《探索勾股定理(二)》教学设计
- 格式:doc
- 大小:69.31 KB
- 文档页数:3
教师学科教案[ 20 – 20 学年度第__学期]任教学科:_____________任教年级:_____________任教老师:_____________xx市实验学校《探索勾股定理》(一)◆教学目标【知识与能力目标】掌握勾股定理,并能运用勾股定理解决一些实际问题。
【知识与能力目标】经历探索勾股定理的过程,体验数学学习探究的方法。
经历观察、归纳、猜想、概括等数学学习活动过程,发展合情推理能力,体会数形结合思想。
【情感态度价值观目标】进一步丰富数学学习的成功体验,认识到数学是解决实际问题的重要工具,初步形成积极参与数学活动的意识;通过追溯勾股定理的历史,增强学生的爱国情感。
◆教学重难点◆【教学重点】勾股定理的发现及其简单应用。
【教学难点】勾股定理的发现。
◆教学方法本课运用“探究式”“启发式”“开放式”的教学方法,运用多媒体等手段充分调动学生参与课堂学习的积极性,鼓励学生积极思考并实现合作学习。
1、 :创设情境,引发思考――自主探索,合作交流――追溯历史,激发情感――应用拓展,能力提升――回顾反思,提炼升华――布置作业,课堂延伸。
(一)、创设情境,引发思考五巧板的制作(动手操作,合作探究)·教师介绍“五巧板”的制作方法,学生拿出准备好的硬纸板制作“五巧板”。
·步骤:做一个Rt △ABC ,以斜边AB 为边向内做正方形ABDE ,并在正方形内画图,使DF ⊥BI ,CG =BC ,HG ⊥AC ,这样就把正方形ABDE 分成五部分①②③④⑤。
沿这些线剪开,就得了一幅五巧板。
1.利用五巧板拼“青朱出入图”。
2.取两幅五巧板,将其中的一幅拼成一个以C 为边长的正方形,将另外一幅五巧板拼成两个边长分别为a 、b 的正方形,你能拼出来吗?3.用上面的两幅五巧板,还可拼出其它图形,你能验证勾股定理吗? 4.利用五巧板还能通过怎样拼图来验证勾股定理? 可能的拼图方案:(二)、自主探索,合作交流 [探究活动1]A BC ED FGHI①②③④⑤abc◆教学过程bc aabcbc问题1:你能发现下图中三个正方形面积之间有怎样的关系吗?问题2:下图中的各组图形面积之间都有上述的结果吗?问题3:你能用等腰直角三角形的边长表示正方形的面积吗?由此猜想等腰直角三角形三边有怎样的关系?教师与学生行为:对于问题(2)、(3)教师给学生足够的思考时间,然后让学生交流合作,得出结论。
浙教版数学八年级上册2.7《探索勾股定理》教学设计一. 教材分析《探索勾股定理》是浙教版数学八年级上册2.7节的内容,主要介绍了勾股定理的证明和应用。
本节内容是在学生已经掌握了相似三角形、全等三角形和勾股定理的初步知识的基础上进行学习的。
教材通过引导学生探索勾股定理的证明,让学生更深入地理解勾股定理,并能够运用勾股定理解决实际问题。
二. 学情分析八年级的学生已经具备了一定的数学基础,对三角形的相关知识有一定的了解。
但是,对于证明勾股定理的深层次理解还存在一定的困难。
因此,在教学过程中,需要引导学生通过实践探索,加深对勾股定理的理解。
三. 教学目标1.理解勾股定理的证明过程,掌握勾股定理的应用。
2.培养学生的探索精神和合作意识。
3.提高学生运用数学知识解决实际问题的能力。
四. 教学重难点1.重难点:勾股定理的证明过程。
2.难点:如何引导学生探索并理解勾股定理的证明过程。
五. 教学方法1.引导探究法:通过引导学生探索勾股定理的证明过程,让学生加深对勾股定理的理解。
2.小组合作法:在探索过程中,采用小组合作的方式,培养学生的合作意识。
3.实例讲解法:通过具体实例,讲解勾股定理的应用,提高学生运用数学知识解决实际问题的能力。
六. 教学准备1.教具准备:多媒体课件、黑板、粉笔。
2.学具准备:每人一份勾股定理的证明材料,一份练习题。
七. 教学过程1.导入(5分钟)利用多媒体课件,展示勾股定理的应用场景,引导学生思考勾股定理的意义和重要性。
2.呈现(10分钟)呈现勾股定理的证明过程,引导学生观察和思考,让学生尝试自己证明勾股定理。
3.操练(10分钟)学生分组合作,根据呈现的证明过程,自己动手操作,尝试证明勾股定理。
4.巩固(10分钟)学生分组讨论,总结证明勾股定理的方法和步骤,加深对勾股定理的理解。
5.拓展(10分钟)利用实例,讲解勾股定理在实际问题中的应用,提高学生运用数学知识解决实际问题的能力。
6.小结(5分钟)教师引导学生总结本节课的学习内容,加深对勾股定理的理解。
勾股定理教学设计(二)教学设计思想:勾股定理是学生在已经掌握了直角三角形的有关性质的基础上进行学习的,它是直角三角形的一条非常重要的性质,是几何中最重要的定理之一,它揭示了一个三角形三条边之间的数量关系,它可以解决直角三角形中的计算问题,是解直角三角形的主要根据之一,在实际生活中用途很大。
教材在编写时注意培养学生的动手操作能力和分析问题的能力,通过实际分析、拼图等活动,使学生获得较为直观的印象;通过联系和比较,理解勾股定理,以利于正确的进行运用。
教学目标:知识与技能:1.能说出勾股定理的内容。
2.会初步运用勾股定理进行简单的计算和实际运用。
过程与方法:1.经历勾股定理的探索和验证过程,通过对图形的观察试验,发展对图形性质或数量关系猜想及检验的能力,体会拼图验证的合理性。
2.在探索勾股定理的过程中,经历“观察—猜想—归纳—验证”的数学思想,并体会数形结合和特殊到一般的思想方法。
情感态度价值观:1.通过了解勾股定理在中国古代的研究,激发热爱祖国,热爱祖国悠久文化的思想。
2.通过获得成功的体验和克服困难的经历,增进数学学习的信心。
通过丰富有趣拼的图活动增强对数学学习的兴趣。
教学重点:勾股定理的应用教学难点:勾股定理的证明与应用教具准备:多媒体,纸,剪刀课时安排1课时教学过程:一、创设问题的情境,激发兴趣引入课题通过介绍我国数学家华罗庚的建议——向宇宙发射勾股定理的图形与外星人联系,并说明勾股定理是我国古代数学家于2000年前就发现了的,介绍我国古代在勾股定理研究方面的贡献,讲述我国是最早了解勾股定理的国家之一,介绍商高(三千多年前周期的数学家)在勾股定理方面的贡献。
激发学生对勾股定理的兴趣和自豪感,引入课题.二、一起探究(出示投影),观察书中图16—1,并回答:1.以AC 为边的正方形中有_______个小方格,即A 的面积为______个单位。
以BC 正方形中有_______个小方格,即A 的面积为______个单位。
勾股定理(二)教学设计第2课时如上图,如果知道桥面以上的索塔AB的高,如何才能计算出各条拉索AC、AD、AE的长这个环节主要是从由简单的实际问题(平面上)激发学生的探求欲望,通过探求过程,学会分析问题中隐藏的几何模型(直角三角形),体会勾股定理在生活中无处不在。
激发和点燃学生学习的兴趣。
为后续学习起到了引领作用。
二、自主探究探究1:一个门框的尺寸如右图所示,一块长3m,宽的薄木板能否从门框内通过为什么首先让学生独立思考解决问题的思路与方法,然后让学生展示自己的方法。
然后老师总结并给出完整的解题步骤。
设计意图:进一步体会勾股定理在现实生活中的广泛应用,提高解决实际问题的能力.分析:可以看到,木板横着进,竖着进,都不能从门框内通过,只能试试斜着能否通过.在长方形ABCD中,对角线AC是斜着能通过的最大长度,求出AC,再与木板的宽比较,就能知道木板是否通过.三、合作交流探究2:如下图,一个长的梯子AB,斜靠在一竖直的墙AO上,这时AO的距离为 m,如果梯子的顶端A沿墙下滑,那么梯子底端B也外移 m吗首先让学生独立思考,然后小组合作交流。
最后各小组展示方法,老师点评总结,给出完整的解题步骤。
设计意图:进一步熟悉如何将实际问题转化成数学模型,并能用勾股定理解决简单的实际问题,发展学生的应用意识和应用能力.四、方法总结让学生回顾两道例题的解题思路与方法,然后总结出利用勾股定理解决实际问题的一般步骤:(1)将实际问题转化为数学问题,建立数学模型.(2)运用勾股定理解决数学问题.设计意图:培养学生的概括归纳能力,进一步体会转化的数学思想和建模的数学思想。
五、基础练习如下图,池塘边有两点A,B,点C是与BA方向成直角的AC方向上一点.测得CB =60m,AC=20m,你能求出A、B两点间的距离吗让学生独立的完成在自己的学案上,由一位同学到黑板上完成此题。
设计意图:巩固总结的方法,进一步提高学生应用勾股定理解决问题的能力.提高学生学习。
课题:勾股定理(2)学情分析:本节课是在学生学习勾股定理的基础上,学习应用勾股定理进行直角三角形的边长计算,解决一些简单的实际问题。
