2019年秋人教新版八年级数学上册 第11章 三角形 单元练习试题
- 格式:doc
- 大小:295.50 KB
- 文档页数:11
八年级数学上册《第十一章三角形》单元测试卷及答案(人教版)学校:___________班级:___________姓名:___________考号:___________一、选择题1.下列长度的三条线段能组成三角形的是()A.3,3,7 B.3,4,8 C.5,6,11 D.5,6,102.如图,一扇窗户打开后,用窗钩BC可将其固定,这里所运用的数学原理是()A.三角形具有稳定性B.两点确定一条直线C.两点之间线段最短D.三角形的两边之和大于第三边3.一个正多边形,它的每一个内角都等于140°,则该正多边形是()A.正六边形B.正七边形C.正八边形D.正九边形4.把一块直角三角板和一把直尺如图放置,若∠1=35°,则∠2的度数等于()A.65°B.55°C.45°D.60°5.如图,AD是△ABC的边BC上的高,若BC=3,AB=6,AD=4则AB边上的高为()A.1 B.2 C.3 D.无法计算6.如图1是我国古建筑墙上采用的八角形空窗,其轮廓是一个正八边形,窗外之境如同镶嵌于一个画框之中.如图2是八角形空窗的示意图,它的一个外角∠1=()A.45°B.60°C.110°D.135°7.如图,在△ABC中,点I到△ABC的三边距离相等,连接AI、BI,若∠ACB=70∘,则∠AIB的大小为()A.160∘B.140∘C.130∘D.125∘8.如图AB∥CD,点E在线段BC上(不与点B,C重合),连接DE,若∠D=40°,∠BED=60°则∠B=()A.10°B.20°C.40°D.60°二、填空题9.一个不等边三角形的两边分别为5cm和7cm,第三边的长度为奇数,则满足条件的三角形共有个.10.正十边形的每个内角是度.11.如图,在△ABC中,AD是BC边上的中线,若S△ABC=12,AC=3则点D到AC的距离为.12.如图,在△ABC中,点O是△ABC角平分线的交点,若∠A=70°,∠BOC=.13.如图,在△ABC中AB=AC,点D、E分别在边BC、AB上AD=DE,如果∠CAD=60°,∠BDE=15°那么∠C=°.14.如图,AB//CD,∠BED=110°,BF平分∠ABE,DF平分∠CDE,则∠BFD=.三、解答题15.AD、BE为△ABC的高,AD、BE相交于H点∠C=50°,求∠BHD.16.如图,△ABC中∠ACB=90°,CD为AB边上的高,BE平分∠ABC,且分别交CD,AC于点F,E求证:CE=CF.17.如图,在△ABC中,BD是∠ABC的平分线,CE是AB边上的高,且∠ACB=60°,∠ADB=100°,求∠A和∠ACE的度数.18.如图,在Rt△ABC中,∠ACB=90°,∠A=40°,△ABC的外角∠CBD的平分线BE交AC的延长线于点E,点F为AC延长线上的一点,连接DF.(1)求∠CBE的度数;(2)若∠F=25°,求证:BE∥DF.19.(本题满分10分)如图AC∥EF,∠1+∠3=180°.(1)求证AF∥CD;(2)若AC平分∠FAB,AC⊥EB于点C,∠4=78°求∠BCD的度数.参考答案1.D2.A3.D4.B5.B6.A7.D8.B9.510.14411.412.125°13.3514.125°15.解:∵AD是△ABC的高∴∠BHD+∠HBD=90°∵BE是△ABC的高∴∠HBD+∠C=90°∴∠BHD=∠C∵∠C=50°∴∠BHD=50°.16.证明:∵∠ACB=90°∴∠ACD+∠BCD=90°∵CD为AB边上的高∴∠ADC=90°∴∠A+∠ACD=90°∴∠A=∠BCD∵BE是∠ABC的平分线∴∠ABE=∠CBE∴∠CFE=∠BCD+∠CBE=∠A+∠ABE∵∠CEF=∠A+∠ABE∴∠CEF=∠CFE∴CE=CF.17.解:∵∠ADB=∠DBC+∠ACB∴∠DBC=∠ADB﹣∠ACB=100°﹣60°=40°.∵BD是角平分线∴∠ABC=80°∴∠A=180°﹣∠ABC﹣∠ACB=40°;∵CE是高∴∠AEC=90°∴∠ACE=90°﹣∠A=50°18.(1)解:∵∠ACB=90°,∠A=40°∴∠CBD=∠A+∠ACB=130°∵BE平分∠CBD∠CBD=65°∴∠CBE=12(2)证明:∵∠ACB=90°∴∠BCE=90°∵∠CBE=65°∴∠BEC=90°-65°=25°∵∠F=25°∴∠F=∠BEC∴BE∥DF19.(1)证明:∵AC∥EF∴∠1+∠2=180°.又∵∠1+∠3=180°∴∠2=∠3.∴AF∥CD.(2)解:∵AC平分∠FAB∴∠2=∠CAD.∵∠2=∠3∴∠CAD=∠3.∵∠4+∠ADC=180°且∠4=78°∴∠ADC=180°−78°=102°.∴∠CAD=∠3=180°−102°2=39°∵AC⊥EB ∴∠ACB=90°.∴∠BCD=90°−∠3=90°−39°=51°.。
⼈教版⼋年级数学上册第⼗⼀章《三⾓形》单元测试题及答案⼋年级数学学科试卷(检测内容:第⼗⼀章三⾓形)⼀、选择题(每⼩题3分,共30分)1.如图,图中三⾓形的个数为()A.3个B.4个C.5个D.6个第1题图),第5题图),第10题图)2.内⾓和等于外⾓和的多边形是()A.三⾓形B.四边形C.五边形D.六边形3.⼀个多边形的内⾓和是720°,则这个多边形的边数是()A.4条B.5条C.6条D.7条4.已知三⾓形的三边长分别为4,5,x,则x不可能是()A.3B.5C.7D.95.如图,在△ABC中,下列有关说法错误的是()A.∠ADB=∠1+∠2+∠3B.∠ADE>∠BC.∠AED=∠1+∠2D.∠AEC<∠B6.下列长⽅形中,能使图形不易变形的是()7.第13题图第16题图第17题图第18题图17.如图,⼩亮从A点出发前进10m,向右转15°,再前进10m,⼜右转15°……这样⼀直⾛下去,他第⼀次回到出发点A时,⼀共⾛了________________m.18.如图,已知BD为△ABC中∠ABC的平分线,CD为△ABC中的外⾓∠ACE的平分线,与BD交于点D,若∠D=∠α,试⽤∠α表⽰∠A,∠A=________________.三、解答题(共66分)19.(8分)如图,⼀个宽度相等的纸条,如图折叠,则∠1的度数是多少?20.(8分)⼀块三⾓形的实验⽥,平均分成四份,由甲、⼄、丙、丁四⼈种植,你有⼏种⽅法?(⾄少要⽤三种⽅法)21.)22.(8分)如图,在六边形ABCDEF中,AF∥CD,AB∥DE,BC∥EF,且∠A=120°,∠B=80°,求∠C及∠D的度数.23.(8分)如图,已知△ABC中,∠B>∠C,AD为∠BAC的平分线,AE⊥BC,垂⾜为E,试说明∠DAE=(∠B-∠C).24.(8分)有两个各内⾓相等的多边形,它们的边数之⽐为1∶2,且第⼆个多边形的内⾓⽐第⼀个多边形的内⾓⼤15°,求这两个多边形的边数.25.(8分)如图,∠A=∠C=90°,BE,DF分别为∠ABC与∠ADC的平分线,能判断BE∥DF 吗?试说明理由.26.(10分)(1)如图①,△ABC是锐⾓三⾓形,⾼BD,CE相交于点H.找出∠BHC和∠A之间存在何种等量关系;(2)如图②,若△ABC是钝⾓三⾓形,∠A>90°,⾼BD,CE所在的直线相交于点H,把图②补充完整,并指出此时(1)中的等量关系是否仍然成⽴?参考答案1.C;2.B;3.C;4.D;5.D;6.B;7.C;8.D;9.C;10.D;11.20或22;12.60;13.360;14.;15.②⑤;16.70;17.240;18.;19.40;20.21.;22.分析:连接AC,根据平⾏线的性质以及三⾓形的内⾓和定理,可以求得BCD的度数;连接BD,根据平⾏线的性质和三⾓形的内⾓和定理可以求得CDE的度数.解答:解:连接AC.AF∥CD,ACD=180°-∠CAF,⼜ACB=180°-∠B-∠BAC,BCD=∠ACD+∠ACB=180°-∠CAF+180°-∠B-∠BAC=360°-120°-80°=160°.连接BD.AB∥DE,BDE=180°-∠ABD.⼜BDC=180°-∠BCD-∠CBD,CDE=∠BDC+∠BDE=180°-∠ABD+180°-∠BCD-∠CBD=360°-80°-160°=120°.∠BAC⼜∵∠BAC=180°-(∠B+∠C)∴∠DAC=90°-(∠B+∠C)⼜∵AE⊥BC∴∠DAE+∠ADE=90°⼜∵∠ADE=∠DAC+∠C∴∠DAE=90°-[90°-(∠B+∠C)]-∠C∴∠DAE=(∠B-∠C)。
新人教版八年级数学上册第十一章《三角形》单元测试试卷及答案一、选择题1、下列三组数能构成三角形的三边的是()A.13,12,20 B.5,5,11 C.8,7,15 D.3,8,42、一个多边形的每一个内角都等于144°,则这个多边形的内角和是()A.720° B.900° C.1440° D.1620°3、如图,BD、CD分别是△ABC的两个外角∠CBE、∠BCF•的平分线,若,则∠D的度数是()A. 40°B. 50°C. 65°D. 55°4、将一把直尺与一块三角板如图放置,若,则为()A. B. C. D.5、如图,已知△ABC为直角三角形,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2等于()A.135° B.150° C.270° D.90°6、已知等腰三角形的其中二边长分别为4,9,则这个等腰三角形的周长为()A.17 B.22 C.17或22 D.无法确定7、若一个多边形的内角和为 540°,那么这个多边形对角线的条数为()A.5 B.6 C.7 D.88、以下列各组线段为边,能构成三角形的是()A.2,3,6 B.3,4,5 C.2,7,9 D.,3,9、已知实数满足,则以的值为两边长的等腰三角形的周长是()A.20或16 B.20 C.16 D.以上答案均不对10、如图,已知a∥b,∠1=120°,∠2=90°,则∠3的度数是()A.120° B.130° C.140° D.150°二、填空题11、如图,AB∥CD,∠1=62°,FG平分∠EFD,则∠BGF=_______度。
12、如图,AB∥CD, EF⊥CD于点F,若∠ABE=35°,则∠BEF=________。
