点圆 直线和圆的位置关系
- 格式:pptx
- 大小:683.38 KB
- 文档页数:20
初三数学直线和圆的位置关系一.直线和圆的位置关系:①相交:直线和圆有两个公共点,这时说这条直线和圆相交;这条直线叫做圆的割线;②相切:直线和圆有唯一公共点,这时说这条直线和圆相切;这条直线叫做圆的切线,这个点叫做切点.③相离:直线和圆没有公共点,这时说这条直线和圆相离.二.直线和圆的位置关系的判定:(1)定理:若⊙O的半径为R,圆心到直线l 的距离为d. 则直线l与⊙O相交d﹤R;直线l与⊙O相切 d =R;直线l与⊙O相离d﹥R;(2)“圆心到直线的距离d和半径R的数量关系”与“直线和圆的位置关系”之间的对应与等价关系列表如下:例1、1.在Rt△ABC中,∠C=,AC=3cm,AB=6cm,以点C为圆心,与AB边相切的圆的半径为_________cm.2.如图,⊙O的半径OD为5cm,直线l⊥OD,垂足为O,则直线l沿射线OD方向平移_________cm时与⊙O相切.3.已知⊙O的直径为6cm,如果直线l上的一点C到圆心的距离为3cm,则直线l与⊙O的位置关系是_________.4.⊙O的半径为R,圆心O到直线l的距离d与R是方程x2-6x+9=0的两个实数根,则直线l和⊙O的位置关系是_________.三.切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线;2.切线的性质:①切线垂直于过切点的半径;②切线和圆心的距离等于半径;③经过圆心且垂直于切线的直线必过切点;④经过切点垂直于切线的直线必过圆心.综上所述,在解决有关圆的切线的问题,连接圆心和切点的线段是最常见的辅助线.四、切线长的定义及切线长定理过圆外一点作圆的切线,这点和切点之间的线段长叫做这点到圆的切线长,如图所示,PA,PB 是⊙O的两条切线,A,B为切点,线段PA,PB的长即为点P到⊙O的切线长.切线长定理:过圆外一点所画的圆的两条切线长相等.例2、如图,AB是⊙O的直径,BC切⊙O于点B,AD∥CO.求证:CD是⊙O的切线.1、⊙O的半径为R,直线l和⊙O有公共点,若圆心到直线l的距离是d,则d与R的大小关系是()A.d>RB.d<RC.d≤RD.d≥R2、点A为直线l上任一点,过A点与直线l相切的圆有()个.A.1 B.2C.不存在 D.无数个3、在Rt△ABC中,∠A=,BA=12,CA=5,若以A为圆心,5为半径作圆,则斜边BC与⊙A的位置关系是()A.相交 B.相离C.相切 D.不确定4、等边△ABC的边长为6,点O为△ABC的外心,以O为圆心,为半径的圆与△ABC的三边()A.都相交B.都相离C.都相切D.不确定5、两个同心圆的半径分别为3cm和5cm,作大圆的弦MN=8cm,则MN与小圆的位置关系是()A.相交 B.相切C.相离D.无法判断6、如图,在直角坐标系中,⊙O的半径为1,则直线与⊙O的位置关系是()A.相离 B.相交C.相切 D.以上三种情形都有可能7、下列说法正确的是()A.垂直于切线的直线必过切点B.垂直于半径的直线是圆的切线C.圆的切线垂直于经过切点的半径D.垂直于切线的直线必经过圆心8、已知Rt△ABC的直角边AC=BC=4cm,若以C为圆心,以3cm的长为半径作圆,则这个圆与斜边所在的直线的位置关系是()A.相交 B.相切C.相离 D.不能确定9、如右上图,在△ABC中,AB=2,AC=1,以AB为直径的圆与AC相切,与边BC交于点D,则AD的长为()10、如下图,AB是⊙O的直径,点D在AB的延长线上,过点D作⊙O的切线,切点为C,若∠A=25°,∠D=__________.11、如图,⊙O的半径为1,圆心O在正三角形的边AB上沿图示方向移动,当⊙O移动到与AC相切时,OA=__________.12、设⊙O的半径为R,⊙O的圆心到直线的距离为d,若d、R是方程x2-6x+m=0的两根,则直线l 与⊙O相切时,m的值为__________.13、已知∠ABC=60°,点O在∠ABC的平分线上,OB=5cm,以O为圆心,2cm为半径作⊙O,则⊙O与BC的位置关系是__________.14、如图,Rt△ABC中,∠B=90°,∠A的平分线交BC于D,E为AB上一点,DE=DC,以D为圆心,DB的长为半径作⊙D.求证:(1)AC是⊙D的切线;(2)AB+EB=AC.15、如图,以边长为4的正△ABC的BC边为直径作⊙O与AB相交于点D,⊙O的切线DE交AC于E,EF⊥BC,点F是垂足,求EF的长.16、如图,PA是⊙O的切线,切点是A,过点A作AH⊥OP于点H,交⊙O于点B.求证:PB是⊙O的切线.17、如图,已知AB是⊙O的直径,AB=2,∠BAC=30°,点C在⊙O上,过点C与⊙O相切的直线交AB 的延长线于点D,求线段BD的长.1.弧长公式:n°的圆心角所对的弧长l公式不要死记硬背,可依比例关系很快地随手推得:2.扇形面积公式:(1)和含n°圆心角的扇形的面积公式同样不要死记硬背,可依比例关系很快地随手推得:.(2)将弧长公式代入扇形面积公式中,立即得到用弧长和半径表示的扇形面积公式:。
与圆有关的位置关系及切线定理与圆有关的位置关系1、点与圆的位置关系如果圆的半径是r ,这个点到圆⼼的距离为d,那么:(1)点在圆外d>r ;(2)点在圆上d=r;(3)点在圆内d2、直线与圆位置关系的定义及有关概念(1)直线与圆有两个公共点,叫做直线与圆相交,这直线叫做圆的割线,公共点叫做交点(2)直线和圆有⼀公共点时,叫做直线和圆相切,这直线叫做圆的切线,公共点叫做切点(3)直线和圆没有公共点时,叫做直线和圆相离.3、直线和圆的位置关系如果⊙ O的半径为r ,圆⼼O到直线l 的距离为d,那么(1)直线l 和⊙ O相交d(2)直线l 和⊙ O相切d=r;(3)直线l 和⊙ O相离d>r;典例精析例1:已知直线l :y=x-3 和点A(0,3),B(3,0),设P点为l 上⼀点,试判断P、A、B是否在同⼀个圆上?例2:下列说法正确的是()A. 过圆内接三⾓形的顶点的直线是圆的切线B. 若直线与圆不相切,则它和圆相交C. 若直线和圆有公共点,直线和圆相交D. 若直线和圆有唯⼀公共点,则公共点是切点例3:设直线l到⊙ O的圆⼼的距离为d,⊙ O的半径为R,并使x2 2 dx R 0 ,试根据关于x 的⼀元⼆次⽅程根的情况讨论l 与⊙ O的位置关系.3、圆和圆的位置关系外离(没有公共点)外切(1)相离(2)相切(有⼀个公共点)(3)相交(有两个公共点)内含(包括同⼼圆)内切注:两圆同⼼是两圆内含的⼀种特例.2、两圆的位置与两圆的半径、圆⼼距之间的数量关系设两圆的半径分别为R 和r ,圆⼼距为d,那么(1)两圆外离d>R+r (2)两圆外切d=R+r(3)两圆相交R-r(4)两圆内切d=R-r (5)两圆内含d典例精析例1:已知两个圆的半径分别为2、3,圆⼼距是d,若两圆有公共点,则 d 的取值范围为例2:已知⊙ O1 和⊙ O2内切,圆⼼距为7cm,⊙ O1 的半径为8cm,求⊙ O2 的半径.例4:如图:⊙ M的半径为8cm,⊙ N的半径为6cm,MN=10cm,两圆相交于A、B 两点,连接AB与MN交于点C,求AB的长与相切有关的性质定理1、切线的性质定理:定理:圆的切线垂直于过切点的半径. 推论1:经过圆⼼且垂直于切点的直线必经过切点.推论2:经过切点且垂直于切点的直线必经过圆⼼.2、切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线.3、切线的判定⽅法(1)定义:和圆只有⼀个公共点的直线是圆的切线;(2)数量关系:和圆⼼的距离等于半径的直线是圆的切线;(证长度)(3)定理:过半径外端且与这条半径垂直的直线是圆的切线.(证⾓度)两圆相切与相交的性质:(1)如果两圆相切,那么两圆的连⼼线经过切点;(2)两圆相交,连⼼线垂直平分相交圆的公共弦。