学习目标:知识与技能1.能运用勾股定理求线段长度,并解决一些简单的实际问题;2.在利用勾股定理解决实际生活问题的过程中,能从实际问题中抽象出直角三角形这一几何模型,利用勾股定理建立已知边与未知边长度之间的联系,并进一步求出未知边长.过程与方法:通过不同的问题情景,使学生明白数学来源于生活,有应用于生活,积累应用数学知识解决日常生活中实际问题的经验和方法。
情感、态度和价值观:使学生认识到数学来自生活,并服务于生活,从而增强学生学数学、用数学的意识,体会勾股定理的文化价值,发展运用数学的信心和能力。
教学重点:运用勾股定理计算线段长度,解决实际问题.教学难点:把实际问题划归成勾股定理的几何模型(直角三角形)。
教学过程:一、复习引入勾股定理的内容是什么?如果直角三角形的两条直角边长分别为a,b,斜边长为c,那么a2+b2=c2.(学生回答,教师补充,并强调条件:1、是在直角三角形中2、是指明直角边和斜边,培养学生严谨思考的习惯。
)已知一个直角三角形的两边,应用勾股定理可以求出第三边,这在求距离时会起到重要作用.二、新知探究例1一个门框的尺寸如图所示,一块长3 m,宽2.2 m的长方形薄木板能否从门框内通过?为什么?解:在Rt△ABC中,AC2=AB2+BC2=12+22=5.AC = 5≈2.24因为AC 大于木板的宽2.2 m,所以木板能从门框内通过.(将实际问题转化为数学问题,建立几何模型,画出图形,分析已知量、待求量,是掌握解决实际问题的一般套路。
)例2如图,一架2.6米长的梯子AB 斜靠在一竖直的墙AO上,这时AO 为2.4米.(1)求梯子的底端B距墙角O多少米?(2)如果梯子的顶端A沿墙下滑0.5米,那么梯子底端B也外移0.5米吗?(学生思考、组内讨论解决,选一名学生演板)思考问题:如果知道平面直角坐标系坐轴上任意两点的坐标为A (x ,0),B (0,y ),你能求这两点之间的距离吗?三、拓展提高:1、今有池方一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐.问水深、葭长各几何?分析:可设AB=x,则AC=x+1,有 AB 2+BC 2=AC 2,可列方程,得 x 2+52= (x+1)2通过解方程可得.师生共同小结:利用勾股定理解决实际问题的一般思路:(1)正确理解实际问题的题意;(2)从实际问题中建立对应的数学模型,运用相应的数学知识;(3)运用方程思想解决问题。
课时课题:第三章第一节探索勾股定理第1课时课型:新授课授课时间:教学目标:1、经历在方格纸上通过计算面积的方法探索勾股定理的过程,进一步发展学生的合情推理意识,体会“割”“补”“拼”求面积的数学方法及数形结合和从特殊到一般的数学思想,并且体验解决问题方法的多样性。
2、探索并理解直角三角形的三边之间的数量关系,掌握勾股定理,能用其解决一些简单的实际问题。
3、学生通过实践、猜想、归纳等操作,深刻感受数学知识的发生发展过程,感受数学魅力,在本节的合作学习中享受成功的喜悦和探索的乐趣。
通过介绍勾股定理的历史知识,激发学生热爱祖国,热爱祖国悠久文化的热情,激励学生的民族自豪感。
教学重点与难点:重点:探索勾股定理的过程.难点:在方格纸上通过计算面积的方法探索勾股定理.教法与学法指导:教法分析:针对七年级学生的知识结构和心理特征,本节课可选择引导探索法,由浅入深,由特殊到一般地提出问题。
引导学生自主探索,合作交流,这种教学理念反映了时代精神,有利于提高学生的思维能力,能有效地激发学生的思维积极性。
学法分析:在教师的组织引导下,采用自主探索、合作交流的研讨式学习方式,先让学生独立思考问题,然后再小组交流各自的想法,从而获取知识,掌握方法,借此培养学生动手、动脑、动口的能力,使学生真正成为学习的主体。
课前准备:教师:电脑、多媒体课件、音频、几何画板、微视频.教学过程:一、创设情境,导入新课同学们,在我们美丽的地球上,参天古树带给我们神秘的遐想,而在古老的数学王国上,也存在着一棵树,我们把它称为勾股树(播放幻灯片:勾股树),大家看到的这棵树只是勾股树的一部分,下面我们一起来欣赏其他的一些运动中的勾股树(播放幻灯片:几何画板,勾股树),大家现在看到的是一棵只有四层的勾股树,下面观看一下它的运动状态(点击几何画板),这棵树可以无限生长,当我们改变它的层数的时候它将变成这样的一棵树(改变参数),同学们,这棵树美吗?那么今天这节课呀,我们就从最简单的只有一层的勾股树开始研究,看看它身上蕴含着怎样的数学知识。
《1.2探索勾股定理(第2课时)》教学设计夏县泗交初中孙安平【教材分析】本节课是北师大版《数学(八年级上册)》第一章第一节第2课时,是在上节课已探索得到勾股定理之后的内容,具体学习任务:通过拼图验证勾股定理并体会其中数形结合的思想;应用勾股定理解决一些实际问题,体会勾股定理的应用价值并逐步培养学生应用数学解决实际问题意识和能力,为后面的学习打下基础.【学情分析】学生在七年级已经学习了整式的加、减、乘、除运算和等式的基本性质,并能进行简单的恒等变形;上节课又已经通过测量和数格子的方法,对具体的直角三角形探索并发现了勾股定理,但没有对一般的直角三角形进行验证.学生在以前数学学习中已经经历了很多独立探究和合作学习的过程,具有了一定的自主探究和合作学习的经验,具备了一定的探究能力和合作与交流的能力;学生在七年级《七巧板》及《图案设计》的学习中已经具备了一定的拼图活动经验.【教学目标】1、能用拼图的方法、面积法验证勾股定理,体会数形结合的思想;2、能熟练地运用勾股定理解决实际问题.【教学重难点】重点:能熟练用拼图的方法验证勾股定理;难点:用勾股定理解决实际问题。
【资源准备】制作 PPT 课件,包括:出示学习目标;通过自主探索、猜测、验证突破重难点;课堂小结;达标检测。
【课时安排】第二课时【教学过程】环节一:复习回顾1.勾股定理的内容是什么?(请一名学生回答)2.上节课我们仅仅是通过测量和数格子,对具体的直角三角形探索发现了勾股定理,对一般的直角三角形,勾股定理是否成立呢?这需要进一步验证,如何验证勾股定理呢?事实上,现在已经有几百种勾股定理的验证方法,这节课我们也将去验证勾股定理.◆设计意图:(1)复习勾股定理内容;(2)回顾上节课的探索过程,强调仍需对一般的直角三角形进行验证,培养学生严谨的科学态度;(3)介绍世界上有数百种验证方法,激发学生兴趣.通过这一环节,学生明确了:仅仅探索得到勾股定理还不够,还需进行验证.当学生听到有数百种验证方法时,马上就有了去寻求属于自己的方法的欲望.环节二:新知探究◆探究活动一:教师导入,小组拼图今天我们将研究利用拼图的方法验证勾股定理,请你利用自己准备的四个全等的直角三角形,拼出一个以斜边为边长的正方形.(请每位同学用2分钟时间独立拼图,然后再4人小组讨论.)◆探究活动二:层层设问,完成验证1.学生通过自主探究,小组讨论得到如图1、图2的两个图形.2.教师提问:(1)如图1,你能表示大正方形的面积吗?能用两种方法吗?(学生先独立思考,再4人小组交流);(2)你能由此得到勾股定理吗?为什么?(在学生回答的基础上板书()22142a b ab c +=⨯+,并得到222c b a =+)3.学生自主探究,利用图2验证勾股定理.◆设计意图:设计活动1的目的是为了让学生在活动中体会图形的构成,既为勾股定理的验证作铺垫,又培养学生的动手、创新能力.在活动2中,学生在教师的层层设问的引导下完成对勾股定理的验证,完成本节课的一个重点内容.然后让学生利用另一个拼图独立验证勾股定理,目的是让学生再次体会数形结合的思想并体会成功的快乐.学生通过先拼图从形上感知,再分析面积验证,比较容易地掌握了本节课的重点内容之一,并突破了难点.环节三:延伸拓展,能力提升1.议一议:观察图3,用数格子的方法判断图中三角形的三边长是否满足222.a b c +=图1 图2bc a b a - _b_a a_c _b _c图32.已知:一个直角三角形的斜边为20 cm ,且两直角边的长度比为3:4,求两直角边的长.◆设计意图:在前面已经讨论了直角三角形三边的关系,那么锐角三角形或钝角三角形的三边是否也满足这一关系呢?学生通过数格子的方法可以得出:如果一个三角形不是直角三角形,那么它的三边a ,b ,c 不满足222a b c +=.通过这个结论,学生将对直角三角形三边的关系有进一步的认识,并为后续直角三角形的判定打下基础.环节四:例题讲解例 飞机在空中水平飞行,某一时刻刚好飞到一个男孩子头顶上方4 000 m 处,过了20 s ,飞机距离这个男孩子头顶 5 000 m ,飞机每小时飞行多少千米?解:设点A 为男孩头顶,点C 为正上方时飞机的位置,点B 为20 s 后飞机的位置,如图4,则222AB BC AC =+,即2229000000BC AB AC =-=, 所以BC=3 000,所以飞机的速度为3 000÷20=150(m/s )=540(km/h ),答:飞机每小时飞行540 km.◆设计意图:(1)初步运用勾股定理解决实际问题,培养学生应用数学的意识和能力;(2)体会勾股定理的应用价值.