件的定义即可得正确答案. 【详解】设()ln f x x x =+,则()f x 在()0,∞+上单调递增,因为a b >,所以()()f a f b >即ln ln a a b b +>+,可得ln ln a b b a ->-, 所以由“a b >”可以得出“ln ln a b b a ->-”若ln ln a b b a ->-则ln ln a a b b +>+,即()()f a f b >, 因为()ln f x x x =+在()0,∞+上单调递增,所以a b >, 所以由ln ln a b b a ->-可以得出a b >,所以若0a >,0b >,则“a b >”是“ln ln a b b a ->-”的充要条件, 故选:C 【点睛】关键点点睛:本题解题的关键点是构造函数()ln f x x x =+,将ln ln a b b a ->-转化为ln ln a a b b +>+,利用函数的单调性比较大小. 9.A解析:A 【分析】根据充分必要条件的定义判断. 【详解】20x -=,即2x =时,一定有24x =,充分的,但24x =时,2x =±, 不一定是2x =,不必要,因此应为充分不必要条件. 故选:A . 10.A解析:A 【分析】利用特称命题的否定可得出结论. 【详解】命题p 为特称命题,该命题的否定为():0,p x ⌝∀∈+∞,sin 0x x +≥. 故选:A.11.B解析:B 【分析】根据已知条件得出实数a 的取值范围,由此可得出合适的选项. 【详解】因为“x a ≥”是“12x ≥”的充分条件,则12a ≥,而sin 3π=.故满足条件的选项为B. 故选:B.12.B解析:B 【分析】将存在性命题进行否定,得全称命题为真,从而由tan tan()3x π≥-=m ≤【详解】若“,33x ππ⎡⎤∃∈-⎢⎥⎣⎦,tan x m <”是假命题, 则“,33ππ⎡⎤∀∈-⎢⎥⎣⎦x ,tan x m ≥”是真命题,因为,33ππ⎡⎤∀∈-⎢⎥⎣⎦x ,tan tan()3x π≥-=m ≤.故选:B.二、填空题13.乙【分析】直接利用复合命题的真假判断推理得到答案【详解】由是真命题可知pq 中至少有一个是真命题因为比赛结果没有并列名次说明第一名要么是甲要么是乙;且r 是假命题;又是真命题则是真命题即p 是假命题故得第解析:乙 【分析】直接利用复合命题的真假判断推理得到答案.【详解】由p q ∨是真命题,,可知p 、q 中至少有一个是真命题,因为比赛结果没有并列名次,说明第一名要么是甲,要么是乙;且r 是假命题; 又()p r ⌝∨是真命题,则p ⌝是真命题,即p 是假命题. 故得第一名的是乙. 故答案为:乙. 【点睛】复合命题真假的判定: (1) 判断简单命题的真假;(2) 根据真值表判断复合命题的真假.14.【分析】由特称命题的否定为全称命题即可得解【详解】命题为特称命题由特称命题的否定为全称命题所以命题的否定是:故答案为:解析:x R ∀∈,sin 1x >【分析】由特称命题的否定为全称命题,即可得解. 【详解】命题“R x ∃∈,sin 1x ≤”为特称命题,由特称命题的否定为全称命题 所以命题“R x ∃∈,sin 1x ≤”的否定是:x R ∀∈,sin 1x > 故答案为:x R ∀∈,sin 1x >15.②④【分析】根据不等式性质知①错误;根据等比数列求和公式知②正确;根据平面向量数量积和夹角的运算知③错误;利用余弦定理化简知④正确【详解】对于①由知:又①错误;对于②数列是以为公比的等比数列②正确;解析:②④ 【分析】根据不等式性质知①错误;根据等比数列求和公式知②正确;根据平面向量数量积和夹角的运算知③错误;利用余弦定理化简知④正确. 【详解】对于①,由0a b >>知:11a b <,又0c <,c c a b∴>,①错误; 对于②,数列1221,,,,,n n n n nd d b d b db b ---⋅⋅⋅是以1b b d d ⎛⎫≠ ⎪⎝⎭为公比的等比数列, 111112211n n nnn n n n n n n b d b d b d b d d d d b d b db b b d b d b d d++++-----⋅-+++⋅⋅⋅++===-∴--,②正确;对于③,121cos602e e ⋅==, ()()221212112217232626222a b e e e e e e e e ∴⋅=+⋅-+=-+⋅+=-++=-,()22212112224442a e e e e e e =+=+⋅+=+=(22111223912496b e e e e e =-=-⋅+=-=1cos ,2a ba b a b⋅∴<>==-⋅,,120a b ∴<>=,③错误;对于④,由余弦定理得:22222222222222222a c b b c a a c b b c a c a b a b ac bc ⎛⎫+-+-+---+⋅-⋅==- ⎪⎝⎭,④正确. 