人教版数学八年级上册第十一章《三角形》测试卷(含答案)班级姓名一、选择题(每小题3分,共30分)1.如图所示,∠BAC为钝角,AD⊥BC于D,BE⊥AC于E,CF⊥AB于F,△ABC中AC边上的高为()A.ADB.BEC.CFD.AF2.(2019贵州毕节中考)在下列长度的三条线段中,不能组成三角形的是()A.2 cm,3 cm,4 cmB.3 cm,6 cm,6 cmC.2 cm,2 cm,6 cmD.5 cm,6 cm,7 cm3.(2020辽宁沈阳中考)如图,直线AB∥CD,且AC⊥CB于点C,若∠BAC=35°,则∠BCD 的度数为()A.65°B.55°C.45°D.35°4.(2021湖北仙桃、潜江、天门、江汉油田中考)如图,在△ABC中,∠C=90°,点D在AC 上,DE∥AB,若∠CDE=160°,则∠B的度数为()A.40°B.50°C.60°D.70°5.如图,若∠A=70°,∠B=40°,∠C=32°,则∠BDC=()A.102°B.110°C.142°D.148°6.(2022独家原创)如图,在△ABC中,AD平分∠BAC,点E在射线BC上,EF⊥AD于F,∠B=40°,∠ACE=72°,则∠E的度数为()A.68°B.56°C.34°D.32°7.(2021台湾省中考改编)如图,四边形ABCD中,∠1、∠2、∠3分别为四边形ABCD 的外角.判断下列大小关系何者正确.()A.∠1+∠3=∠ABC+∠DB.∠1+∠3<∠ABC+∠DC.∠1+∠2+∠3=360°D.∠1+∠2+∠3>360°8.如图,在△ABC中,AE平分∠BAC交BC于点E,过点A作AD⊥BC,垂足为D,过点E 作EF⊥AC,垂足为F.若∠DAE=15°,∠AEF=50°,则∠B的度数为()A.55°B.65°C.75°D.80°9.(2020黑龙江牡丹江期中)如图,△ABC的面积是1,AD是△ABC的中线,AF=12FD,CE= 12EF,则△DEF的面积为()A.12B.34C.827D.2910.(2020山东青岛市北期末)如图,已知△ABC中,∠B=α,∠C=β(α>β),AD是BC边上的高,AE是∠BAC的平分线,则∠DAE的度数为()A.α-βB.2(α-β)C.α-2βD.12(α-β)二、填空题(每小题3分,共24分)11.(2022江西南昌十中期末)如图,邱叔叔家的凳子坏了,于是他给凳子加了两根木条,这样凳子就比较牢固了,他所应用的数学原理是.12.(2021湖南郴州中考)一个多边形的每一个外角都等于60°,则这个多边形的内角和为度.13.(2021江苏淮安中考)一个三角形的两边长分别是1和4,若第三边的长为偶数,则第三边的长是.14.(2021天津南开田家炳中学期中)将一副分别含有30°和45°角的两个直角三角板拼成如图所示的图形,其中∠C=90°,∠B=45°,∠E=30°,则∠BFD的度数是.15.(2021河南郑州五校联考)如图,三角形纸片ABC中,∠A=75°,∠B=72°.将三角形纸片的一角折叠,使点C落在△ABC内,如果∠1=32°,那么∠2=.16.(2021福建厦门三中期末)如图,在△ABC中,∠ACB=90°,AD平分∠CAB,交边BC于点D,过点D作DE⊥AB,垂足为E.若∠CAD=20°,则∠EDB的度数是.17.(教材P12变式题)在△ABC中,∠ABC=∠C=2∠A,BD是∠ABC的平分线,则∠ADB 的度数为.18.(2022福建泉州七中期中)如图,在△ABC中,∠ACB=90°,CE是△ABC的角平分线,CD⊥AB,垂足为D,延长CE与外角∠ABG的平分线交于点F.若∠A=60°,则∠DCE+∠F=.三、解答题(共46分)19.(6分)如图所示,已知AD是△ABC的边BC上的中线.(1)作出△ABD的边BD上的高;(2)若△ABC的面积为10,求△ADC的面积;(3)若△ABD的面积为6,且BD边上的高为3,求BC的长.20.(6分)如图,已知△ABC的周长为33 cm,AD是BC边上的中线,AB=3AC.2(1)当AC=10 cm时,求BD的长;(2)若AC=12 cm,能否求出DC的长?为什么?21.(6分)如图,在△ABC中,BD是AC边上的高,∠A=70°.(1)求∠ABD的度数;(2)CE平分∠ACB交BD于点E,∠BEC=118°,求∠ABC的度数.22.(8分)如图,在△ABC中,∠B=2∠C,AD⊥BC于点D,AE平分∠BAC交BC于点E.(1)若∠C=40°,求∠DAE的度数;(2)若EF⊥AE交AC于点F,求证:∠C=2∠FEC.23.(2022吉林临江期末)(10分)我们探究过三角形内角和等于180°,四边形内角和等于360°,请解决下面的问题:(1)如图1,∠A+∠B+∠C+∠D=180°,则∠AOB+∠COD=(直接写出结果);(2)连接AD、BC,若AO、BO、CO、DO分别是四边形ABCD的四个内角的平分线.①如图2,如果∠AOB=110°,求∠COD的度数;②如图3,若∠AOD=∠BOC,AB与CD平行吗?请写出理由.24.(2022山东济南外国语学校期末)(10分)已知∠MON=90°,点A、B分别在OM、ON 上运动(不与点O重合).(1)如图1,AE、BE分别是∠BAO和∠ABO的平分线,随着点A、点B的运动,∠AEB=;(2)如图2,若BC是∠ABN的平分线,BC的反向延长线与∠OAB的平分线交于点D.①若∠BAO=70°,则∠D=°;②随着点A、B的运动,∠D的大小会变吗?如果不会,求∠D的度数;如果会,请说明理由;(3)在图2的基础上,如果∠MON=α,其余条件不变,随着点A、B的运动(如图3),求∠D 的度数.(用含α的式子表示)答案全解全析1.B 三角形的高是过一个顶点作垂直于它对边所在的直线的线段,所以△ABC 中,AC 边上的高是线段BE.故选B.2.C 选项A,2+3>4,能组成三角形;选项B,3+6>6,能组成三角形;选项C,2+2<6,不能组成三角形;选项D,5+6>7,能组成三角形.故选C.3.B ∵AC ⊥CB,∴∠ACB=90°, ∴∠ABC=90°-∠BAC=90°-35°=55°, ∵AB ∥CD,∴∠BCD=∠ABC=55°, 故选B.4.D ∵∠CDE=160°, ∴∠ADE=180°-160°=20°, ∵DE ∥AB,∴∠A=∠ADE=20°,∴∠B=180°-∠A-∠C=180°-20°-90°=70°.故选D.5.C 如图,连接AD 并延长,则∠BDE=∠BAD+∠B,∠CDE=∠CAD+∠C, ∴∠BDC=∠BDE+∠CDE=∠BAD+∠B+∠CAD+∠C=∠BAC+∠B+∠C=142°, 故选C.6.C 由题图知∠ACE=∠B+∠BAC,∠B=40°,∠ACE=72°, ∴∠BAC=∠ACE-∠B=72°-40°=32°. ∵AD 平分∠BAC,∴∠BAD=12∠BAC=12×32°=16°, ∴∠ADE=∠BAD+∠B=16°+40°=56°. ∵EF ⊥AD,∴∠E=90°-∠ADE=90°-56°=34°.7.A 如图,连接BD,∵∠1=∠ABD+∠ADB,∠3=∠DBC+∠BDC,∴∠1+∠3=∠ABD+∠ADB+∠DBC+∠BDC=∠ABC+∠ADC, ∵四边形的外角和是360°, ∴∠1+∠2+∠3<360°.故选A. 8.B ∵AD ⊥BC,∠DAE=15°, ∴∠AED=90°-15°=75°, ∵∠AEF=50°,∴∠FEC=180°-∠AEF-∠AED=55°, ∵EF ⊥AC,∴∠EAF=90°-∠AEF=40°,∠C=90°-∠FEC=35°, ∵AE 平分∠BAC,∴∠BAC=2∠EAC=80°, ∵∠B+∠C+∠BAC=180°,∴∠B=180°-∠BAC-∠C=180°-80°-35°=65°. 9.D ∵△ABC 的面积是1,AD 是△ABC 的中线, ∴S △ACD =12S △ABC =12, ∵AF=12FD,∴DF=23AD, ∴S △CDF =23S △ACD =23×12=13,∵CE=12EF,∴EF=23CF,∴S △DEF =23S △CDF =23×13=29,故选D.10.D 在△ABC 中,∠B=α,∠C=β,∴∠BAC=180°-∠B-∠C=180°-α-β,∵AE 是∠BAC 的平分线,∴∠EAC=12∠BAC=90°-12(α+β).在Rt △ADC 中,∠DAC=90°-∠C=90°-β,∴∠DAE=∠DAC-∠EAC=90°-β-90°+12(α+β)=12(α-β),故选D. 11.三角形的稳定性解析 给凳子加了两根木条之后形成了三角形,所以“这样凳子就比较牢固了”的数学原理是三角形的稳定性. 12.720解析 ∵多边形的每一个外角都等于60°, ∴它的边数为360°÷60°=6, ∴它的内角和为180°×(6-2)=720°, 故答案为720. 13.4解析 设第三边长为a,根据三角形的三边关系知, 4-1<a<4+1,即3<a<5,又∵第三边的长是偶数,∴a 为4. 故答案为4. 14.15°解析 ∵Rt △CDE 中,∠C=90°,∠E=30°, ∴∠BDF=∠C+∠E=90°+30°=120°, ∵△BDF 中,∠B=45°,∠BDF=120°, ∴∠BFD=180°-45°-120°=15°.故答案为15°. 15.34°解析 如图,延长AE 、BF 交于点C',连接CC'.在△ABC'中,∠AC'B=180°-72°-75°=33°,∵∠ECF=∠AC'B,∠1=∠ECC'+∠EC'C,∠2=∠FCC'+∠FC'C,∴∠1+∠2=∠ECC'+∠EC 'C+∠FCC'+∠FC'C=2∠AC'B=66°,∵∠1=32°,∴∠2=66°-32°=34°,故答案为34°.16.40°解析∵AD平分∠CAB,∠CAD=20°,∴∠CAB=2∠CAD=40°,∵∠ACB=90°,∴∠B=90°-40°=50°,∵DE⊥AB,∴∠DEB=90°,∴∠EDB=90°-50°=40°,故答案为40°.17.108°解析∵在△ABC中,∠ABC=∠C=2∠A,∴令∠A=x,则∠ABC=∠C=2x,∵∠A+∠ABC+∠C=180°,∴x+2x+2x=180°,解得x=36°,∴∠A=36°,∠ABC=72°.∵BD是∠ABC的平分线,∠ABC=36°,∴∠ABD=12∴∠ADB=180°-∠A-∠ABD=180°-36°-36°=108°.18.45°解析∵CD⊥AB,∠A=60°,∴∠ADC=90°,∠ACD=30°,∵CE平分∠ACB,∠ACB=90°,∠ACB=45°,∴∠ACE=∠ECB=12∴∠DCE=∠ACE-∠ACD=45°-30°=15°,∵∠ABG=∠A+∠ACB=150°,BF平分∠ABG,∴∠FBG=1∠ABG=75°,2∵∠FBG=∠F+∠FCB,∴∠F=75°-45°=30°.∴∠DCE+∠F=15°+30°=45°.19.解析(1)如图所示,虚线即为所求.×10=5.(2)∵AD是△ABC的边BC上的中线,△ABC的面积为10,∴△ADC的面积=12(3)∵AD是△ABC的边BC上的中线,∴BD=CD,∵△ABD的面积为6,∴△ABC的面积为12,∵BD边上的高为3,∴BC=12×2÷3=8.20.解析(1)∵AB=3AC,AC=10 cm,∴AB=15 cm.2又∵△ABC的周长是33 cm,∴BC=33-10-15=8(cm).∵AD是BC边上的中线,∴BD=1BC=4 cm.2(2)不能.理由如下:AC,AC=12 cm,∴AB=18 cm.∵AB=32又∵△ABC的周长是33 cm,∴BC=33-12-18=3(cm).∵AC+BC=15<18,∴不能构成三角形,则不能求出DC的长.21.解析(1)∵BD是AC边上的高,∴∠ADB=∠BDC=90°,∵∠A=70°,∴∠ABD=90°-70°=20°.(2)∵∠BEC=∠BDC+∠DCE,且∠BEC=118°,∠BDC=90°,∴∠DCE=118°-90°=28°,∵CE 平分∠ACB,∴∠DCB=2∠DCE=56°, ∴∠DBC=90°-56°=34°,∴∠ABC=∠ABD+∠DBC=20°+34°=54°. 