学生对这样的实际问题很感兴趣,基本能把实际问题转化为数学问题并顺利解决.图4环节五:例题讲解约公元前500年,毕达哥拉斯学派的弟子希帕索斯(Hippasus)发现了一个惊人的事实,一个正方形的对角线的长度是不可公度的.按照毕达哥拉斯定理(勾股定理),若一个正方形的边长是1,则它的对角线的长不是一个有理数,它不能表示成两个整数之比,这一事实不但与毕氏学派的哲学信念大相径庭,而且建立在任何两个线段都可以公度基础上的几何学面临被推翻的威胁,第一次数学危机由此爆发.据说,毕达哥拉斯学派对希帕索斯的发现十分惶恐、恼怒,为了保守秘密,最后将希帕索斯投入大海.不能表示成两个整数之比的数,15世纪意大利著名画家达·芬奇称之为“无理的数”,无理数的英文“irrational”原义就是“不可比”.第一次数学危机一直持续到19世纪,实数的基础建立以后才圆满解决.我们将在下一章学习有关实数的知识.趣闻调查组报告:勾股定理的总统证法.1881年,这位中年人——伽菲尔德就任美国第二十任总统.后来,人们为了纪念他对勾股定理直观、简捷、易懂、明了的证明,就把这一证法称为“总统”证法.◆设计意图:这个环节完全由学生来组织开展,教师可在两天前布置任务,让部分同学收集勾股定理的资料.介绍与勾股定理有关的历史,激发学生的爱国热情;学生加强了对数学史的了解,培养学习数学的兴趣;通过让部分学生搜集材料,展示材料,既可以让学生得到充分的锻炼,同时也可以活跃课堂气氛.环节五:课堂小结通过这节课的学习,你有什么样的收获?师生共同畅谈收获.◆设计意图:归纳出本节课的知识要点,数形结合的思想方法;教师了解学生对本节课的感受并进行总结;培养学生的归纳概括能力.环节六:作业布置习题1.2第1,2,3题.◆设计意图:巩固本节课的内容,充分发挥勾股定理的育人价值.【达标检测】1.如图,直线l上有三个正方形a,b,c,若a,c的面积分别为3和4,则b的面积为( )A.16 B.12 C.9 D.72.如图,分别以直角三角形的三边为直径作半圆,其中两个半圆的面积S1=π, S2 =2π,试求出S3的面积.3.如图,折叠长方形ABCD的一边AD,使点D落在BC边的F点处,若AB=8 cm,BC=10 cm,求EC的长.◆设计意图:(1)初步运用勾股定理解决实际问题,培养学生应用数学的意识和能力;(2)体会勾股定理的应用价值.学生对这样的实际问题很感兴趣,基本能把实际问题转化为数学问题并顺利解决.【板书设计】1.2探索勾股定理(第2课时)。
第一章勾股定理1. 1 探索勾股定理第 2 课时教学设计1.学会应用勾股定理,并领会“数与行”相结合的应用思想.2.经历勾股定理应用的过程,掌握勾股定理的使用方法.3.培养良好的合作、交流意识,发展数学观念,体会勾股定理的实际应用.【教学重点】能熟练应用拼图法证明勾股定理.【教学难点】用面积证勾股定理.四个全等的直角三角形纸片.一、创设情境,引入新知如图,这是一幅美丽的图案,仔细观察,你能发现这幅图中的奥秘吗?带着疑问我们来一起探索吧.◆教学目标◆教学重难点◆◆课前准备◆◆教学过程二、合作交流,探究新知勾股定理的初步认识问题1:观察下面地板砖示意图:你发现图中三个正方形的面积之间存在什么关系吗?问题2:观察右边两幅图:完成下表(每个小正方形的面积为单位1).方法一:割分割为四个直角三角形和一个小正方形.方法二:补补成大正方形,用大正方形的面积减去四个直角三角形的面积.方法三:拼将几个小块拼成若干个小正方形,图中两块红色(或绿色)可拼成一个小正方形.分析表中数据,你发现了什么?结论:以直角三角形两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积.想一想(1)你能用直角三角形的两直角边的长a,b 和斜边长 c 来表示图中正方形的面积吗?根据前面的结论,它们之间又有什么样的关系呢?(2)以5 cm、12 cm为直角边作出一个直角三角形,并测量斜边的长度.(1)中的规律对这个三角形仍成立吗?勾股定理直角三角形两直角边的平方和等于斜边的平方.如果a,b和 c 分别表示直角三角形的两直角边和斜边那么a2+b2=c2名字的由来我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦,“勾股定理”因此而得名.在西方又称毕达哥拉斯定理三、运用新知求下列图形中未知正方形的面积或未知边的长度(口答):已知直角三角形两边,求第三边.利用勾股定理进行计算:例求斜边长为17 cm、一条直角边长为15 cm的直角三角形的面积.四、巩固新知1. 图中阴影部分是一个正方形,则此正方形的面积为 .2. 判断题①△Rt ABC 的两直角边AB=5, AC=12,则斜边BC=13 ( )②△ABC 的两边a = 6 , b = 8, 则c = 10 ( )3. 填空题在△ABC中, ∠C=90°, AC = 6, CB = 8,则△ABC 的面积为_____,斜边上的高CD 为______.4. 一高为 2.5 米的木梯,架在高为 2.4 米的墙上(如图),这时梯脚与墙的距离是多少?五、归纳小结◆教学反思略.。
17.1 勾股定理(2)教学任务分析教学目标知识技能1.运用勾股定理进行简单的计算.2.运用勾股定理解释生活中的实际问题.数学思考通过从实际问题中抽象出直角三角形这一几何模型,初步掌握转化和数形结合的思想方法.解决问题能运用勾股定理解决直角三角形相关的问题.情感态度通过研究一系列富有探究性的问题,培养学生与他人交流、合作的意识和品质.重点勾股定理的应用.难点勾股定理在实际生活中的应用.教学流程安排活动流程图活动内容和目的活动1 回顾勾股定理活动2 运用勾股定理解释生活中的问题活动3 巩固练习探索新知活动4 小结与作业通过一组练习让学生回顾直角三角形三边关系,为本节课勾股定理的应用做好铺垫.通过解决教材中的两个例题,进一步熟悉和掌握勾股定理,同时培养学生从事物中抽象出几何模型(直角三角形)的能力.通过练习及时反馈教学效果,了解不同层次的学生对知识和方法的掌握情况.设计课本习题的变式题,拓展学生思维能力,深化勾股定理的应用.通过讨论交流、自由发言等形式,归纳本节课所用的知识方法.通过课外作业,反馈教学效果,调整教学方法.教学过程设计问题与情景师生行为 设计意图 [活动1]问题(1)求出下列直角三角形中未知的边.回答: ①在解决问题时,每个直角三角形需知晓几个条件?②直角三角形中哪条边最长?(2)在长方形ABCD 中,宽AB 为1m ,长BC 为2m ,求AC 长.教师提出问题后让四位学生板演,剩下的学生在课堂作业本上完成. 问题(2)学生分组讨论,自己解决;教师巡视指导答疑.在活动1中教师应重点关注:(1)学生能否正确应用勾股定理进行计算;(2)在解决直角三角形的问题时,需知道直角三角形的两个条件且至少有一个条件是边; (3)让学生了解在直角三角形中斜边最长; (4)在解决问题2时,能否将一个长方形转化为两个全等的直角三角形.教师利用学生已有的知识(勾股定理及直角三角形的相关知识)创设问题情境,有针对性地引导学生进行练习,为学习勾股定理在实际生活中的应用做好铺垫.[活动2]问题(1)在长方形ABCD 中AB 、BC 、AC 大小关系?(2)一个门框的尺寸如图1所示.问题(1)学生由活动1的结果可得出判断: AB <BC <AC .问题(2)学生分组讨通过问题(1)让学生熟悉直角三角形斜边与直角边的大小关系,为解决问题(2)奠定基础.6 10A CB 245°A15CB230°①若有一块长3米,宽0.8米的薄木板,问怎样从门框通过?②若薄木板长3米,宽1.5米呢?③若薄木板长3米,宽2.2米呢?为什么?论,易回答①、②.在解决前两问的基础上,教师着重引导学生将③的实际问题转化为数学模型,计算并回答: ∵木板宽2.2米大于1米,∴横着不能从门框通过; ∵木板宽2.2米大于2米,∴竖着也不能从门框通过.问题(2)是本节课的重点和难点.问题与情景师生行为设计意图图1(3)教材第26页练习1. (4)如图2,一个3米长的梯子AB ,斜着靠在竖直的墙AO 上,这时AO 的距离为2.5米.①球梯子的底端B 距墙角O 多少米?②如果梯的顶端A 沿墙下滑0.5米至C ,请同学们猜一猜,底端也将滑动0.5∴只能试试斜着能否通过,对角线AC 的长最大,因此,从中抽象出数学模型直角△ABC ,并求出斜边的长度5 2.236 2.2AC =≈>,所以木板能从门框通过.教师与学生一起完成问题(3).教师提出问题(4),引导学生将实际问题转化为数学模型;学生合作交流,讨论回答:(1)在Rt △AOB 中,2221.658.OB AB OA OB =-≈.(2)的①由学生分组为了让学生能有效地突破难点,本环节分别为它们设计了一到两个简单的由已有的知识和生活经验易于解答的小问题作台阶,顺利解决如何将实际问题转化为求直角三角形边长的问题,培养学生的数学应用意识.BC1m2mA米吗? 