【高中数学】高中数学知识点:直线与圆的位置关系直线与圆的位置关系:由直线与圆的公共点的个数,得出结论以下直线和圆的三种边线关系:(1)相交:直线与圆有两个公共点时,叫做直线和圆相交,这时直线叫做圆的割线。
(2)切线:直线和圆存有唯一公共点时,叫作直线和圆切线,这时直线叫作圆的切线,唯一的公共点叫作切点。
(3)相离:直线和圆没有公共点时,叫做直线和圆相离。
其图像如下:直线和圆的位置关系的性质:(1)直线l和⊙o平行d<r(2)直线l和⊙o切线d=r;(3)直线l和⊙o嗟乎d>r。
直线与圆边线关系的认定方法:(1)代数法:判断直线ax+by+c=0和圆x2+y2+dx+ey+f=0的位置关系,可由面世mx2+nx+p=0,利用判别式△展开推论.△>0则直线与圆相交;△=0则直线与圆切线;△<0则直线与圆相离.(2)几何法:未知直线ax+by+c=0和圆,圆心到直线的距离d<r则直线和圆平行;d=r则直线和圆相切;d>r则直线和圆嗟乎.特别提醒:(1)上述两种方法,以利用圆心至直线的距离展开认定较为简便,而判别式法也适用于于直线与椭圆、双曲线、抛物线边线关系的推论.(2)直线与圆相交,应抓住半径、弦心距、半弦长组成的直角三角形,可使解法简单.直线与圆边线关系的认定方法列表如下:直线与圆相交的弦长公式:(1)几何法:如图所示,直线l与圆c平行于a、b两点,线段ab的长即为l与圆平行的弦长。
设弦心距为d,半径为r,弦为ab,则有|ab|=(2)代数法:直线l与圆处设直线l的斜率为k,则有当直线ab的倾斜角为直角,即为斜率不存有时,|ab|=。
§24.2 点和圆、直线和圆的位置关系一、知识点过关知识点1 点和圆的位置关系(重点;掌握)点和圆的位置关系有三种,设点P 到圆心O 的距离d OP =,⊙O 的半径为r ,则有: 点P r >;点P 在圆上 r =;点P 在圆内 r <; 【命题点1 根据d 与r 的数量关系判定点与圆的位置关系】例1 已知⊙O 的面积是16π,若5.4=OP ,则点P 在⊙O ;若4=OP ,则点P 在⊙O ;若OP ,则点P 在⊙O 内.针对性训练1、若点)0(,a B 在以点)01(,A 为圆心,2为半径的圆内,则a 的取值范围为 ( ) 31.<<-a A 3.<aB 1.->aC 13.-<>ora a D知识点2 圆的确定(重点;理解)不在同一条直线上的三个点确定一个圆。
经过三角形的三个顶点可以作一个圆,这个圆叫做三角形的外接圆,外接圆的圆心是三角形三条边的垂直平分线的交点,叫做这个三角形的外心. 【命题点2 求三角形外接圆的半径】例2 △ABC 中,10==AC AB ,12=BC ,求△ABC 的外接圆半径.针对性训练1. 如图,点A ,B ,C 在同一条直线上,点D 在直线AB 外,过这4个点中的任意3个点,能画圆的个数是( )A.1B.2C.3D.4知识点3 直线和圆的位置关系(重点;掌握)1.相交、相切与相离的概念[画图板书](1)直线和圆有两个公共点,这时我们说这条直线和圆相交,这条直线叫做圆的割线.(2)直线和圆有一个公共点,这时我们说这条直线和圆相切,这条直线叫做圆的切线,这个点叫做切点.(3)直线和圆没有公共点,这时我们说这条直线和圆相离.2.直线与圆的位置关系如果设⊙O 的半径为r ,圆心到直线l 的距离为d ,可归纳出下列结论: (1)直线l 和⊙O 相离 r d >; (2)直线l 和⊙O 相切 r d =; (3)直线l 和⊙O 相交 r d <;【命题点3 根据直线与圆的位置关系求半径R 的取值范围】例3 已知︒=∠30MON ,在ON 边上有一点P ,cm OP 5=,若以点P 为圆心,以R 为半径作圆,求满足下列条件的⊙P 的半径R 的取值范围. (1)射线OM 与⊙P 只有一个公共点; (2)射线OM 与⊙P 有两个公共点.针对性训练1、在Rt △ABC 中,cm AC 3=,cm BC 4=,︒=∠90ACB .若以点C 为圆心,r 为半径的圆与直线AB 不相离,求r 的取值范围.知识点4 圆的切线的判定与性质(重点、难点;理解)1.切线的判定(1)和圆只有一个公共点的直线是圆的切线.(2)如果圆心到直线的距离等于半径,那么直线是圆的切线.经过半径的外端并且垂直于这条半斤的直线是圆的切线(切线的判定定理) 2.切线的性质定理圆的切线垂直于过切点的半径. 【命题点4 切线的性质定理的应用】例4 如图所示,AB 为⊙O 的直径,PD 切⊙O 于点C ,交AB 的延长线于点D ,且CAD D ∠=∠2.连接OC. (1)求D ∠的度数;(2)若2=CD ,求BD 的长.针对性训练1、已知⊙O 中,AC 为直径,MA ,MB 分别切⊙O 于点A ,B. (1)如图①,若︒=∠25BAC ,求AMB ∠的大小;(2)如图②,过点B 作AC BD ⊥于点E ,交⊙O 于点D ,若MA BD =,求AMB ∠的大小.知识点5 切线长的定义及定理(重点、难点;掌握)1.定义经过圆外一点的圆的切线上,这点和切点之间线段的长,叫做这点到圆的切线长. 2.切线长定理从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角. 【命题点5 利用切线长定理求角的度数】例5 如图所示,PA ,PB 是⊙O 的切线,A 、B 为切点,BC 是⊙O 的直径,连接AB ,AC ,OP.︒=∠20BAC ,则P ∠的度数为 ( )A.50°B.70°C.110°D.40°针对性训练1、如图所示,PA ,PB 是⊙O 的切线,切点分别为A 、B ,已知BC 是⊙O 的直径,连接AB ,AC ,OP. 求证:(1)ABC APB ∠=∠2;(2)AC ∥OP.【命题点6 利用切线长定理求线段的长】例5 如图所示,PA ,PB 是⊙O 的切线,切点分别是A 、B ,Q 为︵AB上一点,过Q 点作⊙O 的切线,交PA ,PB 与E ,F 两点,已知cm PA 10=,求△PEF 的周长.针对性训练1、如图,P 是⊙O 外一点,PA ,PB 分别和⊙O 相切于点A ,B ,C 是劣弧︵AB上任意一点,过C 作⊙O 的切线DE ,分别交PA ,PB 于点D ,E. 