七年级生活中的图形世界
- 格式:doc
- 大小:160.50 KB
- 文档页数:4
七年级数学——丰富的图形世界·思维导图导语:我们要学会用数学的眼光看世界,在“图形世界”里,我们见到许多熟悉的基本图形,感受到图形的平移、翻折、旋转等变化,也发现“图形世界”是由基本图形构成的。
本章从生活中常见的立体图形入手,使学生在丰富的现实情境中,在展开与折叠等数学活动过程中,认识常见几何体及点、线、面的一些性质;再通过展开与折叠、切截,从不同方向看等活动,在平面图形与几何体的转换中发展学生的空间观念。
思维导图如下:一、立体图形的表面展开图:几何体的表面展开图在中考中主要涉及两个方面的内容:一是考查几何体的侧面展开图,以圆锥和圆柱等几何体为主,二是考查几何体的表面展开图,以柱体为主要考查对象;其中难点为利用正方体的表面展开图,找对应面。
例题1解析:利用空间想象或通过动手操作,将展开图还原成立体图形,看能否构成正方体。
A,B,D选项的展开图都能折叠成一个正方体,C选项的展开图中含有“凹”的图形,不能折叠成一个正方体。
故选C。
二、截一个几何体:当用一个平面去截一个几何体时:首先要明确该截面是个平面图形,然后看截面与几何体哪些面相交;其次通过确定交线的条数来判断截面的边数,最后判断该平面图形的形状。
判断立体图形截面的形状是这类问题的重点和难点。
例题2解析:(1)截面与底面平行,可以得到圆形截面;(2)截面沿圆柱的高线切割,可得到长方形截面;(3)截面与底面平行,可以得到三角形截面.综上所述,截面的形状分别是圆形、长方形、三角形.三、从不同方向看物体:从不同方向看物体,主要指的是从正面、左面、上面看到的图形,最为常见的是由小正方体组成的图形从不同方向看到的图形,或根据从三个方向看到的图形判断小正方体的个数。
例题3。
七年级数学上册第一章丰富的图形世界1 生活中的立体图形列举点动成线、线动成面、面动成体实例?素材(新版)北师大版
编辑整理:
尊敬的读者朋友们:
这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(七年级数学上册第一章丰富的图形世界1 生活中的立体图形列举点动成线、线动成面、面动成体实例?素材(新版)北师大版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为七年级数学上册第一章丰富的图形世界 1 生活中的立体图形列举点动成线、线动成面、面动成体实例?素材(新版)北师大版的全部内容。
列举点动成线、线动成面、面动成体实例?
难易度:★★★★
关键词:图形的构成
答案:
流星在天空划过会留下一条线,自行车的车轮辐条是一条线,车轮飞速旋转时,辐条飞速转动形成面,将长方形绕一条边旋转一周得到圆柱。
【举一反三】
典题:薄薄的硬币在桌面上转动时,看上去象球,这说明了____ _____________。
思路导引:圆面绕直径旋转成球体。
标准答案:面动成体。
七年级上册第一章丰富的图形世界学习目标:1.能识别生活中常见的几何体,并能对它们进行正确的分类2.知道图形是由点、线、面构成的,了解线和面有直的,也有曲的3.学生了解立体图形可以通过平面图形的折叠而得到,经历和体验折叠过程来发展空间观念,积累数学活动经验. 了解棱柱的相关特性. 了解直棱柱,圆锥的侧面展开图,能根据展开图判断立体模型4.通过学生对生活的联系和实际操作,理解一个几何体的截面. 体会几何体在切截过程中的变化.一、【知识体系】1.常见的几何体有___圆柱_____、___圆锥_____、____正方体____、___长方体_____、___棱柱_____、球至少列举6个. 篮球类似于几何体的中的____球______,易拉罐与几何体中的____圆柱______形状相似,魔方与几何体中的______正方体____形状相似.2.圆柱与棱柱的异同:相同点:都有两个图形相同的底面;不同点:圆柱的底面是圆,棱柱的底面是多边形;圆柱的侧面是曲面,棱柱的侧面是平面 .3.图形的构造:图形是由点,线,面构成的,面面相交得线,线线相交得点,点动成线,线动成面,面动成体。