算一算,底端滑动的距离近似值(结果保留两位小数).图2讨论做出猜想. ②要求梯子的底端B 是否也外移0.5米,就是求出BD 的长,而BD =OD -OB ,由(1)可知OB ,只需在求出OD 即可. 在Rt △COD 中,2222.236.0.58OD CD OC OD BD OD OB =-≈=-≈ 梯的顶端A 沿墙下滑0.5米,梯子的底端B 外移0.58米.在活动2中教师应重点关注:(1)结合问题2训练学生用文字语言表达数学过程的能力; (2)学生能否准确将实际问题转化为数学问题,建立几何模型; (3)正确运用勾股定理解释生活中的问题.通过运用勾股定理对实际问题的解释和应用,培养学生从身边的事物中抽象出几何模型的能力,使学生更加深刻地认识数学的本质:数学来源于生活,并能服务于生活.OBDCA C AOB OD问题与情景师生行为 设计意图 [活动3](1)教材第26页练习第2题.(2)变式:以教材第26页练习第2题为背景,请同学们再设计其他方案构造直角三角形(或其他几何图形),测量池塘的长AB .(3)如图3,分别以Rt △ABC 三边为边向外作三个正方形,其面积分别用S 1、S 2、S 3表示,容易得出S 1、S 2、S 3之间有的关系式 .变式:教材第29页第13题,如图4.问题(1)学生板演,其余学生在课堂练习本上独立完成.问题(2)和问题(3)将全班学生分成四人小组,给足时间分别进行讨论、交流; 教师参与学生活动,适当地给与指导. 在活动3中,教师应重点关注: (1)根据学生在练习中反映出的问题,有针对性地对不同层次的学生进行指导;(2)学生对问题(2)能否构造适当的几何模型测量池塘的长AB ; (3)对学有余力的学生,在问题(3)中能否进一步加以拓展.设计教材第26页练习第2题的变式,满足不同层次学生的学习需求,拓展学生思维空间,让学生联想与直角三角形或全等三角形相关的知识(等腰直角三角形、有一个角为30°的直角三角形、等边三角形等),使所学的知识得到进一步深化.设计教材第29页第13题的变式题问题3,有助于启迪学生进一步思考将直角三角形ABC 外的正方形或半圆再变为等边三角形等结论还能否成立.S 1S 2S 3图4S 1S 2S 3B AC图3[活动4](1)小结(2)作业:①教材第28页习题第2、3、4、5题.②教材第29页习题第12题.让学生充分讨论交流,说出自己的体会,最后师生共同归纳.教师布置作业,学生记录并按要求在课外完成.在活动4中,教师应重点关注:(1)培养学生对所学内容进行归纳、整理、总结的好习惯;(2)对学生在作业中反映出的问题,应做好记载,找出解决教、学不足的措施.通过讨论交流、自由发言等形式,使学生掌握归纳的方法.通过布置课外作业,及时获知学生对本节课知识的掌握情况,适当的调整教学进度和教学方法,并对学习有困难的学生给与指导.教学设计说明本节课主要内容是勾股定理的应用,安排在勾股定理的探索之后,它既是直角三角形性质的拓展,也是后续学习“解直角三角形”的基础.本节课的重点是勾股定理的应用,难点是勾股定理在实际生活中的应用.勾股定理是建立在一般三角形性质以及三角形全等的基础上,是三角形知识的深化,它在日常生活中有着广泛的应用.在复习了直角三角形的相关知识的基础上,本节课进一步熟悉了勾股定理.教师通过运用勾股定理对一系列富有层次、探究性的实际问题的解释和应用,培养学生从身边的事物中抽象出几何模型的能力,使学生更加深刻地认识数学的本质,数学来源于生活,并服务于生活.在活动3中,教师设计课本习题的变式题,给学生足够的时间讨论交流,使“不同的学生数学上得到不同的发展”.整堂课,教师重点关注学生的探究精神以及交流、合作意识.。
第二课时一、教学目标知识与技能会用勾股定理进行简单的计算。
过程与方法1.数形结合,让学生每做一道题都画图形,并写出应用公式的过程或公式的推倒过程,在做题过程中熟记公式,灵活运用。
2.分类讨论,让学生画好图后标图,从不同角度考虑条件和图形,考虑问题要全面,在讨论的过程中提高学生的灵活应用能力情感、态度与价值观树立数形结合的思想、分类讨论思想。
培养思维意识,发展数学理念,体会勾股定理的应用价值。
二、教学重、难点重点:勾股定理的简单计算。
难点:勾股定理的灵活运用。
三、教学准备多媒体,作图工具四、教学方法讲练结合五、教学过程(一)复习回顾,引入新课复习勾股定理的文字叙述;勾股定理的符号语言及变形。
学习勾股定理重在应用。
预习新知(阅读教材第66至67页,并完成预习内容。
)1.①在解决问题时,每个直角三角形需知道几个条件?②直角三角形中哪条边最长?2.在长方形ABCD中,宽AB为1m,长BC为2m,求AC的长.问题:(1)在长方形ABCD 中,AB 、BC 、AC 的大小关系?(2)一个门框的尺寸如图1所示.①若有一块长3米,宽0.8米的薄木板,问怎样从门框通过? ②若薄木板长3米,宽1.5米呢?③若薄木板长3米,宽2.2米呢?为什么?(二)新课教授例1、在Rt △ABC 中,∠C=90°⑴已知a=b=5,求c ;⑵已知a=1,c=2, 求b ;⑶已知c=17,b=8, 求a ;⑷已知a :b=1:2,c=5, 求a ; ⑸已知b=15,∠A=30°,求a ,c 。
分析:刚开始使用定理,让学生画好图形,并标好图形,理清边之间的关系。
⑴已知两直角边,求斜边直接用勾股定理。
⑵⑶已知斜边和一直角边,求另一直角边,用勾股定理的便形式。
⑷⑸已知一边和两边比,求未知边。
通过前三题让学生明确在直角三角形中,已知任意两边都可以求出第三边。
后两题让学生明确已知一边和两边关系,也可以求出未知边,学会见比设参的数学方法,体会由角转化为边的关系的转化思想。
第一章勾股定理1.探索勾股定理(2)一、学情与教材分析1.学情分析学生的知识技能基础:学生在七年级已经学习了整式的加、减、乘、除运算和等式的基本性质,并能进行简单的恒等变形;上节课又已经通过测量和数格子的方法,对具体的直角三角形探索并发现了勾股定理,但没有对一般的直角三角形进行验证.学生活动经验基础:学生在以前数学学习中已经经历了很多独立探究和合作学习的过程,具有了一定的自主探究经验和合作学习的经验,具备了一定的探究能力和合作与交流的能力;学生在七年级《七巧板》及《图案设计》的学习中已经具备了一定的拼图活动经验.2.教材分析本节课是八(上)勾股定理第1节第2课时,是在上节课已探索得到勾股定理之后的内容,具体学习任务:通过拼图验证勾股定理并体会其中数形结合的思想;应用勾股定理解决一些实际问题,体会勾股定理的应用价值并逐步培养学生应用数学解决实际问题意识和能力,为后面的学习打下基础.二、教学目标1.掌握勾股定理及其验证,并能应用勾股定理解决一些实际问题.2.在上节课对具体的直角三角形探索发现了勾股定理的基础上,经历勾股定理的验证过程,体会数形结合的思想和从特殊到一般的思想.3.在勾股定理的验证活动中,培养探究能力和合作精神;通过对勾股定理历史的了解,感受数学文化,增强爱国情感,并通过应用勾股定理解决实际问题,培养应用数学的意识.三、教学重难点教学重点:用面积法验证勾股定理,应用勾股定理解决简单的实际问题.教学难点:验证勾股定理.四、教法建议1.教学方法:引导——探究——应用.2.课前准备:教具:教材,课件,电脑.学具:教材,铅笔,直尺,练习本.五、教学设计(一)课前设计1.预习任务结合课本上P5页1-5和1-6,应用等面积法证明勾股定理,(提示:图中的正方形的面积可以表示为边长的平方,也可以表示成小正方形加上四个直角三角形的面积)2.预习自测一、选择题1. 利用四个全等的直角三角形可以拼成如图所示的图形,这个图形被称为弦图.观察图形,可以验证()公式.A.(a+b)(a﹣b)=a2﹣b2 B.(a+b)2=a2﹣2ab+b2C.c2=a2+b2 D.(a﹣b)2=a2﹣2ab+b2答案:C解析:∵大正方形的面积表示为:c2又可以表示为:ab×4+(b﹣a)2,∴c2=ab×4+(b﹣a)2,c2=2ab+b2﹣2ab+a2,∴c2=a2+b2.故选C.点拨:利用两种方法表示出大正方形的面积,根据面积相等可以整理出c2=a2+b2.二、填空题2. 如图是我国古代数学家赵爽在为《周髀算经》作注解时给出的“弦图”,它解决的数学问题是_________.答案:勾股定理解析:我国古代数学家赵爽在为《周髀算经》作注解时给出的“弦图”,它解决的数学问题是勾股定理.点拨:观察我国古代数学家赵爽在为《周髀算经》作注解时给出的“弦图”,发现它验证了勾股定理.3. 如图,由四个直角三角形拼成2个正方形,则4个直角三角形面积+小正方形面积=大正方形面积,即_________+_________=_________化简得:a2+b2=c2.答案:4×ab、(b﹣a)2、c2.