已知△PDE 的周长为8,︒=∠70DOE ,点M ,N 分别在PB ,PA 的延长线上,MN 与⊙O 相切于点F ,且DN ,EM 的长是方程0102=+-k x x 的两根. (1)求P ∠的度数;(2)求PA 的长;(3)求四边形DEMN 的周长.知识点6 三角形的内切圆(重点、难点;掌握)(1)与三角形各边都相切的圆叫做三角形的内切圆,内切圆的圆心是三角形三条角平分线的交点,叫做三角形的内心.(内切圆与外接圆对比)(2)三角形的内心到三角形三边的距离都相等.(3)三角形的内切圆的作法:先作出三角形的两条角平分线,以两条角平分线的交点为圆心,交点到一边的距离为半径作圆,即而已得到三角形的内切圆.推论:同弧或等弧所对的圆周角相等.半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径. 【命题点6 利用三角形内心求角的度数】例6 如图所示,⊙O 是△ABC 的内切圆,与边BC 、CA 、AB 的切点分别为D ,E ,F ,若上︒=∠70A ,则EDF ∠= 度.针对性训练1、⊙O 是Rt △ABC 的内切圆,切点分别为D 、E 、F ,︒=∠90C ,4=AC ,3=AB ,求⊙O 的半径r .知识点7 圆内接多边形的概念及圆内接四边形的性质(重点;理解)1.概念:如果一个多边形的所有顶点都在同一个圆上,这个多边形叫做圆内接多边形,这个圆叫做这个多边形的外接圆.2.性质:圆内接多边形的对角互补.【命题点7 圆内接四边形与垂径定理的综合应用】例7 如图所示,四边形ABCD 的四个顶点都在⊙O 上,BD AC ⊥于E ,AB OF ⊥于F ,求证:CD OF =2.针对性训练1、如图所示,在圆内接四边形ABCD 中,︒=∠30B ,则=∠D .二、全方位技巧类型题1 根据点与圆的位置关系求r 的取值范围例1 已知△ABC ,︒=∠90C ,2=AC ,3=BC ,AB 的中点为M. (1)以C 为圆心,2为半径作⊙C ,则点A ,B ,M 与⊙C 的位置关系如何?(2)若以C 为圆心作⊙C ,使A ,B ,M 三点至少有一点在⊙C 的内部,且至少有一点在⊙C 的外部,求⊙C 的半径r 的取值范围.类型题2 有关圆与一元二次方程的综合题例2 设⊙O 的半径为2,点P 到圆心的距离m OP =,且m 使关于x 的方程012222=-+-m x x 有实数根,试确认点P 与⊙O 的位置关系.类型题3 切线的判定和性质的综合应用例3 如图所示,已知AB 是⊙O 的直径,BC 是⊙O 的切线,OC 与⊙O 相交于点D ,连接AD 并延长,与BC 相交于点E. (1)若3=BC ,1=CD ,求⊙O 的半径;(2)取BE 的中点F ,连接DF ,求证DF 是⊙O 的切线.类型题4 圆的切线与四边形的综合应用例4 如图所示,AB 是半圆O 的直径,点C 为半径OB 上一点,过点C 作CD ⊥AB 交半圆O 于点D ,将△ACD 沿AD 折叠得到△AED ,AE 交半圆于点F ,连接DF. (1)求证DE 是半圆的切线;(2)当BC OC =时,判断四边形ODFA 的形状,并证明你的结论.类型题5 圆周角定理的推论与垂径定理的综合应用例5 如图所示,点C ,D 在以AB 为直径的⊙O 上,且CD 平分ACB ∠,若2=AB ,︒=∠15CBA ,则CD 的长为 .类型题6 巧引辅助线,构造特殊三角形解题例6 如图所示,在⊙O 中,︒=∠=∠60BDC ACB ,cm AC 32=. (1)求BAC ∠的度数. (2)求⊙O 的周长.三、分层实战训练【基础巩固】1.已知点P 与圆周上的点的最小距离为6cm ,最大距离为16cm ,求该圆的半径.2.⊙O 的圆心到直线l 的距离为d ,⊙O 的半径为R ,若R d ,是方程02092=+-x x 的两个实数根,则直线和圆的位置关系是 .3.如图,△ABC 内接于半径为5的⊙O ,圆心O 到弦BC 的距离等于3, 则A ∠的正切值等于 ( ) 53.A 54.B 43.C 34.D4.已知AB 是⊙O 的直径,点D 在AB 的延长线上,OB BD =,点C 在圆上,︒=∠30CAB .求证:DC 是⊙O 的切线.5.AB 是⊙O 的直径,点C 在⊙O 上,连接BC ,AC ,作OD ∥BC 与过点A 的切线交于点D ,连接DC 并延长交AB 的延长线于点E.求证:DE 是⊙O 的切线.6.AB 是⊙O 的直径,点F ,C 是⊙O 上两点,且︵AF =︵FC =︵CB ,连接AC ,AF ,过点C 作AF CD ⊥,交AF 的延长线于点D ,垂足为D.求证:CD 是⊙O 的切线.7.已知⊙O 的直径为AB ,AB AC ⊥于点A ,BC 与⊙O 相交于点D ,在AC 上取一点E ,使得EA ED =. (1)求证:ED 是⊙O 的切线;(2)当3=OA ,4=AE 时,求BC 的长度.8.如图所示,在△ABC 中,BC AC =,α=∠CAB (定值),⊙O 的圆心O 在AB 上,并分别与AC ,BC 相切于点P ,Q. (1)求POQ ∠的大小;(2)设D 是CA 延长线上的一个动点,DE 与⊙O 相切于点M ,E 在CB 的延长线上,试判断DOE ∠的大小是否随着D 点位置的变化而变化,并说明理由. (3)在(2)的条件下,如果m AB =(m 为已知数),53cos =α,设y DE x AD ==,,求y 关于x 的函数解析式.9.如图所示,在平面直角坐标系中,以点O 为圆心,半径为2的圆与y 轴交于点A ,点)24(,P 是⊙O 外一点,连接AP ,直线PB 与⊙O 相切于点B ,交x 轴于点C. (1)求证PA 是⊙O 的切线;(2)求点B 的坐标.10.如图,AB 是⊙O 的直线,弦CD 与AB 交于点E ,过点A 作⊙O 的切线与CD 的延长线交与点F ,如果CE DE 43=,58=AF ,D 为EF 的中点. (1)求证:ACF AFC ∠=∠;(2)求AB 的长.11.(2014*江苏扬州)如图,⊙O 与Rt △ABC 的斜边AB 相切与点D ,与直角边AC 相交于E 、F 两点,连接DE.已知︒=∠30B ,⊙O 的半径为12,弧DE 的长度为4π. (1)求证:DE ∥BC ;(2)若CE AF =,求线段BC 的长度.12.(2014*黑龙江哈尔滨)如图,⊙O 是△ABC 的外接圆,弦BD 交AC 于点E ,连接CD ,且DE AE =,CE BC =.(1)求ACB ∠的度数;(2)过点O 作AC OF ⊥于点F ,延长FO 交BE 与点G ,3=DE ,2=EG ,求AB 的长.。
直线和圆的位置关系介绍直线和圆是几何中常见的元素,它们在空间中的相对位置关系对于多个学科领域都具有重要意义。
本文将介绍直线和圆的四种基本位置关系:相离、相切、相交和包含。
相离相离是指直线和圆没有任何交点,它们在空间中完全没有重叠部分。
如果一条直线与一个圆都是无限延伸的,直线与圆的位置关系就可以通过它们的公式来确定。
设直线方程为Ax + By + C = 0,圆心坐标为(h, k),半径为r,则直线与圆的位置关系可以通过以下公式判断:d = |Ah + Bk + C| / sqrt(A^2 + B^2)if d > r:相离else:其他位置关系其中,d为直线到圆心的距离。