故答案为:②④. 【点睛】本题考查命题真假性的判断,涉及到不等式的性质、等比数列求和、平面向量夹角的计算、余弦定理化简等知识,考查学生对于上述四个部分知识的掌握的熟练程度,属于综合型考题.16.∪12【分析】利用复合命题的真假性判断出的真假性即可求解【详解】若为真则;若为真则△即或;命题是假命题均为假命题即均为真命题;;或;故答案为:【点睛】本题考查了复合命题的真假性考查学生的分析能力计算解析:(],1-∞∪[1,2] 【分析】利用复合命题的真假性判断出p ,q 的真假性即可求解. 【详解】若p 为真,则:2p a ;若q 为真,则△2440a =-,即1a -或1a ; 命题“p q ⌝∨⌝”是假命题,p ∴⌝,q ⌝均为假命题,即p ,q 均为真命题;∴211a a a ⎧⎨-⎩或;1a ∴-或12a ;故答案为:(-∞,1][1-,2]. 【点睛】本题考查了复合命题的真假性,考查学生的分析能力,计算能力,推理能力;属于中档题.17.②③⑤【分析】①时不成立;②作差后再配方可得答案;③利用分析法证明;④不满足基本不等式的条件;⑤构造关于的一次函数再利用一次函数的单调性可求出的取值范围【详解】解:①当时所以①不正确;②因为所以成立解析:②③⑤ 【分析】①1a =时不成立;②作差后再配方可得答案;③利用分析法证明;④不满足基本不等式的条件;⑤构造关于k 的一次函数,再利用一次函数的单调性可求出x 的取值范围 【详解】解:①当1a =时,212a a +=,所以 ①不正确;②因为222222232()23(1)()1210a a b a b a b b a b +----++=+=+-++>, 所以223,,2()2a b R a b a b ∀∈+>--成立;③>>>③正确;④由于0,2x π⎛⎫∈ ⎪⎝⎭,所以()cos 0,1x ∈,因为4()cos 4cos f x x x=+≥=,而此时要()cos 20,1x =∉,所以取不到等号,所以4()cos ,0,cos 2f x x x x π⎛⎫=+∈ ⎪⎝⎭的最小值不等于4,所以④不正确; ⑤令22()21(1)21f k kx x k x k x =-+-=--+,因为不等式2210kx x k -+-<对[]1,1k ∀∈-都成立,所以(1)0(1)0f f -<⎧⎨<⎩,即2212101210x x x x ⎧--+<⎨--+<⎩12x <<,所以⑤正确故答案为:②③⑤ 【点睛】此题考查了不等式的性质,利用分析法证明不等式,基本不等式,属于中档题.18.【分析】根据全称命题的否定是特称命题进行求解即可【详解】解:命题是全称命题则命题的否定是特称命题命题的否定为故答案为:【点睛】本题主要考查含有量词的命题的否定根据全称命题的否定是特称命题是解决本题的解析:0x R ∃∈,200210x x ++≤【分析】根据全称命题的否定是特称命题进行求解即可. 【详解】解:命题是全称命题,则命题的否定是特称命题,∴命题“x R ∀∈,2210x x ++>”的否定为0x R ∃∈,200210x x ++≤. 故答案为:0x R ∃∈,200210x x ++≤.【点睛】本题主要考查含有量词的命题的否定,根据全称命题的否定是特称命题是解决本题的关键,属于基础题.19.②③④【分析】利用线面关系逐一分析即可【详解】对于①若则或异面故错误;对于②由线面平行的判定定理知:若且则故正确;对于③由面面平行的性质定理以及线面垂直的性质定理可知:若则故正确;对于④设在面内任取解析:②③④ 【分析】利用线面关系逐一分析即可. 