线分为直线和折线两种,面分为平面和曲面两种。
一只蚂蚁行走的路线可解释为__________点动成线_________. 汽车雨刷刷动形成平面可解释为________线动成面_______. 宾馆的长方形门绕着它的一条边旋转一周形成圆柱可以解释为______面动成体____ .4.圆柱有__三____个面,其中平面有___两个___个,曲面有___一___个,圆柱的侧面与底面各相交成___一_____条线,它们都是___曲的____(填“直的”或“曲的”);正方体和长方体都是体,长方体共有___六____个面、12 条棱、 8个顶点,经过每个顶点有_____3__条棱;乒乓球由___1___个面围成。
5. 棱柱分为正棱柱斜棱柱。
6.棱柱的特点:在棱柱中,任何相邻两个面的交线都叫棱,相邻两个侧面的交线叫做侧棱 . 棱柱的所有侧棱都相等,棱柱的侧面是相同的图形,侧面都是长方形.7.人们通常根据棱柱底面多边形的边数将棱柱分为三棱柱,四棱柱,五棱柱,六棱柱等. 长方体和正方体都是四棱柱 .8.一个三棱柱共有6个顶点,9条棱,3条侧棱, 5个面,3个侧面;四棱柱呢?一个n棱柱共有2n个顶点, n 条棱,n 条侧棱, n+2 个面, n个侧面.9.棱柱的表面展开图是由 2 个相同的多边形和一些长方形连成的. 沿棱柱表面不同的棱剪开,可能得到不同组合方式的平面展开图.10.圆柱的表面展开图是由2个相同的圆和1个长方形连成的.11.圆锥的表面展开图是由一个扇形和一个圆连成的.12.正方体的11种表面展开图:(1)(2)(3)(4)(5)(6)(7)(8)(9)(10)(11)13.用一个平面去截一个几何体,截出的面叫做截面(section).(1)正方体截面形状可能是正方形长方形三角形;底形有的正四棱台(2)圆柱的截面形状可能是 椭圆 圆 长方形 ;(3)圆锥的截面形状可能是 三角形 圆 ;(4)球体的截面形状只能是 圆 .二、【思路体系】‘1、熟记各种图形的概念能识别生活中常见的几何体,并能对它们进行正确的分类2、认识棱柱的基本特征及棱柱和圆柱的相同和不同点,能从不同的角度对几何体进行分类.3、理解一个几何体的截面. 体会几何体在切截过程中的变化.4、正确判断哪些平面图形可以折叠为立体图形;将直棱柱展成规定的平面图形及根据展开图正确判断立体几何模型.三、【题型体系】例1 写出图中立体图形的名称.① ② ③ ④ ⑤⑥ ⑦ ⑧ ⑨①_____棱柱_____ ②_____圆柱_____ ③_____长方体_____ ④____斜棱柱______⑤___球_______ ⑥_____圆锥_____ ⑦_____正方体_____ ⑧______斜圆柱____ ⑨_____斜棱锥_____例2 观察图1,回答问题:图11.图中的几何体分别是由几个面围成的?围成几何体的面有什么特点?2.图中的几何体的交线各有什么特点?3.图中的几何体有无顶点?有几个顶点?【答案】1、6 3 22、都是直线 曲线 曲线3、有顶点(8) 无顶点 有一个顶点例3下列各选项中,是球体的是()A.足球 B.西瓜 C.乒乓球 D.球【答案】 B例4 如图2所示,图形绕图示的虚线旋转一周能形成什么样的几何体?【答案】圆柱圆锥球图2例5长和宽分别为4厘米和2厘米的长方形分别绕长和宽所在直线旋转一周得两个几何体,哪个几何体的体积大?你是怎么想的?【答案】一样大例6在例1的9个图形中1.找出与下图具有相同特征的图形,并说出相同的特征是什么?2.按照立体图形的分类方式将这9张图片进行分类.课堂练习:一、判断:1.柱体的上、下两个面一样大. ()2.棱柱侧面的形状可能是一个三角形. ()3.