22.解析 (1)∵∠C=40°,∠B=2∠C, ∴∠B=80°,∴∠BAC=180°-80°-40°=60°,∵AE 平分∠BAC,∴∠EAC=12∠BAC=30°,∵AD ⊥BC,∴∠ADC=90°, ∴∠DAC=90°-40°=50°,∴∠DAE=∠DAC-∠EAC=50°-30°=20°. (2)证明:如图,∵EF ⊥AE,∴∠AEF=90°, ∴∠AED+∠FEC=90°,∵∠DAE+∠AED=90°,∴∠DAE=∠FEC, ∵AE 平分∠BAC,∴∠EAC=12∠BAC=12(180°-∠B-∠C)=12(180°-3∠C)=90°-32∠C, ∵∠DAE=∠DAC-∠EAC,∴∠DAE=∠DAC-(90°-32∠C)=90°-∠C-90°+32∠C=12∠C, ∴∠FEC=12∠C,∴∠C=2∠FEC.23.解析(1)∵∠AOB+∠COD+∠A+∠B+∠C+∠D=180°×2=360°,∠A+∠B+∠C+∠D=180°, ∴∠AOB+∠COD=360°-180°=180°. 故答案为180°.(2)①∵AO 、BO 、CO 、DO 分别是四边形ABCD 的四个内角的平分线, ∴∠OAB=12∠DAB,∠OBA=12∠CBA,∠OCD=12∠BCD,∠ODC=12∠ADC,∴∠OAB+∠OBA+∠OCD+∠ODC=12×360°=180°, 在△OAB 中,∠OAB+∠OBA=180°-∠AOB, 在△OCD 中,∠OCD+∠ODC=180°-∠COD, ∴180°-∠AOB+180°-∠COD=180°, ∴∠AOB+∠COD=180°.∵∠AOB=110°,∴∠COD=180°-110°=70°. ②AB ∥CD.理由如下:∵AO 、BO 、CO 、DO 分别是四边形ABCD 的四个内角的平分线, ∴∠OAB=12∠DAB,∠OBA=12∠CBA,∠OCD=12∠BCD,∠ODC=12∠ADC,∴∠OAB+∠OBA+∠OCD+∠ODC=12×360°=180°,在△OAB 中,∠OAB+∠OBA=180°-∠AOB, 在△OCD 中,∠OCD+∠ODC=180°-∠COD, ∴180°-∠AOB+180°-∠COD=180°, ∴∠AOB+∠COD=180°.∴∠AOD+∠BOC=360°-(∠AOB+∠COD)=360°-180°=180°, ∵∠AOD=∠BOC,∴∠AOD=∠BOC=90°.在△AOD 中,∠DAO+∠ADO=180°-∠AOD=180°-90°=90°,∵∠DAO=12∠DAB,∠ADO=12∠ADC,∴12∠DAB+12∠ADC=90°,∴∠DAB+∠ADC=180°,∴AB ∥CD.24.解析 (1)∵∠MON=90°,∴∠OAB+∠OBA=90°, ∵AE 、BE 分别是∠BAO 和∠ABO 的平分线,∴∠BAE=12∠BAO,∠ABE=12∠ABO,∴∠BAE+∠ABE=12(∠BAO+∠ABO)=45°, ∴∠AEB=180°-45°=135°,故答案为135°.(2)①∵∠AOB=90°,∠BAO=70°, ∴∠ABO=20°,∠ABN=160°, ∵BC 是∠ABN 的平分线,∴∠OBD=∠CBN=12×160°=80°,∵AD 平分∠BAO,∴∠DAB=35°,∴∠D=180°-∠ABD-∠BAD=180°-∠OBD-∠ABO-∠BAD=180°-80°-20°-35°=45°, 故答案为45.②∠D 的度数不随A 、B 的移动而发生变化. 设∠BAD=x,∵AD 平分∠BAO,∴∠BAO=2x, ∵∠AOB=90°,∴∠ABN=180°-∠ABO=∠AOB+∠BAO=90°+2x, ∵BC 平分∠ABN,∴∠ABC=12∠ABN=45°+x, ∵∠ABC=180°-∠ABD=∠D+∠BAD, ∴∠D=∠ABC-∠BAD=45°+x-x=45°. (3)设∠BAD=x,∵AD 平分∠BAO,∴∠BAO=2x, ∵∠AOB=α,∴∠ABN=180°-∠ABO=∠AOB+∠BAO=α+2x, ∵BC 平分∠ABN,∴∠ABC=12α+x, ∵∠ABC=180°-∠ABD=∠D+∠BAD, ∴∠D=∠ABC-∠BAD=12α+x -x=12α.。
(人教版)八年级上册数学第11章《三角形》练习一.选择题(共19小题)1.(2020春•开福区校级期末)如图,在三角形ABC中,∠A=45°,三角形ABC的高线BD,CE交于点O,则∠BOC的度数()A.120°B.125°C.135°D.145°2.(2020春•永州期末)富有灿烂文化的永州,现今保留着许多具有历史和文化价值的建筑,古朴的建筑物上雕刻的优美图案是我们数学研究的重要内容.图1中的“冰裂纹窗格”图案就是永州古建筑雕刻图案其中的代表,无规则多边形的形状,蕴含了丰富而和谐的数学美.图2是从图1冰裂纹窗格图案中提取的由五条线段组成的多边形,根据绘制的图形,则∠1+∠2+∠3+∠4+∠5的度数为()A.72°B.108°C.360°D.540°3.(2020春•雨花区校级期末)以下列各组线段的长为边,能组成三角形的是()A.3cm,6cm,8cm B.3cm,2cm,6cmC.5cm,6cm,11cm D.2cm,7cm,4cm4.(2020春•雨花区期末)在一个直角三角形中,有一个锐角等于25°,则另一个锐角的度数是()A.25°B.55°C.65°D.75°5.(2020春•雨花区期末)如图,已知CD和BE是△ABC的角平分线,∠A=60°,则∠BOC=()A.60°B.100°C.120°D.150°6.(2020春•天心区期末)如图,一副直角三角板图示放置,点C在DF的延长线上,点A在边EF上,AB ∥CD,∠ACB=∠EDF=90°,则∠CAF=()A.10°B.15°C.20°D.25°7.(2019秋•赫山区期末)已知三角形三边长3,4,x,则x的取值范围是()A.x>1B.x<7C.1<x<7D.﹣1<x<78.(2019秋•永定区期末)长度分别为3,7,x的三条线段能组成一个三角形,x的值可以是()A.2B.3C.4D.59.(2020春•天心区期末)△ABC中,若∠A:∠B:∠C=1:2:3,则△ABC的形状是()A.直角三角形B.等腰三角形C.锐角三角形D.钝角三角形10.(2020春•天心区期末)已知三角形三边长为2,3,x,则x的取值范围是()A.x>1B.x<5C.1<x<5D.﹣1<x<511.(2020春•岳麓区校级期末)如图,点C在线段AB的延长线上,∠DAC=15°,∠DBC=110°,则∠D的度数是()A.95°B.85°C.100°D.125°12.(2019秋•浏阳市期末)以下列长度的线段为边,可以作一个三角形的是()A.6cm,16cm,21cm B.8cm,16cm,30cmC.6cm,16cm,24cm D.8cm,16cm,24cm13.(2020春•衡阳期末)如果一个多边形的内角和与外角和相等,那么这个多边形是()A.七边形B.六边形C.五边形D.四边形14.(2019秋•永定区期末)如果n边形的内角和是它外角和的3倍,则n等于()A.6B.7C.8D.915.(2020春•赫山区期末)若一个多边形的每个内角都等于150°,则这个多边形的边数是()A.10B.11C.12D.1316.(2020春•长沙期末)△ABC中BC边上的高作法正确的是()A.B.C.D.17.(2019春•永州期末)在Rt△ABC中,若∠A=40°,∠C=90°,则∠B的度数是()A.20°B.30°C.40°D.50°18.(2019春•靖州县期末)下列度数不可能是多边形内角和的是()A.360°B.560°C.720°D.1440°19.(2018秋•江华县期末)以下列各组长度的线段为边,其中a>3,能构成三角形的是()A.2a+7,a+3,a+4B.5a2,6a2,10a2C.3a,4a,a D.a﹣1,a﹣2,3a﹣3二.填空题(共9小题)20.(2020春•涟源市期末)如图,在Rt△ABC中,∠B=90°,∠ACD=130°,则∠A=°.21.(2020春•长沙期末)如图,四边形ABCD中,且∠1,∠2分别是∠BCD和∠BAD的邻补角,若∠1+∠2=150°.则∠B+∠ADC=.22.(2020春•开福区校级期末)已知三条线段长度分别为1、2、4,能否组成三角形?.(填“能”或“不能”).23.(2020春•雨花区期末)如图,若∠A=30°,∠ACD=105°,则∠EBC=°.24.(2020春•衡阳期末)如图,小明从P点出发,沿直线前进5米后向右转α,接着沿直线前进5米,再向右转α,…,照这样走下去,第一次回到出发地点P时,一共走了120米,则α的度数是.25.(2019秋•涟源市期末)如图,∠BDC=130°,∠A=40°,∠B+∠C的大小是.26.(2020春•岳麓区校级期末)如图,AD是△ABC的高,BE是△ABC的角平分线,BE,AD相交于点F,已知∠BAD=42°,则∠BFD=度.27.(2020春•常德期末)如图,两直线AB与CD平行,则∠1+∠2+∠3+∠4+∠5+∠6=°.28.(2019春•开福区校级期末)三角形的两边长分别为5cm和12cm,第三边与前两边中的一边相等,则三角形的周长为.三.解答题(共7小题)29.(2020春•永州期末)如图所示,在四边形ABCD中,∠A=110°,∠ABC=70°,BD⊥CD于点D,EF⊥CD于点F,试说明∠1=∠2.30.(2019秋•双清区期末)如图,点A在MN上,点B在PQ上,连接AB,过点A作AC⊥AB交PQ于点C,过点B作BD平分∠ABC交AC于点D,且∠NAC+∠ABC=90°.(1)求证:MN∥PQ;(2)若∠ABC=∠NAC+10°,求∠ADB的度数.31.(2020春•益阳期末)阅读:如图1,CE∥AB,所以∠1=∠A,∠2=∠B.所以∠ACD=∠1+∠2=∠A+∠B.这是一个有用的结论,请用这个结论,在图2的四边形ABCD内引一条和一边平行的直线,求∠A+∠B+∠C+∠D的度数.32.(2018秋•靖州县期末)已知:如图,△ABC中,AD⊥BC于D,BE是三角形的角平分线,交AD于F.(1)若∠ABC=40°,求∠AFE的度数.(2)若∠BAC是直角,请猜想:△AFE的形状,并写出证明.33.(2019春•雨花区校级期末)如图,AD是△ABC的角平分线,∠B=45°,点E在BC延长线上且EH ⊥AD于H.(1)若∠BAD=30°,求∠ACE的度数.(2)若∠ACB=85°,求∠E的度数.34.(2018秋•安仁县期末)如图,D是△ABC的BC边上的一点,AD=BD,∠ADC=80°.(1)求∠B的度数;(2)若∠BAC=70°,判断△ABC的形状,并说明理由.35.(2019春•天心区校级期末)一个多边形的内角和与外角和的和是1440°,通过计算说明它是几边形.参考答案与试题解析一.选择题(共19小题)1.【解答】解:∵∠A+∠ABC+∠ACB=180°,∠A=45°,∴∠ABC+∠ACB=135°,∵BD⊥AC,CE⊥AB,∴∠ABC+∠BCE=∠ACB+∠CBD=90°,∴∠ABC+∠BCE+∠ACB+∠CBD=180°,∴∠BCE+∠CBD=45°,∵∠BOC+∠BCE+∠DBC=180°,∴∠BOC=135°.