【详解】对于①,若//,m n αα⊂,则//m n 或,m n 异面,故错误; 对于②,由线面平行的判定定理知:若,//αβ⋂=m m n , 且,n n αβ⊄⊄,则//,//αβn n ,故正确;对于③,由面面平行的性质定理以及线面垂直的性质定理可知: 若,,//αβαβ⊥⊂n m ,则m n ⊥,故正确; 对于④,设,a b αγβγ==,在面γ内任取点O ,作,OA a OB b ⊥⊥,由,αγβγ⊥⊥,得OA α⊥,OB β⊥,故OA m ⊥,OB m ⊥,则m γ⊥,又γ⊂n ,则m n ⊥,故正确;故答案为:②③④【点睛】本题考查了命题的真假判断、线面之间的位置关系、面面平行的性质定理、线面垂直的性质定理,考查了考生的空间想象能力,属于基础题.20.【分析】分别求出两个命题为真时的的取值范围然后根据复合命题的真假确定结论【详解】其取值范围是不等式的解集为即恒成立若(1)为真命题则若(2)为真命题则(1)(2)均为真命题可得所以若(1)(2)至少解析:(,1)(2,)-∞⋃+∞【分析】分别求出两个命题为真时的a 的取值范围,然后根据复合命题的真假确定结论.【详解】1,1,121,01,1,0x x x x x x ≥⎧⎪--=-<<⎨⎪-≤⎩,其取值范围是[]1,1-,不等式|||1|x x a -->的解集为∅即|||1|x x a --≤恒成立,若(1)为真命题,则1a ≥,若(2)为真命题,则240a -≤,22a -≤≤,(1)(2)均为真命题,可得12a ≤≤,所以若(1)(2)至少有一个是假命题,则1a <或2a >.故答案为:(,1)(2,)-∞⋃+∞.【点睛】本题考查由复合命题的真假求参数取值范围,解题时可先求出每个命题为真时的参数范围,然后根据复合命题的真值有确定结论.在遇到“至少”、“至多”等时可从反面入手比较简单.三、解答题21.(1)()4,6;(2){|1a a ≤或}9a ≥.【分析】(1)先得到集合A ,然后依据题意可得A B ⊆,最后简单计算即可.(2)根据AB =∅可得1a ≤或54a -≥,直接计算即可. 【详解】(1)依题意,解得{}14A x x =≤≤∵若x A ∈是x B ∈的充分条件,∴A B ⊆, 514a a -<⎧⎨>⎩,解得46a <<,故实数a 的取值范围是()4,6(2)命题“A B =∅”为真命题,∴A B =∅由1a ≤或54a -≥,解得1a ≤或9a ≥ ,所求实数a 的取值范围是{|1a a ≤或}9a ≥22.(1)10,33⎡⎫--⎪⎢⎣⎭;(2)1,2⎛⎫-∞- ⎪⎝⎭. 【分析】(1)先分别求出集合A ,B ,由此能求出A B ;(2)求出集合{|}0{|}22C x x p x x p =+≥=≥-,由x C ∈是x A ∈充分条件,得到C A ⊆,由此能求出实数p 的取值范围.【详解】(1)∵函数()22)lg(3f x x x =+-的定义域为集合A , ∴2230|3{}{|A x x x x x =+->=<-或1}x >,∵函数1()||g x a x x =+-在[31]--,上存在零点时的a 的取值集合B , ∴()0g x =在[]3,1x ∈--有解1110,2||3a x x x x ⎡⎤⇒=-=+∈--⎢⎥⎣⎦, 即10,23B ⎡⎤=--⎢⎥⎣⎦, ∴10,33A B ⎡⎫⋂=--⎪⎢⎣⎭. (2)∵集合{|}0{|}22C x x p x x p =+≥=≥-,x C ∈是x A ∈充分条件, ∴C A ⊆,∴21p ->,解得12p <-, ∴实数p 的取值范围是1,2⎛⎫-∞-⎪⎝⎭. 【点睛】本题主要考查交集、实数的取值范围的求法,考查函数性质、交集定义、充分条件等基础知识,考查运算求解能力,属于基础题.23.][97,3,42⎛⎫⋃+∞ ⎪⎝⎭. 【分析】由()0f x <恒成立,采用分离参数法求得a 的取值范围,再由方程根的存在定理求出a 的范围,而p q ∨为真命题, p q ∧为假命题,则,p q 一真一假,结合集合的运算,由此可得a 的范围.【详解】由已知得()12a ln x ln x +<-恒成立,即010{0212a x a x a x x>+>>-+<-恒成立,即 21924a x ⎛⎫>--+ ⎪⎝⎭在()1,2x ∈-恒成立;函数21924a x ⎛⎫>--+ ⎪⎝⎭在()1,2-上的最大值为94;9;4a ∴>即9:4p a >; 设()()211,f x x a x =+-+则由命题()()()010:{1302720f q f a f a =>=-<=->,解得: 73;2a <<即7:3;2q a << 若p q ∨为真命题, p q ∧为假命题,则,p q 一真一假. ①若p 真q 假,则: 9{403a a ><≤或994{,3,742a a a >∴<≤≥或7;2a ≥ ②若p 假q 真,则: 904{,;732a a a <≤∴∈∅<< ∴实数a 的取值范围为][97,3,42⎛⎫⋃+∞ ⎪⎝⎭. 