棱柱的每条棱长都相等. ()4.长方体共有8个面. ()5.圆柱和圆锥的底面都是圆. ()6.长方体是四棱柱,四棱柱是长方体. ()二、选择题:1.物体与足球的形状类似的是()A.电视机 B.铅笔C.西瓜D.烟囱帽2.在六角螺母、哈密瓜、易拉罐、铅笔盒、足球、字典中,物体的形状类似于棱柱的是()A.0 B.1 C.2 D.33.将图4中的三角形绕直线旋转一周后得到如图3中所示的立体图形的是()AB4.下图中经过折叠后不能围成正方体的是().A. B. C. D.5.如下图()不是三棱柱的表面展开图.A. B. C. D.6.把右图中的硬纸片沿虚线折起来,便可成为一个正方体,这个正方体的2号平面的对面是()A.3号面B.4号面C.5号面D.6号面7.有一个正方体和四个展开的正方体表面图形,()可以折成如下图的正方体.A. B. C. D.图3 图48.一个棱柱共有12个顶点,所有的侧棱长的和是72厘米,则每条侧棱长是()A.6厘米B.9厘米C.12厘米D.24厘米9.如图所示,哪个平面图形经折叠不能围成正方体()A. B. C. D.10. 如图,一只蚂蚁从圆柱上的点A绕圆柱爬到点B,你能画出它爬行的最短路线吗?11.一个六棱柱共有条棱,如果六棱柱的底面边长都是2cm,侧棱长都是4 cm,那么它所有棱长的和是cm.12.正方体有个顶点,经过每个顶点有条棱.图513.如图5所示为一个棱锥,它是由个三角形和个底面组成的.14.圆锥可以看成是一个__________绕它的一条_______旋转一周而得到的;圆柱可以看作是由________绕________旋转一周所得到的;球可以看作是由_______绕它的_______旋转一周而得到的.5.夜晚的天空中,流星在空中划出一道亮线可解释为____________________.15.四棱柱共有个顶点,条棱,个面,它的侧面展开图是,两个底面是形.16.如图所示,三棱柱底面边长都是3cm,侧棱长为5cm,则此三棱柱共有个侧面,侧面展开图的面积为 cm2.17.如右图所示是正方体的平面展开图,如果a在下面,d在右面,f在前面,那么e在,c在,b在.18.将一个正方体的表面沿某些棱剪开,展成一个平面图,至少需要剪条棱,至多可以剪条棱.19.如果棱柱底面边数为n,那么这个棱柱的顶点有个,侧面有个,面有个,棱有条,侧棱有条.20.图1是一个五棱柱,它的底面边长都是4 cm,侧棱长6cm,回答下列问题:(1)这个五棱柱一共有多少个面?它们分别是什么形状?哪些面的形状、面积完全相同?(2)这个五棱柱一共有多少条棱?它们的长度分别是多少?图121.图4是一长方体的展开图,每个面内都标注了字母,请根据要求回答问题:(1)如果面A在长方体的底部,那么哪一面会在上面?(2)如果面F在前面,从左面看是面B,那么哪一面会在上面?(3)从右面看是面C,面D在后面,那么哪一面会在上面?:图4。
第一讲 丰富的图形世界
一、例题与练习
1、立体图形与平面图形
例题1、将下列几何体分类,柱体有: ,锥体有 (填序号) ;
练习1、点动成_____,线动成_____, _____动成体。
比如:(1)圆规在纸上划过会留下一个封闭的痕迹,这种现象说明_________。
(2)冬天环卫工人使用下部是长方形的木锨推雪时,木锨过处,雪就没了,这种现象说明________。
(3)一个人手里拿着一个绑在一根棍上的半圆面,当这个人把这个半圆面绕着这根棍飞快地旋转起来时就会看到一个球,这种现象说明______________。
练习2、从多边形一条边上的一点(不是顶点)发出发,连接各个顶点得到2011个三角形,则这个多边形的边数为( )
A 、2010
B 、2011
C 、2012
D 、2013
2、立体图形的三视图
例题1、一张桌子上摆放着若干个碟子,从三个方向上看到的三种视图如下图所示,则这张桌子上共有碟子为 .