故选:C.2.【解答】解:由多边形的外角和等于360度,可得∠1+∠2+∠3+∠4+∠5=360度.故选:C.3.【解答】解:根据三角形的三边关系,A、3+6=9>8,能组成三角形;B、2+3=5<6,不能够组成三角形;C、5+6=11,不能组成三角形;D、4+2=6<7,不能组成三角形.故选:A.4.【解答】解:∵在一个直角三角形中,有一个锐角等于25°,∴另一个锐角的度数是90°﹣25°=65°.故选:C.5.【解答】解:∵∠A=60°,∴∠ABC+∠ACB=180°﹣60°=120°,∵CD和BE是△ABC的角平分线,∴∠OBC+∠OCB=12∠ABC+12∠ACB=12(∠ABC+∠ACB)=60°,∴∠BOC=180°﹣(∠OBC+∠OCB)=120°,故选:C.6.【解答】解:∵AB∥CD,∴∠BAC=∠ACD=30°,∵∠AFD=∠CAF+∠ACF=45°,∴∠CAF=45°﹣30°=15°,故选:B.7.【解答】解:由题意得:4﹣3<x<4+3,即:1<x<7,故选:C.8.【解答】解:7﹣3<x<7+3,4<x<10,只有选项D符合题意.故选:D.9.【解答】解:∵在△ABC中,∠A:∠B:∠C=1:2:3,∴设∠A=x,则∠B=2x,∠C=3x.∵∠A+∠B+∠C=180°,即x+2x+3x=180°,解得x=30°,∴∠C=3x=90°,∴△ABC是直角三角形.故选:A.10.【解答】解:由三角形三边关系可知,3﹣2<x<3+2,∴1<x<5,故选:C.11.【解答】解:∵∠DBC是△ABD的外角,∴∠DBC=∠D+∠A,则∠D=∠DBC﹣∠A=110°﹣15°=95°,故选:A.12.【解答】解:A、∵6+16=22>21,∴6、16、21能组成三角形;B、∵8+16=24<30,∴8、16、30不能组成三角形;C、∵6+16=22<24,∴6、16、24不能组成三角形;D、∵8+16=24,∴8、16、24不能组成三角形.故选:A.13.【解答】解:设多边形的边数为n,根据题意得(n﹣2)•180°=360°,解得n=4.故选:D.14.【解答】解:由题意得:180(n﹣2)=360×3,解得:n=8,故选:C.15.【解答】解:由题意可得:180°•(n﹣2)=150°•n,解得n=12.故多边形是12边形.故选:C.16.【解答】解:为△ABC中BC边上的高的是D选项.故选:D.17.【解答】解:∵∠A=40°,∠C=90°,∴∠B=90°﹣40°=50°,故选:D.18.【解答】解:360°、720°、1440°都是180°的倍数,它们是多边形内角和;560°不是180°的倍数,所以它不可能是多边形内角和;故选:B.19.【解答】解:当a>3时,根据三角形的三边关系,得A、a+3+a+4=2a+7,不能组成三角形;B、5a2+6a2>10a2,能组成三角形;C、a+3a=4a,不能够组成三角形;D、a﹣1+a﹣2=2a﹣3,3a﹣3﹣2a+3=a>3,2a﹣3<3a﹣3,不能组成三角形.故选:B.二.填空题(共9小题)20.【解答】解:∵∠ACD的△ABC的一个外角,∴∠A=∠ACD﹣∠B=130°﹣90°=40°,故答案为:40.21.【解答】解:∵∠1+∠2=150°,∴∠DAB+∠DCB=360°﹣150°=210°,∵∠B+∠D+∠DAB+∠DCB=360°,∴∠B+∠ADC=360°﹣(∠DAB+∠DCB)=150°,故答案为150°.22.【解答】解:根据三角形的三边关系,1+2=3<4,不能组成三角形;故答案为:不能.23.【解答】解:∵∠ACD=∠A+∠ABC,∴105°=30°+∠ABC,∴∠ABC=75°,∴∠EBC=180°﹣∠ABC=105°,故答案为105.24.【解答】解:向左转的次数120÷5=24(次),则左转的角度是360°÷24=15°.故答案是:15°.25.【解答】解:延长BD交AC于H,∵∠BDC=∠DHC+∠C,∠DHC=∠A+∠B,∴∠BDC=∠A+∠B+∠C,∵∠BDC=130°,∠A=40°,∴∠B+∠C=130°﹣40°=90°故答案为90°.26.【解答】解:∵AD是高线,∴∠ADB=90°∵∠BAD=42°,∴∠ABC=48°,∵BE是角平分线,∴∠FBD=24°,在△FBD中,∠BFD=180°﹣90°﹣24°=66°.故答案为:66.27.【解答】解:分别过E点,F点,G点,H点作L1,L2,L3,L4平行于AB 利用内错角和同旁内角,把这六个角转化一下,可得,有5个180°的角,∴180×5=900°.故答案为:900.28.【解答】解:当第三边为5cm时,此时三角形的三边分别为:5cm,5cm和12cm,∵5+5<12,∴不能组成三角形;当第三边为12cm时,此时三角形的三边分别为:5cm,12cm和12cm,∵5+12>12,∴能组成三角形;此时周长为5+12+12=29cm,故答案为:29cm.三.解答题(共7小题)29.【解答】解:∵∠A=110°,∠ABC=70°,∴∠A+∠ABC=180°,∴AD∥BC(同旁内角互补,两直线平行),∴∠1=∠3(两直线平行,内错角相等),∵BD⊥CD,EF⊥CD,∴∠BDC=∠EFC=90°,∴BD∥EF,∴∠2=∠3(两直线平行,同位角相等),∴∠1=∠2(等量代换).30.【解答】(1)证明:∵AC⊥AB,∴∠BAC=90°,∴∠ABC+∠ACB=90°,∵∠NAC+∠ABC=90°,∴∠NAC=∠ACB,∴MN∥PQ;(2)解:∵∠ABC=∠NAC+10°=∠ACB+10°,∵∠ACB+∠ABC=90°,∴∠ACB+∠ACB+10°=90°,∴∠ACB=40°,∴∠ABC=50°,∵BD平分∠ABC,∴∠ABD=12∠ABC=25°,∵∠BAC=90°,∴∠ADB=90°﹣25°=65°.31.【解答】解:作DE∥AB,交BC于E,由题意,∠DEB=∠C+∠EDC,∴∠A+∠ADE=180°,∠B+∠DEB=180°,则∠A+∠B+∠C+∠ADC=∠A+∠B+∠C+∠EDC+∠ADE=∠A+∠B+∠DEB+∠ADE=360°.32.【解答】解:(1)∵AD⊥BC,∴∠ADB=90°,∵∠ABC=40°,BE平分∠ABC,∴∠DBF=12∠ABC=20°,∴∠BFD=90°﹣20°=70°∴∠AFE=∠BFD=70°(2)结论:△AEF是等腰三角形.理由:∵∠BAE=∠ADF=90°,∴∠AEF+∠ABE=90°,∠BFD+∠FBD=90°,∵∠ABE=∠DBF,∴∠AEF=∠BFD,∵∠BFD=∠AFE,∴∠AFE=∠AEF,∴AE=AF,∴△AEF是等腰三角形.33.【解答】解:∵AD是△ABC的角平分线∴∠BAD=∠CAD=12∠BAC(1)∵∠BAD=30°∴∠BAC=2∠BAD=60°∵∠B=45°∴∠ACE=∠B+∠BAC=45°+60°=105°(2)∵∠ACB=85°,∠B=45°,且∠ACB+∠B+∠BAC=180°∴∠BAC=50°∴∠CAD=25°∵∠ACB+∠CAD+∠ADC=180°∴∠ADC=70°∵EH⊥AD∴∠E+∠ADC=90°∴∠E=90°﹣70°=20°.34.【解答】解:(1)∵在△ABD中,AD=BD,∴∠B=∠BAD,∵∠ADC=∠B+∠BAD,∠ADC=80°,∴∠B=12∠ADC=40°;(2)△ABC是等腰三角形.理由:∵∠B=40°,∠BAC=70°,∴∠C=180°﹣∠B﹣∠BAC=70°,∴∠C=∠BAC,∴BA=BC,∴△ABC是等腰三角形.35.【解答】解:设它是n边形,依题意得:(n﹣2)180°+360°=1440°.解得:n=8.答:它是八边形.。
人教版八年级数学上册第11章三角形单元练习卷【含答案】一.选择题1.图中三角形的个数是()A.3个B.4个C.5个D.6个2.在△ABC中,∠A:∠B:∠C=3:4:5,则∠C等于()A.45°B.60°C.75°D.90°3.如图,CE是△ABC的外角∠ACD的平分线,若∠B=35°,∠ACE=60°,则∠A=()A.35°B.95°C.85°D.75°4.如图,∠ABD,∠ACD的角平分线交于点P,若∠A=50°,∠D=10°,则∠P的度数为()A.15°B.20°C.25°D.30°5.小明把一副含45°,30°的直角三角板如图摆放,其中∠C=∠F=90°,∠A=45°,∠D=30°,则∠α+∠β等于()A.180°B.210°C.360°D.270°6.若三角形的三边长分别为3,1+2x,8,则x的取值范围是()A.2<x<5B.3<x<8C.4<x<7D.5<x<97.一个正方形被截掉一个角后,得到一个多边形,这个多边形的内角和是()A.360°B.540°C.180°或360°D.540°或360°或180°8.给出下列长度的三条线段,能组成三角形的是()A.3cm,4cm,5cm B.8cm,7cm,15cmC.13cm,12cm,25 cm D.5cm,5cm,11cm9.如图,△ABC中,∠ABC=100°,且∠AEF=∠AFE,∠CFD=∠CDF,则∠EFD的度数为()A.80o B.60o C.40o D.20o10.如图,在△ABC中,点D在BC上,点E、F在AB上,点G在DF的延长线上,且∠B=∠DFB,∠G=∠DEG,若∠BEG=29°,则∠BDE的度数为()A.61°B.58°C.65.5°D.59.5°二.填空题11.周长为30,各边互不相等且都是整数的三角形共有个.12.如图,∠BDC=130°,∠A=40°,∠B+∠C的大小是.13.如图,BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,如果∠ABP=20°,∠ACP=50°,则∠P=°.14.如图,在△ABC中,∠A=50°,若剪去∠A得到四边形BCDE,则∠1+∠2=.15.如图,在△ABC中,∠ABC:∠ACB:∠CAB=5:6:7,点M在BA的延长线上,点N在BC的延长线上,DA平分∠CAM,DC平分∠ACN,连接BD,则∠BDC﹣∠ADB=度.三.解答题16.如图,△ABC的周长是21cm,AB=AC,中线BD分△ABC为两个三角形,且△ABD 的周长比△BCD的周长大6cm,求AB,BC.17.如图,在Rt△ABC中,∠ACB=90°,∠A=40°,△ABC的外角∠CBD的平分线BE 交AC的延长线于点E,点F为AC延长线上的一点,连接DF.(1)求∠CBE的度数;(2)若∠F=25°,求证:BE∥DF.18.如图,在△ABC中,CE,BF是两条高,若∠A=70°,∠BCE=30°,求∠EBF与∠FBC的度数.19.如图是一个多边形,你能否用一直线去截这个多边形,使得到的新多边形分别满足下列条件:(画出图形,把截去的部分打上阴影)①新多边形内角和比原多边形的内角和增加了180°.②新多边形的内角和与原多边形的内角和相等.③新多边形的内角和比原多边形的内角和减少了180°.(2)将多边形只截去一个角,截后形成的多边形的内角和为2520°,求原多边形的边数.20.如图①,在△ABC中,∠ABC与∠ACB的平分线相交于点P.