【点睛】由“p 或q”为真,“p 且q”为假判断出p 和q 一真一假后,再根据命题与集合之间的对应关系求m 的范围.逻辑联结词与集合的运算具有一致性,逻辑联结词中“且”“或”“非”恰好分别对应集合运算的“交”“并”“补”.24.(1)14a ≥;(2)4,9⎛⎤-∞- ⎥⎝⎦ 【分析】(1)首先计算p 真,p 真时a 的范围,再根据p q ∧为真得到不等式组,即可得到答案. (2)首先根据题意得到()()11502490g a g a ⎧=+≤⎪⎨=+≤⎪⎩,再解不等式组即可.【详解】(1)因为()af x x =是[)0,+∞上的增函数,所以0a >,即p 真:0a >, 方程()0g x =有实根,则21640a a -≥,14a ≥或0a ≤.即q 真:14a ≥或0a ≤. 因为p q ∧为真,所以0104a a a >⎧⎪⎨≥≤⎪⎩或,解得14a ≥. (2)因为“[]1,2x ∈”是“()0g x ≤”的充分条件,所以()()11502490g a g a ⎧=+≤⎪⎨=+≤⎪⎩,解得49a . 所以实数a 的取值范围:4,9⎛⎤-∞- ⎥⎝⎦. 【点睛】本题主要考查了根据复合命题的真假求参数,同时考查了充分条件,属于中档题. 25.(1) 11a ≥;(2) 01a <≤.【分析】(1)分别求函数()2lg 208y x x=--的定义域和不等式22210(0)x x a a -+->的解集化简集合A B ,,由A B =∅得到区间端点值之间的关系,解不等式组得到a 的取值范围;(2)求出p ⌝对应的x 的取值范围,由p ⌝是q 的充分不必要条件得到对应集合之间的关系,由区间端点值的关系列不等式组求解a 的范围.【详解】(1)由条件得: {|102}A x x =-<<, {|1B x x a =+或1}x a - 若A B =Φ,则必须满足121100a a a +≥⎧⎪-≤-⎨⎪>⎩所以,a 的取值范围为: 11a ≥(2)易得: p ⌝: 2x ≥或10x ≤-,∵p ⌝是q 的充分不必要条件,{|2x x ∴或10}x -是{|1B x x a =+或1}x a -的真子集,则121100a a a +≤⎧⎪-≥-⎨⎪>⎩,解得:01a <≤∴a 的取值范围为: 01a <≤【点睛】本题考查的知识点是充要条件的定义,考查了对数函数的定义域以及一元二次不等式的解法,正确理解充要条件的定义,是解答的关键.26.()1,0,44⎛⎫-∞ ⎪⎝⎭【分析】根据p q ∨为真命题,p q ∧为假命题,可判断出p 与q 一真一假,分类讨论即可得出实数a 的取值范围.【详解】对任意实数x 都有210ax ax ++>恒成立0a ⇔=或200440a a a a >⇔≤<∆=-<⎧⎨⎩; 关于x 的方程20x x a -+=有实数根11404a a ⇔∆=-≥⇔≤; 由于p q ∨为真命题,p q ∧为假命题,则p 与q 一真一假;(1)如果p 真,且q 假,有04a ≤<,且11444a a >⇒<<; (2)如果q 真,且p 假,有0a <或4a ≥,且104a a ≤⇒<. 所以实数a 的取值范围为:()1,0,44⎛⎫-∞ ⎪⎝⎭. 【点睛】 本题主要考查根据复合命题的真假求参数的取值范围,考查不等式恒成立问题及一元二次方程存在解问题,考查学生的计算求解能力,属于中档题.。