相切相切是指直线与圆只有一个交点,这个交点同时位于直线上和圆上。
相切的情况可以进一步分为两种:外切和内切。
外切外切是指直线与圆相切,且直线在圆的外部。
对于直线方程Ax + By + C = 0和圆心坐标(h, k),半径r,判断直线与圆是否外切的公式如下:d = |Ah + Bk + C| / sqrt(A^2 + B^2)if d = r:外切else:其他位置关系内切内切是指直线与圆相切,且直线在圆的内部。
同样,可以通过直线方程和圆的参数来判断直线与圆是否内切:d = |Ah + Bk + C| / sqrt(A^2 + B^2)if d = -r:内切else:其他位置关系相交相交是指直线与圆有两个不重复的交点。
如果直线方程和圆的参数已知,可以通过以下公式来判断直线与圆是否相交:d = |Ah + Bk + C| / sqrt(A^2 + B^2)if d < r:相交else:其他位置关系包含包含是指直线经过圆的中心,这是一种特殊的位置关系。
如果直线方程和圆心坐标已知,可以通过以下公式判断直线是否包含圆:Ah + Bk + C = 0结论直线与圆的位置关系可以通过直线方程和圆的参数来判断。
相离、相切、相交和包含是直线和圆的四种基本位置关系。
直线与圆、圆与圆的位置关系知识点及题型归纳知识点精讲一、 直线与圆的位置关系直线与圆的位置关系有3种,相离,相切和相交 二、 直线与圆的位置关系判断1. 几何法(圆心到直线的距离和半径关系) 圆心(,)a b 到直线0Ax By C ++=的距离,则d =则d r <⇔直线与圆相交,交于两点,P Q ,||PQ =d r =⇔直线与圆相切; d r >⇔直线与圆相离2. 代数方法(几何问题转化为代数问题即交点个数问题转化为方程根个数) 由2220()()Ax By C x a y b r++=⎧⎨-+-=⎩ ,消元得到一元二次方程20px qx t ++=,20px qx t ++=判别式为∆,则: 则0∆>⇔直线与圆相交; 0∆=⇔直线与圆相切; 0∆<⇔直线与圆相离.三、 两圆位置关系的判断是用两圆的圆心距与两圆半径的和差大小关系确定,具体是:设两圆12,O O 的半径分别是,R r ,(不妨设R r >),且两圆的圆心距为d ,则: 则d R r <+⇔两圆相交; d R r =+⇔两圆外切; R r d R r -<<+⇔两圆相离 d R r =-⇔两圆内切;0d R r ≤<-⇔两圆内含(0d =时两圆为同心圆) 四、 关于圆的切线的几个重要结论(1) 过圆222x y r +=上一点00(,)P x y 的圆的切线方程为200x x y y r +=.(2) 过圆222()()x a y b r -+-=上一点00(,)P x y 的圆的切线方程为200()()()()x a x a y b y b r --+--=(3) 过圆220x y Dx Ey F ++++=上一点00(,)P x y 的圆的切线方程为0000022x x y y x x y y D E F ++++⋅+⋅+= (4) 求过圆222x y r +=外一点00(,)P x y 的圆的切线方程时,应注意理解: ①所求切线一定有两条;②设直线方程之前,应对所求直线的斜率是否存在加以讨论.设切线方程为00()y y k x x -=-,利用圆心到切线的距离等于半径,列出关于k 的方程,求出k 值.若求出的k 值有两个,则说明斜率不存在的情形不符合题意;若求出的k 值只有一个,则说明斜率不存在的情形符合题意.题型讲解题型1 直线与圆的相交关系 思路提示研究直线与圆的相交问题,应牢牢记住三长关系,即半径长2l、弦心距d 和半径r 之间形成的数量关系222()2l d r +=.例9.28 已知圆O :225x y +=,直线l :cos sin 1(0)2x y πθθθ+=<<,设圆O 上到直线l 的距离等于1的点的个数为k ,则k =___________. 分析 先求出圆心到直线的距离,在进行判断解析 因为圆心(0,0)到直线l 的距离为1,又因为圆O 4个点符合条件. 评注 若圆O 上到直线l 的距离等于2的点的个数为k ,则2k =;若3k =,则圆O 上到直线l 的距离等于1变式1已知圆O :224x y +=,直线l :1x ya b+=,设圆O 上到直线l 的距离等于1的点的个数有两个,则2211a b +的取值范围___________. 例9.29 已知圆C :228120x y y +-+=,直线l :20ax y a ++=, (1) 当直线l 与圆C 相交时,求实数a 的取值范围;(2) 当直线l 与圆C 相交于,A B 两点,且AB =l 的方程.分析 根据点到直线距离等于半径来度量直线与圆相切问题;根据三长关系解决直线与圆相交问题. 解析 (1)圆C :22(4)4x y +-=,故圆心为(0,4)C ,因为直线l 与圆C 相交,所以圆心为(0,4)C 到直线l 的距离2d =<,解得34a <-,故实数a 的取值范围是3(,)4-∞-(2)由题意,直线l 与圆C 相交于,A B 两点,且AB =224+=,化简可得2870a a ++=,即1a =-或7a =-,故所求直线的方程为20x y -+=或7140x y -+=.评注 在处理直线与圆的相交问题时经常用到三长关系,即半弦长,弦心距,半径长构成直角三角形的三边.变式1 对任意的实数k ,直线1y kx =+与圆222x y +=的位置关系一定是( ) A .相离 B. 相切 C.相交但直线不过圆心 D.相交且直线过圆心变式 2 过点(1,2)--的直线l 被圆222210x y x y +--+=截得的弦长为,则直线l 的斜率为__________.变式3 已知直线l 经过点(1,3)P -且与圆224x y +=相交,截得弦长为l 的方程.例9.30 过点(1,1)P 的直线l 与圆22:(2)(3)9C x y -+-=相交于,A B 两点,则||AB 的最小值为( )A.解析 设圆心(2,3)C 到直线l 的距离d ,由弦长公式||AB ==可知当距离最大d 时,弦长||AB 最小.又||d CP ≤==,当直线l CP ⊥时取等号,故max d =.所以max ||4AB ===.故选B评注 过圆内一定点的所有弦中,过此点的直径为最长弦,过此点且垂直于该直径的弦为最短弦. 变式1 过点(11,2)A 做圆22241640x y x y ++--=的弦,其中弦长为整数的共有( ) A. 16 条 B. 17条 C. 32条 D. 34条例9.31 已知圆的方程为22680x y x y +--=.设该圆过点(3,5)的最长弦和最短弦分别是AC 和BD ,则四边形ABCD 的面积为( )A. 