(1)如果∠A=80°,求∠BPC的度数;(2)如图②,作△ABC外角∠MBC,∠NCB的角平分线交于点Q,试探索∠Q、∠A 之间的数量关系.(3)如图③,延长线段BP、QC交于点E,△BQE中,存在一个内角等于另一个内角的2倍,求∠A的度数.参考答案一.选择题1.C.2.C.3.C.4.B.5.B.6.A.7.D.8.A.9.C.10.B.二.填空题11.12个.12.90°.13.30°.14.230°.15.5.三.解答题16.解:∵BD是中线,∴AD=CD=AC,∵△ABD的周长比△BCD的周长大6cm,∴(AB+AD+BD)﹣(BD+CD+BC)=AB﹣BC=6cm①,∵△ABC的周长是21cm,AB=AC,∴2AB+BC=21cm②,联立①②得:AB=9cm,BC=3cm.17.解:(1)∵在Rt△ABC中,∠ACB=90°,∠A=40°,∴∠ABC=90°﹣∠A=50°,∴∠CBD=130°.∵BE是∠CBD的平分线,∴∠CBE=∠CBD=65°;(2)∵∠ACB=90°,∠CBE=65°,∴∠CEB=90°﹣65°=25°.又∵∠F=25°,∴∠F=∠CEB=25°,∴DF∥BE.18.解:在Rt△ABF中,∠A=70°,CE,BF是两条高,∴∠EBF=20°,∠ECA=20°,又∵∠BCE=30°,∴∠ACB=50°,∴在Rt△BCF中∠FBC=40°.19.解:(1)如图所示:(2)设新多边形的边数为n,则(n﹣2)•180°=2520°,解得n=16,①若截去一个角后边数增加1,则原多边形边数为15,②若截去一个角后边数不变,则原多边形边数为16,③若截去一个角后边数减少1,则原多边形边数为17,故原多边形的边数可以为15,16或17.20.(1)解:∵∠A=80°.∴∠ABC+∠ACB=100°,∵点P是∠ABC和∠ACB的平分线的交点,∴∠P=180°﹣(∠ABC+∠ACB)=180°﹣×100°=130°,(2)∵外角∠MBC,∠NCB的角平分线交于点Q,∴∠QBC+∠QCB=(∠MBC+∠NCB)=(360°﹣∠ABC﹣∠ACB)=(180°+∠A)=90°+∠A∴∠Q=180°﹣(90°+∠A)=90°﹣∠A;(3)延长BC至F,∵CQ为△ABC的外角∠NCB的角平分线,∴CE是△ABC的外角∠ACF的平分线,∴∠ACF=2∠ECF,∵BE平分∠ABC,∴∠ABC=2∠EBC,∵∠ECF=∠EBC+∠E,∴2∠ECF=2∠EBC+2∠E,即∠ACF=∠ABC+2∠E,又∵∠ACF=∠ABC+∠A,∴∠A=2∠E,即∠E=∠A;∵∠EBQ=∠EBC+∠CBQ=∠ABC+∠MBC=(∠ABC+∠A+∠ACB)=90°.如果△BQE中,存在一个内角等于另一个内角的2倍,那么分四种情况:①∠EBQ=2∠E=90°,则∠E=45°,∠A=2∠E=90°;②∠EBQ=2∠Q=90°,则∠Q=45°,∠E=45°,∠A=2∠E=90°;③∠Q=2∠E,则90°﹣∠A=∠A,解得∠A=60°;④∠E=2∠Q,则∠A=2(90°﹣∠A),解得∠A=120°.综上所述,∠A的度数是90°或60°或120°.。
A CFED(第6题)(第7题)ABECD(第5题)AB C D E (第4题) A O D B C(第1题)ABFEDC 第十一章 全等三角形第1课时 全等三角形一、选择题1.如图,已知△ABC ≌△DCB ,且AB=DC ,则∠DBC 等于( ) A .∠A B .∠DCB C .∠ABC D .∠ACB2.已知△ABC ≌△DEF ,AB=2,AC=4,△DEF 的周长为偶数,则EF 的长为( )A .3B .4C .5D .6二、填空题3.已知△ABC ≌△DEF ,∠A=50°,∠B=65°,DE=18㎝,则∠F=___°,AB=____㎝. 4.如图,△ABC 绕点A 旋转180°得到△AED ,则DE 与BC 的位置关系是___________,数量关系是___________. 三、解答题5.把△ABC 绕点A 逆时针旋转,边AB 旋转到AD ,得到△ADE ,用符号“≌”表示图中与△ABC 全等的三角形,并写出它们的对应边和对应角.6.如图,把△ABC 沿BC 方向平移,得到△DEF . 求证:AC ∥DF 。
7.如图,△ACF ≌△ADE ,AD =9,AE =4,求DF 的长.AD B C (第2题) A FE CD B(第3题) A B C (第4题)一、选择题1. 如果△ABC 的三边长分别为3,5,7,△DEF 的三边长分别为3,3x -2,2x -1,若这两个三角形全等,则x 等于( )A .73 B .3 C .4 D .5二、填空题2.如图,已知AC=DB ,要使△ABC ≌△DCB ,还需知道的一个条件是________.3.已知AC=FD ,BC=ED ,点B ,D ,C ,E 在一条直线上,要利用“SSS”,还需添加条件___________,得△ACB ≌△_______.4.如图△ABC 中,AB=AC ,现想利用证三角形全等证明∠B=∠C ,若证三角形全等所用的公理是SSS 公理,则图中所添加的辅助线应是_____________________. 二、解答题5. 如图,A ,E ,C ,F 在同一条直线上,AB=FD ,BC =DE ,AE=FC .求证:△ABC ≌△FDE .6.如图,AB=AC ,BD=CD ,那么∠B 与∠C 是否相等?为什么?7.如图,AB=AC ,AD = AE ,CD=BE .求证:∠DAB=∠EAC .DC EB A (第5题) (第6题) AC D DCE BA (第7题)ABCED(第6题)A C DB E F(第2题) A B E D C(第1题) 一、填空题 1.如图,AB =AC ,如果根据“SAS”使△ABE ≌△ACD ,那么需添加条件________________.2.如图,AB ∥CD ,BC ∥AD ,AB=CD ,BE=DF ,图中全等三角形有_____________对. 3.下列命题:①腰和顶角对应相等的两个等腰三角形全等;②两条直角边对应相等的两个直角三角形全等;③有两边和一角对应相等的两个三角形全等;④等腰三角形顶角平分线把这个等腰三角形分成两个全等的三角形.其中正确的命题有_____________. 二、解答题4. 已知:如图,C 是AB 的中点,AD ∥CE ,AD=CE .求证:△ADC ≌△CEB .5. 如图, A ,C ,D ,B 在同一条直线上,AE=BF ,AD=BC ,AE ∥BF . 求证:FD ∥EC .6.已知:如图,AC ⊥BD ,BC=CE ,AC=DC . 求证:∠B+∠D=90°;(第4题) AB CD E DCF BA(第5题)E D CB A(第4题)A B C DOA ECBDAFEDC一、选择题1.下列说法正确的是( )A .有三个角对应相等的两个三角形全等B .有一个角和两条边对应相等的两个三角形全等C .有两个角和它们夹边对应相等的两个三角形全等D .面积相等的两个三角形全等 二、填空题2.如图,∠B =∠DEF ,BC =EF, 要证△ABC ≌△DEF , (1)若以“SAS”为依据,还缺条件 ; (2)若以“ASA”为依据,还缺条件 . 3.如图,在△ABC 中,BD =EC ,∠ADB =∠AEC , ∠B =∠C ,则∠CAE = .三、解答题4.已知:如图,AB ∥CD ,OA=OC .求证:OB=OD5.已知:如图,AC ⊥CE ,AC=CE ,∠ABC=∠CDE=90°,求证:BD=AB+ED6.已知:如图,AB=AD ,BO=DO ,求证:AE=ACOE ADBC (第6题)(第3题)(第5题)(第2题)3421EDCBA AB EDCF(第3题)(第5题)(第6题)(第4题)ADBCo一、选择题1.已知△ABC 的六个元素,则下面甲、乙、丙三个三角形中和△ABC全等的图形是()A .甲和乙B .乙和丙C .只有乙D .只有丙 二、填空题2.如图,已知∠A=∠D ,∠ABC=∠DCB ,AB=6,则DC= .3.如图,已知∠A=∠C ,BE ∥DF ,若要用“AAS ”证△ABE ≌△CDF ,则还需添加的一个条件是 .(只要填一个即可)三、解答题4.已知:如图,AB=CD ,AC=BD ,写出图中所有全等三角形, 并注明理由.5.如图,如果AC =EF ,那么根据所给的数据信息,图中的两个三角形全等吗?请说明理由.6.如图,已知∠1=∠2,∠3=∠4,EC =AD , 求证:AB =BEDCB A(第2题)(第3题) (第4题) A B D F C E 一、选择题1.使两个直角三角形全等的条件是( )A .一个锐角对应相等B .两个锐角对应相等C .一条边对应相等D 。
2019年秋八年级数学上册第11章《三角形》单元检测题(时间120分钟;满分120分)一、选择题(每小题3分,共30分)1.三角形的内角和是()A.90°B.180°C.300°D.360°2.下列长度的三条线段能组成三角形的是()A.1,2,3B.1,2,3C.3,4,8D.4,5,63.如图,图中∠1的大小等于()A.40°B.50°C.60°D.70°,第5题图),第6题图) 4.已知△ABC中,∠B是∠A的2倍,∠C比∠A大20°,则∠A等于()A.40°B.60°C.80°D.90°5.如图,某同学在课桌上无意中将一块三角板叠放在直尺上,则∠1+∠2等于()A.60°B.75°C.90°D.105°6.如图,△ABC的角平分线BE,CF相交于点O,且∠FOE=121°,则∠A的度数是()A.52°B.62°C.64°D.72°7.如图,在△ABC中,∠A=80°,高BE与CH的交点为O,则∠BOC等于()A.80°B.120°C.100°D.150°,第7题图),第8题图),第9题图) 8.如图,在△ABC中,∠C=90°,D,E是AC上两点,且AE=DE,BD平分∠EBC,那么下列说法中不正确的是()A.BE是△ABD的中线B.BD是△BCE的角平分线C.∠1=∠2=∠3D.BC是△ABE的高9.如图,把纸片△ABC沿DE折叠,当点A落在四边形BCDE内部时,则∠A与∠1+∠2之间有一种数量关系始终保持不变,请你试着找一找这个规律,你发现的规律是()A.∠A=∠1+∠2B.2∠A=∠1+∠2C.3∠A=∠1+∠2D.3∠A=2(∠1+∠2)10.如图,已知长方形ABCD,一条直线将该长方形ABCD分割成两个多边形,则所得任一多边形内角和度数不可能是()A.720°B.540°C.360°D.180°,第10题图),第13题图),第14题图)二、填空题(每小题3分,共18分)11.正五边形每个外角的度数是___.12.人站在晃动的公共汽车上,若你分开两腿站立,还需伸出一只手抓住栏杆才能站稳,这是利用了___.13.如图,在△ABC中,AD是BC边上的中线,BE是△ABD中AD边上的中线,若△ABC的面积是24,则△ABE的面积是____.14.如图,∠1+∠2+∠3+∠4+∠5+∠6=___.15.当三角形中一个内角α是另一个内角β的一半时,我们称此三角形为“半角三角形”,其中α称为“半角”.