第一章常用逻辑用语(北京师大版选修1-1)+p>=1,,B;;,12.已知命题p: ∃ p∈p,使sin p=√52;命题p: ∀ p∈p,都有p2+p+1>0.给出下列结论:①命题“p∧p”是真命题;②命题“p∧(﹁p)”是假命题;③命题“(﹁p)∨p”是真命题;④命题“(﹁p)∨(﹁p)”是假命题,其中正确的是()A.②④B.②③C.③④D.①②③二、填空题(本题共4小题,每小题4分,共16分)13.若p=p(p)为定义在D上的函数,则“存在p0∈D,使得[p(−p0)]2≠[p(p0)]2”是“函数p=p(p)为非奇非偶函数”的________条件.14.已知p:与整数的差为12的数;p:整数的12,则p是p的________条件.15.已知命题p:(p−3)(p+1)>0,命题q:p2−2p+1−p2>0(p>0),若命题p是命题q的充分不必要条件,则实数p的取值范围是____________.16. 下列四个结论中,正确的有 (填序号).①若A是B的必要不充分条件,则非B也是非A的必要不充分条件;②“{p>0,p=p2-4pp≤0”是“一元二次不等式a p2+bx+c≥0的解集为R”的充要条件;③“x≠1”是“p2≠1”的充分不必要条件;④“x≠0”是“x+|x|>0”的必要不充分条件.三、解答题(本题共6小题,共74分)17.(本小题满分12分)设命题为“若p>0,则关于p的方程p2+p−p=0有实数根”,试写出它的否命题、逆命题和逆否命题,并分别判断它们的真假.18.(本小题满分12分)已知命题p:任意p∈p,pp2+2p+3≥0,如果命题﹁p是真命题,求实数p的取值范围.19.(本小题满分12分)已知P={x|p2-8x-20≤0},S={x|1-m≤x≤1+m}.(1)是否存在实数m,使x∈P是x∈S的充要条件,若存在,求出m的取值范围;(2)是否存在实数m,使x∈P是x∈S的必要不充分条件,若存在,求出m的取值范围.20.(本小题满分12分)设p:实数x满足p2-4ax+3p2<0,其中a>0;q:实数x满足{p2-p-6≤0, p2+2p-8>0.(1)若a=1,且p∧q为真,求实数x的取值范围;(2)若﹁p是﹁q的充分不必要条件,求实数a 的取值范围.21.(本小题满分12分)设P,Q,R,S四人分别获得一到四等奖,已知:(1)若P得一等奖,则Q得四等奖;(2)若Q得三等奖,则P得四等奖;(3)P所得奖的等级高于R;(4)若S未得一等奖,则P得二等奖;(5)若Q得二等奖,则R不是四等奖;(6)若Q得一等奖,则R得二等奖.问P,Q,R,S分别获得几等奖?22.(本小题满分14分)设命题p:函数p(p)=(p−32)p是R上的减函数,命题q:函数p(p)= p2−4p+3在[0,p]上的值域为[−1,3].若“p∧p”为假命题,“p∨p”为真命题,求p的取值范围.答题纸得分:________ 一、选择题二、填空题13. 14. 15. 16.三、解答题17.解:18.解:19.解:20.解:21.解:22.解:参考答案一、选择题1.B 解析:“若﹁p则﹁p”与“若p则p”互为逆否命题,B不正确,故选B.2.B 解析:两个命题互为逆否命题,它们之间有相同的真假性;两个命题为互逆或互否命题,它们的真假性没有关系.故B错误.3.A 解析:已知命题是假命题,则它的否定为真命题,命题的否定为:∀p∈p,使得p2+(p−1)p+1≥0.若为真命题,需方程p2+(p−1)p+1=0的判别式p=(p−1)2−4≤0,解得−1≤p≤3.4.A 解析:若m=2,A={1,4},则A∩B={4};反之,若A∩B={4},则需p2=4,即m=±2.故“m=2”是“A∩B={4}”的充分不必要条件.5.A 解析:由已知得若p成立,则12≤p≤1,若p成立,则p≤p≤p+1.又﹁p是﹁q的必要不充分条件,即q是p的必要不充分条件,所以{p≤12,1≤p+1.所以0≤p≤12.6.C 解析:将函数y=sin2p的图像向右平移π3个单位长度得到函数y=sin2(p−π3)=sin(2p−2π3)的图像,所以命题P是假命题,“非P”是真命题,“P且Q”是假命题.函数p=sin(p+π6)cos(π3−p)=cos(π2−p−π6)cos(π3−p)=cos2(π3−p)=cos(2p−2π3)2+12,最小正周期为π,命题Q为真命题,所以“P或Q”为真命题.故真命题有2个,选C.7. A 解析:若p成立,对∀p∈[1,2],有p≤p2.因为1≤p≤2,所以1≤p2≤4,即p≤(p2)min=1.若q成立,则方程p2+2pp+2−p=0的判别式p=4p2−4(2−p)≥0,解得p≤−2或p≥1.