解析 22680x y x y +--=可化为22(3)(4)25x y -+-=,故圆心坐标(3,4),半径为5,点(3,5)在圆内,因为AC 最长,所以AC 为直径,即||10AC =,BD 最短,且BD 过点(3,5),所以||BD ==,所以1||||2S AC BD == B变式1 如图所示,已知AC ,BD 为圆O :224x y +=的两条相互垂直的弦,垂足为M ,则四边形ABCD 的面积的最大值为__________.例9.32 (2012北京海淀高三期末理13改编)已知圆22:(1)2C x y -+=,过点(1,0)M -的直线l 交圆C 于,A B 两点,若0CA CB ⋅=(C 为圆心),则直线l 的方程为__________. 解析 设直线:(1)l y k x =+,即:l 0kx y k -+= 则圆心到直线l 的距离为d =又0CA CB ⋅=,故CA CB ⊥,即△ABC 是等腰三角形,2C π∠=.所以sin142d r π====即k =±,故直线l :10x +=或10x ++= 变式 1 已知O 为平面直角坐标系的原点,过点(2,0)M -的直线l 与圆221x y +=交于,P Q 两点.若12OP OQ ⋅=-,求直线l 的方程.变式2 已知圆C :22(1)(6)25x y ++-=上的两点,P Q 关于直线l :8y kx =+对称,且0OP OQ ⋅=(O 为坐标原点),求直线PQ 的方程题型2 直线与圆的相切关系 思路提示若直线与圆相切,则圆心到直线的距离等于半径,切线的几何性质为:圆心和切点的连线垂直于切线. 例9.33 求经过点(1,7)-与圆2225x y +=相切的直线方程.分析 将点(1,7)-代入圆方程得221(7)5025+-=>,知点(1,7)-是圆外一点,故只需求切线的斜率或再求切线上另一点坐标.解析 解法一:依题意,直线的斜率存在,设所求切线斜率为k ,则所求直线方程为7(1)y k x +=-,整理成一般式为70kx y k ---=.由圆的切线的性质,5=,化简得3127120k k --=,解得43k =或34k =-. 故所求切线方程为:43250x y --=或34250x y ++=.解法二:依题意,直线的斜率存在,设所求切线方程为0025x x y y +=(00(,)x y 是切点),将坐标(1,7)-代入后得00725x y -=,由00002272525x y x y -=⎧⎪⎨+=⎪⎩,解得0043x y =⎧⎨=-⎩或0034x y =-⎧⎨=-⎩. 故所求切线方程为:43250x y --=或34250x y ++=.评注 已知圆外一点,求圆的切线方程一般有三种方法:①设切点,用切线公式法;②设切线斜率,用判别式法:③设切线斜率,用圆心到切线距离等于圆半径.一般地,过圆外一点可向圆作两条切线,在后两种方法中,应注意斜率不存在的情况.变式1 已知圆22:(1)(2)4C x y -+-=,求过点(1,5)P -的圆的切线方程.变式2 直线l (2)2y k x =-+与圆22:220C x y x y +--=相切,则的一个方向向量为( ) A. (2,2)- B. (1,1) C. (3,2)- D. 1(1,)2例9.34 自点(3,3)A -发出的光线l 射到x 轴上,被x 轴反射,其反射光线所在直线与圆224470x y x y +--+=相切,求入射光线l 所在直线的方程.分析 利用对称性解决此类反射问题.根据光学特征,对称性的使用既可以使用点的对称,也可以使用圆的对称.解析 已知圆22(2)(2)1x y -+-=关于x 轴的对称圆'C 的方程为22(2)(2)1x y -++=,可设光线所在直线方程为3(3)y k x -=+,所以直线l 与圆'C 相切,圆心'(2,2)C -到直线l 的距离1d ==,解得43k =-或34k =-. 所以光线所在的直线l 方程为4330x y ++=或3430x y +-=.变式 1 自点(3,3)A -发出的光线l 射到x 轴上,被x 轴反射,其反射光线'l 所在直线与圆224470x y x y +--+=相切,求反射光线'l 所在直线的方程.题型3 直线与圆的相离关系 思路提示关于直线与圆的相离问题的题目大多是最值问题,即直线上的点与圆上的点的最近或最远距离问题,这样的题目往往要转化为直线上的点与圆心距离的最近和最远距离再加减半径长的问题.例9.35 (1)直线:1l y x =-的点到圆22:4240C x y x y ++-+=上的点的距离最小值是____________. (2)由直线1y x =+上的点向圆22(3)(2)1x y -++=引切线,则切线长的最小值为( )分析 过直线1y x =+上任意一点向圆22(3)(2)1x y -++=引切线PQ ,即可得到1||PQ O Q PQ ⊥==,那么,当切线长PQ 取最小值时,即1O P 取最小值.解析 (1)圆C 可化为22(2)(1)1x y ++-=,故圆心(2,1)C -到直线1y x =-的距离d ==1d r -=(3) 过1O 作1O H 垂直于直线1y x =+于点H ,过H 作HR 相切圆1O 与R ,连接1O R ,则切线长的最小值为||HR ,圆心(3,2)-到直线10x y -+=的距离d ==,||HR =,故选A.变式1 已知点P 是直线40(0)kx y k ++=>上一动点,,PA PB 是圆22:20C x y y +-=的两切线,,A B 是切点,若四边形PACB 的最小面积是2,则k 的值为( )A. 3B.2C. 变式 2 已知圆22:1O x y +=和定点(2,1)A ,由圆O 外一点(,)P a b 向圆O 引切线PQ ,切点为Q ,且满足||||PQ PA =.(1)求实数,a b 间满足的等量关系; (2)求线段PQ 长的最小值.题型4 圆与圆的位置关系 思路提示已知两圆半径分别为12,r r ,两圆的圆心距为d ,则: (1) 两圆外离12r r d ⇔+<; (2)两圆外切12r r d ⇔+=; (3)两圆相交1212||r r d r r ⇔-<<+; (4)两圆内切12||r r d ⇔-=; (5)两圆内含12||r r d ⇔->;两圆外切和内切较为重要,这两种位置关系常与椭圆和双曲线的定义综合考查.例9.36 圆221:20O x y +-=和圆222:40O x y y +-=的位置关系是( )A. 外离B. 相交C. 外切D. 内切 分析 判断圆心距与两圆半径的关系解析 由圆221:20O x y +-=得1(0,0)O ,1r圆222:40O x y y +-=得2(0,2)O ,22r =,121212||||2r r O O r r -<=<+,两圆相交,故选B.变式1 在平面直角坐标系xOy 中,圆C 的方程为228150x y x +-+=,若直线2y kx =-上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,则k 的最大值是_________.变式2 在平面直角坐标系xOy 中,点(0,3)A ,直线l :24y x =-,设圆C 的半径为1,圆心在l 上, (1) 若圆心C 也在直线1y x =-上,过点A 作圆C 的切线,求切线方程;(2) 使得以该点为圆心,1为半径的圆与圆C 有公共点,则k 的最大值是_________.