如果一个“半角三角形”的“半角”为20°,那么这个“半角三角形”的最大内角的度数为____.16.已知AD是△ABC的高,∠BAD=72°,∠CAD=21°,则∠BAC的度数是___.三、解答题(共72分)17.(8分)如图:(1)在△ABC中,BC边上的高是___;(2)在△AEC中,AE边上的高是____;(3)若AB=CD=2cm,AE=3cm,求△AEC的面积及CE的长.18.(8分)等腰△ABC的两边长x,y满足|x-4|+(y-8)2=0,求这个等腰三角形的周长.19.(8分)如图,AD平分∠CAE,∠B=35°,∠DAE=60°,试求∠D与∠ACD的度数.20.(7分)若一个多边形的各边长均相等,周长为70cm,且内角和为900°,求它的边长.21.(7分)某工程队准备开挖一条隧道,为了缩短工期,必须在山的两侧同时开挖,为了确保两侧开挖的隧道在同一条直线上,测量人员在如图的同一高度定出了两个开挖点P和Q,然后在左边定出开挖的方向线AP,为了准确定出右边开挖的方向线BQ,测量人员取一个可以同时看到点A,P,Q的点O,测得∠A=28°,∠AOC=100°,那么∠QBO应等于多少度才能确保BQ与AP在同一条直线上?22.(8分)如图,AB∥CD,直线EF与AB,CD分别相交于点E,F,EP平分∠AEF,FP平分∠EFC.(1)求证:△EPF是直角三角形;(2)若∠PEF=30°,求∠PFC的度数.23.(8分)如图,在△ABC中,∠B=26°,∠C=70°,AD平分∠BAC,AE⊥BC于点E,EF⊥AD于点F.(1)求∠DAC的度数;(2)求∠DEF的度数.24.(8分)如图,在△ABC中,∠ACB=90°,CD⊥AB于点D.(1)求证:∠ACD=∠B;(2)若AF平分∠CAB且分别交CD,BC于点E,F,求证:∠CEF=∠CFE.25.(10分)取一副三角板按图①拼接,固定三角板ADC,将三角板ABC绕点A按顺时针方向旋转得到△ABC′,如图②所示.设∠CAC′=α(0°<α≤45°).(1)当α=15°时,求证:AB∥CD;(2)连接BD,当0°<α≤45°时,∠DBC′+∠CAC′+∠BDC的度数是否变化,若变化,求出变化范围;若不变,求出其度数.解析2019年秋八年级数学上册第11章《三角形》单元检测题(时间120分钟;满分120分)一、选择题(每小题3分,共30分)1.三角形的内角和是(B)A.90°B.180°C.300°D.360°2.下列长度的三条线段能组成三角形的是(D)A.1,2,3B.1,2,3C.3,4,8D.4,5,63.如图,图中∠1的大小等于(D)A.40°B.50°C.60°D.70°错误!,第5题图),第6题图) 4.已知△ABC中,∠B是∠A的2倍,∠C比∠A大20°,则∠A等于(A)A.40°B.60°C.80°D.90°5.如图,某同学在课桌上无意中将一块三角板叠放在直尺上,则∠1+∠2等于(C)A.60°B.75°C.90°D.105°6.如图,△ABC的角平分线BE,CF相交于点O,且∠FOE=121°,则∠A的度数是(B)A.52°B.62°C.64°D.72°7.如图,在△ABC中,∠A=80°,高BE与CH的交点为O,则∠BOC等于(C)A.80°B.120°C.100°D.150°,第7题图),第8题图),第9题图)8.如图,在△ABC中,∠C=90°,D,E是AC上两点,且AE=DE,BD平分∠EBC,那么下列说法中不正确的是(C)A.BE是△ABD的中线B.BD是△BCE的角平分线C.∠1=∠2=∠3D.BC是△ABE的高9.如图,把纸片△ABC沿DE折叠,当点A落在四边形BCDE内部时,则∠A与∠1+∠2之间有一种数量关系始终保持不变,请你试着找一找这个规律,你发现的规律是(B)A.∠A=∠1+∠2B.2∠A=∠1+∠2C.3∠A=∠1+∠2D.3∠A=2(∠1+∠2)10.如图,已知长方形ABCD,一条直线将该长方形ABCD分割成两个多边形,则所得任一多边形内角和度数不可能是(A)A.720°B.540°C.360°D.180°,第10题图),第13题图),第14题图)二、填空题(每小题3分,共18分)11.正五边形每个外角的度数是__72°__.12.人站在晃动的公共汽车上,若你分开两腿站立,还需伸出一只手抓住栏杆才能站稳,这是利用了__三角形的稳定性__.13.如图,在△ABC中,AD是BC边上的中线,BE是△ABD中AD边上的中线,若△ABC的面积是24,则△ABE的面积是__6__.14.如图,∠1+∠2+∠3+∠4+∠5+∠6=__360°__.15.当三角形中一个内角α是另一个内角β的一半时,我们称此三角形为“半角三角形”,其中α称为“半角”.如果一个“半角三角形”的“半角”为20°,那么这个“半角三角形”的最大内角的度数为__120°__.16.已知AD 是△ABC 的高,∠BAD=72°,∠CAD=21°,则∠BAC 的度数是__51°或93°__.三、解答题(共72分)17.(8分)如图:(1)在△ABC 中,BC 边上的高是__AB __;(2)在△AEC 中,AE 边上的高是__CD __;(3)若AB=CD=2cm,AE=3cm,求△AEC 的面积及CE 的长.解:S △AEC =12AE·CD =12CE·AB =3cm 2,CE =3cm 18.(8分)等腰△ABC 的两边长x,y 满足|x-4|+(y-8)2=0,求这个等腰三角形的周长.解:∵x ,y 满足|x -4|+(y -8)2=0,∴x =4,y =8,当4为腰时,4+4=8不成立,当4为底时,8为腰,4+8>8,满足三边关系,∴△ABC 的周长为8+8+4=2019.(8分)如图,AD 平分∠CAE,∠B=35°,∠DAE=60°,试求∠D 与∠ACD 的度数.解:∠D =25°,∠ACD =95°20.(7分)若一个多边形的各边长均相等,周长为70cm,且内角和为900°,求它的边长.解:边长是10cm21.(7分)某工程队准备开挖一条隧道,为了缩短工期,必须在山的两侧同时开挖,为了确保两侧开挖的隧道在同一条直线上,测量人员在如图的同一高度定出了两个开挖点P 和Q,然后在左边定出开挖的方向线AP,为了准确定出右边开挖的方向线BQ,测量人员取一个可以同时看到点A,P,Q 的点O,测得∠A=28°,∠AOC=100°,那么∠QBO 应等于多少度才能确保BQ 与AP 在同一条直线上?解:在△AOB 中,∠QBO =180°-∠A -∠O =180°-28°-100°=52°.即∠QBO 应等于52°才能确保BQ 与AP 在同一条直线上22.(8分)如图,AB∥CD,直线EF 与AB,CD 分别相交于点E,F,EP 平分∠AEF,FP 平分∠EFC.(1)求证:△EPF 是直角三角形;(2)若∠PEF=30°,求∠PFC 的度数.解:(1)∵AB∥CD ,∴∠AEF +∠CFE =180°,∵EP 平分∠AEF ,FP 平分∠EFC ,∴∠AEP =∠FEP ,∠CFP =∠EFP ,∴∠PEF +∠PFE =12×180°=90°.∴∠EPF =180°-90°=90°,即△EPF 是直角三角形(2)60°23.(8分)如图,在△ABC 中,∠B=26°,∠C=70°,AD 平分∠BAC,AE⊥BC 于点E,EF⊥AD 于点F.(1)求∠DAC 的度数;(2)求∠DEF 的度数.解:(1)∵在△ABC 中,∠B =26°,∠C =70°,∴∠BAC =180°-∠B -∠C =180°-26°-70°=84°.∵AD 平分∠BAC ,∴∠DAC =12∠BAC =12×84°=42°(2)在△ACE中,∠CAE=90°-∠C=90°-70°=20°,∴∠DAE=∠DAC-∠CAE=42°-20°=22°.∵∠DEF+∠AEF=∠AEF+∠DAE=90°,∴∠DEF=∠DAE=22°24.(8分)如图,在△ABC中,∠ACB=90°,CD⊥AB于点D.(1)求证:∠ACD=∠B;(2)若AF平分∠CAB且分别交CD,BC于点E,F,求证:∠CEF=∠CFE.解:(1)∵∠ACB=90°,∴∠ACD+∠DCB=90°,又∵CD⊥AB于点D,∴∠DCB+∠B=90°,∴∠ACD=∠B(2)在△ACE中,∠CEF=∠CAF+∠ACD,在△AFB中,∠CFE=∠B+∠FAB,∵AF平分∠CAB,∴∠CAE=∠FAB,∴∠CEF=∠CFE25.(10分)取一副三角板按图①拼接,固定三角板ADC,将三角板ABC绕点A按顺时针方向旋转得到△ABC′,如图②所示.设∠CAC′=α(0°<α≤45°).(1)当α=15°时,求证:AB∥CD;(2)连接BD,当0°<α≤45°时,∠DBC′+∠CAC′+∠BDC的度数是否变化,若变化,求出变化范围;若不变,求出其度数.解:(1)证明:∵∠CAC′=15°,∴∠BAC=∠BAC′-∠CAC′=45°-15°=30°,又∴∠C=30°,∴∠BAC=∠C,∴AB∥CD(2)∠DBC′+∠CAC′+∠BDC的度数不变.如图,连接CC′,∵∠DBC′+∠BDC=∠DCC′+∠BC′C,又∠CAC′+∠ACC′+∠AC′C=180°,∴∠CAC′+∠AC′B+∠BC′C+∠ACD+∠DCC′=180°,∵∠AC′B=45°,∠ACD=30°,∴∠DBC′+∠CAC′+∠BDC=180°-45°-30°=105°。
第十一章三角形单元测试题一、选择题(每小题 3 分,共30分)1、下列三条线段,能组成三角形的是()A、3,3,3B、3,3,6C、3,2,5D、3,2,62、如果一个三角形的三条高的交点恰是三角形的一个顶点,那么这个三角形是(A 、锐角三角形B 、钝角三角形C 、直角三角形D 、都有可能3、如图所示,AD 是△ ABC 的高,延长BC 至 E,使CE = BC ,△AB的面积为S2,那么()1>S2 1=S2C、1<S2 D 、不能确定A 、 SB 、 S S4、下列图形中有稳定性的是()A 、正方形B 、长方形C、直角三角形 D 、平行四边形5、如图,正方形网格中,每个小方格都是边长为 1 的正方形,A、在小方格的顶点上,位置如图形所示, C 也在小方格的顶点上,且以C 为顶点的三角形面积为 1 个平方单位,则点 C 的个数为(A、3个B、4个C、5个D、6个6、已知△ ABC 中,∠ A 、∠ B、∠ C 三个角的比例如下,其中能说明△ ABC 是直角三角形的是()A、2:3:4B、1:2:3C、4:3:5D、1:2:27、点P 是△ ABC 内一点,连结BP 并延长交AC 于 D ,连结PC ,则图中∠1、∠ 2、∠ A 的大小关系是()A 、∠ A>∠ 2>∠ 1B、∠ A>∠ 2>∠ 1二、填空题(本大题共 6 小题,每小题 3 分,共18 分)11、 P 为△ ABC 中 BC 边的延长线上一点,∠ A = 50 °,∠ B=70 °,则12、如果一个三角形两边为2cm , 7cm ,且第三边为奇数,则三角形的周长13、在△ ABC 中,∠A= 60 °,∠ C = 2∠ B,则∠ C = _____ 。