因为命题“p∧p”是真命题,所以p真q真,故p的取值范围为{p|p≤−2或p=1}.8.B 解析:“p或q”是假命题,则它的否定是真命题,即“﹁p且﹁q”是真命题,①是真命题;若|p|>|p|,则p2>p2,若p2>p2,则|p|>|p|,所以②是真命题;数形结合可得,若一元二次不等式pp2+pp+c≤0的解集是p,则必有p>0且p<0,所以③是假命题;当p>2,p>2时,必有p+p>4,pp>4.但当p= 1,y=5时,满足p+p>4,pp>4.但p<2,所以④是假命题.综上共有2个真命题.9. A 解析:对于命题①,若p(p+2π)=sin(pp+2πp+p)=sin(pp+p)成立,p必须是整数,所以命题①是假命题;对于函数f(p)=sin(pp+p),当p=π2时,函数为偶函数,所以命题③是假命题;同理可得,命题②④是真命题.所以选A.10. A 解析:A中x>1⟹|x|>1,|x|>1⟹x>1或x<−1,所以正确;B中﹁p:∀x∈R,2p0>0;C中否命题为:“若p2≠1,则x≠1”;D中x=14时是错误的.11.C 解析:p∩p=p,即集合p和集合p没有公共元素,①正确;p⊆p,即集合p中的元素都是集合p中的元素,②正确;③错误;p=p,则集合p中的元素与集合p中元素完全相同,元素个数相等,但两个集合的元素个数相等,并不意味着它们的元素相同,④错误.所以选C.12.B 解析:因为√52>1,所以命题p是假命题,﹁p是真命题;由函数y=p2+p+1的图像可得,命题q是真命题,﹁p是假命题.所以命题“p∧p”是假命题, 命题“p∧(﹁p)”是假命题,命题“(﹁p)∨p”是真命题,命题“(﹁p)∨(﹁p)”是真命题.所以②③正确.二、填空题13.充分不必要解析:存在p0∈D,使得[p(–p0)]2≠[p(p0)]2,则函数p=p(p)为非奇非偶函数;若函数p=p(p)为非奇非偶函数,可能定义域不关于原点对称,所以“存在p0∈D,使得[p(−p0)]2≠[p(p0)]2”是“函数p=p(p)为非奇非偶函数”的充分不必要条件.14.充分不必要解析:p,p可分别用集合p={p|p=p+12,p∈p},p={p|p=p2,p∈p}表示,集合p表示奇数的12 ,集合p表示整数的12,因为pÜp,所以p是p的充分不必要条件.15.(0,2)解析:两个命题可分别表示为p: p>3或p<−1,p: p>1+p或p<1−p,要使命题p是命题p的充分不必要条件,则{1+p≤3,1−p>−1,p>0,或{1+p<3,1−p≥−1,p>0,解得0<p<2.16. ①②④解析:∵原命题与其逆否命题等价,∴若A是B的必要不充分条件,则非B也是非A的必要不充分条件,故○1正确.由函数与一元二次不等式的关系可知○2正确.x≠1⇏p2≠1,反例:x=-1⟹p2=1,∴○3错误.x≠0⇏x+|x|>0,反例:x=-2⟹x+|x|=0.但x+|x|>0⟹x>0⟹x≠0,∴“x≠0”是“x+|x|>0”的必要不充分条件. ∴○4错误.三、解答题17.解:否命题为“若p≤0,则关于p的方程p2+p−p=0没有实数根”;逆命题为“若关于p的方程p2+p−p=0有实数根,则p>0”;逆否命题为“若关于p的方程p2+p−p=0没有实数根,则p≤0”.由方程p2+p−p=0根的判别式p=1+4p>0,得p>−14,此时方程有实数根.因为p>0使1+4p>0,所以方程p2+p−p=0有实数根,所以原命题为真,从而逆否命题为真.但方程p2+p−p=0有实数根,必须p>−14,不能推出p>0,故逆命题为假,从而否命题为假. 18.解:因为命题﹁p是真命题,所以p是假命题.又当p是真命题,即pp2+2p+3≥0恒成立时,应有{p>0,p=4−12p≤0,解得p≥13,所以当p是假命题时,p<13.所以实数p的取值范围是{p|p<13}.19.解:(1)由p2-8x-20≤0可解得-2≤x≤10,∴P={x|-2≤x≤10}.∵x∈P是x∈S的充要条件,∴P=S,∴ {1-p=-2,1+p=10,∴{p=3,p=9.∴这样的m不存在.(2)由题意知,x∈P是x∈S的必要不充分条件,则S P.于是有{1-p≥-2,1+p<10或{1−p>−2,1+p≤10,∴p≤3或p<3,∴m≤3.∴当m≤3时,x∈P是x∈S的必要不充分条件.20.解:由p2-4ax+3p2<0,得(x-3a)(x-a)<0.又a>0,所以a<x<3a.(1)当a=1时,1<x<3,即p为真时实数x的取值范围是1<x<3.由{p2-p-6≤0,p2+2p-8>0,得2<x≤3,即q为真时实数x的取值范围是2<x≤3.