练习1、一个几何体由一些大小相同的小正方体组成,如图是它的主视图和俯视图,那么组成该几何体所需小正方体的个数最少为( )
A .3
B .4
C .5
D .6
练习2、如图,一张桌子上重叠摆放了若干枚面值一元的硬币, 从三个不同方向看它得到的平面图形如下:那么桌上共有_____ ______枚硬币;
例题2、(2010广东广州)长方体的主视图与俯视图如图所示,则这个长方体的体积是( )
A .52
B .32
C .24
D .9
主视图
俯视图
练习1、(2010贵阳)在下面的四个几何体中,左视图与主视图不相同的几何体是
俯视图 主视图 左视图 主视图 俯视图 左视图
A B
C D
E
F
3、立体图形的展开与折叠
例题1.下列展开图中,不能围成几何体的是( ).
D.
C.
B.
A.
练习1、如图所示是一个几何体的展开图,每个面上都标有相应的字母(折叠时字母在外)。
(1)A 面在几何体的下面底部,上面是 面; (2)F 面在前面,B 面在左面,上面是 面; (3)C 面在右面,D 面在后面,上面是 面。
练习2、 如图,有一个无盖的正方体纸盒,下底面标有字母“M”,沿图中粗线将其剪开展成平面图形,想一想,这个平面图形是( )
例题2、下面哪种几何体的截面不可能是长方形( ) A .长方体 B .正方体 C .圆柱 D .圆锥
练习1、用一个平面去截一个圆柱体,不可能的截面是( )
A .
B .
C .
D .
练习2、(2010广东广州)将图1所示的直角梯形绕直线l 旋转一周,得到的立体图开是( )
A .
B .
C .
D . 图
1
无盖M
M M M
(B) (C) (D)
14、如右上图所示,电视台的摄像机1、2、3、4在不同位置拍摄了四幅画面,则A图象是______号摄像机所拍,B图象是______号摄像机所拍,C图象是______号摄像机所拍,D图象是______号摄像机所拍。
二、课后作业
1、圆锥的底面是,侧面是,展开后的侧面是;
2、棱柱的侧面是,分为棱柱和棱柱;
3、请画出它的主视图和左视图。
2
3
2
1
4、如图是几个正方体所组成的几何体的俯视图,小正方形中的数字表示该位置小正方块的个数.请画出这个
几何体的主视图和俯视图.
5、把一块学生使用的三角板以一条直角边为轴旋转成的形状是体形状;
6、薄薄的硬币在桌面上转动时,看上去象球,这说明了____ _____________.
7、六棱柱有个顶点,个面;
8、若要使图中平面展开图按虚线折叠成正方体后,
相对面上两个数之和为6,x=_ ___,y=______.
9、小丽制作了一个如下左图所示的正方体礼品盒,其对面图案都相同,那么这个正方平展开图可能是()
A B C D
10、如图所示的图形绕虚线旋转一周,所形成的几何体是()
主视图左视图
1
2 3
x y
24
1
3
2
11、如图是由一些相同的小正方体构成的立体图形的三种视图.那么构成这个立体图形的体有多少个小立方块( ) (A ) 4个 (B ) 5个 (C ) 6个 (D ) 7个
12、下图是由五块积木搭成,这几块积木都是相同的正方体,请画出这个图形的主视图、左视图和俯视图。
13、推理猜测题:
(1)三棱锥有_______条棱,四棱锥有_______条棱,十棱锥有_________条棱; (2)__________棱锥有30条棱; (3)__________棱柱有60条棱;
14、把棱长为1cm 的若干个小正方体摆放如图所示的几何体,然后在露出的表面上涂上颜色(不含底面)
(1)该几何体中有多少小正方体? (2)画出主视图;
(3)求出涂上颜色部分的总面积
15、已知一个长方体的长为4cm ,宽为3cm ,高为5cm ,请求出:
(1)长方体所有棱长的和;(2)长方体的表面积;
16、将一个长方形绕它的一边所在的直线旋转一周,得到的几何体是圆柱,现在有一个长为4厘米,宽为3厘米的长方形,分别绕它的长、宽所在的直线旋转一周,得到不同的圆柱体,它们的体积分别是多大?
俯视图
左视图主视图正方向
5
4
3。