解析:如图所示,4个直角三角形面积+小正方形面积=大正方形面积,即 4×ab+(b﹣a)2=c2,故答案是:4×ab、(b﹣a)2、c2.点拨:根据直角三角形的面积公式和正方形的面积公式进行填空.(二)课堂设计本节课设计了六个教学环节:第一环节:知识回顾;第二环节:探究发现;第三环节:数学小史;第四环节:知识运用;第五环节:随堂检测;第六环节:课堂小结.第一环节:知识回顾内容:教师提出问题:(1)勾股定理的内容是什么?(请一名学生回答)(2)上节课我们仅仅是通过测量和数格子,对具体的直角三角形探索发现了勾股定理,对一般的直角三角形,勾股定理是否成立呢?这需要进一步验证,如何验证勾股定理呢?事实上,现在已经有几百种勾股定理的验证方法,这节课我们也将去验证勾股定理.意图:(1)复习勾股定理内容;(2)回顾上节课探索过程,强调仍需对一般的直角三角形进行验证,培养学生严谨的科学态度;(3)介绍世界上有数百种验证方法,激发学生兴趣.效果:通过这一环节,学生明确了:仅仅探索得到勾股定理还不够,还需进行验证.当学生听到有数百种验证方法时,马上就有了去寻求属于自己的方法的渴望.第二环节:探究发现活动1: 教师导入,小组拼图.教师:今天我们将研究利用拼图的方法验证勾股定理,请你利用自己准备的四个全等的直角三角形,拼出一个以斜边为边长的正方形.(请每位同学用2分钟时间独立拼图,然后再4人小组讨论.)活动2:层层设问,完成验证一.学生通过自主探究,小组讨论得到两个图形:图2在此基础上教师提问:(1)如图1你能表示大正方形的面积吗?能用两种方法吗?(学生先独立思考,再4人小组交流);(2)你能由此得到勾股定理吗?为什么?(在学生回答的基础上板书(a+b)2=4×21ab+c 2.并得到222c b a =+)从而利用图1验证了勾股定理.活动3 : 自主探究,完成验证二.教师小结:我们利用拼图的方法,将形的问题与数的问题结合起来,联系图1整式运算的有关知识,从理论上验证了勾股定理,你还能利用图2验证勾股定理吗?(学生先独立探究,再小组交流,最后请一个小组同学上台讲解验证方法二)意图:设计活动1的目的是为了让学生在活动中体会图形的构成,既为勾股定理的验证作铺垫,同时也培养学生的动手、创新能力.在活动2中,学生在教师的层层设问引导下完成对勾股定理的验证,完成本节课的一个重点内容.设计活动3,让学生利用另一个拼图独立验证勾股定理的目的是让学生再次体会数形结合的思想并体会成功的快乐.效果:学生通过先拼图从形上感知,再分析面积验证,比较容易地掌握了本节课的重点内容之一,并突破了本节课的难点.第三环节:数学小史活动内容:由学生利用所搜集的与勾股定理相关的资料进行介绍.国内调查组报告:用图2验证勾股定理的方法,据载最早是三国时期数学家赵爽在为《周髀算经》作注时给出的,我国历史上将图2弦上的正方形称为弦图.2002年的数学家大会(ICM-2002)在北京召开,这届大会会标的中央图案正是经过艺术处理的弦图,这既标志着中国古代的数学成就,又像一只转动的风车,欢迎来自世界各地的数学家们!国际调查组报告:勾股定理与第一次数学危机.约公元前500年,毕达哥拉斯学派的弟子希帕索斯(Hippasus)发现了一个惊人的事实,一个正方形的对角线的长度是不可公度的.按照毕达哥拉斯定理(勾股定理),若正方形边长是1,则对角线的长不是一个有理数,它不能表示成两个整数之比,这一事实不但与毕氏学派的哲学信念大相径庭,而且建立在任何两个线段都可以公度基础上的几何学面临被推翻的威胁,第一次数学危机由此爆发.据说,毕达哥拉斯学派对希帕索斯的发现十分惶恐、恼怒,为了保守秘密,最后将希帕索斯投入大海.不能表示成两个整数之比的数,15世纪意大利著名画家达.芬奇称之为“无理的数”,无理数的英文“irrational”原义就是“不可比”.第一次数学危机一直持续到19世纪实数的基础建立以后才圆满解决.我们将在下一章学习有关实数的知识 .趣闻调查组报告:勾股定理的总统证法.在1876年一个周末的傍晚,在美国首都华盛顿的郊外,有一位中年人正在散步,欣赏黄昏的美景……他走着走着,突然发现附近的一个小石凳上,有两个小孩正在聚精会神地谈论着什么,时而大声争论,时而小声探讨.由于好奇心驱使他循声向两个小孩走去,想搞清楚两个小孩到底在干什么.只见一个小男孩正俯着身子用树枝在地上画着一个直角三角形……于是这位中年人不再散步,立即回家,潜心探讨小男孩给他留下的难题.他经过反复的思考与演算,终于弄清楚了其中的道理,并给出了简洁的证明方法. 1876年4月1日,他在《新英格兰教育日志》上发表了他对勾股定理的这一证法.1881年,这位中年人—伽菲尔德就任美国第二十任总统.后来,人们为了纪念他对勾股定理直观、简捷、易懂、明了的证明,就把这一证法称为“总统”证法.说明:这个环节完全由学生来组织开展,教师可在两天前布置任务,让部分同学收集勾股定理的资料,并在上课前拷贝到教师用的课件中便于展示,内容可灵活安排.意图:(1(2)学生加强了对数学史的了解,培养学习数学的兴趣;(3)通过让部分学生搜集材料,展示材料,既让学生得到充分的锻炼,同时也活跃了课堂气氛.效果:学生热情高涨,对勾股定理的历史充满了浓厚的兴趣,同时也为中国古代数学的成就感到自豪.也有同学提出:当代中国数学成就不够强,还应发奋努力.有同学能意识这一点,这让我喜出望外.第四环节:知识运用a b内容:例题:我方侦察员小王在距离东西向公路400m处侦察,发现一辆敌方汽车在公路上疾驰.他赶紧拿出红外测距仪,测得汽车与他相距400m,10s 后,汽车与他相距500m,你能帮小王计算出敌方汽车的速度吗?意图:(1)初步运用勾股定理解决实际问题,培养学生应用数学的意识和能力;(2)体会勾股定理的应用价值.效果:学生对这样的实际问题很感兴趣,基本能把实际问题转化为数学问题并顺利解决.一组生活中勾股定理的应用练习,共3道题.(1)教材P6练习题1.(2)一个25m长的梯子AB,斜靠在一竖直的墙AO上,这时的AO距离为24m,如果梯子的顶端A沿墙下滑4m,那么梯子底端B也外移4m吗?(3)受台风麦莎影响,一棵高18m的大树断裂,树的顶部落在离树根底部6米处,这棵树折断后有多高?说明:这一环节设计了3道题,设计时注意了题目的梯度,由浅入深,第一题为书上练习题,学生容易解决,第二道题虽然计算难度不大,但考查学生的实际应用能力,第三道题是应用勾股定理建立方程求解,有一定难度.意图:在例题的基础上进行拓展,训练学生将实际问题转化为数学问题,再运用勾股定理解决问题.效果:小部分学生在完成第二题时,由于欠缺生活常识时,不能准确地理解题意,约有一半同学对第3道题束手无策,主要是缺乏利用勾股定理建立方程求解的这种思路,经同学点拨,教师引导,绝大部分同学最后都能解决这个问题,通过3个小题的训练,总体感觉学生对勾股定理的应用更加熟练,并对勾股定理的应用价值体会更深.第五环节:随堂检测一、选择题1. 下列选项中,不能用来证明勾股定理的是()A.B.C.D.答案:D解析:A,B,C都可以利用图形面积得出a,b,c的关系,即可证明勾股定理;故A,B,C选项不符合题意;D、不能利用图形面积证明勾股定理,故此选项正确.故选D.点拨:根据图形的面积得出a,b,c的关系,即可证明勾股定理,分别分析得出即可.2.“赵爽弦图”是四个全等的直角三角形与中间一个正方形拼成的大正方形.如图,每一个直角三角形的两条直角边的长分别是3和6,则中间小正方形与大正方形的面积差是()A.﹣9 B.﹣36 C.﹣27 D.﹣34答案:B解析:根据题意得:小正方形的面积=(6﹣3)2=9,大正方形的面积=32+62=45,9﹣45=36.故选B.点拨:由正方形的性质和勾股定理求出小正方形和大正方形的面积,即可得出小正方形与大正方形的面积差.二、填空题3. 2002年8月在北京召开的国际数学家大会会徽取材于我国古代数学家赵爽弦图它是由四全等的直角三角形与中间的一个小正方形拼成的一个大正方形,如图所示,如果大正方形的面积是13,小正方形的面积是1,直角三角形的短直角边为a,较长直角边为b,下列说法:①a2+b2=13;②b2=1;③a2﹣b2=12;④ab=6.其中正确结论序号是_________.答案:①④解析:直角三角形的斜边长是c,则c2=a2+b2,大正方形的面积是13,即c2=a2+b2=13,①正确;∵小正方形的面积是1,∴b﹣a=1,则(b﹣a)2=1,即a2+b2﹣2ab=1,∴ab=6,故④正确;根据图形可以得到a2+b2=13,b﹣a=1,而b=1不一定成立,故②错误,进而得到③错误.故答案是:①④点拨:根据勾股定理,知两条直角边的平方等于斜边的平方,此题中斜边的平方即为大正方形的面积13,2ab即四个直角三角形的面积和,从而判断.4. 利用图(1)或图(2)两个图形中的有关面积的等量关系都能证明数学中一个十分著名的定理,这个定理称为_________,该定理的结论其数学表达式是_________.