若p∧q为真,则p真q真,所以实数x的取值范围是2<x<3.(2)若﹁p是﹁q的充分不必要条件,即﹁p⟹﹁q,且﹁p⇏﹁p.设A={x|﹁p},B={x|﹁q},则A B.又A={x|﹁p}={x|x≤a或x≥3a},B={x|﹁q}={x|x≤2或x>3},则有0<a≤2且3a>3,所以实数a的取值范围是1<a≤2.21.解:由(3)知,得一等奖的只有P,Q,S之一(即R不可能是一等奖).若P得一等奖,则S未得一等奖,与(4)矛盾;若Q得一等奖,由(6)知,R得二等奖,P只能得三等奖或四等奖,与(3)矛盾.所以只有S得一等奖.若P是二等奖,由(2)知,Q不得三等奖,只能是四等奖,所以R是三等奖;若P是三等奖,则R是四等奖,Q得二等奖,与(5)矛盾.所以S,P,R,Q分别获得一等奖,二等奖,三等奖,四等奖.22.解:由0<p−32<1得32<p<52.因为p(p)=(p−2)2−1在[0,p]上的值域为[−1,3],所以2≤p≤4.又因为“p∧p”为假命题,“p∨p”为真命题,所以p,p一真一假.若p真p假,则32<p<2;若p假p真,则52≤p≤4.综上可得,p的取值范围是{p|32<p<2或52≤p≤4}.。
高中数学选修1-1第一章常用逻辑用语C 组
一、选择题
1.有下列命题:①2004年10月1日是国庆节,又是中秋节;②10的倍数一定是5的倍数;③梯形不是矩形;④方程21x =的解1x =±。
其中使用逻辑联结词的命题有( )
A .1个
B .2个
C .3个
D .4个
2.设原命题:若2a b +≥,则,a b 中至少有一个不小于1,则原命题与其逆命题的真假情况是( )
A .原命题真,逆命题假
B .原命题假,逆命题真
C .原命题与逆命题均为真命题
D .原命题与逆命题均为假命题 3.在△ABC 中,“︒>30A ”是“21sin >
A ”的( ) A .充分不必要条件
B .必要不充分条件
C .充要条件
D .既不充分也不必要条件 4.一次函数n x n m y 1+-
=的图象同时经过第一、三、四象限的必要但不充分条件是( ) A .1,1m n ><且 B .0mn < C .0,0m n ><且 D .0,0m n <<且
5.设集合{}{}|2,|3M x x P x x =>=<,那么“x M ∈,或x P ∈”是“x M P ∈ ”的( )
A .必要不充分条件
B .充分不必要条件
C .充要条件
D .既不充分也不必要条件 6.命题:p 若,a b R ∈,则1a b +>是1a b +>的充分而不必要条件;
命题:q
函数y =的定义域是(][),13,-∞-+∞ ,则( )
A .“p 或q ”为假
B .“p 且q ”为真
C .p 真q 假
D .p 假q 真 二、填空题
1.命题“若△ABC 不是等腰三角形,则它的任何两个内角不相等”的逆否命题
是 ;
2.用充分、必要条件填空:①1,2x ≠≠且y 是3x y +≠的
②1,2x ≠≠或y 是3x y +≠的
3.下列四个命题中
①“1k =”是“函数22cos sin y kx kx =-的最小正周期为π”的充要条件;
②“3a =”是“直线230ax y a ++=与直线3(1)7x a y a +-=-相互垂直”的充要条件;
③ 函数3
422++=x x y 的最小值为2 其中假命题的为 (将你认为是假命题的序号都填上)
4.已知0≠ab ,则1=-b a 是02233=----b a ab b a 的__________条件。
5.若关于x 的方程22(1)260x a x a +-++=.有一正一负两实数根,则实数a 的取值范围__
三、解答题
1.写出下列命题的“p ⌝”命题:
(1)正方形的四边相等。
(2)平方和为0的两个实数都为0。
(3)若ABC ∆是锐角三角形, 则ABC ∆的任何一个内角是锐角。
(4)若0abc =,则,,a b c 中至少有一个为0。
(5)若(1)(2)0,12x x x x --≠≠≠则且。
2.已知1:123x p --
≤;)0(012:22>≤-+-m m x x q 若p ⌝是q ⌝的必要非充分条件,求实数m 的取值范围。
3.设0,,1a b c <<,求证:(1),(1),(1)a b b c c a ---不同时大于
41.