例9.37 已知两圆222610x y x y +---=和2210120x y x y m ++-+= (1)m 取何值时两圆外切.(2)m 取何值时两圆外切,此时公切线方程是什么?(3)求45m =时两圆的公共弦所在直线的方程和公共弦的长度.分析 把两圆的一般方程化为标准方程,求两圆的圆心距d ,判断d 与R r +,R r -的关系,再用圆的几何性质分别解决(2)(3)问. 解析 两圆的标准方程分别为22(1)(3)11x y -+-=,22(5)(6)61,(61)x y m m -+-=-<,圆心分别为(1,3),(5,6)M N(1) =25m =+(2) 小于两圆圆心距55=, 解得,两圆方程222610x y x y +---=与2210120x y x y m ++-+=,相减得861250x y +--+=代入,得43130x y +-+=.(3) 两圆的公共弦所在直线方程为2222(261)(101245)0x y x y x y x y +----+--+=,即43230x y +-=,所以公共弦长为=评注 应注意两圆位置关系由圆心距和两圆半径的和与差的大小关系来确定.变式1 若圆224x y +=与圆22260(0)x y ay a ++-=>,公共弦的长为a =___________.变式2 设两圆12,C C 都和两坐标轴相切,且都过点(4,1),则两圆的圆心距离12||C C =( )A. 4B. 有效训练题1. 已知点(,)P a b 在圆C :224x y +=内(异于圆心),则直线10ax by ++=与圆C 的位置关系是( ) A. 相交 B. 相切 C. 相离 D. 不能确定 2.已知a b ≠,且2sin cos 04a a πθθ+-=,2sin cos 04b b πθθ+-=,则连接2(,)a a ,2(,)b b 两点的直线与单位圆的位置关系是( )A. 相交B. 相切C. 相离D. 不能确定3.设,m n R ∈,若直线(1)(1)20m x n y +++-=与圆22(1)(1)1x y -+-=相切,则m n +的取值范围是( )A. 1⎡-⎣B. (),11⎡-∞⋃+∞⎣C. 2⎡-+⎣D. (),22⎡-∞-⋃++∞⎣4.若直线1x ya b+=经过点(cos ,sin )M αα,则( )A. 221a b +≤B. 221a b +≥ C.22111a b +≤ D. 22111a b +≥5.过点(1,1)P 的直线,将圆形区域22{(,)|4}x y x y +≤分两部分,使得这两部分的面积之差最大,该直线的方程为( )A. 20x y +-=B. 10y -=C. 0x y -=D. 340x y +-=6.若直线10x y -+=与圆22()2x a y -+=有公共点,则实数a 取值范围是( ) A. []3,1-- B. []1,3- C. []3,1- D. (][),31,-∞-⋃+∞7. 设,m n R ∈,若直线10mx ny +-=与x 轴相交于点A ,与y 轴相交于B ,且l 与圆224x y +=相交所得弦的长为2,O 为坐标原点,则△ABC 面积的最小值为___________8.过点(4,0)-作直线l 与圆2224200x y x y ++--=交于,A B 两点,如果||8AB =,则l 的方程为__________.9.在平面直角坐标系xOy 中,圆C 的方程为228150x y x +-+=,若直线2y kx =-上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,则的最大值是_______. 10.已知点(3,1)M ,直线40ax y -+=及圆22(1)(2)4x y -+-=. (1)求过点M 的圆的切线方程;(2)若直线40ax y -+=与圆相切,求a 的值(3)若直线40ax y -+=与圆相交于,A B 两点,且AB 弦的长为a 的值11.已知圆M 的方程为22(2)1x y +-=(M 为圆心),直线的方程为20x y -=,点P 在直线l 上,,过点P 作圆M 的切线,PA PB ,切点为,A B . (1)若060APB ∠=,试求点的坐标;(2)若点P 的坐标为(2,1),过P 作直线与圆M 交于,C D 两点,当CD =CD 的方程;(3)求证:经过,,A P M 三点的圆必过定点,并求出所有定点的坐标.12. 已知圆C 过点(1,1)P ,且与圆222:(2)(2)(0)M x y r r +++=>关于直线20x y ++=对称. (1)求圆C 的方程;(2)设Q 为圆C 上的一个动点,求PQ MQ ⋅的最小值.(M 为圆M 的圆心);(3)过点P 作两条相异直线分别与圆C 相交于,A B ,且直线PA 和直线PB 的倾斜角互补,O 为坐标原点,试判断直线OP 和AB 是否平行?请说明理由.。
一、点与圆的位置关系1.确定圆的条件(1)圆心(定点),确定圆的位置;(2)半径(定长),确定圆的大小.注意:只有当圆心和半径都确定时,圆才能确定.2.点与圆的位置关系(3)点与圆的位置关系有:点在圆上、点在圆内、点在圆外三种,这三种关系由这个点到圆心的距离与半径的大小关系决定.(4)设O=;⊙的半径为r,点P到圆心O的距离为d,则有:点在圆外⇔d r>;点在圆上⇔d r 点在圆内⇔d r<.如下表所示:二、过已知点的圆1.过已知点的圆(1)经过点A的圆:以点A以外的任意一点O为圆心,以OA的长为半径,即可作出过点A的圆,这样的圆有无数个.(2)经过两点A B、的圆:以线段AB中垂线上任意一点O作为圆心,以OA的长为半径,即可作出过点A B、的圆,这样的圆也有无数个.(3)过三点的圆:若这三点A B C、、三点不共线时,圆心、、共线时,过三点的圆不存在;若A B C是线段AB与BC的中垂线的交点,而这个交点O是唯一存在的,这样的圆有唯一一个.n≥个点的圆:只可以作0个或1个,当只可作一个时,其圆心是其中不共线三点确定的(4)过n()4圆的圆心.2.定理:不在同一直线上的三点确定一个圆(1)“不在同一直线上”这个条件不可忽视,换句话说,在同一直线上的三点不能作圆;(2)“确定”一词的含义是”有且只有”,即”唯一存在”.三、三角形的外接圆及外心1.三角形的外接圆(1)经过三角形三个顶点的圆叫做三角形的外接圆,外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心,这个三角形叫做这个圆的内接三角形.(2)锐角三角形外接圆的圆心在它的内部;直角三角形外接圆的圆心在斜边中点处(即直角三角形外接圆半径等于斜边的一半);钝角三角形外接圆的圆心在它的外部.2. 三角形外心的性质(1) 三角形的外心是指外接圆的圆心,它是三角形三边垂直平分线的交点,它到三角形各顶点的距离相等; (2) 三角形的外接圆有且只有一个,即对于给定的三角形,其外心是唯一的,但一个圆的内接三角形却有无数个,这些三角形的外心重合.