答案:勾股定理、a2+b2=c2.解析:用图(2)较简单,如图正方形的面积=(a+b)2,用三角形的面积与边长为c的正方形的面积表示为4×ab+c2,即(a+b)2=4×ab+c2化简得a2+b2=c2.这个定理称为勾股定理.故答案为:勾股定理、a2+b2=c2.点拨:通过图中三角形面积、正方形面积之间的关系,证明勾股定理.三、解答题5. 勾股定理是一条古老的数学定理,它有很多种证明方法.(1)请你根据图1填空;勾股定理成立的条件是_________三角形,结论是_________(三边关系)(2)以图1中的直角三角形为基础,可以构造出以a、b为底,以a+b为高的直角梯形(如图2),请你利用图2,验证勾股定理;答案:(1)直角;a2+b2=c2;(2)见解析解析:(1)勾股定理指的是在直角三角形中,两直角边的平方的和等于斜边的平方.故答案是:直角;a2+b2=c2;(2)∵Rt△ABE≌Rt△ECD,∴∠AEB=∠EDC,又∵∠EDC+∠DEC=90°,∴∠AEB+∠DEC=90°,∴∠AED=90°.∵S梯形ABCD =SRt△ABE+SRt△DEC+SRt△AED,∴.整理,得a2+b2=c2.点拨:(1)根据图示直接填空;(2)利用S梯形ABCD =SRt△ABE+SRt△DEC+SRt△AED进行解答.第六环节:课堂小结教师提问:通过这节课的学习,你有什么样的收获?师生共同畅谈收获.目的:(1)归纳出本节课的知识要点,数形结合的思想方法;(2)教师了解学生对本节课的感受并进行总结;(3)培养学生的归纳概括能力.效果:由于这节课自始至终都注意了调动学生学习的积极性,所以学生谈的收获很多,包括利用拼图验证勾股定理中蕴含的数形结合思想,学生对勾股定理的历史的感悟及对勾股定理应用的认识等等.布置作业:1.习题1.2 T2,32.上网或查阅有关书籍,搜集至少1种勾股定理的其它证法,至少1个勾股定理的应用问题,一周后进行展评.意图:(1)巩固本节课的内容.(2)充分发挥勾股定理的育人价值.分层作业基础型:一、选择题1. 历史上对勾股定理的一种证法采用了下列图形:其中两个全等的直角三角形边AE、EB在一条直线上.证明中用到的面积相等关系是()A.S△EDA =S△CEBB.S△EDA+S△CEB=S△CDBC.S四边形CDAE =S四边形CDEBD.S△EDA+S△CDE+S△CEB=S四边形ABCD答案:D解析:∵由S△EDA +S△CDE+S△CEB=S四边形ABCD.可知ab+c2+ab=(a+b)2,∴c2+2ab=a2+2ab+b2,整理得a2+b2=c2,∴证明中用到的面积相等关系是:S△EDA +S△CDE+S△CEB=S四边形ABCD.故选D.点拨:用三角形的面积和、梯形的面积来表示这个图形的面积,从而证明勾股定理.2. “赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a,较短直角边长为b,若(a+b)2=21,大正方形的面积为13,则小正方形的面积为()A.3 B.4 C.5 D.6答案:C解析:如图所示:∵(a+b)2=21,∴a2+2ab+b2=21,∵大正方形的面积为13,2ab=21﹣13=8,∴小正方形的面积为13﹣8=5.故选:C.点拨:观察图形可知,小正方形的面积=大正方形的面积﹣4个直角三角形的面积,利用已知(a+b)2=21,大正方形的面积为13,可以得出直角三角形的面积,进而求出答案.二、填空题3. 如图,以Rt△ABC的三边向外作正方形,若最大正方形的边长为6cm,以AC 为边的正方形的面积为25,则正方形M的面积为________.答案:11=AB2,25=AC2,AC2+AB2=BC2=6×6,解析:根据题意知,SM=36﹣25=11(cm2).∴SM故答案是:11cm2.点拨:根据正方形的面积公式以及勾股定理解答即可.4. 如图,已知△ABC中,AB=17,AC=10,BC边上的高AD=8.则△ABC的周长为_________.答案:48解析:在直角三角形ABD中,AB=17,AD=8,根据勾股定理,得BD=15;在直角三角形ACD中,AC=10,AD=8,根据勾股定理,得CD=6;∴BC=15+6=21,∴△ABC的周长为17+10+21=48,故答案为:48.点拨:分别在两个直角三角形中求得线段BD和线段CD的长,然后求得BC的长,从而求得周长.三、解答题5. 我国古代数学家赵爽的“勾股圆方图”是由四个全等的直角三角形与中间的一个小正方形拼成一个大正方形(如图所示).如果大正方形的面积是13,小正方形的面积是1,直角三角形的两直角边长分别为a、b,试求:(a+b)2的值.答案:B解析:根据勾股定理可得a2+b2=13,四个直角三角形的面积是:ab×4=13﹣1=12,即:2ab=12则(a+b)2=a2+2ab+b2=13+12=25.点拨:根据勾股定理可以求得a2+b2等于大正方形的面积,然后求四个直角三角形的面积,即可得到ab的值,然后根据(a+b)2=a2+2ab+b2即可求解.能力型:一、选择题1. 如图甲是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的,若AC=6,BC=5,将四个直角三角形中边长为6的直角边分别向外延长一倍,得到图乙所示的“数学风车”,则这个风车的外围周长是()A.52 B.42 C.76 D.72答案:C解析:依题意得,设“数学风车”中的四个直角三角形的斜边长为x,则x2=122+52=169,解得x=13.故“数学风车”的周长是:(13+6)×4=76.故选:C.点拨:由题意∠ACB为直角,利用勾股定理求得外围中一条边,又由AC延伸一倍,从而求得风车的一个轮子,进一步求得四个.二、填空题2. 如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为3cm,则图中所有正方形的面积之和为_______cm2.答案:27解析:∵最大的正方形的边长为3cm,∴正方形G的面积为9cm2,由勾股定理得,正方形E的面积+正方形F的面积=9cm2,正方形A的面积+正方形B的面积+正方形C的面积+正方形D的面积=9cm2,∴图中所有正方形的面积之和为27cm2,故答案为:27.点拨:根据正方形的面积公式求出正方形G的面积,根据勾股定理计算即可.3. 魏晋时期,伟大数学家刘徽利用如图通过“以盈补虚,出入相补”的方法,即“勾自乘为朱方,股自乘为青方,令出入相补,各从其类”证明了勾股定理,若图中BF=2,CF=4,则AE的长为_______.答案:6解析:∵BF=2,CF=4,∴BC=BF+CF=2+4=6,∵AB∥EC,∴=,即=,解得:CE=12,在Rt△ADE中,AD=6,DE=DC+CE=6+12=18,根据勾股定理得:AE==6,故答案为:6.点拨:由BF+CF求出BC的长,即为正方形ABCD的边长,由AB与CE平行,得比例求出CE的长,由DC+CE求出DE的长,在直角三角形ADE中,利用勾股定理求出AE的长即可.三、解答题4. (1)如图1是一个重要公式的几何解释.请你写出这个公式;(2)如图2,Rt△ABC≌Rt△CDE,∠B=∠D=90°,且B,C,D三点共线.试证明∠ACE=90°;(3)请利用(1)中的公式和图2证明勾股定理.答案:见解析解析:(1)这个公式为(a+b)2=a2+2ab+b2;证明:由图可知大正方形被分成了一个小正方形和两个长方形,大正方形的面积=(a+b)2,两个长方形的面积=(a+b)b+ab,小正方形的面积=a2,那么大正方形的面积=(a+b)b+ab+a2=(a+b)2=a2+2ab+b2.(2)∵Rt△ABC≌Rt△CDE,∴∠BAC=∠DCE,∴∠ACB+∠DCE=∠ACB+∠BAC=90°;由于B,C,D共线,所以∠ACE=180°﹣(∠ACB+∠DCE)=180°﹣90°=90°.(3)梯形ABDE的面积为(AB+ED)•BD=(a+b)(a+b)=(a+b)2;另一方面,梯形ABDE可分成三个直角三角形,其面积又可以表示成ab+ab+c2.所以,(a+b)2=ab+ab+c2.即a2+b2=c2.点拨:(1)用面积分割法证明:大正方形的面积等于小正方形和两个长方形的面积之和,从而推出平方和公式.(2)利用全等三角形对应角相等,直角三角形的两个锐角互余,推出直角;(3)用面积分割法法证明勾股定理:梯形ABDE的面积=三角形ABC的面积+三角形CDE的面积+三角形ACE的面积.探究型:一、解答题1. 教材第九章中探索乘法公式时,设置由图形面积的不同表示方法验证了乘法公式.我国著名的数学家赵爽,早在公元3世纪,就把一个矩形分成四个全等的直角三角形,用四个全等的直角三角形拼成了一个大的正方形(如图①),这个图形称为赵爽弦图,验证了一个非常重要的结论:在直角三角形中两直角边a、b与斜边c满足关系式a2+b2=c2,称为勾股定理.