4.命题:p 方程210x mx ++=有两个不等的正实数根,命题:q 方程244(2)10x m x +++=无实数根。
若“p 或q ”为真命题,求m 的取值范围。
参考答案
一、选择题
1.C ①中有“且”;②中没有;③中有“非”;④ 中有“或”
2.A 因为原命题若2a b +≥,则,a b 中至少有一个不小于1的逆否命题为,若,a b 都小于1,则2a b +<显然为真,所以原命题为真;原命题若2a b +≥,则,a b 中至少有一个不小于1的逆命题为,若,a b 中至少有一个不小于1,则2a b +≥,是假命题,反例为 1.2,0.3a b ==
3.B 当0170A =时,001sin170sin102
=<,所以“过不去”;但是在△ABC 中, 0001sin 30150302
A A A >
⇒<<⇒>,即“回得来” 4.B 一次函数n
x n m y 1+-=的图象同时经过第一、三、四象限 10,00,00m m n mn n n ⇒-><⇒><⇒<且且,但是0mn <不能推导回来 5.A “x M ∈,或x P ∈”不能推出“x M P ∈ ”,反之可以
6.D 当2,2a b =-=时,从1a b +>不能推出1a b +>,所以p 假,q 显然为真
二、填空题
1.若△ABC 的两个内角相等,则它是等腰三角形
2.既不充分也不必要,必要 ①若 1.5, 1.53x y x y ==⇒+=且,143,1x +≠=而
②1,2x ≠≠或y 不能推出3x y +≠的反例为若 1.5, 1.53x y x y ==⇒+=且,
3x y +≠⇒1,2x ≠≠或y 的证明可以通过证明其逆否命题1,23x y x y ==⇒+=且
3.①,②,③ ①“1k =”可以推出“函数22cos sin y kx kx =-的最小正周期为π”
但是函数22cos sin y kx kx =-的最小正周期为π,即2cos 2,,12y kx T k k
ππ====± ② “3a =”不能推出“直线230ax y a ++=与直线3(1)7x a y a +-=-相互垂直” 反之垂直推出25a =;③
函数22y ===的最小值为2
min ,3t t y =≥==
4.充要 332222(1)()a b ab a b a b a ab b ----=--++
5.(,3)-∞- 260a +<
三、解答题
1.解(1)存在一个正方形的四边不相等;(2)平方和为0的两个实数不都为0;
(3)若ABC ∆是锐角三角形, 则ABC ∆的某个内角不是锐角。
(4)若0abc =,则,,a b c 中都不为0;
(5)若(1)(2)0,12x x x x --≠==则或。
2.解:{}1:12,2,10,|2,103
x p x x A x x x -⌝-><->=<->或或 {}22:210,1,1,|1,1q x x m x m x m B x x m x m ⌝-+-><->+=<->+或或 p ⌝ 是q ⌝的必要非充分条件,B
∴A ,即129,9110
m m m m -<-⎧⇒>∴>⎨+>⎩。
3.证明:假设(1),(1),(1)a b b c c a ---都大于
41,即11(1),(1),44
a b b c ->-> 1(1)4c a ->
,而1111,,2222
a b b c -+-+≥>≥>
11,22c a -+≥>得11132222
a b b c c a -+-+-+++> 即3322>,属于自相矛盾,所以假设不成立,原命题成立。
4.解:“p 或q ”为真命题,则p 为真命题,或q 为真命题,或q 和p 都是真命题
当p 为真命题时,则21212
40010m x x m x x ⎧∆=->⎪+=->⎨⎪=>⎩,得2m <-;
当q 为真命题时,则216(2)160,31m m ∆=+-<-<<-得
当q 和p 都是真命题时,得32m -<<-
1m ∴<-。