14、一个多边形的每个内角都等于150 °,则这个多边形是_____ 边形15、用正三角形和正方形镶嵌平面,每一个顶点处有_____ 个正三角形16、黑白两种颜色的正方形纸片,按如图所示的规律拼成若干个图案,(有白色纸片_____ 块。
2019中考数学一轮复习单元检测试卷第十一单元三角形考试时间:120分钟;满分:150分学校:___________姓名:___________班级:___________考号:___________一、选择题(本大题共10小题,每小题4分,共40分)得分评卷人1.如图,在△ABC中,∠ACB=90°,∠ADC=90°,则△ABC斜边AB上的高为()A.CD B.AC C.BC D.BD第1题第2题第4题第5题2.如图AD⊥BC于点D,那么图中以AD为高的三角形有()个A.3B.4C.5D.63.已知三角形的三边长分别为2、x、10,若x为正整数,则这样的三角形个数为()A.1B.2C.3D.44.如图,在△ABC中,点D是∠ABC和∠ACB角平分线的交点,若∠BDC=110°,那么∠A=()A.40°B.50°C.60°D.70°5.如图在△ABC中,D是AB上一点,E是AC上一点,BE,CD相交于点F,∠A=70°,∠ACD=20°,∠ABE=32°,则∠CFE的度数为()A.68°B.58°C.52°D.48°6.如图,顺次连结同一平面内A,B,C,D四点,已知∠A=40°,∠C=20°,∠ADC =120°,若∠ABC的平分线BE经过点D,则∠ABE的度数()A.20°B.30°C.40°D.60°第6题第9题第10题7.直角三角形的一个锐角∠A是另一个锐角∠B的3倍,那么∠B的度数是()A.22.5°B.45°C.67.5°D.135°8.一个多边形截去一角后,变成一个八边形则这个多边形原来的边数是()A.8或9B.2或8C.7或8或9D.8或9或10 9.如图,∠1,∠2,∠3是五边形ABCDE的3个外角,若∠A+∠B=220°,则∠1+∠2+∠3=()A.140°B.180°C.220°D.320°10.把一副直角三角板按如图所示的方式摆放在一起,其中∠C=90°,∠F=90°,∠D =30°,∠A=45°,则∠1+∠2等于()A.270°B.210°C.180°D.150°二、填空题(本大题共4小题,每小题5分,共20分)得分评卷人11.如图,在△ABC中,∠ACB=60°,∠BAC=75°,AD⊥BC于D,BE⊥AC于E,AD 与BE交于H,则∠CHD =.12.如图,在△ABC中,∠B=60°,AD平分∠BAC,点E在AD延长线上,且EC⊥AC.若∠E=50°,则∠ADC的度数是.13.如图,把三角形纸片ABC折叠,使得点B,点C都与点A重合,折痕分别为DE,MN,若∠BAC=110°,则∠DAM =度.14.一个正多边形的每个内角都是150°,则它是正边形.三、解答题(本大题共9小题,满分90分,其中第15,16,17,18题每得分评卷人题8分,19,20题每题10分,21,22题每题12分,23题14分)15.若a,b,c是△ABC的三边,化简:|a﹣b+c|+|c﹣a﹣b|﹣|a+b+c|.16.如图,五边形ABCDE的内角都相等,且AB=BC,AC=AD,求∠CAD的度数.17.(1)已知三角形三个内角的度数比为1:2:3,求这个三角形三个外角的度数.(2)一个正多边形的内角和为1800°,求这个多边形的边数.18.如图,△ABC中,A1,A2,A3,…,A n为AC边上不同的n个点,首先连接BA1,图中出现了3个不同的三角形,再连接BA2,图中便有6个不同的三角形…(1)完成下表:连接个数出现三角形个数(2)若出现了45个三角形,则共连接了多少个点?(3)若一直连接到A n,则图中共有个三角形.19.如图,点P是△ABC内任意一点,求证:PA+PB+PC>AB+BC+AC.20.如图,在Rt△ABC中,∠ACB=90°,∠A=40°,△ABC的外角∠CBD的平分线BE 交AC的延长线于点E,点F为AC延长线上的一点,连接DF.(1)求∠CBE的度数;(2)若∠F=25°,求证:BE∥DF.21.如图,在△ABC中,AD⊥BC,AE平分∠BAC,∠B=70°,∠C=30°.求:(1)∠BAE的度数;(2)∠DAE的度数;(3)探究:小明认为如果条件∠B=70°,∠C=30°改成∠B﹣∠C=40°,也能得出∠DAE的度数?若能,请你写出求解过程;若不能,请说明理由.22.我们定义:在一个三角形中,如果一个角的度数是另一个角度数的3倍,那么这样的三角形我们称之为“和谐三角形”.如:三个内角分别为105°,40°,35°的三角形是“和谐三角形”概念理解:如图1,∠MON=60°,在射线OM上找一点A,过点A作AB⊥OM交ON于点B,以A为端点作射线AD,交线段OB于点C(点C不与O,B重合)(1)∠ABO的度数为,△AOB(填“是”或“不是”)“和谐三角形”;(2)若∠ACB=80°,求证:△AOC是“和谐三角形”.应用拓展:如图2,点D在△ABC的边AB上,连接DC,作∠ADC的平分线交AC于点E,在DC 上取点F,使∠EFC+∠BDC=180°,∠DEF=∠B.若△BCD是“和谐三角形”,求∠B的度数.23.【问题背景】(1)如图1的图形我们把它称为“8字形”,请说理证明∠A+∠B=∠C+∠D【简单应用】(2)如图2,AP、CP分别平分∠BAD、∠BCD,若∠ABC=20°,∠ADC=26°,求∠P的度数(可直接使用问题(1)中的结论)【问题探究】(3)如图3,直线AP平分∠BAD的外角∠FAD,CP平分∠BCD的外角∠BCE,若∠ABC=36°,∠ADC=16°,猜想∠P的度数为【拓展延伸】(4)在图4中,若设∠C=x,∠B=y,∠CAP=∠CAB,∠CDP=∠CDB,试问∠P与∠C、∠B之间的数量关系为(用x、y表示∠P)(5)在图5中,AP平分∠BAD,CP平分∠BCD的外角∠BCE,猜想∠P与∠B、∠D 的关系,直接写出结论.参考答案与试题解析一.选择题(共10小题)1.解:∵∠ADC=90°,∴CD⊥AB,∴CD是△ABC斜边上的高,故选:A.2.解:∵AD⊥BC于D,而图中有一边在直线CB上,且以A为顶点的三角形有6个,∴以AD为高的三角形有6个.故选:D.3.解:∵10﹣2=8,10+2=12,∴8<x<12,∵若x为正整数,∴x的可能取值是9,10,11,故这样的三角形共有3个.故选:C.4.解:∵∠BDC=110°,∴∠DBC+∠DCB=70°,∵点D是∠ABC和∠ACB角平分线的交点,∴∠ABC+∠ACB=2(∠DBC+∠DCB)=140°,∴∠A=180°﹣140°=40°,故选:A.5.解:∵∠A=70°,∠ACD=20°,∴∠BDF=∠A+∠ACD=70°+20°=90°,在△BDF中,∠BFD=180°﹣∠BDF﹣∠ABE=180°﹣90°﹣32°=58°,∴∠CFE=∠BFD=58°.故选:B.6.解:∵∠ADE=∠ABD+∠A,∠EDC﹣∠DBC+∠C,∴∠ADC=∠ADE+∠EDC=∠A+∠C+∠ABC,∴120°=40°+20°+∠ABC,∴∠ABC=60°,∵BE平分∠ABC,∴∠ABE=∠ABC=30°,故选:B.7.解:设∠B=x°,则∠A=3x°,由直角三角形的性质可得∠A+∠B=90°,∴x+3x=90,解得x=22.5,∴∠B=22.5°,故选:A.8.解:∵截去一个角后边数可以增加1,不变,减少1,∴原多边形的边数是7或8或9.故选:C.9.解:根据∠A+∠B=220°,可知∠A的一个邻补角与∠B的一个邻补角的和为360°﹣220°=140°.根据多边形外角和为360°,可知∠1+∠2+∠3=360°﹣140°=220°.故选:C.10.解:如图:∵∠1=∠D+∠DOA,∠2=∠F+∠FPB,∵∠DOA=∠COP,∠EPB=∠CPO,∴∠1+∠2=∠D+∠F+∠COP+∠CPO=∠D+∠F+180°﹣∠C=30°+90°+180°﹣90°=210°.故选:B.二.填空题(共4小题)11.解:在△ABC中,三边的高交于一点,所以CF⊥AB,∵∠BAC=75°,且CF⊥AB,∴∠ACF=15°,∵∠ACB=60°,∴∠BCF=45°在△CDH中,三内角之和为180°,∴∠CHD=45°,故答案为∠CHD=45°.12.解:∵EC⊥AC.∠E=50°,∴∠DAC=40°,∵AD平分∠BAC,∴∠BAD=40°,∵∠B=60°,∴∠ADC=40°+60°=100°,故答案为:100°.13.解:∵∠BAC=110°,∴∠B+∠C=180°﹣∠BAC=70°,∵把三角形纸片ABC折叠,使得点B,点C都与点A重合,∴∠BAD=∠B,∠CAM=∠C,∴∠BAD+∠CAM=∠B+∠C=70°,∴∠DAM=∠BAC﹣∠BAD﹣∠CAM=110°﹣70°=40°,故答案为:40.14.解:∵一个正多边形的每个内角为150°,∴它的外角为30°,360°÷30°=12,故答案为:十二.三.解答题(共9小题)15.解:∵a、b、c是△ABC的三边,∴a﹣b+c>0,c﹣a﹣b<0,a+b+c>0,∴原式=a﹣b+c++a+b﹣c﹣a﹣b﹣c=a﹣b﹣c.16.证明:∵五边形ABCDE的内角都相等,∴∠BAE=∠B=∠BCD=∠CDE=∠E=(5﹣2)×180°÷5=108°,∵AB=AC,∴∠1=∠2=(180°﹣108°)÷2=36°,∴∠ACD=∠BCD﹣∠2=72°,∵AC=AD,∴∠ADC=∠ACD=72°,∴∠CAD=180°﹣∠ACD﹣∠ADC=36°.17.解:(1)设此三角形三个内角的比为x,2x,3x,则x+2x+3x=180,6x=180,x=30,则三个内角分别为30°、60°、90°,相应的三个外角分别为150°、120°、90°.(2)设这个多边形的边数是n,则(n﹣2)•180°=1800°,解得n=12.故这个多边形的边数为12.18.解:(1)连接个数123456出现三角形个数3610152128(2)8个点;(3)1+2+3+…+(n+1)=[1+2+3+…+(n+1)+1+2+3+…+(n+1)]=(n+1)(n+2).故答案为(n+1)(n+2).19.证明:∵PA+PB>AB,PB+PC>BC,PC+PA>AC.∴把它们相加,再除以2,得PA+PB+PC>AB+BC+AC.20.解:(1)∵在Rt△ABC中,∠ACB=90°,∠A=40°,∴∠ABC=90°﹣∠A=50°,∴∠CBD=130°.∵BE是∠CBD的平分线,∴∠CBE=∠CBD=65°;(2)∵∠ACB=90°,∠CBE=65°,∴∠CEB=90°﹣65°=25°.又∵∠F=25°,∴∠F=∠CEB=25°,∵DF∥BE.21.解:(1)∵∠B+∠C+∠BAC=180°,∴∠BAC=180°﹣∠B﹣∠C=180°﹣70°﹣30°=80°,∵AE平分∠BAC,∴∠BAE=∠BAC=40°;(2)∵AD⊥BC,∴∠ADE=90°,而∠ADE=∠B+∠BAD,∴∠BAD=90°﹣∠B=90°﹣70°=20°,∴∠DAE=∠BAE﹣∠BAD=40°﹣20°=20°;(3)能.