(1)爱动脑筋的小明把这四个全等的直角三角形拼成了另一个大的正方形(如图②),也能验证这个结论,请你帮助小明完成验证的过程.(2)小明又把这四个全等的直角三角形拼成了一个梯形(如图③),利用上面探究所得结论,求当a=3,b=4时梯形ABCD的周长.(3)如图④,在每个小正方形边长为1的方格纸中,△ABC的顶点都在方格纸格点上.请在图中画出△ABC的高BD,利用上面的结论,求高BD的长.答案:见解析解析:(1)证明:由图得,×ab×4+c2=(a+b)×(a+b),整理得,2ab+c2=a2+b2+2ab,即a2+b2=c2;(2)解:∵a=3,b=4,∴c==5,梯形ABCD的周长为:a+c+3a+c═4a+2c=4×3+2×5=22;(3)解:如图4,BD是△ABC的高.∵S=AC•△ABCBD=AB×3,AC==5,∴BD===.点拨:(1)根据四个全等的直角三角形的面积+阴影部分小正方形的面积=大正方形的面积,代入数值,即可证明;(2)由(1)中结论先求出c的值,再根据周长公式即可得出梯形ABCD的周长;(3)先根据高的定义画出BD,由(1)中结论求出AC的长,再根据△ABC的面积不变列式,即可求出高BD的长.2. 勾股定理神秘而美妙,它的证法多样,其巧妙各有不同,其中的“面积法”给了小聪以灵感,他惊喜的发现,当两个全等的直角三角形如图1或图2摆放时,都可以用“面积法”来证明,下面是小聪利用图1证明勾股定理的过程:将两个全等的直角三角形按图1所示摆放,其中∠DAB=90°,求证:a2+b2=c2.证明:连接DB,过点D作BC边上的高DF,则DF=EC=b﹣a.∵S四边形ADCB =S△ACD+S△ABC=b2+ab.又∵S四边形ADCB =S△ADB+S△DCB=c2+a(b﹣a)∴b2+ab=c2+ a(b﹣a)∴a2+b2=c2请参照上述证法,利用图2完成下面的证明.将两个全等的直角三角形按图2所示摆放,其中∠DAB=90°.求证:a2+b2=c2.证明:连结_______,过点B作______________,则_________.∵S五边形ACBED =S△ACB+S△ABE+S△ADE=______________.又∵S五边形ACBED=______________=ab+c2+a(b﹣a),∴______________=ab+c2+a(b﹣a),∴a2+b2=c2.答案:BD,BF⊥DE于F,BF=b﹣a,ab+ b2+ab,S△ACB +S△ABE+S△ADE,ab+b2+ ab.解析:证明:连结BD,过点B作BF⊥DE于F,则BF=b﹣a,∵S五边形ACBED =S△ACB+S△ABE+S△ADE=ab+b2+ab,又∵S五边形ACBED =S△ACB+S△ABD+S△BDE=ab+c2+a(b﹣a),∴。
《18.1勾股定理》课标要求《课标》对18.1勾股定理一节的相关内容提出的教学要求是:探索勾股定理,并能运用它们解决一些简单的实际问题.《18.1 勾股定理》教学设计(第1课时)一.教学目标:知识与技能:探索直角三角形三边关系,了解勾股定理的发现过程,掌握勾股定理的内容,会用面积法证明勾股定理。
过程与方法:(1)、经历观察与发现直角三角形三边关系的过程,感受勾股定理的应用意识。
(2)、在探索勾股定理的过程中,让学生经历“观察—猜想—归纳—验证”的能力,并体会数形结合和特殊到一般的思想方法。
情感态度与价值观:(1)、介绍我国古代勾股定理研究方面所取得的成就,感受数学文化,激发学生的爱国热情,促其勤奋学习。
(2)、在探究活动中,培养学生的合作交流意识和探索精神。
二.学情分析八年级学生已初步具有几何图形的观察,几何证明的理论思维能力。
他们希望老师创设便于他们进行观察的几何环境,给他们发表自己见解和表现自己才华的机会,希望老师满足他们的创造愿望,让他们实际操作,使他们获得施展自己创造才能的机会。
但对于勾股定理的得出,首先需要学生通过动手操作,在观察的基础上,大胆猜想数学结论,而这需要学生具备一定的分析、归纳的思维方法和运用数学的思想意识,但学生在这一方面的可预见性和耐挫折能力并不是很成熟,从而形成困难。
二.教材分析内容勾股定理的探究、证明及简单应用.内容解析勾股定理的内容是:如果直角三角形的两条直角边长分别为a、b,斜边长为c,那么.它揭示了直角三角形三边之间的数量关系.在直角三角形中,已知任意两边长,就可以求出第三边长.勾股定理常用来求解线段长度或距离问题.勾股定理的探究是从特殊的等腰直角三角形出发,到网格中的直角三角形,再到一般的直角三角形,体现了从特殊到一般的探探索、发现和证明的过程.证明勾股定理的关键是利用割补法求以斜边为边长的正方形的面积,教学中要注意引导学生通过探索去发现图形的性质,提出一般的猜想,并获得定理的证明.我国古代在数学方面又许多杰出的研究成果,对于勾股定理的研究就是一个突出的例子.教学中可以介绍我国古代在勾股定理的证明和应用方面取得的成就和作出的贡献,以培养学生的民族自豪感;围绕证明勾股定理的过程,培养学生学习数学的热情和信心.三.教学重难点教学重点:了解勾股定理的演绎过程,掌握勾股定理及其应用。
3.1探索勾股定理教学设计教学目标评价任务评价标准教学活动目标一:利用拼图得出勾股定理。
任务一:猜想直角三角形的三条边的数量关系?小组交流。
任务二:通过测量,计算直角三角形的三条边的平方是否满足上述猜想。
任务三:给出具体数据验证猜想是否成立。
1.能根据已有认知大胆作出猜想。
并积极和组员进行研讨交流2.能通过测量准确计算直角三角形的三条边的平方,并能及时修正其他同学的错误答案。
组内负责、计算、记录、归纳同学分工明确3.能详细,流利归纳总结出具体规律并能根据具体数据验证猜想一、引入新课从电线杆离地面8m处向地面拉一条钢索,若这条钢索在地面的固定点距离电线杆底部6m,那么需要多长的钢索?在直角三角形中,任意两条边确定了,另外一条边也就随之确定,三边之间存在着一个特定的数量关系。
事实上,古人发现,直角三角形的三条边长度的平方存在一个特殊的关系,让我们一起来探索吧!二、新授:做一做(1)在纸上作出若干个直角三角形,分别测量它们的三条边,看看三边的平方之间有怎样的关系?与同伴交流。
(2)如图,直角三角形三边的平方分别是多少,它们满足上面所猜想的数量关系吗?你是如何计算的?与同伴交流。
如图,是否还满足这样的关系?你是如何计算的呢?(3)如果直角三角形的两直角边分别为1.6个单位长度和2.4个单位长度,上面所猜想的数量关系还成立吗?说明你的理由以小组的形式让学生探索得出勾股定理:如果直角三角形两直角边分别为a,b,斜边为c,那么a2+b2=c2即直角三角形两直角边的平方和等于斜边的平方。
目标二:熟记勾股定理,并能运用勾股定理任务一:利用勾股定理解决例1任务二:利用1.正确理解勾股定理内容,注意适用条件和字母含义例1、在△ABC中,∠C=90°(1)若a=8,b=6,则c=_____;(2)若c=20,b=12,则a=_____;(3)若a∶b=3∶4,c=10,则a=____,b=____.ABCABC能力提升1、如图, 所有的四边形都是正方形, 所有的三角形都是直角三角形, 请在图中找出若干个图形, 使得它们的面积之和恰好等于最大的正方形的面积能力提升2、小明的妈妈买了一部29英寸(74厘米)的电视机。
勾股定理教学设计勾股定理教学任务教学目标知识与技能目标了解勾股定理的文化背景,体验勾股定理的探索过程.过程与方法目标在学生经历“观察—猜想—归纳—验证”勾股定理的过程中,发展合情推理能力,体会数形结合和从特殊到一般的思想.情感与态度目标1.通过对勾股定理历史的了解,感受数学文化,激发学习兴趣;2.在探究活动中,培养学生的合作交流意识和探索精神.重点探索和证明勾股定理.难点用拼图方法证明勾股定理.教学方法引导――探索法教具多媒体课件.学具剪刀和边长分别为a、b的两个连体正方形纸片. 活动流程图活动内容和目的活动1 创设情境→激发兴趣通过对赵爽弦图的了解,激发起学生对勾股定理的探索兴趣.活动2 观察特例→发现新知通过问题激发学生好奇、探究和主动学习的欲望.活动3 深入探究→交流归纳观察分析方格图,得出直角三角形的性质——勾股定理,发展学生分析问题的能力.活动4 拼图验证→加深理解通过剪拼赵爽弦图证明勾股定理,体会数形结合思想,激发探索精神.活动5 实践应用→拓展提高初步应用所学知识,加深理解.活动6 回顾小结→整体感知回顾、反思、交流.活动7 布置作业→巩固加深巩固、发展提高.问题与情境师生行为设计意图活动1 创设情境→激发兴趣2002年在北京召开的第24届国际数学家大会,它是最高水平的全球性数学科学学术会议,被誉为数学界的“奥运会”.这就是本届大会会徽的图案. 它象一个转动的风车,挥舞着手臂,欢迎来自世界各国的数学家们.