一、点与圆的位置关系【例1】 已知圆内一点到圆周上的点的最大距离是7,最小距离是5,则该圆的半径是( )A .2B .6C .12D .7【巩固】1、一个已知点到圆周上的点的最大距离为5cm ,最小距离为1cm ,则此圆的半径为______.2、若⊙O 所在平面内一点P 到⊙O 上的点的最大距离为a ,最小距离为b (a>b ),则此圆的半径为( )DA .2b a + B .2ba - C .22b a b a -+或D .b a b a -+或3、定义:定点A 与O ⊙上的任意一点之间的距离的最小值称为点A 与O ⊙之间的距离.现有一矩形ABCD如图,14cm 12cm AB BC ==,,K ⊙与矩形的边AB BC CD 、、分别相切于点E F G 、、,则点A 与K ⊙的距离为______________.【例2】 已知ABC ∆中,90C ∠=︒,2AC =,3BC =,AB 的中点为M ,⑴以C 为圆心,2为半径作C ⊙,则点A ,B ,M 与C ⊙的位置关系如何? ⑵若以C 为圆心作C ⊙,使A ,B ,M 三点至少有一点在C ⊙内,且至少有一点在C ⊙外,求C ⊙半径r 的取值范围.M CBA【巩固】1、Rt ABC ∆的两条直角边3BC =,4AC =,斜边AB 上的高为CD ,若以C 为圆心,分别以12r =,2 2.4r =,33r =为半径作圆,试判断D 点与这三个圆的位置关系.DCBA2、在ABC ∆中,90C ∠=︒,4AC =,5AB =,以点C 为圆心,以r 为半径作圆,请回答下列问题,并说明理由.⑴当r 取何值时,点A 在C ⊙上,且点B 在C ⊙内部?⑵当r 在什么范围内取值时,点A 在C ⊙外部,且点B 在C ⊙的内部? ⑶是否存在这样的实数r ,使得点B 在C ⊙上,且点A 在C ⊙内部?CBA二、过三点的圆【例3】 如图,四边形ABCD 中,AB AC AD ==,若7613CAD BDC ∠=︒∠=︒,,则CBD ∠=_________,BAC ∠=__________.DCBA【例4】 如图,在平面直角坐标系中,O '与两坐标轴分别交于A B C D ,,,四点,已知:()60A ,,()03B -,,()20C -,,则点D 的坐标是( ) A .()02,B .()03,C .()04,D .()05,三、三角形的外接圆及外心【例5】 如图,ABC ∆内接于O ⊙,120BAC ∠=︒,AB AC =,BD 为O ⊙的直径,6AD =,则BC =.【巩固】等边三角形的外接圆的半径等于边长的( )倍.ABCD .12【例6】 设Rt ABC ∆的两条直角边长分别为3,4,则此直角三角形的内切圆半径为 ,外接圆半径为 .【巩固】1、如图,直角坐标系中一条圆弧经过网格点A B C ,,,其中B 点的坐标为()44,,则该圆弧所在圆的圆心的坐标为 .2、ABC ∆中,10AB AC ==,12BC =,求其外接圆的半径.【例7】 在等腰ABC ∆中,AB BC =,BH 是高,点M 是边AB 的中点,而经过点B ,M 于C 的圆同BH的交点是K ,求证32BK R =,其中R 是ABC ∆的外接圆半径.【巩固】1、已知∆ABC 中,=AB AC ,D 是∆ABC 外接圆劣弧AC 上的点(不与点A C ,重合),延长BD 至E .⑴求证:AD的延长线平分∠CDE;⑵若30∠=︒BAC,∆ABC中BC边上的高为2∆ABC外接圆的面积.AB CD E2、已知如图,ACD∆的外角平分线CB交其外接圆于B,连接BA、BD,求证:BA BD=.一、直线与圆的位置关系设O⊙的半径为r,圆心O到直线l的距离为d,则直线和圆的位置关系如下表:切线的性质定理:圆的切线垂直于过切点的半径.推论1:经过圆心且垂直于切线的直线必经过切点.推论2:经过切点且垂直于切线的直线必经过圆心.注意:这个定理共有三个条件,即一条直线满足:①垂直于切线②过切点③过圆心①过圆心,过切点⇒垂直于切线.AB过圆心,AB过切点M,则AB l⊥.②过圆心,垂直于切线⇒过切点.AB过圆心,AB l⊥,则AB过切点M.③过切点,垂直于切线⇒过圆心.AB l⊥,AB过切点M,则AB过圆心.l 3.切线的判定(1)定义法:和圆只有一个公共点的直线是圆的切线;(2)距离法:和圆心距离等于半径的直线是圆的切线;(3)定理:经过半径的外端并且垂直于这条半径的直线是圆的切线.注意:定理的题设是①“经过半径外端”,②“垂直于半径”,两个条件缺一不可;定理的结论是“直线是圆的切线”.因此,证明一条直线是圆的切线有两个思路:①连接半径,证直线与此半径垂直;②作垂直,证垂直在圆上.l4.切线长和切线长定理(1)切线长:在经过圆外一点的圆的切线上,这点和切点之间的线段的长,叫做这点到圆的切线长.(2)切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角.三、三角形的内切圆1.三角形的内切圆:和三角形各边都相切的圆叫做三角形的内切圆,内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形.2. 多边形的内切圆:和多边形的各边都相切的圆叫做多边形的内切圆,这个多边形叫做圆的外切多边形.3. 直角三角形内切圆的半径与三边的关系cb acbaO F ED CBACBAC B A设a 、b 、c 分别为ABC △中A ∠、B ∠、C ∠的对边,面积为S ,则内切圆半径为sr p=,其中()12p a b c =++.若90C ∠=︒,则()12r a b c =+-. 一、直线与圆位置关系的确定【例1】 如图,已知⊙O 是以数轴的原点O 为圆心,半径为1的圆,45AOB ∠=︒,点P 在数轴上运动,若过点P 且与OA 平行的直线与⊙O 有公共点,设OP x =,则x 的取值范围是A .0≤x B.x C .-1≤x ≤1D .x【例2】 Rt ABC ∆中,90C ∠=︒,3cm AC =,4cm BC =,给出下列三个结论: ①以点C 为圆心,3 cm长为半径的圆与AB 相离;②以点C 为圆心,4cm 长为半径的圆与AB 相切;③以点C 为圆心,5cm 长为半径的圆与AB 相交.上述结论中正确的个数是( ) A .0个 B .l 个 C .2个 D .3个【巩固】在Rt ABC ∆中,90C ∠=︒,12cm AC =,16cm BC =,以点C 为圆心,r 为半径的圆和AB 有怎样的位置关系?为什么?⑴ 9cm r =;⑵10cm r =;⑶9.6cm r =.DCBA【例3】 如下左图,在直角梯形ABCD 中,AD BC ∥,90C =︒∠,且AB AD BC >+,AB 是O 的直径,则直线CD 与O 的位置关系为( ) A .相离 B .相切 C .相交 D .无法确定【巩固】如图,BC是半圆O的直径,点D是半圆上的一点,过点D作O的切线AD,BA DA⊥,10BC=,4AD=,那么直线CE与以点O为圆心,52为半径的圆的位置关系是.二、切线的性质及判定【例4】已知:O为BAC∠平分线上一点,OD AB⊥于D,以O为圆心.