∵∠B+∠C+∠BAC=180°,∴∠BAC=180°﹣∠B﹣∠C,∵AE平分∠BAC,∴∠BAE=∠BAC=(180°﹣∠B﹣∠C)=90°﹣(∠B+∠C),∵AD⊥BC,∴∠ADE=90°,而∠ADE=∠B+∠BAD,∴∠BAD=90°﹣∠B,∴∠DAE=∠BAE﹣∠BAD=90°﹣(∠B+∠C)﹣(90°﹣∠B)=(∠B﹣∠C),∵∠B﹣∠C=40°,∴∠DAE=×40°=20°.22.解:(1)∵AB⊥OM,∴∠OAB=90°,∴∠ABO=90°﹣∠MON=30°,∵∠OAB=3∠ABO,∴△AOB为“和谐三角形”,故答案为:30;是;(2)证明:∵∠MON=60°,∠ACB=80°,∵∠ACB=∠OAC+∠MON,∴∠OAC=80°﹣60°=20°,∵∠AOB=60°=3×20°=3∠OAC,∴△AOC是“和谐三角形”;应用拓展:∵∠EFC+∠BDC=180°,∠ADC+∠BDC=180°,∴∠EFC=∠ADC,∴AD∥EF,∴∠DEF=∠ADE,∵∠DEF=∠B,∴∠B=∠ADE,∴DE∥BC,∴∠CDE=∠BCD,∵AE平分∠ADC,∴∠ADE=∠CDE,∴∠B=∠BCD,∵△BCD是“和谐三角形”,∴∠BDC=3∠B,或∠B=3∠BDC,∵∠BDC+∠BCD+∠B=180°,∴∠B=36°或∠B=.23.(1)证明:在△AOB中,∠A+∠B+∠AOB=180°,在△COD中,∠C+∠D+∠COD=180°,∵∠AOB=∠COD,∴∠A+∠B=∠C+∠D;(2)解:如图2,∵AP、CP分别平分∠BAD,∠BCD,∴∠1=∠2,∠3=∠4,由(1)的结论得:,①+②,得2∠P+∠2+∠3=∠1+∠4+∠B+∠D,∴∠P=(∠B+∠D)=23°;(3)解:如图3,∵AP平分∠BAD的外角∠FAD,CP平分∠BCD的外角∠BCE,∴∠1=∠2,∠3=∠4,∴∠PAD=180°﹣∠2,∠PCD=180°﹣∠3,∵∠P+(180°﹣∠1)=∠D+(180°﹣∠3),∠P+∠1=∠B+∠4,∴2∠P=∠B+∠D,∴∠P=(∠B+∠D)=×(36°+16°)=26°;故答案为:26°;【拓展延伸】(4)同法可得:∠P=x+y;故答案为:∠P=x+y,(5)同法可得:∠P=.故答案为:∠P=.。
第11章三角形一.选择题(共15小题)1.下列各组数可能是一个三角形的边长的是()A.4,4,9 B.2,6,8 C.3,4,5 D.1,2,32.下列图中不具有稳定性的是()A.B.C.D.3.在△ABC中,∠A是钝角,下列图中画AC边上的高线正确的是()A.B.C.D.4.若一个三角形的两边长分别是4、9,则这个三角形的第三边的长可能是()A.3 B.5 C.8 D.135.下列说法错误的是()A.三角形三条高交于三角形内一点B.三角形三条中线交于三角形内一点C.三角形三条角平分线交于三角形内一点D.三角形的中线、角平分线、高都是线段6.如图所示,在△ABC中,AD为BC边上的中线,若AB=5cm,AC=3cm,则△ABD的周长比△ACD周长多()A.5cm B.3cm C.8cm D.2cm7.如图,△ABC中,∠BAC是钝角,AD⊥BC、EB⊥BC、FC⊥BC,()A.AD是△ABC的高B.EB是△ABC的高C.FC是△ABC的高D.AE、AF是△ABC的高8.如图,AD是△ABC的外角∠EAC的平分线,AD∥BC,∠B=32°,则∠C的度数是()A.64°B.32°C.30°D.40°9.一副三角板如图摆放,边DE∥AB,则∠1=()A.135°B.120°C.115°D.105°10.如图,三角形一外角为140°,则∠1的度数为()A.100°B.110°C.120°D.130°11.一个正多边形,它的每一个外角都等于40°,则该正多边形是()A.正六边形B.正七边形C.正八边形D.正九边形12.已知在△ABC中,∠ACB=90°,∠A=60°,则∠B的度数是()A.30°B.35°C.40°D.5013.如图,x的值是()A.80 B.90 C.100 D.11014.如图,△ABC中,∠ABC=∠ACB,∠BPC=113°,P是△ABC内一点,且∠1=∠2,则∠A等于()A.113°B.67°C.23°D.46°15.如图所示,小明从A点出发,沿直线前进8米后左转40°,再沿直线前进8米,又左转40°,照这样走下去,他第一次回到出发点A时,一共走了()米.A.70 B.72 C.74 D.76二.填空题(共7小题)16.若三角形三边长为3,2x+1,10,则x的取值范围是.17.若△ABC的三个内角之比为1:5:3,那么△ABC中最大角的度数为.18.如图,在△ABC中,∠A=40°,外角∠ACD=100°,则∠B=.19.如图,已知,∠ACB=90°,CD⊥AB于点D,那么图中与∠A相等的角是.20.一个正多边形的周长是100,边长为10,则正多边形的边数n═.21.已知一个正多边形的每个内角都是150°,则这个正多边形是正边形.22.若一个九边形8个外角的和为200°,则它的第9个外角为度.三.解答题(共7小题)23.已知△ABC,如图,过点A画△ABC的角平分线AD、中线AE和高线AF.24.已知在△ABC中,AB=5,BC=2,且AC为奇数.(1)求△ABC的周长;(2)判断△ABC的形状.25.如图,EF∥AD,AD∥BC,CE平分∠BCF,∠DAC=120°,∠ACF=20°,求∠EFC的度数26.如图,△ABC中,∠ABC=∠C=70°,BD平分∠ABC,求∠ADB的度数.27.如图,AB、ED分别垂直于BD,点B、D是垂足,且∠ACB=∠CED.求证△ACE是直角三角形.28.如图,五边形ABCDE中,AE∥CD,∠A=107°,∠B=121°,求∠C的度数.29.如图,在四边形ABCD中,∠A=∠C=90°,BE平分∠ABC,DF平分∠CDA.(1)求证:BE∥DF;(2)若∠ABC=56°,求∠ADF的大小.参考答案一.选择题(共15小题)1.解:A、因为4+4<9,所以本组数不能构成三角形.故本选项错误;B、因为2+6=8,所以本组数不能构成三角形.故本选项错误;C、因为3+4>5,所以本组数可以构成三角形.故本选项正确;D、因为1+2=3,所以本组数不能构成三角形.故本选项错误;故选:C.2.解:因为三角形具有稳定性,四边形不具有稳定性,故选:B.3.解:由题意可得,在△ABC中,∠A是钝角,画AC边上的高线是故选:A.4.解:设第三边长为xcm,则9﹣4<x<9+4,5<x<13,故选:C.5.解:A、三角形的三条高所在的直线交于一点,三条高不一定相交,故本选项正确;B、三角形的三条中线交于三角形内一点,故本选项错误;C、三角形的三条角平分线交于一点,是三角形的内心,故本选项错误;D、三角形的中线,角平分线,高都是线段,因为它们都有两个端点,故本选项错误;故选:A.6.解:∵AD是△ABC中BC边上的中线,∴BD=DC=BC,∴△ABD和△ADC的周长的差=(AB+BC+AD)﹣(AC+BC+AD)=AB﹣AC=5﹣3=2(cm).故选:D.7.解:△ABC中,画BC边上的高,是线段AD.故选:A.8.解:∵AD∥BC,∴∠EAD=∠B=32°,∵AD是△ABC的外角∠EAC的平分线,∴∠EAC=2∠EAD=64°,∵∠EAC是△ABC的外角,∴∠C=∠EAC﹣∠B=64°﹣32°=32°,故选:B.9.解:∵DE∥AB,∴∠D+∠DAB=180°,又∵∠D=45°,∠BAC=30°,∴∠1=180°﹣∠D﹣∠BAC=105°,故选:D.10.解:由三角形的外角性质可知,∠2=140°﹣80°=60°,∴∠1=180°﹣∠2=180°﹣60°=120°,故选:C.11.解:∵360÷40=9,∴这个正多边形的边数是9.故选:D.12.解:∵在△ABC中,∠ACB=90°,∠A=60°,∴∠B=30°,故选:A.13.解:根据四边形的内角和得,x+x+10+60+90=360,解得:x=100,故选:C.14.解:∵∠BPC=113°∴∠PCB=180°﹣∠BPC﹣∠2=67°﹣∠2∵∠1=∠2∴∠ACB=∠1+∠PCB=∠1+67°﹣∠2=67°∴∠ABC=∠ACB=67°∴∠A=180°﹣∠ABC﹣∠ACB=180°﹣2×67°=46°故选:D.15.解:由题意可知,小明第一次回到出发点A时,他一共转了360°,且每次都是向左转40°,所以共转了360÷40=9次,一次沿直线前进8米,9次就前进8×9=72米.故选:B.二.填空题(共7小题)16.解:由三角形三边关系定理得:10﹣3<2x+1<10+3,且2x+1>0解得:3<x<6,即x的取值范围是3<x<6.故答案为:3<x<6.17.解:设△ABC最小的内角为x°,则另外两角的大小分别为5x°,3x°,依题意,得:x+5x+3x=180,解得:x=20,∴5x=100.故答案为:100°.18.解:∵∠A=40°,外角∠ACD=100°,∴∠B=∠ACD﹣∠A=100°﹣40°=60°,故答案为:60°.19.解:∵在Rt△ABC中,∠A=90°﹣∠B,又∵在Rt△BCD中,∠BCD=90°﹣∠B,∴∠A=∠BCD.故答案为:∠BCD.20.解:∵正多边形的周长是100,边长为10,∴正多边形的边数n==10,故答案为:10.21.解:外角是:180°﹣150°=30°,360°÷30°=12.则这个正多边形是正十二边形.故答案为:十二.22.解:360°﹣200°=160°.故它的第9个外角为160度.故答案为:160.三.解答题(共7小题)23.解:由题意画图可得:24.解:(1)由题意得:5﹣2<AC<5+2,即:3<AC<7,∵AC为奇数,∴AC=5,∴△ABC的周长为5+5+2=12;(2)∵AB=AC,∴△ABC是等腰三角形.25.解:∵EF∥AD,AD∥BC,∴EF∥BC,∠ACB+∠DAC=180°,∵∠DAC=120°,∴∠ACB=60°,又∵∠ACF=20°,∴∠FCB=∠ACB﹣∠ACF=40°,∵EF∥BC,∴∠EFC+∠FCB=180°,∴∠EFC=180°﹣40°=140°.26.解:∵∠ABC=∠C=70°,BD平分∠ABC,∴∠DBC=35°,∴∠ADB=∠C+∠DBC=70°+35°=105°.27.证明:∵AB⊥BD,ED⊥BD,∴∠ABC=∠CDE=90°,∴∠ACB+∠BAC=90°,∠CED+∠DCE=90°.∵∠ACB=∠CED,∴∠BAC=∠DCE,∴∠ACB+∠DCE=90°,∴∠ACE=180°﹣(∠ACB+∠DCE)=90°.∴△ACE是直角三角形.28.解:过点B在B的右侧作BF∥AE.∵BF∥AE,∠A=107°,∴∠ABF=180°﹣107°=73°,∵∠B=121°,∴∠FBC=121°﹣∠ABF=48°,又AE∥CD,BF∥AE,∴BF∥CD,∴∠C=180°﹣∠FBC=132°.29.(1)证明:∵∠A=∠C=90°,∴∠ABC+∠ADC=180°,∵BE平分∠ABC,DF平分∠ADC,∴∠1=∠2=∠ABC,∠3=∠4=∠ADC,∴∠1+∠3=(∠ABC+∠ADC)=×180°=90°,又∠1+∠AEB=90°,∴∠3=∠AEB,∴BE∥DF;(2)解:∵∠ABC=56°,∴∠ADC=360°﹣∠A﹣∠C﹣∠ABC=124°,∵DF平分∠CDA,∴∠ADF =∠ADC=62°.。