(1)你见过这个图案吗?(2)你听说过“勾股定理”吗?教师出示照片及图片.学生观察图片发表见解.教师作补充说明:这个图案是我国汉代数学家赵爽用来证明勾股定理的“赵爽弦图”加工而来,展现了我国古代对勾股定理的研究成果,是我国古代数学的骄傲.教师应重点关注:(1)学生对“赵爽弦图”及勾股定理的历史是否感兴趣;(2)学生对勾股定理的了解程度.通过欣赏图片,了解历史,介绍与勾股定理有关的背景知识,激发学生学习兴趣,自然引出本节课的课题.会徽活动2 观察特例→发现新知 毕达哥拉斯是古希腊著名的数学家.相传在2500年以前,他在朋友家做客时,发现朋友家用地砖铺成的地面反映了直角三角形的三边的某种数量关系. (1)同学们,请你也来观察下图中的地面,看看能发现些什么? 地面 图18.1-1 (2)你能找出图18.1-1中正方形A 、B 、C 面积之间的关系吗? (3)图中正方形A 、B 、C 所围等腰直角三角形三边之间有什么特殊关系? 教师展示图片,提出问题. 学生独立观察图形,分析思考其中隐藏的规律. 学生通过直接数等腰直角三角形的个数,或者用割补的方法将正方形A 、B 中小等腰直角三角形补成一个大正方形得到:正方形A 、B 的面积之和等于大正方形C 的面积. 教师引导学生,由正方形的面积等于边长的平方归纳出:等腰直角三角形两条直角边的平方和等于斜边的平方. 通过讲传说故事来进一步激发学生学习兴趣,使学生在不知不觉中进入学习的最佳状态. “问题是思维的起点”,通过层层设问,引导学生发现新知.问题与情境 师生行为 设计意图 活动3 深入探究→交流归纳 (1)等腰直角三角形是特殊的直角三角形,一般的直角三角形是否也具有“两直角边的平方和等于斜边的平方”呢? 图18.1-2 如图18.1-2,每个小方格的面积均为1,以格点为顶点,有一个直角边分别是2、3的直角三角形.仿照上一活动,我们以教师出示图表.学生独立观察并计算各图中正方形A 、B 、C 的面积并完成填表. 教师参与小组活动,指导、倾听学生交流.针对不同认识水平的学生,引导其用不同的方法得出大正方形的面积. 学生分组交流,展示求面积的不同方法,如:在正方形C 周围补出四个全等的直角三角形而得到一个大正方形,通过图形面积的和差,得到正方形C 的面积.或者,将正方形C 分割成四个全等的直角三角形和一个小正方形,求得正方形C 面积.学生利用表格有条理地呈现数渗透从特殊到一般的数学思想.为学生提供参与数学活动的时间和空间,发挥学生的主体作用;培养学生的类比迁移能力及探索问题的能力,使学生在相互欣赏、争辩、互助中得到提高.这个直角三角形的三边为边长向外作正方形.(2)想一想,怎样利用小方格计算正方形A、B、C面积?(3)正方形A、B、C面积之间的关系是什么?(4)直角三角形三边之间的关系用命题形式怎样表述?据,归纳得到:正方形A、B的面积之和等于正方形C的面积.在上一活动“探究等腰直角三角形三边关系” 的基础上,学生类比迁移,得到:两直角边的平方和等于斜边的平方.师生共同讨论、交流、逐步完善,得到命题1:如果直角三角形的两直角边长分别为a、b,斜边长为c,那么a2+ b2=c2.教师应重点关注:学生能否主动参与探究活动,在讨论中发表自己的见解,倾听他人的意见,对不同的观点进行质疑,从中获益.问题与情境师生行为设计意图活动4 拼图验证→加深理解(弦图验证)(1)如图:已知四个全等的直角三角形的两直角边长分别为a和b,斜边长为c。
《探索勾股定理》教学设计学习目标1、经历探索数格子的方法发现勾股定理,并利用拼图的方法论证勾股定理的存在。
2、结合具体的情境,理解和掌握“直角三角形两条直角边的平方和等于斜边的平方”。
3、探索和实际操作掌握勾股定理在实际生活中的应用。
重点、难点重点:是对勾股定理的理解,以及运用勾股定理去解决一些相关的实际问题。
难点:是勾股定理的探索和验证过程中,进一步体会数形结合的思想,学习中应注意加辅助线的方法。
教学方法启发式教学教学过程:(一)创设问题的情境,激发学生的学习热情:我们知道,任意三角形的三条边必须满足定理:三角形的两边之和大于第三边。
对于等腰三角形和等边三角形的边,除满足三边关系定理外,它们还分别存在着两边相等和三边相等的特殊关系。
那么对于直角三角形的边,除满足三边关系定理外,它们之间也存在着特殊的关系,这就是我们这一节要研究的问题:勾股定理。
请同学们阅读课本中P2 (图1一2)并回答:1、观察图1一2,正方形A中有个小方格,即A的面积为个面积单位。
正方形 B 中有个小方格.即B的面积为个面积单位。
正方形 C 中有个小方格,即C的面积为个面积单位。
2、你是怎样得出上面结果的?3、图 l一2 中,A、B、C之间的面积之间有什么关系?(二)做一做观察:课本中P3 图1一3提问: 1、图1一 3中,A 、B、C之间有什么关系?2、从图 1一l 、 1一2 、1一3 中你发现了什么?(三)议一议1、图1一2、1一3你能用三角边的边长表示正方形的面积吗?2、你能发现直角三角形三边长度之间的关系吗?归纳:也就是说:如果直角三角形的两直角边为a 、b ,斜边为c 。
那么222c b a =+我国古代称直角三角形的较短的直角边为勾,较长的直角边为股,斜边为弦,这就是勾股定理的312m(四)随堂练习1、已知在Rt △ABC 中,∠C=90°。
①若a=3,b=4,则c=________;②若a=40,b=9,则c=________;③若a=6,c=10,则b=_______;④若c=25,b=15,则a=________。
课题探索勾股定理(二)备课
日期
年月日
教法观察法、操作法、讨论法授课
日期
年月日
学法动手、观察、交流、合作教具
教学目标知识目标:
1.经历运用拼图的方法说明勾股定理是正确的过程,在数学活动中发展学生的探究意识和合作交流的习惯。
2.掌握勾股定理和他的简单应用
能力目标:
能熟练运用拼图的方法证明勾股定理,进一步发展学生的合情推力意识,主动探究的习惯,进一步体会数学与现实生活的紧密联系。
情感目标:
通过研究勾股定理的历史,了解中华民族文化的发展对数学发展的贡献,激发学生的爱国热情和学习数学的兴趣。
重点能熟练运用拼图的方法证明勾股定理难点用面积证勾股定理
板书设计
勾股定理(二)
直角三角形边的两直角边的平方和等于斜边的平方。
也就是说:如果直角三角形的两直角边为a,b,斜边为c 那么222
a b c
+=
例
解:由勾股定理得22222
549(
BC AB AC
=-=-=千米)即BC=3千米
飞机20秒飞行3千米,那么它1小时飞行的距离为:
3600
3540(/
20
⨯=
千米小)
答:飞机每个小时飞行540千米。
教
后
感
教学过程:
一、创设问题的情境,激发学生的学习热情,导入课题
我们已经通过数格子的方法发现了直角三角形三边的关系,究竟是几个实例,是否具有普遍的意义,还需加以论证,下面就是今天所要研究的内容,下边请大家画四个全等的直角三角形,并把它剪下来,用这四个直角三角形,拼一拼、摆一摆,看看能否得到一个含有以斜边c 为边长的正方形,并与同学交流。
在同学操作的过程中,教师展示投影1(书中p7 图1—7)接着提问:大正方形的面积可表示为什么?
(同学们回答有这几种可能:(1)22()a b + (2)2142
ab c ⋅+ ) 在同学交流形成共识之后,教师把这两种表示大正方形面积的式子用等号连接起来。
22a b +=2142
ab c ⋅+ 请同学们对上面的式子进行化简,得到:
22222a ab b ab c ++=+
即 22a b +=2c
这就可以从理论上说明勾股定理存在。
请同学们去用别的拼图方法说明勾股定理。
二、讲例
机在空中水平飞行,某一时刻刚好飞机飞到一个男孩头顶正上方4000多米处,过20秒,飞机距离这个男孩头顶5000米,飞机每时飞行多少千米?
分析:根据题意:可以先画出符合题意的图形。
如右图,图中△ABC 的90,4000c AC ∠=︒=米,AB=5000米,欲求飞机每小时飞行多少千米,就要知道飞机在20秒的时间里的飞行路程,即图中的CB 的长,由于直角△ABC 的斜边AB=5000米,AC=4000米,这样的CB 就可以通过勾股定理得出。
这里一定要注意单位的换算。
解:由勾股定理得22222549(BC AB AC =-=-=千米)
即BC=3千米
飞机20秒飞行3千米,那么它1小时飞行的距离为:
36003540(/20
⨯= 千米小) 答:飞机每个小时飞行540千米。
三、议一议
展示投影2(书中的图1—9)
观察上图,应用数格子的方法判断图中的三角形的三边长是否满足222
+=
a b c
四、小结:同学在议论交流形成共识之后,老师总结。
勾股定理存在于直角三角形中,不是直角三角形就不能使用勾股定理。
五、作业
a)1、课文 P9§1.2 1§1. 1 、2
b)选用作业。