以OD为半径作圆O.求证:O⊙与AC相切.【巩固】如图,ABC∆为等腰三角形,AB AC=,O是底边BC的中点,O⊙与腰AB相切于点D,求证AC与O⊙相切.【例5】已知:如图,ABC∆内接于O,AD是过A的一条射线,且B CAD∠=∠.求证:AD是O的切线.【巩固】已知:如图,AB 是O ⊙的直径,C 为O ⊙上一点,MN 过C 点,AD MN ⊥于D ,AC 平分DAB ∠.求证:MN 为O ⊙的切线.【例6】 如图,已知OA 是O ⊙的半径,B 是OA 中点,BC OA ⊥,P 是OA 延长线上一点,且PA AC =.求证:PC 是O ⊙的切线.【巩固】如图,AB 是O ⊙的直径,C 点在圆上,CD AB ⊥于D .P 在BA 延长线上,且PCA ACD ∠=∠.求证:PC 是O ⊙的切线.BP【例7】 如图,O ⊙是Rt ABC ∆的外接圆,90ABC ∠=︒,点P 是圆外一点,PA 切O ⊙于点A ,且PA PB =. (1)求证:PB 是O ⊙的切线.(2)已知1PA BC ==,求O ⊙的半径.【巩固】1、如图,AB 为O ⊙的直径,D 是BC 的中点,DE AC ⊥交AC 的延长线于E ,O ⊙的切线BF 交AD 的延长线于点F .求证:DE 是O ⊙的切线;FAB2、如图,已知O 是正方形ABCD 对角线上一点,以O 为圆心、OA 长为半径的O ⊙与BC 相切于M ,与AB 、AD 分别相交于E 、F . (1)求证:CD 与O ⊙相切.(2)若正方形ABCD 的边长为1,求O ⊙的半径.【例8】 如图,AB BC =,以AB 为直径的O ⊙交AC 于点D ,过D 作DE BC ⊥,垂足为E .(1)求证:DE 是O ⊙的切线;(2)作DG AB ⊥交O ⊙于G ,垂足为F ,若308A AB ∠=︒=,,求弦DG 的长.【巩固】如图,AC 为O ⊙的直径,B 是O ⊙外一点,AB 交O ⊙于E 点,过E 点作O ⊙的切线,交BC 于D 点,DE DC =,作EF AC ⊥于F 点,交AD 于M 点.求证:BC 是O ⊙的切线;D CB A【例9】 如图,AB 是O 的直径,30BAC ∠=︒,M 是OA 上一点,过M 作AB 的垂线交AC 于点N ,交BC 的延长线于点E ,直线CF 交EN 于点F ,且ECF E ∠=∠. (1)证明CF 是O 的切线;(2)设O 的半径为1,且AC CE =,求MO 的长.A1. 已知60ABC ∠=︒,点O 在ABC ∠的平分线上,5cm OB =,以O 为圆心3cm 为半径作圆,则O 与BC 的位置关系是________.2.如图,半径为3cm 的O ⊙切直线AC 于B ,3cm AB BC =,,则AOC ∠的度数是 .3.如图所示在Rt ABC ∆中,90B ∠=︒,A ∠的平分线交BC 于D ,E 为AB 上一点,DE DC =,以D 为圆心,以DB 的长为半径画圆.求证:(1)AC 是D ⊙的切线;(2)AB EB AC +=.E B4.如图,四边形ABCD 内接于O ,BD 是O 的直径,AE CD ⊥,垂足为E ,DA 平分BDE ∠.(1)求证:AE 是O 的切线;(2)若301cm DBC DE ∠==,,求BD 的长.5.如图,在以O 为圆心的两个同心圆中,AB 经过圆心O ,且与小圆相交于点A 、与大圆相交于点B .小圆的切线AC 与大圆相交于点D ,且CO 平分ACB ∠. ⑴ 试判断BC 所在直线与小圆的位置关系,并说明理由; ⑵ 试判断线段AC AD BC 、、之间的数量关系,并说明理由; ⑶ 若8cm 10cm AB BC ==,,求大圆与小圆围成的圆环的面积.。
九年级数学 点与圆、直线与圆、圆与圆的位置关系1、点与圆的位置关系有 种,若圆的半径为r ,点P 到圆心的距离为d 。
则:点P 在圆内⇔ ;点P 在圆上⇔ ;点P 在圆外⇔ 。
2、过三点的圆:⑴过同一直线上三点 作圆,过 三点,有且只有一个圆;⑵三角形的外接圆:经过三角形各顶点的圆叫做三角形的 ,外接圆的圆心叫做三角形的 ,这个三角形叫做这个圆的 。
⑶三角形外心的形成:三角形 的交点, 相等。
1、直线与圆的位置关系有 种:○1当直线和圆有两个公共点时,叫做直线和圆 ,这时直线叫圆的 线,; ○2当直线和圆有唯一公共点时,叫做直线和圆 ,这时直线叫圆的 线; ○3当直线和圆没有公共点时,叫做直线和圆 ,这时直线叫圆的 线。
2、设⊙O 的半径为r ,圆心O 到直线l 的距离为d ,则:直线l 与⊙O 相交r d _____⇔直线l 与⊙O 相切r d _____⇔直线l 与⊙O 相离r d _____⇔3、 切线的性质和判定:⑴性质定理:圆的切线垂直于经过切点的 。
【谈重点】根据这一定理,在圆中遇到切线时,常常连接圆心和切点,即可得垂直关系。
⑵判定定理:经过半径的 且 这条半径的直线是圆的切线。
【谈重点】在切线的判定中,当直线和圆的公共点标出时,用判定定理证明。
当公共点未标出时,一般可证圆心到直线的距离d=r 来判定相切。
4、 切线长定理:⑴切线长定义:在经过圆外一点的圆的切线上,这点和切点之间 的长叫做这点到圆的切线长。
⑵切线长定理:从圆外一点引圆的两条切线,它们的 相等,并且圆心和这一点的连线平分 的夹角5、 三角形的内切圆:⑴与三角形各边都 的圆,叫做三角形的内切圆,内切圆的圆心叫做三角形的 ;⑵三角形内心的形成:是三角形 的交点;(3)内心的性质:到三角形各 的距离相等,内心与每一个顶点的连接线平分 。
【谈重点】三类三角形内心都在三角形若△ABC三边为a、b、c面积为s,内切圆半径为r,则s= ,若△ABC为直角三角形,则r=考点一:切线的性质例题1已知直线PD垂直平分⊙O的半径OA于点B,PD交⊙O于点C、D,PE是⊙O的切线,E为切点,连结AE,交CD于点F.(1)若⊙O的半径为8,求CD的长;(2)证明:PE=PF;(3)若PF=13,sinA=513,求EF的长.对应训练1.如图,△ABC内接于⊙O,弦AD⊥AB交BC于点E,过点B作⊙O的切线交DA的延长线于点F,且∠ABF=∠ABC.(1)求证:AB=AC;(2)若AD=4,cos∠ABF=45,求DE的长.考点二:切线的判定例题2如图,点B、C、D都在⊙O上,过点C作AC∥BD交OB延长线于点A,连接CD,且∠CDB=∠OBD=30°,DB=63cm.(1)求证:AC是⊙O的切线;(2)求由弦CD、BD与弧BC所围成的阴影部分的面积.(结果保留π)对应训练2.如图,以△ABC的BC边上一点O为圆心的圆,经过A,B两点,且与BC边交于点E,D为BE的下半圆弧的中点,连接AD交BC于F,若AC=FC.(1)求证:AC是⊙O的切线:(2)若BF=8,DF=40,求⊙O的半径r.知识点三、圆和圆的位置关系圆和圆的位置关系有种,若⊙O1半径为R,⊙O 2半径为r,圆心距为d;○1当⊙O 1 与⊙O 2 外离⇔;○2当⊙O 1 与⊙O 2 外切⇔;○3当⊙O 1 与⊙O2相交⇔;○4当⊙O 1 与⊙O2内切⇔;○5当⊙O 1 与⊙O 2内含⇔。